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Abstract: We propose a methodology that uses polarization state changes and machine
learning to detect and classify eavesdropping, harmful, and non-harmful events in the op-
tical fiber network. Our solution achieves 92.3% accuracy over 13 experimental scenarios.
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1. Introduction

Optical fiber infrastructures are critical for handling a broad range of sensitive data, from military intelligence to
personal information, across diverse environments such as expansive duct-based installations, submarine routes,
and localized indoor networks. Recent years have marked an increase in sabotage attempts on these systems,
alongside the ever-present risk of unauthorized data interception, which is exacerbated by advances in quantum
computing [1, 2]. Optical fibers are particularly vulnerable to eavesdropping attacks, wherein unauthorized light
coupling techniques such as evanescent coupling, V-groove cut, and micro/macro bending [3, 4] can be used to
intercept data. While monitoring optical power levels is one way to detect eavesdropping attacks, it may not be
applicable against those attacks that cause minimal or undetectable power level drops [5]. A more sophisticated
technique than optical power tracking involves monitoring of polarization state changes at the receiver to distin-
guish normal system variations from eavesdropping attempts. Early work [6] introduced a system using distributed
fiber optical sensing (DFOS) that could detect signatures from touching or manipulating a fence with installed fiber
optical cables. However, reliance on Rayleigh and Brillouin backscattering due to fiber impurities made this solu-
tion complex. Furthermore, the need for high-speed pulsing lasers to determine the position of a breach based on
backscattering pulse delays, coupled with the requirement for diplexers to filter amplified spontaneous noise, con-
tributes to its high costs. The work in [7] investigated polarization signatures of different fiber events as sequences
of polarization changes over a specific time and frequency window, derived by processing the polarization state in
the Poincaré sphere (refer to Fig. 1a). The signatures generated from eavesdropping and harmful events are visual-
ized in a unique plot, referred to as a waterfall, allowing a human security operator to visually distinguish between
legitimate and unauthorized activities. This is a simpler and more cost-effective approach to malicious activity
detection than the method from [6]. Nevertheless, the visualization-based technique has limited applicability and
scalability due to the need of a human specialist analyzing the waterfall plots.

To overcome the scalability and cost limitations of existing human-dependent solutions, we introduce a novel
methodology using Machine Learning (ML) algorithms to analyze polarization signatures. This paper is the first
to experimentally collect and analyze a dataset containing eavesdropping attacks and other potentially harmful and
non-harmful events for three cable types. Our methodology automates the process of analyzing and categorizing
eavesdropping and potentially harmful events from normal operating conditions and non-harmful events, allow-
ing for potential large-scale optical network deployments. The presented methodology successfully segregates
signatures with an accuracy of 92.3%.

2. Data Collection and Proposed Methodology

In the act of unauthorized data interception from fiber optic cables, eavesdroppers physically manipulate the ca-
bles. These malicious acts generate unique polarization signatures that can be identified using ML techniques. In
this study, ML algorithms analyze the signatures derived from Polarization State Movements (PSM) data gener-
ated from experiments mimicking real-world conditions over fiber optic installations, including the risk of cable
severance from nearby excavations and eavesdropping by manipulating exposed fibers. The proposed workflow is
depicted in Fig. 1b. For data collection, a continuous wave distributed feedback (DFB) laser with a polarization-
maintaining fiber generates optical power at a specific wavelength. The laser is regulated by a driver that maintains
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Fig. 1: (a) Changes in the Poincaré sphere (b) Proposed methodology for extracting signatures and ML analyzer

a consistent power level and temperature. Subsequently, the laser emits polarized light into an installed transmis-
sion line at a wavelength occupying one channel in the O, E, S, C, or L-band. All other types of optical transmission
could occupy the remaining free spectrum. Each external event produces a unique effect on the PSM that can be
recorded by the optical analyzer employing the Poincaré sphere analysis technique in the polarization analyzer
block (Fig. 1b). The sampling block generates samples of each polarization state on the Poincaré sphere every 1
ms (fulfilling the Nyquist theorem) over a 20-minute recording period, resulting in 1.2 million samples over the
entire recording time for each event. The numerical value of the distance between two consecutive polarization
states, referred to as NPSM (Numerical PSM). We partition the NPSM data into 1200 time slots of 1000 ele-
ments each, and apply a Fast Fourier Transform (FFT) analysis with 512 frequency bins, utilizing a Hamming
window [8].The resulting signature for each specific event is power spectrum data of 1200 rows (corresponding to
time slots) and 512 columns (corresponding to frequency bins). ML methods then analyze the data to detect the
specific signatures and generate an alarm if an eavesdropping attempts or a threat to the installed transmission is
identified (Fig. 1b). Our ML analysis uses data from 13 experimental scenarios, summarized in Table 1, aiming
to distinguish between normal operational signatures and those from eavesdropping or harmful events. In our test
bed, we use 1310 nm signal over a 2 km transmission line that consists of a series of military fiber optical tactical
cable systems (FOCS; fc), indoor cables (id), and bare single-mode G.675 bend-insensitive fiber (bf ). The normal
events include the relaxed (rlx) fiber without vibrations or eavesdropping, as well as vibrations at 155 Hz and 130
Hz (n-v) frequency (the two different values are used for diversity). The considered harmful events include fiber
vibrations at 80 Hz (an-v), which corresponds to an excavator with an engine running at 4,800 rpm digging close
to the cable installation, threatening to cut the cable. We also consider the case of dual vibrations (dl-v) at 80 and
130 Hz. The considered eavesdropping attacks are characterized by fiber bending (b) over a 10 mm diameter rod.
We also consider the case without bending and with dual vibrations (wb-dl-v). The collected dataset was randomly

Table 1: The considered experimental scenarios

Abbr. Scenario description Justification
rlx Relaxed fiber Baseline; normal operating conditions
b-fc FOCS cable bending Eavesdropping
b-bf Bare fiber bending Eavesdropping
n-v-fc FOCS cable + 155 Hz vibration Normal operating conditions (non-harmful vibr.)
an-v-fc FOCS cable + 80 Hz vibration Harmful; possible cut predecessor
n-v-id Indoor cable + 155 Hz vibration Normal operating conditions (non-harmful vibr.)
an-v-id Indoor cable + 80 Hz vibration Harmful; possible cut predecessor
n-v-bf Bare fiber + 155 Hz vibration Normal operating conditions (non-harmful vibr.)
an-v-bf Bare fiber + 80 Hz vibration Harmful; possible cut predecessor
b-n-v-id Indoor cable bending + 130 Hz vibration Eavesdropping + non-harmful vibration
b-an-v-id Indoor cable bending + 80 Hz vibration Eavesdropping + harmful vibration
b-dl-v-id Indoor cable bending + 80/130 Hz vib. Eavesdropping + non-harmful and harmful vibrations
wb-dl-v-id Indoor cable + 80/130 Hz vibrations Non-harmful and harmful vibrations

divided into a 70% training (840 points) and a 30% testing subset (360 points), each with equal representation of
the 13 scenarios. This led to a training dataset comprising 10,920 samples and a testing set of 4,680 samples. The
labeled dataset with 13 distinct classes frames our analysis as a supervised ML problem (classification).

3. Results and Conclusion

We conducted experiments over a number of ML algorithms to select the most appropriate classifier for this
13-class classification problem. Our evaluation included the following classifiers from the Scikit-Learn library:



XGBoost, Random Forest, Gradient Boosted Trees, Bagging with Decision Trees, Decision Tree, Support Vector
Machines (SVM), Linear Discriminant Analysis, k-Nearest Neighbors (k-NN), Multi-Layer Perceptron (MLP)
Neural Network, and Logistic Regression. The classifiers were evaluated based on their accuracy and F1-score
over the testing dataset. The final result is summarized in Fig. 2a. XGBoost performed the best, achieving an
accuracy of 92.3% and an F1-score of 0.92, indicating a balanced performance in terms of false positives and false
negatives. Random Forest and Gradient Boosted Trees closely follow the XGBoost performance.
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Fig. 2: (a) Accuracy and F1 score for the top 3 classifiers (b) Confusion matrix of XGBoost for the test dataset .

As illustrated in Fig. 2b, the confusion matrix validates the good performance of the XGBoost classifier. The
classifier not only demonstrated proficiency in categorizing the relaxed one (rlx) and the scenarios without bending
combined with dual frequency vibrations for indoor cables (wb-dl-v-id), but it also exhibited robust discrimina-
tion between harmful vibration events across the three cable types. This achievement is particularly significant
in enhancing optical network security as the designed classifier effectively distinguishes between typical signal
behaviors and those altered due to harmful events and eavesdropping. However, discerning among bending data
for bare fiber (b-bf ), bending and 155 Hz vibration for indoor cable (b-n-v-id), and bending and vibrations in two
frequencies for indoor cable (b-dl-v-id) presented some challenges with evident misclassifications.

In conclusion, this study underscores the critical importance of bolstering security within optical networks,
particularly given the escalating vulnerabilities to covert eavesdropping and harmful events. Through an analysis
of PSM data signatures from optical devices, we successfully employed ML techniques, specifically the XGBoost
classifier, to detect and categorize eavesdropping and harmful events with a high accuracy. To the best of our
knowledge, this is the first study that applies ML techniques to detect and categorize harmful and non-harmful
events in optical networks with this category of polarization state changes data.
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