
Metagenomic assemblies tend to break around antibiotic resistance genes

Downloaded from: https://research.chalmers.se, 2024-11-15 15:21 UTC

Citation for the original published paper (version of record):
Abramova, A., Karkman, A., Bengtsson Palme, J. (2024). Metagenomic assemblies tend to break
around antibiotic resistance genes. BMC Genomics, 25(1).
http://dx.doi.org/10.1186/s12864-024-10876-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Abramova et al. BMC Genomics          (2024) 25:959  
https://doi.org/10.1186/s12864-024-10876-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

BMC Genomics

Metagenomic assemblies tend to break 
around antibiotic resistance genes
Anna Abramova1,2,3*, Antti Karkman4 and Johan Bengtsson‑Palme1,2,3 

Abstract 

Background Assembly of metagenomic samples can provide essential information about the mobility poten‑
tial and taxonomic origin of antibiotic resistance genes (ARGs) and inform interventions to prevent further spread 
of resistant bacteria. However, similar to other conserved regions, such as ribosomal RNA genes and mobile genetic 
elements, almost identical ARGs typically occur in multiple genomic contexts across different species, representing 
a considerable challenge for the assembly process. Usually, this results in many fragmented contigs of unclear origin, 
complicating the risk assessment of ARG detections. To systematically investigate the impact of this issue on detec‑
tion, quantification and contextualization of ARGs, we evaluated the performance of different assembly approaches, 
including genomic‑, metagenomic‑ and transcriptomic‑specialized assemblers. We quantified recovery and accuracy 
rates of each tool for ARGs both from in silico spiked metagenomic samples as well as real samples sequenced using 
both long‑ and short‑read sequencing technologies.

Results The results revealed that none of the investigated tools can accurately capture genomic contexts present 
in samples of high complexity. The transcriptomic assembler Trinity showed a better performance in terms of recon‑
structing longer and fewer contigs matching unique genomic contexts, which can be beneficial for deciphering 
the taxonomic origin of ARGs. The currently commonly used metagenomic assembly tools metaSPAdes and MEGAHIT 
were able to identify the ARG repertoire but failed to fully recover the diversity of genomic contexts present in a sam‑
ple. On top of that, in a complex scenario MEGAHIT produced very short contigs, which can lead to considerable 
underestimation of the resistome in a given sample.

Conclusions Our study shows that metaSPAdes and Trinity would be the preferable tools in terms of accuracy 
to recover correct genomic contexts around ARGs in metagenomic samples characterized by uneven coverages. 
Overall, the inability of assemblers to reconstruct long ARG‑containing contigs has impacts on ARG quantification, 
suggesting that directly mapping reads to an ARG database should be performed as a complementary strategy to get 
accurate ARG abundance and diversity measures.
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Background
Antimicrobial resistance (AMR) is an increasing global 
health crisis causing hundreds of thousands of deaths 
each year worldwide [1]. To limit its spread, there is a 
need to identify and quantify resistance in both clinical 
and environmental settings. Metagenomic sequencing 
is a powerful tool allowing simultaneous identification 
and quantification of antibiotic resistance genes (ARGs) 
in each sample. Metagenomic analysis of sewage from 
different parts of the world has revealed that the same 
ARGs are found in different genomic backgrounds glob-
ally, proving the need to not only identify the composi-
tion of ARGs, but also in what genomic context they are 
present. The genomic background of an ARG determines 
co-resistance patterns and mobilization potential, both 
of which can affect the choice of intervention strategies 
locally and globally [2]. For this reason, metagenomic 
sequencing has been suggested as a possible means for 
surveillance of AMR not only in sewage [3, 4], but also 
in the environment in general [5]. Current high-through-
put sequencing platforms produce hundreds of millions 
of reads that require assembly to be reconstructed into 
longer stretches called contigs, which can provide more 
contextual information. This step is typically demanding 
in terms of computational resources and time [6, 7]. On 
top of this, short read length, skewed species abundance 
distributions, high similarity between closely related 
ARG variants, and massive amounts of data make recov-
ery of ARGs and the context around them challenging 
from metagenomic data [8, 9].

There are currently several tools available to assem-
ble short-read sequencing data from metagenomic sam-
ples (see review by Ayling et  al. [8]), most of which use 
variants of the de Bruijn graph approach to handle large 
amounts of data in an efficient way. This approach is 
based on reconstructing graphs to represent k-mers pre-
sent in a set of reads, followed by traversing these graphs 
and identifying the most probable path representing 
a contig. Converting a graph path into a contig is not a 
trivial task. Metagenomic samples typically contain an 
unknown number of species with unknown abundance 
distributions. In the case of related species, sequences 
can carry similar sets of k-mers resulting in complex 
assembly graphs. This is further complicated by con-
served repetitive regions, such as ribosomal RNA genes, 
mobile genetic elements (e.g. transposons and insertion 
sequences) and ARGs. Assembling conserved regions 
present in several different genomic contexts typically 
results in highly complex branched assembly graphs, 
which makes traversing the graphs extremely difficult. 
This is generally solved by splitting the graph into mul-
tiple short contigs [10]. For metagenomic analysis tar-
geting ARGs, this means that sometimes all contextual 

information regarding the taxonomic origin or mobility 
of a gene will be lost, which can potentially lead to misin-
terpretation of the results.

There are several studies benchmarking metagen-
omic assembly tools, such as the “Critical Assessment of 
Metagenome Interpretation” (CAMI) challenge [6, 11]. 
The focus of these studies has largely been on the ability 
of assemblers to distinguish evolutionary related organ-
isms in complex microbial samples. There are a few stud-
ies looking at resistome recovery from both real and 
simulated data using short-read, long-read and hybrid 
approaches. Yorki et  al., [9] compared long- and short-
read assemblers for recovering low-abundance species 
and resistance genes. Brown et al. [12] specifically inves-
tigated the ability of different assemblers to contextualize 
ARGs using co-occurrence of ARGs and mobile genetic 
elements (MGEs) on assembled contigs as a proxy. These 
studies provide a good overview of pros and cons of the 
different approaches in recovering ARGs from metagen-
omic data. However, a critical evaluation of currently 
available short-read assemblers for reconstructing the 
context around ARGs existing in multiple genomic con-
texts is currently lacking. More importantly, the impact of 
assembler choice on the biological interpretability has not 
been well explored.

ARGs constitute a type of genomic feature that is par-
ticularly likely to be fragmented in metagenomic assem-
blies, as they are often present in multiple contexts, can 
be surrounded by various forms of repeat regions, and 
can be present on plasmids with varying degrees of copy 
numbers. A specific investigation of how assemblers 
handle these genes is therefore warranted. Furthermore, 
the resulting assemblies are often used to perform ARG 
quantification by mapping reads back to the contigs to 
estimate gene abundances. It is not clear how the choice 
of assembler will affect this form of ARG quantification 
and, by consequence, the final biological interpretation of 
the results.

The main goal of this study was to systematically evalu-
ate the capability of assembly tools to recover ARGs in 
the correct genomic context from metagenomic data. 
To have a controlled but still real-life relevant experi-
mental set up, we first used a real data set from human 
stool samples and spiked it with simulated reads derived 
from plasmids containing ARGs. We then assembled the 
test datasets and evaluated performance of several tools 
(Velvet, SPAdes, metaSPAdes, MEGAHIT, Trinity, Ray) 
with respect to their accuracy of recovering the genomic 
contexts of ARGs using the original plasmids as refer-
ence. Furthermore, we did the same assessment but on a 
sample sequenced with both short- and long-read tech-
nologies, using the latter as a reference. The results pro-
vide important perspectives on the choice of assembly 
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programs for recovering correct genomic contexts for 
ARGs from metagenomic samples. Furthermore, they 
call into question some of the practices currently used 
for quantification of ARGs based on metagenomic 
sequencing.

Methods
Evaluation using simulated reads
To obtain a controlled experimental setup, we randomly 
selected a metagenomic dataset generated from a real 
sample and spiked it with simulated reads derived from 
plasmids containing a known set of ARGs. The metagen-
omic dataset was downloaded from Sequence Read 
Archive (SRA) and corresponds to a human stool sam-
ple, representing a common sample type used for stud-
ies of AMR. This sample was sequenced by Illumina 
NextSeq550 with 150 bp reads, resulting in 4.1 Gb data-
set (SRR9654970). To obtain a set of plasmids, we first 
chose a number of clinically-relevant and commonly 
observed ARGs from different ARG classes, including 
sul2 (816  bp), blaNDM-1 (813  bp), blaTEM (861  bp), 
aph(3″)-Ib_3 (804  bp) and tet(A) (1200  bp). We down-
loaded protein sequences from the Comprehensive 

Antibiotic Resistance Database (CARD) database and 
used them as queries for NCBI BLAST database searches 
to retrieve complete plasmid sequences. Only hits 
with > 98% identity to the ARG query and correspond-
ing to full-length plasmids were selected, five for each 
selected ARG (Table 1). We aimed to select plasmids of 
different sizes to reflect the diversity in natural samples.

We used insilicoseq [13] to generate simulated reads 
from plasmids using the NovaSeq error model. Gen-
erally in metagenomic samples the coverage of a plas-
mid would vary depending on its number of copies 
and its size. To emulate this complexity, we provided 
an abundance.txt file containing proportions of reads 
weighed according to the size of each plasmid (smaller 
plasmids get more reads and larger less). Specifically, 
we used 1 × coverage of the largest plasmid among the 
selected plasmids (CP064948.1, 589,460 bp) as a base-
line, which equals 1964 reads to cover the whole length 
one time. The number of simulated reads for each sub-
sequent plasmid was estimated by multiplying 1964 
reads to the length ratio. This resulted in a file contain-
ing 0.7  m simulated reads in total which was used to 
represent the baseline. To test how the total number of 

Table 1 A list of plasmids chosen for the test and the ARGs they contain

ARG Accession Species Strain Plasmid Length, bp

aph(3″)‑Ib_3 CP039146.1 Acinetobacter sp. 10FS3‑1 p10FS3‑1–3 73,803

aph(3″)‑Ib_3 CP058166.1 Enterobacter hormaechei RHBSTW‑00070 pRHBSTW‑00070_3 9923

aph(3″)‑Ib_3 CP026933.2 Escherichia coli CFS3273 pCFS3273‑1 268,665

aph(3″)‑Ib_3 CP055808.1 Escherichia fergusonii RHB03‑C23 pRHB03‑C23_3 35,135

aph(3″)‑Ib_3 CP064948.1 Pseudomonas fulva ZDHY414 pVIM‑24‑ZDHY414 589,460

blaNDM‑1 AP023079.1 Acinetobacter baumannii OCU_Ac16a pOCU_Ac16a_2 41,087

blaNDM‑1 CP055250.1 Citrobacter freundii ZY198 pZY‑NDM1 53,573

blaNDM‑1 CP047406.1 Escherichia coli MS6193 pMS6193A‑NDM 142,890

blaNDM‑1 CP050380.1 Klebsiella pneumoniae 51,015 p51015_NDM_1 353,810

blaNDM‑1 CP040184.1 Raoultella planticola Rp_CZ180511 pRpNDM‑1 334,854

blaTEM‑9 CP063225.1 Enterobacter hormaechei subsp. Steigerwaltii BD‑50‑Eh pBD‑50‑Eh_2 336,282

blaTEM‑9 KR259131.1 Escherichia coli EC3587 pEC3587 10,483

blaTEM‑9 CP025144.1 Klebsiella pneumoniae NR5632 NR5632_p1 204,123

blaTEM‑9 GQ160960.2 Serratia marcescens R934 13,775

blaTEM‑9 CP024467.1 Shigella dysenteriae BU53M1 unnamed1 54,993

sul2 CP059301.1 Acinetobacter baumannii AC1633 pAC1633‑1 174,292

sul2 CP055707.1 Citrobacter freundii RHB16‑C02 pRHB16‑C02_6 6801

sul2 CP061493.1 Enterobacter hormaechei subsp. Xiangfangensis GENC284 pGENC284 304,958

sul2 AP022550.1 Escherichia coli THO‑015 pTHO‑015–1 88,121

sul2 MT415059.1 Klebsiella pneumoniae NMI3243_13 pIncR_3243 69,560

tet(A)_1 CP047745.1 Enterobacter hormaechei Eho‑4 pEcl4‑5 37,460

tet(A)_1 AP022535.1 Escherichia coli THO‑006 pTHO‑006–2 101,966

tet(A)_1 CP064130.1 Klebsiella pneumoniae M911‑1 pM911‑1.1 75,711

tet(A)_1 CP065164.1 Klebsiella variicola KPN029 unnamed2 243,621

tet(A)_1 CP062224.1 Salmonella enterica subsp. enterica serovar Goldcoast R18.1656 p270k 270,696
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available reads from plasmids affected assembly pro-
cess, we further generated several files with increasing 
amount of simulated plasmid reads by multiplying the 
number of reads corresponding to baseline by 2, 5 or 10 
times, generating 1.4 m, 7.3 m and 14.7 m total plasmid 
reads per file. These files represent situations with low 
(0.7 m), medium to relatively high (1.4–7.4 m), and very 
high number of plasmid-derived reads (14.7  m), and 
will be denoted as “low”, “medium”, “high” and “very 
high” further in the text. 

As a result, we generated four files with different total 
amount of reads, as well as differential coverage, with 
the most abundant plasmid being 7000 × more preva-
lent than the least abundant. It is important to mention 
that despite being a simulated scenario, both the num-
ber of selected plasmids and their coverage is compara-
tive to the complexity encountered in real samples. As 
an example, 26 known and 21 putative novel plasmids 
were recovered in an Indian lake metagenome [14]. In 
that study, plasmids of ~ 4500  bp, assembled from the 
metagenomic DNA sequenced by Illumina HiSeq2000, 
generated on average ~ 7000 reads per plasmid, which 

corresponds to > 460 × coverage (data not shown, gen-
erated based on Bengtsson-Palme et al., 2014).

In this study, we are only assessing the assembly qual-
ity of regions containing ARGs and not the quality of 
metagenomic assembly in general. Therefore, to ensure 
a controlled setup, reads from the human stool data-
set were first mapped to the selected set of 25 plasmids 
and all matching reads were removed to create a clean 
test dataset (Fig.  1). The cleaned test dataset was then 
spiked with the simulated reads generated as described 
above. This resulted in a dataset with highly controlled 
plasmid and ARG content, while also maintaining the 
general complexity of metagenomic assembly, including 
e.g. memory limitations, which also influence the perfor-
mance of the assembly algorithms.

For this evaluation, we decided to include several differ-
ent tools: genomic assemblers SPAdes 3.13.0 [15], Velvet 
1.2.10 [16] and Ray 2.3.1 [17]; metagenomic assemblers 
MEGAHIT v1.0.3 [18] and SPAdes 3.13.0 with the -meta 
option (also referred to as “metaSPAdes”), and transcrip-
tomic assembler Trinity 2.1.1 [19]. We also tested Tri-
MetAss as an alternative method to see if it can improve 

Fig. 1 Workflow. A Simulated scenario constituting a real metagenomic dataset spiked with reads generated from a set of plasmids containing 
ARGs. B Real case scenario included long‑reads which were used as a reference to quality check the contigs assembled from short read data 
generated from the same sample
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the outcome. TriMetAss is an extension to the Trinity 
software, which acts as a targeted assembler designed to 
assemble common and well-conserved genes occurring 
in multiple genomic contexts in metagenomic data [14].

We used METAQUAST 5.2.0 [20] to evaluate general 
assembly performance. The summary statistics and map-
ping rates are shown in Table  S1 and Table  S2 accord-
ingly. Bandage 0.8.1 [21] was used to create assembly 
graphs visualization. The python package DNA Features 
Viewer 3.1.3 [22] was used to generate figures showing 
genomic background of ARGs.

Evaluation using long‑reads reference
For the second test with long-read data we used 
publicly available data from Jin et  al. [23], corre-
sponding to human fecal samples sequenced by both 
Illumina HiSeq X Ten platform with 150  bp-long 
reads (SRR10917786, 34.2 Gbp) and PacBio RS II 
(SRR10917776, 8.7 Gbp) (Pacific Biosciences of Cali-
fornia, Inc., USA). We performed error-correction of 
the raw reads using Canu 2.2 [24].

To avoid creating erroneous contigs we decided to 
not assemble the long-read data but instead rely on the 
long error-corrected reads as they most likely represent 
the ground truth. First, we annotated the reads using 
BLASTN against the ResFinder database (2021) [25]. 
Only long reads containing full ARG sequences with at 
least 98% identity were retained. These reads were fur-
ther clustered with cd-hit 4.8.1 [26] (95% identity) to cre-
ate a less redundant reference for further comparison to 
the short-read contigs. We assembled the corresponding 
short reads with the same set of tools as mentioned in 
the previous section. The resulting contigs were mapped 
using BLASTN to the PacBio reads reference to assess 
accuracy.

To estimate how the differences in ability to assemble 
ARGs by different tools affect the downstream results, we 
performed ARG quantification. First, the Illumina reads 
were mapped to each assembly using bowtie2 2.3.5.1 [27] 
and the coverage was estimated for all full and truncated 
ARG hits (minimum 95% identity and 80% coverage) on 
the assembled contigs using the FARAO [28] estimate_
coverage function with -c 0 flag estimating coverage per 
all bases across the feature. All plots were created in R 
using ggplot2 [29]. Bray–Curtis dissimilarity calculation 
and analysis of variance were done using vegan (2.6–4) 
package.

Assessment
To assess the performance of the tools, we identified 
contigs produced from the short-reads containing ARG 
sequences and estimated the number of fully assembled 
(100% coverage, 98% identity), truncated (minimum 

60  bp length, 98% identity and no flanking regions on 
either of the sides or both sides) and misassembled/par-
tial ARGs (minimum 60 bp, 98% identity, and embedded 
in incorrect flanking sequences). The 60  bp threshold 
was chosen because no significant similarity was found 
between the chosen ARGs at this length, and 60  bp 
should be sufficient to unambiguously detect a resistance 
gene in the simulated scenario. Furthermore, we investi-
gated the genomic contexts of the fully assembled ARGs 
and whether they fully matched the original context by 
inspecting alignments to the original plasmids.

Results
Complex short‑read data yield incomplete assembly 
of ARGs and their contexts
General assembly performance statistics (Additional 
file  1: Table  S1) showed that overall genomic assem-
blers, in particular Velvet and Ray, performed worse in 
comparison to the metagenomic assemblers. Among 
metagenomic assemblers, MEGAHIT generated fewer 
and shorter contigs in comparison to metaSPAdes. A 
comparison of the length distributions between contigs 
generated from reads in the simulated data and the rest 
of the assembly highlights that, in general, the assembly 
tools perform with a different degree of success assem-
bling complex regions independent of the general assem-
bly performance (Additional file 1: Figure S1).

To investigate which assemblers managed to recon-
struct ARGs from short-read data, we first looked at 
the recovery of both full length and truncated ARG 
sequences (Fig. 2). For the simulated test data, the knowl-
edge of exactly which ARGs were present on the original 
plasmids allowed us to precisely determine how many 
of those were correctly recovered by each assembler 
(Fig. 2A). For this analysis, we were interested in whether 
an ARG was recovered, even if it was assembled in the 
wrong context, because for some applications it is suf-
ficient to just obtain the individual gene sequence cor-
rectly, regardless of context.

The results showed that MEGAHIT, metaSPAdes and 
Trinity managed to capture almost all ARGs at all cov-
erages. However, the MEGAHIT contigs containing 
ARGs were on average only 284  bp long, resulting in 
predominantly truncated ARG sequences (Figs. 2 and 3). 
In contrast, Trinity performed consistently better at all 
coverages, with more than 50% of contigs containing the 
full length ARG sequences (Fig.  3). While Trinity could 
assemble longer contigs compared to metaSPAdes, the 
number of misassemblies was higher. In all cases, except 
the “high” dataset, metaSPAdes did not produce misas-
sembled ARGs. Among the genome assemblers, Ray 
had the best performance in terms of reconstructing full 
ARGs, while Velvet reconstructed only one full ARG out 
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of 3724 assembled ARG-containing contigs, with the rest 
containing misassembled ARGs. SPAdes struggled to 
assemble ARGs at higher coverages, producing truncated 
contigs.

Furthermore, we investigated the number and length 
of correctly assembled contexts for the different assem-
blers. Figure  3B shows that Trinity performed better in 
comparison to the other tools, reconstructing on aver-
age longer correct contigs with quite consistent perfor-
mance across the coverages. Notably, the performance 
of Ray was rather similar to that of metaSPAdes. In some 
cases, Ray produced even longer correct contigs despite 
being a genomic assembler not optimized for complex 
metagenomic samples. In contrast, MEGAHIT produced 
only two correct contigs at lower coverages. We also 
used SPAdes contigs as seeds to extend them using Tri-
MetAss. The results revealed that in general TriMetAss 
output a few more correctly assembled contigs contain-
ing full ARGs. Importantly, these contigs were on average 
2000  bp longer than initial SPAdes contigs. As a draw-
back, TriMetAss also produced more misassembled con-
tigs in comparison to SPAdes output (Fig. 3A).

What is obvious and rather surprising is that from a 
total number of 25 different genomic contexts for the 5 
different resistance genes present in the sample on aver-
age only three original contexts (12%) were correctly 
captured by any of the assembler. These contexts corre-
sponded to plasmids of different sizes suggesting that the 
total length of plasmids did not determine assembly suc-
cess, but rather features surrounding the particular genes 
(Figure S2). All assemblers reconstructed large contigs 
spanning in some cases half of the plasmid sequence (as 
shown on the example of AP023079 plasmid; Fig. 4), but 
these assembled contigs broke exactly at the beginning 
of MGEs and/or ARG sequences (Fig. 5A). The complex-
ity of assembly graphs also increased with more cover-
age, but for some tools, such as SPAdes and metaSPAdes, 
additional coverage helped to resolve ambiguous branch-
ing and reconstruct longer contigs, while for MEGAHIT 
increased coverage resulted in profound fragmentation. 
The assembly graphs also made it clear that Trinity, as a 
transcriptomic assembler, utilizes a different approach in 
comparison to the other tools, resulting in very charac-
teristic assembly graph patterns.

Fig. 2 ARGs recovery by each tool. A Presence/absence of ARGs on the contigs assembled by different tools. B Presence/absence of ARGs 
after filtering using a length cut‑off of 300 bp was applied to the results. “Full” denotes contigs containing full length and correctly assembled ARGs 
while “Truncated” comprises contigs containing partial ARG sequence (minimum 60 bp and 98% identity and no flanking regions on either of 
the sides or both sides)
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Long‑read data confirmed results of simulated 
metagenomes
To validate the findings from the simulated metagenome 
data, we performed a second test with a real dataset. For 
this, we used PacBio reads containing full ARGs as a ref-
erence for the contigs assembled from a corresponding 
short-read data set derived from the same samples (see 
Methods for details). In this dataset, we annotated ARGs 
on the PacBio reads, which resulted in 18 unique ARGs 
(98% identity and 100% coverage) found on 125 PacBio 
reads (32 reads carried more than one ARG). This set of 
PacBio reads was used as a reference to evaluate contigs 
containing ARGs assembled from short-read data. Short-
read and long-read datasets used for this test are differ-
ent in terms of the sequencing depth, which might affect 
the detection of ARGs. Therefore, for the genomic con-
text comparisons, we only focused on the comparison of 

those contigs that aligned to the reference read present 
in the PacBio long reads data. That is, if there was a con-
tig assembled from short-reads that did not align to the 
PacBio reference it was not taken into account, to avoid 
misinterpretation due to difference in sequencing depth.

After assembling the short-reads data, we compared 
these contigs to the PacBio reference reads to assess the 
correctness of genomic context. In this comparison, Trin-
ity had the highest number of correct contigs matching the 
reference PacBio reads, and these contigs were on aver-
age longer than the ones reconstructed by the other tools 
(Fig.  6C and Table  S3). In contrast, MEGAHIT, metaS-
PAdes and SPAdes assembled half as many contigs with 
on average shorter length than Trinity. To check if another 
approach using TriMetAss could improve the results, we 
used SPAdes contigs containing full and truncated ARGs 
as a seed for iterative re-assembling. However, the results 

Fig. 3 Assembler performance at different coverages. A Proportion of full, truncated and misassembled/partial ARG sequences. Note 
that the retrieved ARGs are not necessarily associated with the correct context.). B Length distribution of contigs with ARG hits. Contigs with correct 
genomic context, only containing full ARGs, are marked with red dots
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revealed that this approach did not considerably improve 
the length of the contigs containing ARGs.

Altogether, 55 unique ARGs were identified from the 
assembled contigs by all the short-read tools, with only 
12 ARGs common between all of them (Fig. 6B). Inter-
estingly, Trinity and MEGAHIT had the most number 
of common ARGs. Importantly, annotation of short 
reads alone resulted in 85 matches (80% coverage and 
98% identity).

Abundances of ARGs depends on the approach used 
for quantification
To investigate what consequences assembly fragmenta-
tion has on the ARG quantification, we mapped reads 

back to the corresponding assemblies to estimate gene 
abundances. In parallel, we quantified ARGs by map-
ping reads directly to the ResFinder database (Fig.  7A) 
and to the same database but clustered by 90% iden-
tity to reduce variant redundancy (Fig.  7B). This pro-
vides a direct comparison between the two prevailing 
approaches to quantify ARGs in metagenomic data [10].

In the simulated scenario, Velvet, and to some extent 
MEGAHIT, showed a read mapping pattern that was 
inconsistent with the other assemblers, largely due 
to their inability to produce contigs containing com-
plete ARGs. This effect was larger in the ‘high’ and ‘very 
high’ total plasmid read cases. Furthermore, compar-
ing mapping results between ResFinder before and after 

Fig. 4 Visual representation of assembly results. The example used is one of the plasmids AP023079, containing two ARGs blaNDM and aph(3’’)-Ib. 
A visual representation of the plasmid was done using FARAO with light gray representing the backbone plasmid and the other colors 
representing correctly assembled contigs from samples with different total number of reads (“low” in pink, “medium” in teal, “high” in purple 
and “very high” in blue) and ARGs are in red. A visual representation of the corresponding assembly graphs was done using Bandage. The figures 
represent only part of the whole assembly graph corresponding to the AP023079 plasmid sequence, where blue lines correspond to BLAST hits 
of the assembled contigs to the plasmid and pink lines to the ARG regions
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Fig. 5 Assembly of blaNDM-1 gene. A Alignment of the contigs containing blaNDM-1 gene to a reference plasmid. The top figure depicts a part 
of the reference plasmid CP055250.1 with 10 kb upstream and downstream of the blaNDM-1 gene (in red). Coding sequences of neighboring genes 
are shown as grey arrows. Note that the contigs start and/or end within genes encoding transposases or insertion sequences (ISs). B The top panel 
represents a part of the assembly graph for the “medium” metaSPAdes assembly containing blaNDM-1 gene (in red). Each subsequent graph shows 
the mapping of the output contig as well as paths corresponding to the original plasmid sequences
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clustering revealed that for the investigated ARGs the 
abundance estimates are lower for the non-clustered 
database.

For the real dataset case, abundance calculation 
revealed that for some ARGs, results are very similar 
between approaches, such as for several tetracycline 

genes (e.g., tet(Q) and tet(W)), as well as the erythromy-
cin resistance gene erm(B) and aminoglycoside resist-
ance gene aph(3’)-III (Fig.  6A). However, several ARGs 
were detected only by mapping reads directly to the 
ResFinder database and were missing completely from 
the assembly-based approach (e.g., tet(B), blaTEM-104 

Fig. 6 Results from comparison between short and long read data. A ARG quantification by using either assembled contigs or direct mapping 
of short reads to the ResFinder database, represented as log10(per base coverage). B Number of unique ARGs identified on assembled contigs (Ray, 
Velvet and TriMetAss are not shown). C Length distribution of contigs assembled from short reads matching the PacBio reference reads, with dots 
representing individual contigs. D PCoA based on Bray–Curtis dissimilarity between different quantification methods
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and erm(T)). At the same time, the abundances for many 
ARGs were lower when quantified directly against the 
ResFinder database than they were when quantified by 
mapping to contigs. Principal coordinate analysis using 
Bray–Curtis dissimilarity on abundances estimated by 
different methods revealed that results from different 
assembly methods were not dramatically different, but 
direct reads quantification was substantially different 
from the methods mapping reads back to the assembly to 
assess ARG abundance (Fig.  6D). To a large extent, this 
is due to that direct read mapping is able to detect more 
different types of ARGs that the assembly-based methods 
(Fig. 6A).

Taken together, this indicates that direct read mapping 
might better capture the diversity of ARGs in a metage-
nome by detecting rare genes not present on the assem-
bled contigs, but may at the same time underestimate the 
abundances of more common ARGs.

Discussion
The repertoire of ARGs recovered from the same dataset 
differs depending on the tool used
It is commonly assumed that metagenomic high-
throughput sequencing allows an unbiased cataloging of 
ARGs at the whole microbiome scale [30, 31] in compari-
son to qPCR and culture-based methods. However, it is 

rarely considered that downstream data processing can 
have major impacts on the results reported.

There have been several initiatives to benchmark 
assembly software for metagenomics. Wang et  al. [11] 
performed evaluation of metagenomic assemblers 
using real metagenomic datasets spiked with reads 
from known genomes focusing on completeness and 
accuracy of reconstructed genomes. A few studies 
have looked into the benefits of using long-reads for 
improving metagenomic assemblies [32–34]. Within 
the framework of the CAMI challenge, Sczyrba et  al. 
[35] and Meyer et  al. [6] evaluated assembly perfor-
mance, but largely for the purpose of taxonomic pro-
filing. However, only a few studies have investigated 
the implications of assembler choice for the inference 
of gene contexts and gene abundances from metagen-
omic assemblies. Brown et al. [12] used resistome risk 
score based on co-occurrences of ARGs, MGEs and 
pathogen gene markers on the same contig to evalu-
ate convergence of biological output produced by dif-
ferent assemblers. Another paper by Galata et  al. [36] 
showed that the choice of assembly software as well as 
sample complexity have considerable impact on pre-
diction of genes and proteins. A recent study by Yorki 
et  al. [9] focused on assessment of short-, long- and 
hybrid-approaches to recover the genome of clinically 

Fig. 7 ARG quantification using either assembled contigs as a reference or by directly mapping short reads to the ResFinder database. Per base 
total coverage calculated using FARAO from aligning reads to the contigs, and using direct ARG quantification by mapping reads to the ResFinder 
database (A) and ResFinder clustered to 90% identity (B)
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relevant low-abundant E. coli and their ARG content 
from metagenomic samples. Unfortunately, the results 
of these studies are often contradictory, most prob-
ably due to the different approaches and features of the 
underlying test data. Most importantly, despite being 
mentioned by several studies, the impact of assembler 
choice on the biological interpretability has not been 
well explored.

In the current study, we used both simulated and real 
metagenomics data to assess the impact of assembler 
choice on the identification and quantification of ARGs, 
as well as the ability to correctly reconstruct the genomic 
contexts surrounding these ARGs. Metagenomic assem-
blers are optimized to deal with sequence data from sam-
ples containing multiple species in different abundances, 
and therefore their performance was of primary inter-
est. In the simulated scenario, metaSPAdes considerably 
outperformed MEGAHIT in terms of number of contigs 
containing full ARG sequences, with MEGAHIT pre-
dominantly produced short contigs (on average 284  bp 
long) with truncated ARGs. This could have severe con-
sequences on the results since many metagenomic stud-
ies utilizing the assembly approach employ a filtering step 
to remove short, potentially erroneous, contigs contain-
ing little useful information. The filtering cut-off can vary 
from 300 bp up to 2 kb [37–40]. Even if we were to apply 
the most allowing cut-off of 300  bp to the MEGAHIT 
results, 99% of contigs containing ARGs would be filtered 
out, resulting in a considerable underestimation of the 
resistome in the sample. This suggests that the choice of 
assembler as well as pre-processing and post-processing 
steps can considerably affect the outcomes and interpre-
tations of a study.

This problem became even more profound when we 
performed ARG identification in a real dataset. For a real 
dataset, there is no way to know the true complete reper-
toire of ARGs. Therefore, we used PacBio reads contain-
ing full ARGs as a reference for the contigs assembled 
from corresponding short-read data. Altogether, 55 
unique ARGs were identified from all the assembled con-
tigs across all the short-read tools and the PacBio reads 
(Fig.  6B). The number of unique ARGs captured by the 
different assemblers varied greatly, from 44 identified by 
Trinity to 20 captured by metaSPAdes. Similarly to the 
assemblies from the simulated data, 52% of the MEGA-
HIT contigs containing ARGs would have been filtered 
out using a 300 bp length cut-off, showing that this unde-
sired effect is not simply a matter of our methodological 
choices for simulating data. Trinity, SPAdes and metaS-
PAdes recovered several additional ARGs not present on 
the PacBio reads. In this case, the short-read dataset was 

sequenced three times deeper than the PacBio dataset, 
suggesting that the long-read dataset did not have suffi-
cient depth to pick up all the ARGs. That said, the two 
approaches would probably perform similarly well at 
comparable sequencing depth, but the costs of long read 
sequencing would – at present – be considerably higher.

Worryingly, only six ARGs were commonly identified 
by all tools  and on PacBio reads, including two amino-
glycoside, two tetracycline and two erythromycin resist-
ance genes. Consequently, some genes were missing from 
the output by all short-read assemblers tested, including 
the clinically relevant beta-lactamase gene blaOXA-209, 
which was identified on PacBio reads and therefore most 
certainly present in the sample. The most probable expla-
nation for this is that those were relatively rare genes 
that did not get sufficient coverage to be assembled by 
the short-read sequencing effort and therefore are miss-
ing from the resulting assembly. An alternative approach 
to ARG quantification in metagenomes, circumventing 
assembly, is identification of ARGs by mapping the reads 
directly to one of the available ARG databases [10]. We 
annotated reads by mapping reads to the ResFinder data-
base, which resulted in identification of 85 unique ARGs. 
Perhaps not surprisingly, this number by far surpassed 
the total number of ARGs identified by mapping reads to 
the assembled contigs. Reads are typically much shorter 
than contigs and might map spuriously to several differ-
ent targets causing false positives. At the same time, this 
approach does not require coverage of the entire ARG to 
detect it, which may be crucial for the detection of rare 
ARGs. As many clinically relevant ARGs to last resort 
antibiotics are typically rare in most microbiomes, the 
increase of detection ability is highly important for e.g. 
monitoring of high-risk ARGs [5, 41]. This finding also 
highlights the importance of not basing gene catalogs only 
on assemblies from the metagenomes under study, but 
also including relevant gene or genome repositories into 
the catalogs used for annotation and read mapping[42].

Depending on which tool and cut-off are used for the 
data analysis, the end results can be drastically different. 
It is important to mention, though, that the number of 
correctly assembled full-length ARGs on its own is not 
always a good measure of assembler performance. For 
example, the rest of the output contigs may contain mis-
assembled sequences, which is an undesired outcome. 
In most real-world scenarios, it would not be possible 
to determine which contigs were correctly and incor-
rectly assembled, underscoring the importance of assem-
bly tools achieving a good ability to stitch reads together 
while still maintaining strict precision in terms of obtain-
ing the correct assembled contexts using default settings.
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Correctly assembled short contigs often lack context 
around ARGs
Obtaining a correctly assembled full or even truncated 
ARG might be enough for certain applications, for exam-
ple when estimating the ARG diversity in a sample. How-
ever, for the purpose of host taxonomic inference or 
mobility assessment of a given ARG, it is necessary to 
correctly identify the genomic context around it. After 
assembling short-reads data we compared the result-
ing contigs to the original plasmid sequences for a sim-
ulated data set or to PacBio reference reads for the real 
data scenario, allowing us to assess the correctness of the 
assembled genomic contexts. In this comparison, Trinity 
had the highest number of correct contigs matching the 
reference in both cases, and the Trinity contigs were on 
average longer than the ones reconstructed by the other 
tools (Fig.  3B and Table  S3). Trinity is a transcriptome 
assembler, specifically designed to assemble transcript 
variants resulting from alternative splicing or gene dupli-
cation [43]. In contrast with most short-read assemblers 
that typically collapse the variant features into consen-
sus sequences, Trinity aims to capture the diversity of 
splice isoforms by first assembling disjoint ‘transcription 
loci’ that are further converted into de Brujin graphs and 
pruned based on read support. The graph representa-
tion in Fig. 4 shows that Trinity contigs are represented 
by nodes of more even coverage and less complexity in 
comparison to graphs resulting from metaSPAdes and 
MEGAHIT assemblies. This transcriptomic assembly 
approach is similar to the rapidly emerging localized 
assembly graph approaches developed to leverage vari-
ants present in complex microbial communities. This can 
be achieved by extracting parts of the sequence graph 
generated during metagenomic assembly surrounding a 
region of interest and using coverage statistics to validate 
the genomic contexts [44–46].

In contrast to Trinity, the short-read metagen-
omic assemblers MEGAHIT and metaSPAdes recov-
ered on average fewer and shorter contigs with correct 
genomic contexts. The original MEGAHIT publication 
[47] showed that its performance becomes better with 
increased coverage (from 10 × to 100 ×) in terms of N50 
value, largest alignment length and number of misas-
semblies. However, we observed that in our simulated 
data scenario, MEGAHIT performed best at lower cov-
erages (Figs.  2 and 3), showing extensive fragmentation 
at the higher coverages as revealed by the highly branch-
ing graph (Fig.  4). In the real data scenario MEGAHIT 
and metaSPAdes showed very similar performance in 
terms of number of correct contigs and their length. 
This is somewhat reflective of our simulated approach 

representing a very complex, but yet realistic, case in 
terms of the number of different resistance plasmids pre-
sent in the simulated data. That said, due to the rather 
short length of the MEGAHIT and metaSPAdes contigs 
they match to several different PacBio reads (different 
genomic contexts) implying that the length of most of 
them is not sufficient to unambiguously decipher the tax-
onomic origin of the ARGs they carry. Considering that 
the average ARGs is longer than 500  bp, these contigs 
most probably also lack any information about co-located 
ARGs or MGEs, at least with any degree of certainty. This 
becomes even more apparent when looking at the part 
of a graph from “medium” metaSPAdes assembly in the 
simulated scenario (Fig.  5B). This assembly resulted in 
only one contig containing the full blaNDM-1 gene and 
representing a common region between the five original 
plasmids. However, from the assembly graphs it is clear 
that there are several longer potential graph paths cor-
responding to the original plasmids. Therefore, simply 
relying on the metagenomic assemblers for the purpose 
of capturing genomic contexts, especially in complex 
metagenomic samples, might lead to considerable under-
estimation of the diversity present in a sample. Using 
graph-based approaches would likely be more suitable 
for that task, and recent developments in this direction, 
including GraphAMR [48] and MetaCortex [49], have 
shown some promising results and may eventually be 
interesting to evaluate in the same way as the assemblers 
tested in this study.

Quantification of ARGs is dependent on correct assemblies
As has been discussed above, the repertoire of ARGs 
detected in the assemblies varied greatly between dif-
ferent assembly tools in both scenarios. To investigate 
what consequences this has on the ARG quantification, 
we mapped reads back to the corresponding assemblies 
to estimate gene abundances. In parallel, we quantified 
ARGs by mapping reads directly to the ResFinder data-
base. For the simulated scenario, we have knowledge 
about exactly which ARG sequences should be present 
in the dataset and we can therefore can directly com-
pare abundances for these genes estimated by two dif-
ferent approaches. It was surprising to observe that 
quantification by mapping reads back to the ResFinder 
database revealed in general lower abundance levels 
than when calculating abundance by mapping to the 
assembled contigs (Fig.  7A). The ResFinder database, 
as well as the other AMR gene catalogs, contains two 
hierarchical levels of nomenclature: gene family such as 
blaNDM or tet(M) and their associated allelic variants 
(e.g. blaNDM-1, tet(M)-6). We hypothesized that the 
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observed results is a consequence of variant  ”spill-over” 
effect when the lengths of the reads were insufficient to 
differentiate between the variants. A possible solution 
often used to reduce the impact of this variant”spill-over” 
effects is to cluster all the similar variants and retain only 
a single representative sequence. We did this in an addi-
tional test using the ResFinder database clustered to 90% 
identity (Fig.  7B). This approach allowed us to estimate 
the abundance for a family of closely related ARG vari-
ants instead of a particular variant. Despite the somewhat 
lower resolution with regards to specific ARG variants, 
using a clustered database yielded abundance estimates 
for all the spiked-in genes comparable to those estimated 
based on the mapping to assembled contigs.

In the real-case scenario, the results revealed that several 
ARGs were quantified only by mapping short reads directly 
to the ResFinder database and were missing completely 
from the assembly-based approach (Fig. 6A). Some of those 
are clinically relevant genes such as tet(A), tet(B), blaTEM 
and erm(T), and therefore it is crucial to understand if their 
presence/absence is an artifact. In the case of blaTEM, it 
was only identified by mapping the short reads to the Res-
Finder database, and it was missing from assembled con-
tigs. A closer inspection of the original Illumina dataset 
showed that it is a low-abundant gene that did not have 
enough coverage to be assembled by short-read assemblers.

All together, these results show that none of the 
approaches give a comprehensive picture of ARG diver-
sity and abundance. Assembled contigs provide a good 
resolution in terms of identification and quantification 
of specific ARG variants as well as their genomic context, 
but at the same time this approach misses rare ARGs due 
to insufficient coverage. In contrast, direct mapping of 
short reads spuriously aligns them to different ARG vari-
ants, leading to an overestimation of the resistome diver-
sity in a sample (and potentially also underestimation of 
gene abundances). At the same time, direct read mapping 
has the ability to identify rare genes not present on the 
assembled contigs due to lack of complete coverage. In 
addition, there are several studies suggesting the impor-
tance of knowing the genomic context of ARG variants 
for determining their transmission potential, co-resist-
ance patterns and how well they would respond to dif-
ferent interventions [2, 50]. Therefore, using read-based 
quantification alone to determine ARG abundance in a 
sample can result in a misleading interpretation regard-
ing which particular ARG variants are present and abun-
dant in a sample. This highlights the importance of using 
a combination of approaches to obtain an unbiased pic-
ture of ARG diversity and abundance in a metagenomic 
sample and to exercise caution when interpreting indi-
vidual ARG results from metagenomic data.

Certain ARG contexts are particularly hard to assemble 
correctly
Interestingly, not all of the ARGs were equally easy to 
assemble (Fig. 2), with aph(3’’)-lb being the most difficult 
gene to fully assemble among the ones spiked-in. This 
is a good example of what happens during assembly of 
regions which are present in multiple genomic contexts 
with differential coverage in the same sample. On the 
original plasmids, the aminoglycoside resistance gene 
aph(3’’)-lb was flanked by insertion sequences, several 
other ARGs and recombinases (Additional file  1: Figure 
S4), all contributing to making it difficult to assemble the 
region around this gene correctly. In contrast, there are 
comparatively fewer insertion sequences in the vicinity of 
blaNDM-1 (Fig.  5A and Additional file, Figure S5). The 
majority of the assembly tools produced contigs con-
taining the full blaNDM-1 gene but broke exactly at the 
insertion sequences (Fig. 5A).

A factor further complicating metagenomic assembly 
is that microbiomes are typically characterized by dif-
ferent abundance levels of various species. As a result, 
DNA sequencing yields a highly non-uniform distribu-
tion of read coverages across different genomes making 
it even more difficult to resolve assembly graphs. Not 
surprisingly, the assembly graphs showed that this prob-
lem becomes more pronounced with increasing coverage 
(Fig. 4, the brush-like structures representing aph(3’’)-lb). 
In a nutshell, this problem is analogous to the recovery 
of other conserved repetitive regions such as 16S rRNA 
genes from metagenomic samples. The 16S rRNA is a 
gene consisting of a patchwork of hypervariable and uni-
versally conserved regions, resulting in highly complex 
branched assembly structures [7]. In addition, read cov-
erages for most species are much lower than in a typi-
cal cultivated single-species sample. All together, these 
features of metagenomic data cause standard genome 
assembly procedures to produce fragmented and error-
prone assemblies, as can be seen in the examples of Vel-
vet, Ray and SPAdes.

Conclusions
Overall, there is a need for better assembly software to 
deal with ARGs in multiple contexts, as the results of this 
study show that none of the current tools can deal with 
samples of high complexity. Currently available metagen-
omics assembly tools metaSPAdes and MEGAHIT are 
able to identify a variety of ARGs but fail to fully recover 
the diversity of genomic contexts present in a sample. The 
transcriptomic assembler Trinity, despite being designed 
for a different purpose, is an interesting alternative as it 
showed better performance in reconstructing longer and 
fewer contigs matching unique genomic contexts, which 
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can be beneficial for deciphering the taxonomic origin of 
ARGs. Therefore, for situations where a complex metage-
nome can be expected, we would recommend using Trin-
ity. However, often the available computational resources 
will not allow this, as Trinity is a computationally very 
demanding software. As a second option, we suggest 
metaSPAdes, which also requires a lot of resources, and 
therefore is feasible only for smaller datasets, unless sub-
stantial computational resources are available. MEGA-
HIT showed quite poor performance in a complex case 
scenario, producing very short contigs, but its perfor-
mance was comparable to that of metaSPAdes in the real 
data scenario. We would suggest MEGAHIT as an option 
for low complexity samples as it is also much more CPU- 
and memory-friendly than all other approaches. In addi-
tion, MEGAHIT might sometimes be the only feasible 
option for producing assemblies from very large data-
sets. This is not an ideal situation from a point of view of 
assigning contexts to ARGs. Currently emerging graph-
based approaches show promising indications that they 
might be more suitable for that task.

Finally, we have made one very important observation: 
our results show that using a length filtering threshold 
for the assembled contigs can contribute to a dramatic 
loss of ARG-containing contigs. This is due to that ARGs 
seem to be over-represented among challenging genomic 
contexts for assembly, and for that reason these regions 
are particularly prone not to be properly assembled, 
resulting in short and fragmented contigs. This can lead 
to drastic underestimation of the resistome diversity and 
abundance in a sample. We suggest, therefore, to anno-
tate ARGs on contigs before filtering on the length, to 
have an idea of what is being filtered out. When it comes 
to ARG abundance quantification, direct mapping of 
reads to a database rather than an assembly results in 
better detection ability, but risks increasing false positive 
detections. An alternative approach is to cluster the ref-
erence database to reduce the number of ARG variants. 
This will lead to a lower resolution at the ARG variant 
level but will on the other hand reduce the risks for bias-
ing the picture of ARG prevalence. Another way could 
be to assign a threshold for the minimal number of reads 
mapped, distributed across a reference ARG, to make 
sure that there is enough support for that gene being pre-
sent in a sample. Ultimately, the most pragmatic solution 
may be to both quantify ARGs by mapping reads directly 
to a database and by mapping reads to assembled contigs 
to determine coverage, as the approaches are somewhat 
complementary.

In conclusion, as researchers we should not blindly trust 
the output of our bioinformatics tools. If tools corroborate 

each other, one can put more trust into their output. If 
not, one should exercise caution when interpreting data, 
especially on genetic contexts in potentially complicated 
regions. Long read sequencing may eventually solve these 
problems, but we are not there yet, partially because of 
the excessive costs of deep long-read sequencing. In 
the meantime, new more accurate methods are needed 
to resolve the contexts around ARGs to determine 
where they belong taxonomically and their potential for 
mobility.
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