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Abstract: Shared electric scooters have become a popular and flexible transportation mode in recent
years. However, managing these systems, especially the rebalancing of scooters, poses significant
challenges due to the unpredictable nature of user demand. To tackle this issue, we developed a
stochastic optimization model (M0) aimed at minimizing transportation costs and penalties associated
with unmet demand. To solve this model, we initially introduced a mean-value optimization model
(M1), which uses average historical values for user demand. Subsequently, to capture the variability
and uncertainty more accurately, we proposed a data-driven optimization model (M2) that uses the
empirical distribution of historical data. Through computational experiments, we assessed both models’
performance. The results consistently showed that M2 outperformed M1, effectively managing stochastic
demand across various scenarios. Additionally, sensitivity analyses confirmed the adaptability of M2.
Our findings offer practical insights for improving the efficiency of shared electric scooter systems under
uncertain demand conditions.

Keywords: data-driven optimization; rebalancing problem; shared electric scooters; uncertain user
demand

1. Introduction

As cities grow and the concept of sustainability strengthens, the sharing economy is receiving
increasing attention [1]. Over the past decade, the sharing economy, particularly in the transport
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sector [2], has received significant focus. A prominent area of study within the sharing economy in the
transport sector focuses on vehicle-sharing systems. These systems provide shared vehicle services,
such as bicycles and electric scooters, in public areas, including bus stops, metro stations, and other
high-traffic locations. Users can utilize these services for commuting or travel and should return vehicles
to a designated area upon completion of the rental.

The emergence of sharing systems is having an impact on transport patterns in cities [3–5]. This
innovative transport mode reduces car usage, promotes the sharing economy, improves the quality of
the urban environment [6–8], and enhances the health of the population [9]. An in-depth understanding
of vehicle-sharing systems can provide meaningful insights for urban planning policymakers and
companies providing vehicle-sharing services.

The success of vehicle-sharing systems hinges on both strategic design and effective operational
strategies, particularly vehicle rebalancing. While infrastructure lays the groundwork, it is the operational
strategies that enhance service efficiency [10, 11]. This study investigates the optimization strategies
for rebalancing shared electric scooters. Unlike traditional shared bicycles, electric scooters utilize
their electric drive systems that enable users to complete short-distance commuting without additional
physical exertion and thus have a high degree of acceptance among users. In addition, electric scooters
show higher adaptability when dealing with complex urban terrains and traffic environments. In
particular, the electric drive system is able to respond quickly in scenarios with frequent starts and stops,
improving operational flexibility and commute efficiency. Electric scooters offer distinct advantages
in convenience and operational efficiency [12], making them an increasingly vital focus of research in
modern shared transportation systems.

The rebalancing problem of the shared electric scooter system is mainly affected by the uncertainty of
user demand and the shortage of charging station sites. User demand uncertainty introduces complexity
to scheduling and allocation processes. Additionally, the constraints imposed by charging facilities affect
the state of electric scooters. In our research, we assume that the uncertain demand for scooters each
day follows a probability distribution; and accurate demand prediction and effective demand response
strategies are vital for optimizing shared electric scooter systems. Moreover, high transportation and
labor costs further complicate the rebalancing process.

To solve this uncertain operational problem, we propose a data-driven optimization model to obtain
the operational scheduling scheme. Specifically, this data-driven approach fits stochastic user demand
by the empirical demand distribution. Using this approach, we can better adjust the electric scooter
configurations between stations to meet uncertain user demand. First, we construct a stochastic
optimization model M0 to describe the rebalancing problem of electric scooter-sharing systems with
uncertain user demand. Second, we use the mean value of historical user demand to fit the random user
demand and construct a baseline mean-value model M1. Moreover, we use the empirical distribution
of historical data to approximate the user demand, constituting an improved data-driven optimization
model M2. Through different approaches, we approximate a stochastic optimization model M0 by the
tractable optimization models M1 and M2, respectively. Finally, the performance of these models is
evaluated through numerous computational experiments. The experimental results show that model
M2 outperforms the benchmark model M1 in different scenarios, indicating that model M2 is better
at dealing with stochastic user demand. Moreover, we conduct sensitivity analyses by altering model
parameters to further validate the effectiveness of model M2. Consequently, our work has theoretical
and practical significance for the development and enhancement of electric scooter-sharing systems.
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The rest of the paper is structured as follows: Section 2 reviews the relevant literature. Section 3
constructs a mathematical model for the uncertain electric scooter scheduling problem. Section 4
presents solution approaches to solving the proposed stochastic model. Section 5 tests and validates the
performance of our proposed models. Section 6 concludes the paper.

2. Related literature

There are lots of studies conducted on the sharing of bikes and cars. Yet, less research has been
done about how to properly operate shared electric scooters [13]. Therefore, we review research on
bike-sharing systems that are similar to the shared electric scooter systems.

The optimization objectives of some studies focus on the strategic design of bike-sharing systems,
such as the arrangement of station locations. Garcı́a et al. [14] used the geographic information system
of Madrid city to design the location-allocation model. Raviv et al. [15] constructed a new inventory
routing model to standardize emerging bike-sharing systems. Fricker and Gast [16] evaluated the
impact of station capacity on the optimization of the bike-sharing system. Liu and Tian [17] optimized
companies’ decision making for bike-sharing services by constructing virtual sites to promote bike
use based on the k-means method. Chen et al. [18] proposed an improved repositioning model using
trajectory data from Shenzhen to optimize the system design solution.

More infrastructure development is not enough to improve the service of bike-sharing systems. How
to effectively rebalance bikes between stations from an operational perspective has obtained the attention
of many researchers [10, 11]. For example, Erdoğan et al. [19] presented the first exact algorithm
for the bike rebalancing problem. Kadri et al. [20] used the branch-and-bound algorithm to solve the
proposed bike rebalancing problem that optimizes the stations’ operational costs. However, existing
studies [21–24] are more biased towards the static sharing scheduling problem; that is, they focus more
on situations where user demand is constant or has only minor changes, which restricts the system’s
flexibility and responsiveness.

To better improve the system’s performance, some studies have considered analyzing the uncertain
user demand. Hulot et al. [25] constructed a station-level user demand prediction model based on two
years of real data from BIXI Montréal (a local bus company in Montréal) for rebalancing problems. VE
and Cho [26] predicted user demand by analyzing multi-dimensional data containing information such
as weather. However, these models have high requirements for data quality and quantity.

In summary, existing literature has extensively explored strategic design and rebalancing strategies
for shared bicycle systems. However, compared to shared bicycles, shared electric scooters have
significant advantages in terms of storage space requirements and operational flexibility, which enable
them to show higher adaptability in urban environments. The shared electric scooters reduce physical
effort for users, making scooters preferable for short commutes. Additionally, they are better suited to
complex urban environments, with faster responses in stop-and-go conditions, improving both flexibility
and commuting efficiency. Nevertheless, the scheduling and rebalancing problems faced by electric
scooters, especially those limited by charging equipment, have not been adequately studied. Therefore,
this study aims to investigate how shared electric scooter systems can achieve effective rebalancing in
the face of user demand uncertainty under charging facility constraints.
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3. Problem description

Take one bus route in an area that stops at multiple stations as an example for a company that offers
shared electric scooter services. In the electric scooter scheduling optimization problem, the initial
state of electric scooters is influenced by the placement of charging hubs. In order to ensure that the
electric scooter can be properly managed and used with the support of charging facilities, we assume
that all the electric scooters will return to their designated stations for recharging at the end of each
day’s operation. On this basis, our model focuses on adjusting the distribution of electric scooters in the
face of stochastic user demand, thereby optimizing the scheduling strategy to meet user demand more
efficiently.

The rebalancing decision not only determines the operating costs, but also affects user satisfaction.
More importantly, this decision is made in the face of the unknown user demand. Therefore, our research
attempts to formulate a model that provides the optimal solution to this scheduling problem considering
uncertain user demand. This model is constructed based on the following assumptions: i) Each site has
an unconstrained capacity for electric scooters; and ii) The total number of electric scooters owned in
the shared electric scooter system is fixed.

Our research primarily focuses on implementing operational rebalancing decisions before users
begin using the scooters every day. The research aims to achieve effective rebalancing of the electric
scooter system on a daily basis, with the objective of minimizing transportation costs associated with
transferring scooters between stations and minimizing the penalties resulting from unsatisfied user
demand. To handle uncertain user demand, we assume that historical demand information is available.

To formulate the problem discussed above, we consider a region with a set of transit stations,
represented as P, where passengers may choose electric scooters for commuting to work upon arriving
at the destination station by transit. The region also comprises a set of electric scooter storage stations,
denoted as K, where the number of electric scooters available at the station k is qk, ∀k ∈ K. Here, the
transit station set P is a subset of the storage station set K. Additionally, the number of users utilizing
electric scooters from station p to work is represented by the stochastic parameter ξ̃p. Although the
underlying distribution of ξ̃p is unknown, we are accessible to M pieces of historical user demand at
each station p, p ∈ P over a historical period, denoted as ζ = {ξ1, · · ·, ξm, · · ·, ξM}; here, ξm = (ξm

1 , · · ·, ξ
m
|P|)

denotes the vector of user demand in the mth instance, where ξm
p means the user demand in the mth

instance for station p, ∀m ∈ {1, 2, · · ·,M}, ∀p ∈ P. To handle uncertain user demand, we assume that
the distribution of the stochastic user demand (ξ̃1, · · ·, ξ̃|P|) is consistent with the historical data, which
can be characterized by P(ξ̃p = ξ

m
p ) = 1/M, where ∀p ∈ P, ∀m ∈ {1, · · ·,M}.

Now, we denote by decision variable xkp ∈ Z+ the number of electric scooters transported from site k
to site p, k ∈ K, p ∈ P. Additionally, the parameter ckp signifies the transport cost per unit of electric
scooter from site k to site p. Therefore, we quantify the transportation costs in the whole scheduling
process by

∑
k∈K
∑

p∈P ckpxkp. Moreover, the decision variable yp denotes the number of electric scooters
at site p after the scheduling process, and it can be calculated through Eq (3.1) as follows:

yp = qp +
∑
k∈K

xkp −
∑
p′∈P

xpp′ . (3.1)

Similarly, the expected decision loss stemming from the inadequate inventory level yp at site p
is expressed as dpE

[
max{0, ξ̃p − yp}

]
, where dp characterizes the loss incurred due to the lack of an
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electric scooter at site p. When the final number of electric scooters yp could meet the users’ demand
ξ̃p at station p, the decision loss at station p is zero; otherwise, it is dp(ξ̃p − yp). Before we present the
mathematical programming model for our research problem, we present all of the notions as follows.

Sets and Indices

P Set of transit stations
K Set of electric scooter storage stations, P ⊂ K
ξm Set of mth piece of user demand data, m = 1, 2, · · ·,M, where M is the total number of historical

pieces
ζ Set of user data, which contains a total of M pieces of historical user demand data, ζ = {ξ1, ···, ξM}

p Index of transit stations, p = 1, 2, 3, · · ·, |P|
k Index of electric scooter storage stations, k = 1, 2, 3, · · ·, |K|
m Index of historical data pieces, m = 1, 2, 3, · · ·,M

Deterministic parameters
ξm

p The user demand of station p, p ∈ P, in the mth piece of historical data, m = 1, 2, · · ·,M and
ξm = (ξm

1 , · · ·, ξ
m
|P|)

qk The number of electric scooters available at the station k, ∀k ∈ K
ckp The transporting cost per unit of electric scooter from station k to station p, ∀k ∈ K, ∀p ∈ P
dp The loss incurred due to the lack of an electric scooter at station p, ∀p ∈ P
Stochastic parameter
ξ̃p The stochastic demand of electric scooters at station p, ∀p ∈ P

Decision variables
xkp The number of electric scooters transported from station k to station p, ∀k ∈ K, ∀p ∈ P
yp The number of electric scooters at station p after the rebalancing process, ∀p ∈ P

The objective of this study is to optimize the allocation of available electric scooters to meet users’
uncertain demand. The uncertain scheduling problem, termed model M0, can be mathematically
modeled as follows:

min
∑
k∈K

∑
p∈P

ckpxkp +
∑
p∈P

dpE

[
max
{

0, ξ̃p − yp

}]
(3.2a)

s.t. yp = qp +
∑
k∈K

xkp −
∑
p′∈P

xpp′ , ∀p ∈ P (3.2b)∑
p∈P

xkp ≤ qk, ∀k ∈ K (3.2c)

xkp ∈ Z+, ∀k ∈ K, ∀p ∈ P (3.2d)
yp ∈ Z+, ∀p ∈ P. (3.2e)

Objective function (3.2a) minimizes the sum of transportation cost and decision losses. Constraints
(3.2b) compute the number of electric scooters owned by each site after the scheduling is completed.
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Constraints (3.2c) ensure that the number of electric scooters transported from station k does not exceed
its storage capacity qk. Constraints (3.2d) and (3.2e) ensure the domains of the decision variables.

Proposition 1. The integer constraints (3.2e) can be relaxed to the continuous constraints yp ∈ R+,∀p ∈
P, where R+ denotes the set of non-negative real numbers.

Proof. The value of yp is formed through integer additions and subtractions in the calculation displayed
in (3.2b). Relaxing the constraints of yp does not affect the consistency of the solution. □

4. Solution methods

4.1. Mean-value optimization model M1

In model M0, objective function (3.2a) incorporates the random user demand ξ̃p at station p. Solving
it requires the knowledge of the uncertain demand distribution. To address this challenge, we initially
follow the common approach by using the average values of user demand at transit stations from the
historical data {ξm}Mm=1 to approximate the random user demand. Incorporating the average values into
model M0, the objective function of model M0 is approximated as follows:

min
∑
k∈K

∑
p∈P

ckpxkp +
∑
p∈P

dp max

0, 1
M

 M∑
m=1

ξm
p

 − yp

 . (4.1)

The mean-value method approximates the stochastic objective function (3.2a) in model M0 by a
deterministic objective function (4.1). However, the objective function (4.1) contains the max operator,
which is a nonlinear term. In order to transform the nonlinear term into a linear term, we introduce the
auxiliary decision variable wp to represent the number of unmet electric scooters for the users at station
p, ∀p ∈ P, and it can be calculated as follows:

wp =


1
M

M∑
m=1

ξm
p − yp if

1
M

M∑
m=1

ξm
p − yp > 0

0 if
1
M

M∑
m=1

ξm
p − yp ≤ 0.

(4.2)

By using the average values of historical data and auxiliary variables wp, ∀p ∈ P, we approximate
the stochastic model M0 by a deterministic mean-value model M1, shown below:

min
∑
k∈K

∑
p∈P

ckpxkp +
∑
p∈P

dpwp (4.3a)

s.t. yp = qp +
∑
k∈K

xkp −
∑
p′∈P

xpp′ , ∀p ∈ P (4.3b)

wp ≥
1
M

M∑
m=1

ξm
p − yp, ∀p ∈ P (4.3c)∑

p∈P

xkp ≤ qk, ∀k ∈ K (4.3d)
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xkp ∈ Z+, ∀k ∈ K, ∀p ∈ P (4.3e)
wp ∈ R+, ∀p ∈ P (4.3f)
yp ∈ R+, ∀p ∈ P. (4.3g)

Objective function (4.3a) aims to minimize the sum of transportation costs and decision losses. Con-
straints (4.3b) calculate the number of scooters owned by each site after the dispatching has been
completed. Constraints (4.3c) calculate the number of users whose demand for scooters is unmet.
Constraints (4.3d) guarantee that the number of electric scooters transported from site k does not exceed
its original storage capacity qk. Constraints (4.3e)–(4.3g) ensure the domains of the decision variables.

4.2. Data-driven optimization model M2

Simple average values may not adequately reflect the real-world uncertainties, thereby reducing
the model’s effectiveness. Therefore, we approximate the distribution of the random user demand
(ξ̃1, · · ·, ξ̃|P|) by using the empirical dataset ζ = {ξm}Mm=1. Specifically, we assume P(ξ̃p = ξ

m
p ) = 1/M,

∀p ∈ P, ∀m ∈ {1, · · ·,M}. This method approximates the calculation of E[max{0, ξ̃p − yp}] by
(M)−1∑M

m=1 max{0, ξm
p − yp}. Consequently, the objective function of model M0 is approximated by:

min
∑
k∈K

∑
p∈P

ckpxkp +
∑
p∈P

dp

 1
M

M∑
m=1

max{0, ξm
p − yp}

 . (4.4)

Likewise, this approach approximates the original stochastic objective function (3.2a) by the deter-
ministic objective function (4.4), which is tractable. Since Objective function (4.4) contains the max
operation, it is nonlinear. Therefore, we introduce the auxiliary decision variable zm

p to represent the
number of users whose demand for scooters is unmet at site p in the mth instance. Specifically, zm

p = 0
denotes the successful fulfillment of user needs when the actual inventory level yp equals or exceeds
the user demand ξm

p at station p in the mth instance; otherwise, zm
p means the shortage, indicating the

discrepancy between the actual inventory level yp and the user demand ξm
p . zm

p is calculated as follows:

zm
p =

ξm
p − yp if ξm

p − yp > 0,
0 if ξm

p − yp ≤ 0,
(4.5)

By doing so, objective function (4.4) is expressed as follows:

min
∑
k∈K

∑
p∈P

ckpxkp +
∑
p∈P

dp

 1
M

M∑
m=1

zm
p

 . (4.6)

Meanwhile, to simplify the model representation, we introduce the decision variable zp to represent
the average number of users whose demand for scooters is unmet at site p, which can be calculated as
follows:

zp =
1
M

M∑
m=1

zm
p . (4.7)

By utilizing historical data ζ to approximate the distribution of stochastic user demand (ξ̃1, · · ·, ξ̃|P|)
and introducing auxiliary decision variables zp, ∀p ∈ P, the complex stochastic optimization model M0
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is approximated by the mixed-integer programming model M2, shown as follows:

min
∑
k∈K

∑
p∈P

ckpxkp +
∑
p∈P

dpzp (4.8a)

s.t. yp = qp +
∑
k∈K

xkp −
∑
p′∈P

xpp′ , ∀p ∈ P (4.8b)

zm
p ≥ ξ

m
p − yp, ∀p ∈ P, ∀m ∈ {1, · · ·,M} (4.8c)

zp =
1
M

M∑
m=1

zm
p , ∀p ∈ P (4.8d)∑

p∈P

xkp ≤ qk, ∀k ∈ K (4.8e)

xkp ∈ Z+, ∀k ∈ K, ∀p ∈ P (4.8f)
zp ∈ R+, ∀p ∈ P (4.8g)
yp ∈ R+, ∀p ∈ P (4.8h)
zm

p ∈ Z+, ∀p ∈ P, ∀m ∈ {1, · · ·,M}. (4.8i)

Objective function (4.8a) aims to minimize the sum of transportation costs and decision losses. Con-
straints (4.8b) calculate the number of scooters available at a site after the dispatching process. Con-
straints (4.8c) determine the number of unsatisfied users in any station of any instance. Constraints
(4.8d) calculate the average number of users whose demand for scooters is unmet among all of the
instances. Constraints (4.8e) ensure that the number of electric scooters transported from site k does not
exceed qk. Constraints (4.8f)–(4.8i) define the domains of the decision variables.

5. Computational experiments

5.1. Experiment settings

Based on the historical data and the introduced auxiliary variables, we approximate the original
optimization model M0 by the mixed-integer programming models M1 and M2. This section conducts
computational experiments to validate their performance.

In our computational experiments, we run programs using an M3 Pro chip with an 11-core con-
figuration. Simultaneously, we utilize the CBC solver from Python to solve optimization models, an
open-source tool specifically designed for integer and mixed-integer linear programming problems.

5.1.1. Parameter settings

Firstly, we determine the values of the parameters to be adopted. The respective considerations and
parameter values are listed below:

1). The number of transit stations |P| is set to 20.
2). The number of electric scooter storage stations |K| is set to 40.
3). The number of instances of historic data M is set to 100.
4). The number of electric scooters qk available at the station k, k ∈ K, is set to 100.
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5). As for the number of users needing electric scooters, ξm
p , in the site p of the mth instance, we

take an arbitrary integer from a discrete uniform distribution over the interval [0, 5qk], ∀k ∈ K, ∀p ∈ P,
∀m ∈ {1, · · ·,M}.

6). The transport cost ckp per unit of electric scooter from site k to site p is associated with the distance
dkp (km) between site k and site p. We first set ckp = 0.5dkp ($). Here, dkp is a randomly generated
positive value less than 100. The distances between sites all satisfy the principle of triangulation which
means that dkp′ + dp′p > dkp, ∀k ∈ K, ∀p, p′ ∈ P. This distance design approach intends to simplify the
complexity of our models.

7). For the loss, dp, incurred due to the lack of an electric scooter at station p, p ∈ P, we set dp to be
the value of 10 ($).

5.1.2. Experimental design

In this section, we describe our experimental design, as illustrated in Algorithm 1. The goal of this
algorithm is to evaluate the models’ performances based on available data ζ. We divide the historical
user demand data ζ into the training dataset ζtrain and the test dataset ζtest in the ratio of 9 : 1. Here, the
training dataset ζtrain can be seen as the historical dataset, and the test dataset ζtest is used to measure
the out-of-sample performances of our proposed models. First, we obtain the initial optimal solution
X∗1 for the first instance of the test dataset from the model (model M1 or model M2) using the training
dataset ζtrain. In the optimal solution X∗1, the element X∗1[i, j] represents the optimal number of electric
scooters transported from station i to station j, ∀i ∈ K and ∀ j ∈ P. In addition, qk is the initial inventory
level of the first instance. And then we update the number of electric scooters q1

k at station k based on
X∗1 through Eq (5.1), which is the end inventory level of the first instance, shown as follows:

q1
k = qk +

 |K|∑
i=1

X∗1[i, k]

 −
 |P|∑

i=1

X∗1[k, i]

 . (5.1)

For easier evaluation of the model performance, we assume that users will return electric scooters to
their original stations after use. Thus, q1

k is also the original inventory level of the second test instance.
Next, we use ζtest to evaluate the performance of the model based on q1

k . We define ξi as the ith

instance of ζtest, ∀i ∈ {1, 2, · · ·, |ζtest|}. Specifically, ξi
p means the actual user demand in the station p

in the ith instance of ζtest and here ξi = (ξi
1, · · ·, ξ

i
|P|). As for the test instance ξi, we concatenate the

known data ζtrain and {ξ j}
j=i−1
j=1 to obtain the optimal solution X∗i and qi

k, k ∈ K. Then, we evaluate the
performance resi of ξi, ∀i ∈ {1, 2, · · ·, |ζtest|} by

resi =
∑
k∈K

∑
p∈P

ckpX∗i [k, p] +
∑
p∈P

dp max{0, ξi
p − qi

p}. (5.2)

The calculation of resi is the sum of transport costs
∑

k∈K
∑

p∈P ckpX∗i [k, p] and the penalties caused
by insufficient electric scooters

∑
p∈P dp max{0, ξi

p − qi
p}. Finally, res is calculated by summing the

individual values resi for all of the instances in the test dataset ζtest. The final value res is used to
evaluate the performance of the model, calculated by

res =
|ζtest |∑
i=1

resi. (5.3)
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Algorithm 1 Experimental setup for training and testing
1: Input: The historical user demand data ζ, training ratio α = 0.9,

parameter tuple θ = (P,K, ckp, dp, qk,∀k ∈ K,∀p ∈ P)
2: Output: The transport cost and the penalties caused by inadequate scooters in the test dataset
3: Split ζ into a training set ζtrain and a test set ζtest, based on ratio α
4: Solve the model by dataset ζtrain and obtain the initial optimal solution X∗1
5: q1

k = qk + (
∑|K|

i=1 X∗1[i, k] −
∑|P|

i=1 X∗1[k, i]),∀k ∈ K
6: for i = 1, 2, · · ·, |ζtest| do
7: Calculate resi through resi =

∑
k∈K
∑

p∈P ckpX∗i [k, p] +
∑

p∈P dp max{0, ξi
p − qi

p}, ∀ξ
i ∈ ζtest

8: Solve the model based on new θ′ = (P,K, ckp, dp, qi
k,∀k ∈ K,∀p ∈ P) and ζtrain = ζtrain ∪ ξ

i

9: Obtain the optimal solution X∗i+1
10: qi+1

k = qi
k + (
∑|K|

j=1 X∗i+1[ j, k] −
∑|P|

j=1 X∗i+1[k, j]),∀k ∈ K
11: end for
12: The final objective function value res through res =

∑|ζtest |

i=1 resi

13: return res

5.2. Evaluation of models

5.2.1. Model performance

In the previous sections, we presented various models for solving electric scooter scheduling
problems. We used the res calculated through the test dataset ζtest as the evaluation metric for comparing
model performances; here, a larger value of res indicates a poorer ability of the model to minimize
transport costs and penalties caused by inadequate electric scooters. We use Algorithm 1 for assessing
the models’ performances.

Table 1 presents the results (res) under varying conditions, particularly differences in the number
of transit stations (|P|). An analysis of these results reveals that while the performance gap between
the two models fluctuates with changes in |P|, model M2 consistently outperforms the baseline model
M1 across all scenarios. Notably, model M2 achieves its greatest efficacy at |P| = 15, showing an
improvement of approximately 13.12% over model M1. The smallest observed improvement, at |P| = 16,
is approximately 3.61%. These results underscore the enhanced capability of model M2 in managing the
operational challenges of electric scooter rebalancing in response to uncertain user demand, confirming
its superior performance overall.

Table 1. res values of models in different scenarios.

|S |, |P| M1 M2
|S | = 40, |P| = 15 77, 824.59 67, 615.38
|S | = 40, |P| = 16 85, 813.63 82, 717.11
|S | = 40, |P| = 17 102, 597.44 96, 771.46
|S | = 40, |P| = 18 123, 794.27 115, 172.27
|S | = 40, |P| = 19 138, 456.39 131, 222.93
|S | = 40, |P| = 20 160, 383.08 149, 227.68
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5.2.2. Sensitivity analyses

To analyze the electric scooter scheduling problem on a specific bus route, the parameters P and K
are generally assumed to be fixed. In contrast, the parameters dp and qk often fluctuate dynamically.
For instance, in colder winter weather, the likelihood of choosing electric scooters decreases, leading
to a downward adjustment in qk at the station. Considering the dynamic nature of these parameters
in real-world scenarios, it is crucial to perform sensitivity analyses to investigate their impact on the
scheduling decisions.

To account for the volatility observed in real-world scenarios, this study conducts sensitivity analyses
by considering a range of values for the penalty coefficient dp and the storage quantity qk. Specifically,
when conducting sensitivity analyses for dp, we assume that |S | = 40, |P| = 20, and qk = 100, allowing
dp to vary with an interval of 1 over the integer range from 0 to 10. Similarly, when performing
sensitivity analyses for qk, we assume that |S | = 40, |P| = 20, and dp = 10, allowing qk to vary with an
interval of 10 over the integer range from 50 to 150. At the same time, we calculate the improvement ∆
between models M1 and M2 using Eq (5.4). Here, ∆dp corresponds to parameter dp, and similarly, ∆qk

is associated with parameter qk. The results of these calculations are presented in Table 2.

∆ =
resM1 − resM2

resM1
. (5.4)

Table 2. Results of sensitivity analyses of dp and qk.

dp M1 M2 ∆dp qk M1 M2 ∆qk

dp = 0 0 0 0.00% qk = 50 302, 800.66 294, 019.64 2.90%
dp = 1 27, 383.0 27, 598.73 −0.79% qk = 60 272, 505.80 263, 476.50 3.31%
dp = 2 36, 351.88 38, 908.07 −7.03% qk = 70 241, 615.10 233, 188.19 3.49%
dp = 3 49, 801.44 48, 549.93 2.51% qk = 80 210, 953.11 203, 972.29 3.31%
dp = 4 65, 600.94 62, 232.04 5.14% qk = 90 183, 706.23 176, 605.01 3.87%
dp = 5 81, 399.44 76, 880.99 5.55% qk = 100 160, 383.08 149, 227.68 6.95%
dp = 6 97, 201.44 91, 390.25 5.98% qk = 110 134, 635.92 126, 016.66 6.40%
dp = 7 113, 012.02 105, 917.89 6.28% qk = 120 108, 877.22 106, 244.49 2.42%
dp = 8 128, 809.08 120, 088.38 6.77% qk = 130 99, 543.95 87, 298.08 12.30%
dp = 9 144, 602.08 134, 727.28 6.83% qk = 140 98, 992.93 71, 183.24 28.10%
dp = 10 160, 383.08 149, 227.68 6.95% qk = 150 98, 616.64 56, 279.06 42.93%

Table 2 compares the performance of baseline models M1 and M2 under varying values of dp and qk.
The data show that model M2 generally surpasses model M1 in performance. However, exceptions are
noted at lower dp values (dp = 0, 1, 2), where the models perform similarly or where M1 may exhibit
comparative advantages.

In detail, in terms of the penalty coefficient dp, ∀p ∈ P, when dp = 0, both models yield 0 transport
costs, which means that no electric scooter is dispatched between sites when there is no penalty for
the shortage of electric scooters at a station. However, model M2 fails to improve performance when
dp = 1 and dp = 2. This lack of enhancement may be attributed to the low penalty values assigned
for scooter shortages, which are insufficient to significantly influence operational decisions under user
demand uncertainty. Consequently, the advantages of model M2, which are designed to optimize around
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variability, are not effectively leveraged. Model M2 shows a significant performance improvement
compared to model M1 when dp ≥ 3, and the ∆dp gradually increases along with the increase of dp, with
the highest ∆dp at dp = 10, which is about 6.95%. This trend underscores model M2’s adaptability in
scenarios where higher penalties compel more strategic rebalancing efforts to accommodate uncertain
demand fluctuations.

As for qk, ∀k ∈ K, an increase in the initial inventory qk means that each site has more electric
scooters at the start of the operation. As a result, the number of electric scooters that need to be
dispatched from the storage sites to meet user demand decreases, which directly reduces transport
costs. Additionally, it also reduces the number of electric scooters in shortage to meet user demand,
reducing the corresponding penalties. Thus, the total cost res, consisting of the sum of transport costs
and the penalties value due to the lack of electric scooters, decreases gradually as the initial inventory qk

increases.

However, according to Table 2, the variation of qk does not change the superior position of model M2,
verifying its significant advantages. These findings underscore the effectiveness of the data-driven model
M2 in managing variations in dp and qk, making it more applicable in practical scenarios where these
parameters may fluctuate. The overall superior performance of the model M2 suggests its capability to
provide more effective solutions to electric scooter scheduling problems.

6. Conclusions

This study addresses the operational rebalancing challenges in shared electric scooter systems by
developing and comparing several optimization models. Initially, we construct a stochastic optimization
model (M0) to capture the complexity of unknown user demand. To operationalize this model, we
introduce the mean-value optimization model (M1), which estimates demand using historical averages.
Further enhancing our approach, we develop a data-driven optimization model (M2) that uses the
empirical distribution of user demand for greater accuracy.

Through extensive computational experiments, we demonstrate that model M2 consistently outper-
forms model M1 in various scenarios. These findings underscore the superiority of the data-driven
model M2 in effectively managing the complexities of scooter rebalancing. The performance of M2
across different test conditions confirms its practical applicability and potential to significantly improve
operational efficiencies in real-world electric scooter sharing systems.

In our research, we have utilized stochastic optimization to cope with user demand uncertainty, and
future research can further explore methods such as robust optimization and distributionally robust
optimization. These methods provide alternative strategies to cope with worst-case scenarios and limited
distributional information, which can help to enhance the robustness of the model. Therefore, future
work can be centered around these methods to extend and enrich the existing research results to provide
more comprehensive solutions for practical applications.
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