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Abstract

The rapid growth of wireless communication, especially with the deployment of mas-
sive multiple-input multiple-output (MIMO) systems, has driven up power consump-
tion, requiring more cost-efficient hardware. However, lower-cost components often
introduce impairments such as power amplifier (PA) nonlinearity, phase noise (PN),
in-phase and quadrature (IQ) imbalance, and mutual coupling, leading to degraded
system performance. Classical model-based methods face challenges in effectively
mitigating these impairments while maintaining performance and low computational
complexity. In contrast, deep learning techniques offer a promising alternative by
providing more adaptable and efficient solutions. This thesis explores deep learning-
based methods for mitigating hardware impairments in communication systems, aim-
ing to enhance both performance and power efficiency.

We first focus on single-input single-output (SISO) systems. In Paper A, we address
the joint mitigation of IQ imbalance and PA nonlinearity using digital predistortion
(DPD). Classical model-based methods often underperform in joint mitigation, and
existing neural network (NN)-based methods are computationally demanding. To
resolve these issues, we propose a novel NN-based DPD model combined with an
NN pruning technique. This approach provides a more power-efficient solution for
mitigating the combined impairments of the PA and IQ modulator compared to
existing models. In Paper B, we further explore training DPD with low-sampling
rate data. Supervised learning methods rely on high sampling-rate feedback paths,
which are costly in wideband and multi-antenna scenarios. To overcome this, we
introduce a reinforcement learning (RL)-based DPD learning algorithm that reduces
the reliance on such high-sampling rate feedback paths while maintaining effective
learning, making the DPD optimization more power-efficient.

We next shift our focus to mitigation techniques in massive MIMO systems. In
Paper C, we tackle the joint mitigation of PA linearization and antenna crosstalk in
massive multi-user (MU) MIMO orthogonal frequency division multiplexing (OFDM)
networks. In such systems, the large number of antennas and corresponding PAs
significantly increase the computational complexity of conventional DPD. While de-
ploying DPD per user equipment (UE) in the frequency-domain (FD) instead of per
PA in the time-domain (TD) can reduce complexity, the literature lacks proper FD
DPD models. To address this, we propose a low-complexity FD convolutional neural
network (CNN)-based DPD model. This model is effective in a line-of-sight (LOS)
channel with fewer UEs.

Finally, Paper D explores joint channel and PN estimation in cell-free massive
MIMO OFDM systems. Several previous studies assume single-carrier PN models
to OFDM systems, leading to mismatches and overly optimistic performance predic-
tions. We consider two setups: shared and separate local oscillators (LOs) between
distributed access points (APs), which introduce uncorrelated and correlated PN,



respectively. We propose novel distributed and centralized joint PN and channel
estimators, including a deep learning-based channel estimator, which demonstrates
improved performance in both PN and channel estimation.

To summarize, this thesis explores the implementation of various deep learning-
based techniques to effectively mitigate hardware impairments across different com-
munication systems.

Keywords: 5@G, 6G, hardware impairments mitigation, deep learning, power am-
plifier (PA), digital predistortion (DPD), local oscillator (LO), phase noise (PN),
in-phase and quadrature (IQ) imbalance, antenna crosstalk, mutual coupling, mas-
sive MIMO, channel estimation, achievable rate.
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CHAPTER 1

Introduction

1.1 Background

Wireless communication has become an essential part of modern life, connecting bil-
lions of people worldwide. Since the early 1970s, the mobile wireless industry has
evolved through several generations, leading to the current fifth generation network
(5G) and the future 6G [1], [2]. According to the Ericsson mobility report 3], by
the end of 2023, there are over 8.5 billion mobile subscriptions globally, with 1.7
billion being 5G subscriptions. This number is expected to rise to nearly 5.6 billion
by 2029, making up 60 percent of a total of 9.3 billion mobile subscriptions. The
increasing demand for mobile data calls for faster speeds, lower delays, and more
reliable connections. Achieving these goals requires advanced technologies such as
massive multiple-input multiple-output (MIMO), which uses a large number of an-
tennas to serve multiple users at the same time, greatly increasing network capacity
and making more efficient use of available radio frequencies [4], [5].

However, these technological advancements lead to a significant increase in energy
consumption and cost. For instance, massive MIMO systems require numerous radio
frequency (RF) chains, each including components such as power amplifiers (PAs),
digital-to-analog converters (DACs), and local oscillators (LOs). These components
are not only expensive but also consume a lot of energy. The radio access network
(RAN), which includes all the equipment connecting mobile devices to the network,
accounts for about 73% of the total energy consumption by mobile operators as
reported in [6]. As mobile data usage continues to grow and technologies such as
massive MIMO become more common, the energy demands and operational costs of
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these networks will increase further. This raises a critical question: How can we meet
the performance requirements of wireless communication systems while maintaining
or even reducing their energy consumption?

One effective way to address these issues is to use less expensive hardware com-
ponents in both cellular and cell-free massive MIMO systems [7]-[10]. While this
approach reduces initial costs and energy use, it introduces hardware imperfections
that can degrade the quality of communication signals. For example, imperfect PAs
can cause nonlinear distortions [11], and LOs can introduce phase noise (PN)[12].
To use these affordable components while still meeting key communication require-
ments, such as spectral efficiency (SE), and bit error rate (BER) in 5G and 6G
systems |13], it is essential to implement effective techniques to reduce the impact of
these impairments. However, designing these mitigation techniques presents its own
challenges. For example, these techniques consume additional power and must be
carefully balanced to mitigate impairments without significantly increasing energy
consumption. Also, managing computational complexity while maintaining strong
performance is a major challenge [11]. Each hardware impairment uniquely affects
the system, requiring tailored models for effective mitigation. For instance, lineariz-
ing nonlinear distortions from PAs requires different strategies compared to handling
PN from oscillators. The critical research question is: How can we develop methods
that mitigate hardware impairments more efficiently?

Traditional model-based mitigation methods rely on predefined mathematical mod-
els to address hardware impairments in wireless systems. While these methods can
be effective, they often struggle to balance performance between complexity [14]—
[17]. Accurately modeling complex hardware behaviors can make these approaches
overly complicated, leading to higher computational costs and reducing their suitabil-
ity for real-time applications. Additionally, different types of hardware impairments
typically co-existing because hardware components are by nature cascaded in the
transistors, making it difficult to develop a single optimal mathematical model that
can effectively handle all combined impairments.

Deep learning has proven highly effective in various applications, including nat-
ural language processing [18], object detection [19], and autonomous driving [20].
It also holds great potential in communication systems, offering improvements in
both performance and efficiency in many scenaios [21]—[27]. Recent research by IBM
demonstrates that deploying deep learning methods on a designed analog chip can
reduce power consumption by up to 14 times compared to conventional systems for
natural language tasks [28]. This breakthrough significantly motivates the practical-
ity and cost-effectiveness of deep learning in many other applications. In the context
of hardware impairment mitigation, deep learning presents a promising alternative
for addressing these challenges [15], [29]-[31]. Unlike traditional model-based ap-
proaches, deep learning models learn the system characteristics directly from data,
enabling them to adapt to various types of impairments without requiring detailed,
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handcrafted models—particularly in cases where simple models do not exist.

Deep learning-based mitigation methods come with their own challenges. One
major issue is the difficulty in obtaining labeled data, as measurements for specific
hardware impairments are often inaccessible, yet labeled data is crucial for enabling
supervised learning. Another challenge is balancing high performance with low com-
putational complexity, which demands careful design of both the model structure
and the training algorithm to address various hardware impairments [32]. Striking
this balance is critical for ensuring that deep learning-based mitigation is both effec-
tive and practical in real-world scenarios [14], [15]. Ultimately, the choice between
model-based and deep learning-based mitigation approaches depends on the specific
requirements and constraints of each situation.

In this thesis, deep learning-based techniques for mitigating hardware impairments
are explored. Various types of imperfect hardware are included, such as PAs, DACs,
lowpass filters (LPFs), and LOs, and antenna chains. The investigation spans differ-
ent communication scenarios, including single-carrier, orthogonal frequency division
multiplexing (OFDM), single-input single-output (SISO), cellular, and cell-free mas-
sive MIMO systems. By developing models that effectively correct hardware impair-
ments without imposing excessive computational burdens, we aim to contribute to
the advancement of efficient and practical wireless communication technologies.

1.2 Thesis QOutline

This thesis is structured as a collection of papers and is divided into two parts.
Part I provides an introduction, while Part IT contains the included publications.
The remainder of Part I is organized as follows: Chapter 2 presents an overview
of generic communication systems, various hardware impairment models, classical
model-based mitigation techniques, and performance and complexity metrics used
for evaluation. Chapter 3 covers the fundamentals of deep learning, focusing on
relevant models, implementations, and their applications in communication systems.
Chapter 4 explores the use of deep learning for mitigating hardware impairments,
with digital predistortion (DPD) as an example of pre-compensating distortion from
hardware impairments. Finally, Chapter 5 summarizes the appended publications
and suggests potential future research directions.

1.3 Notation

Through Part I of the thesis, the following notation is used. Lowercase and uppercase
boldface letters denote column vectors and matrices, such as ¢ and X. X' and X"
denote the transpose and Hermitian transpose of matrix X. z, and z,, », denotes
the n-th element of a vector « and the (n1,ng) element of a matrix. @,.,— denotes
a vector consisting of the (n — M)-th to the n-th elements of . xz(t) denotes a
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continuous-time signal at time ¢. R and C denote the sets of real and complex
numbers, respectively. Opxy and Iy denote the B x U all-zeros matrix and the
U x U identity matrix, respectively. E,{-} denotes the expectation with respect to x.
fa(z(t)) denotes the function f, with continuous-time input z(¢) and a parameters
vector a (if any). fo(Tn,, " Zn,, ) : CM¥ — RY denotes a function with a discrete-
time complex-valued input vector [T, ,%n,]", a real-valued output vector of
length N, and a parameters vector a (if any). f({z,})_;) denotes a function with
input of a set of samples {,, }_;. The real and imaginary parts of a complex symbol
x,, are denoted by R{x,} and 3{z,}. N(0yx1,0%I;) denotes the real-valued zero-
mean Gaussian distribution with covariance matrix o2I;.

There are few inconsistencies in the notation between the introduction part of the
thesis and the appended papers. In such cases, we follow the notation used within
each individual paper.



CHAPTER 2

Hardware Impairments and Mitigation in Communication
Systems

This chapter begins with introducing a generic communication system with its dig-
ital processing and analog components in the transmitter and receiver. Details of
various hardware impairments are then introduced, including PA nonlinearities, LLO
PN, in-phase and quadrature (IQ) imbalance, and antenna crosstalk. Subsequently,
the traditional model-based mitigation techniques used to mitigate each of these
impairments are discussed.

2.1 Communication With Ideal Hardware

Coherent communication is essential in wireless systems, ensuring that the transmit-
ted and received signals maintain consistent time and phase alignment. This coher-
ence is crucial for accurately decoding the transmitted information and achieving high
data rates with low error probabilities [33], [34]. However, hardware imperfections at
the transmitter and receiver can cause signal distortion, breaking the coherence, and
degrading system performance. This section introduces the basics of a generic com-
munication system, including digital processing and hardware components, under the
assumption of ideal hardware without impairments.

Figure [2.1] illustrates a generic wireless communication system comprising three
main components: the transmitter, the channel, and the receiver. The transmitter
converts source data into modulated signals optimized for transmission across the
channel, which can consist of various media, such as air, cables, or fiber optics. As
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Source Data Received Data
Signal Signal
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Figure 2.1: A generic communication system.

the signal propagates through the channel, it experiences degradation such as noise
and attenuation, degrading its quality. The receiver demodulates the received signal
and converts it to the received data, compensating for the distortions introduced by
the channel. This basic architecture forms the backbone of various communication
networks, including cellular and cell-free massive MIMO systems, which are within
the scope of this thesis.

such as

2.1.1 Transmitter

The transmitter is responsible for preparing and sending information bits from the
source to the receiver through the communication channel. It comprises several key
components that usually work in sequence to ensure accurate and efficient transmis-
sion of data.

Encoder

Before the encoding process in a communication system, information such as text,
images, and audio is first converted into bits at the application layer. Techniques
such as pulse code modulation (PCM) for audio or JPEG compression for images [35],
[36] are commonly used to efficiently represent this data by reducing redundancy
and minimizing its size. Once converted into bits, the channel encoder performs
error correction coding by adding controlled redundancy to protect the data from
errors during transmission. Common coding techniques include block codes such
as Hamming codes [37], convolutional codes [38], turbo codes [39], and low-density
parity-check (LDPC) codes [40]. These codes enable the receiver to detect and correct
transmission errors, offering a balance between error correction capability and data
rate efficiency.

Modulator

Once the data is encoded, the modulator converts the bits into a signal suitable for
transmission over the wireless channel. Modulation involves varying certain prop-
erties of a carrier wave, such as amplitude, frequency, or phase, to encode the in-
formation. Common modulation schemes include quadrature amplitude modulation
(QAM), phase shift keying (PSK), and frequency division multiplexing (FDM) [33],
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Figure 2.2: A simplified direct RF transmitter in communication systems. The baseband
signal is modulated and upconverted directly to the target RF frequency.

[41]. Symbols are represented as points in a constellation diagram, with different
points corresponding to different bit patterns. The higher the order of QAM, the
more bits can be represented by each symbol, which increases the data rate with-
out requiring additional bandwidth. For instance, 16-QAM can represent 4 bits per
symbol, whereas 64-QAM can represent 6 bits per symbol. However, higher-order
QAM schemes are more susceptible to noise, which can increase the BER. This
trade-off between data rate and reliability is a critical consideration in the design of
communication systems, where maintaining a low BER is essential for effective data
transmission.

Following modulation, pulse shaping is typically employed to control the bandwidth
of the transmitted signal and reduce intersymbol interference (ISI) [33]. Consider a
N length sequence of transmission symbols sg,...,sy that modulates a pulse v(t)
and superposes linearly to form the pulse-shaped signal,

N
x(t) = Z spv(t —nTs), (2.1)
n=0

where T is the symbol time. The proper design of v(t) is crucial for achieving the
desired performance in communication systems. Effective pulse shaping ensures that
the transmitted symbols occupy the minimum necessary bandwidth while maintain-
ing spectral compliance with regulatory requirements. Common pulse shaping filters
include the raised cosine filter and the root raised cosine filter [42].

Digital-to-Analog Converter

The DAC converts the discrete-time digital signal into a continuous-time analog
signal suitable for further analog processing. It consists of a transcoder followed by
a reconstruction stage. The transcoder outputs an analog signal with an amplitude
approximation of the digital input, which is then filtered to reconstruct a smooth
analog waveform in the reconstruction stage [43], [44]. The analog signal output by
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the DAC can be expressed as

aPAC (t)= Z Q(x(nTsamp))fDAC (t = nTsamp): (2:2)

n

where Tgamp is the sampling time, Q is the quantization function based on the QPAC.
bit resolution of the DAC, and #(nTgamp) represents the n-th digital sample. The
function fPAC(t) denotes the DAC reconstruction filter, which is typically designed
as a LPF. This filter is crucial for smoothing the staircase output and effectively
reconstructing the desired analog signal. In the ideal case of an infinite resolution
perfect DAC, zPA€(t) = x(t).

Up-conversion

The mixer shifts the frequency of the baseband or intermediate frequency signal to
the desired RF band for transmission, a process known as up-conversion. The mixer
mixes the modulated basedband signal, which is the output of the DAC, with a carrier
signal generated by the LO. This up-conversion process can be expressed as [45]

e (t) = Au(t) cos(2mfet + ¢a(t)), (2.3)

where 2RF(¢) is RF signal, A,(t) and ¢,(t) are the amplitude and phase of the
baseband signal 2PAC(t), respectively, and f, is the frequency of the LO, known as
the carrier frequency.

In quadrature modulation schemes, such as QAM, up-conversion is typically im-
plemented by mixing the in-phase and quadrature components with cosine and sine
carriers, respectively. Equation can be expanded as [45]

zrr (t) = x1(t) cos(2m fot) + xq(t) sin(2n f.t) (2.4
— R{a(t)e 2},

ot
—~ ~—

where z1(t) and zq(t) are the in-phase and quadrature components of the baseband

signal PAC(t), and R is the real operation.

Power Amplifier

The PA amplifies the modulated RF signal to a power level suitable for transmis-
sion over the air. It is a crucial component in communication systems, as it ensures
that the transmitted signal has sufficient power to reach the intended receiver over
the communication channel. The PA must provide sufficient gain while maintaining
linearity to prevent distortion, which can significantly degrade signal quality. Non-
linearities in the PA can cause spectral regrowth and adjacent channel interference,
which not only degrade the performance of the system in use but also lead to inter-

10
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cell and inter-system interference, negatively impacting neighboring systems [11],
[46], [47]. In an ideal scenario, the PA has a linear transfer function, represented as,

aPA () = Ga®F (1), (2.6)

where G is the gain of the PA, zRF () is the input RF signal, and 272 (¢) is the output
signal. The gain G is typically expressed in dB as:

POU

Gas = 10log;, (t> , (2.7)
P

where Pyy = E.{|2PA(¢)|?} and P, = E,{|z®¥ (¢)|?} are the output and input power,

respectively.

Antenna

The antenna converts the electrical RF signal into electromagnetic waves for wireless
propagation. Its performance depends on gain, radiation pattern, and polarization.
Gain indicates how well energy is directed, while the radiation pattern shows energy
distribution. Polarization, whether linear or circular, impacts signal reception and
overall communication performance [48].

2.1.2 Channel

The communication channel introduces various losses that can degrade the quality
of the received signal. These impairments include noise, path loss, fading, interfer-
ence, and multipath propagation. Path loss represents the reduction in power of the
signal as it propagates through space. Multipath fading is caused by the signal may
reach the receiver via multiple paths due to reflection, diffraction, and scattering,
which can be characterized statistically using models such as Rayleigh and Rician
Fading [49]. The noise from the channel is commonly modeled as additive white
Gaussian noise (AWGN) thanks to the central limit theorem, where various random
processes (such as thermal noise from resistors, shot noise in semiconductor devices,
and flicker noise) combine to produce a resultant noise that approximates a Gaus-
sian distribution. Passing the transmitted amplified signal 72 (¢) though an AWGN
channel, the received signals y(¢) is

y(t) = ") + w(b), (28)
where w(t) is a white Gaussian noise process with a power spectral density (PSD)

Ny.

11
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2.1.3 Receiver

The receiver captures the transmitted signal and processes it to recover the original
information while correcting any errors introduced during transmission. It performs
the inverse operations of the transmitter, such as demodulation and decoding, to
reconstruct the transmitted data as accurately as possible.

Down-conversion

The received RF signal is typically filtered by a wide bandpass filter (BPF) to re-
move out-of-band noise and interference. After filtering, the signal is amplified by
an low noise amplifier (LNA), which boosts the weak incoming signal with minimal
additional noise. The LNA is also an amplifier and can introduce nonlinear distor-
tion. In the down-conversion process, the received RF signal y(¢) is converted to an
intermediate frequency (IF) or baseband using a mixer that combines the received
signal with a signal from the LO. For QAM modulation, a quadrature receiver is
often employed, where the signal is down-converted by multiplying it with cosine
and sine carriers, cos(2n f!) and sin(27 f.), via two mixers. The carrier frequency f
of the LO is typically set to match the transmitted frequency, f.. This quadrature
down-conversion separates the signal into its in-phase and quadrature components,
represented mathematically by [45]

1(t) = y(t) cos(2m f1), (2.9)

and

ao(t) = y(t) sin(2r 1), (2.10)

where the outputs #1(t) and £q(t) are filtered by two LPF filters, fLFF and fapF, to
obtained the in-phase and quadrature components of the received baseband signal,

() = AT (@1(t) + 17 x fGT (2q(1)). (2.11)

In the ideal case of perfect mixer, LO, and LPFs, the down-conversion process can
be re-written as

B(t) = fUPF (y(t)ed?mIet). (2.12)

Analog-to-Digital Converter

After down-conversion, the analog-to-digital converter (ADC) converts the continuous-
time analog signal into discrete-time digital samples for further digital signal process-
ing. In the ADC, a LPF is used to the continuous-time analog signal to avoid aliasing

12
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Figure 2.3: A simplified receiver. Not all parts are present in all systems.

effects before it is sampled by the sampling circuit. After which, the discrete-time
output of the sampling circuit is fed to a QAPC-bit quantizer, which outputs quan-
tized digital output. High-resolution ADC leads to high power consumption and may
also be non-linear in its behavior, causing further distortion. The power consump-
tion of an ADC increases exponentially with the number of bits and increases linearly
with the sampling rate, thus the power consumption of ADCs is especially problem-
atic in systems with large bandwidths and many RF chains, such as millimeter-wave
(mm-Wave) systems and massive MIMO systems [7], [9].

Demodulator and Synchronizer

The demodulator recovers the transmitted symbols {3, }2_; from the received base-
band signal Z(t), and before or during this process, synchronization is usually needed
to ensure that the timing and frequency of the baseband signal are aligned with the
references.

The synchronizer can be implemented by analog circuits or digital techniques. It
usually involves the following parts:

e Time synchronization: Both symbol and frame detection are crucial compo-
nents of time synchronization in communication systems, ensuring the receiver
can accurately sample and decode the transmitted signal. Frame detection is
a high-level process that identifies the start of a data frame, which contains
multiple symbols, ensuring the receiver aligns with the overall data structure.
Symbol detection, a lower-level process, focuses on identifying the start of each
symbol within the frame to ensure accurate sampling and avoid inter-symbol
interference. Both detections are commonly achieved using preamble sequences
or pilot symbols, where the receiver correlates the incoming signal with known
reference signals to synchronize timing [50], [51].

e Carrier phase and frequency synchronization: Aligning phase and frequency
offsets between the received and transmitted signal due to any frequency and

13
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phase mismatches between the received signal and the receiver’s LO signal. Tt
is common to use methods such as the phase-locked loop (PLL), which is a
control system that iteratively adapts its signal whose phase is locked to the
phase of the received signal, both digital and analog PLL systems are used [52].
Generally, the pilot symbols used in the time synchronization can provide coarse
synchronization for PLL to fine-tune the frequency and phase offsets [51].

After the synchronization, it is common to use a matched filter to maximize the
signal-to-noise ratio (SNR) for optimal symbol detection. The matched filter is de-
signed to “match” the shape of the transmitted signal by correlating the received
signal with a time-reversed and conjugated version of the expected transmitted sig-
nal. The received baseband signal, #(t), pass through the matched filter to obtained
the output Z(t) by .
Z(t) = / () (t — T)dT. (2.13)
— 00
Once the baseband signal passes through the matched filter, it is sampled at the
correct time instants, typically at the peak of the filter output, corresponding to the
symbol intervals to obtain the received symbols {5,}~ ;. These sampled points are
then de-mapped to bits based on a predefined constellation scheme such as QAM.
A receiver with matched filters is known as the matched filter receiver, which is an
optimal receiver to maximize the SNR in the presence of AWGN [45].

Decoder

The decoder reverses the operations performed by the encoder. In the error correction
stage, it removes the redundancy introduced during channel encoding and corrects
any transmission errors. Algorithms such as the Viterbi Algorithm are used for
decoding convolutional codes [53], belief propagation for LDPC codes, and turbo
decoding for turbo codes. The decoder aims to minimize the BER. Finally, the
source decoder reconstructs the original information from the corrected binary data.

2.2 Hardware Impairments

Coherent transmission in communication systems relies on the accuracy and perfor-
mance of hardware components. However, imperfections in these components can
introduce impairments that degrade the quality of the transmitted signal. This sec-
tion discusses several hardware impairments considered in this thesis, including PA
nonlinearities, PN, IQ imbalance, and antenna crosstalk (also known as mutual cou-
pling). Each of these impairments affects coherent transmission in different ways, and
specific mitigation techniques are needed to reduce their impact, which is covered in

Chapter
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2.2.1 Power Amplifier Nonlinearity

In practice, PAs exhibit nonlinear behavior, especially when operating near their sat-
uration point to maximize efficiency. This nonlinearity causes distortion, leading to
spectral regrowth and in-band distortion, which can interfere with adjacent channels
and degrade signal quality.

As shown in the transmitter in Figure the RF signal 2PA(¢) is amplified by
the PA, which acts as a nonlinear system with memory effects. The memory effects
mean that the PA output at any given time depends not only on the current input,
2RF(¢), but also on the inputs in the previous time slots. A generic PA behavior in
continuous-time can be represented by the nonlinear function f4

A () = fPA (2R (r) i r e [t - TP 1]}, (2.14)

where the input RF signal is with a memory length in time 774, and #72(¢) is the PA
output signal at time ¢. Memory effects are mainly due to the frequency-dependent
behavior of the PA and thus are more considerable for wideband signals. From
the amplitude and phase perspective, this nonlinearity introduces both amplitude
modulation to amplitude modulation (AM/AM) and amplitude modulation to phase
modulation (AM/PM) distortions. From a spectrum perspective, this nonlinearity
leads to both in-band and out-of-band (OOB) errors. The former needs to be min-
imized to ensure low information transmission errors, while the latter needs to kept
low to avoid interference with other systems using adjacent frequencies.

There are many models used to represent PA behavior, such as Volterra series [54]—
[57], Wiener [58], Hammerstein [59], memory polynomial (MP) [55], generalized mem-
ory polynomial (GMP) [57], neural network (NN)-based [60], [61], where Wiener,
Hammerstein, MP, and GMP models are subsets of the full Volterra series with dif-
ferent focus. A widely used PA model is the GMP model, which is a simplified version
of the Volterra series that removes certain polynomial cross-terms. Specifically, the
GMP model describes the input-output of the PA in discrete-time as

KPA_q pPA
PA __ § § : RF RF q
xn - aqﬂnxn—m’mn—m‘
g=0 m=0
KPA_q pPA gPA

§ : § : z RF RF q ~ RF RF q
+ (aq77’l79zn—m|xn—m—g| + aq#'hgzn—m |In—m+g ) (215)
qg=1 m=0 g=1

RF

n

and xFA are the time samples of zR¥(¢) and yA(¢) at time instance
nTsamp, K PA represents the nonlinear order, M is the memory length, and GFA is

where x
the cross-term length. The coefficients aq m, Gq,m,g, and Gq,m,q are complex-valued

parameters. The GMP model (2.15)) consists of polynomial terms with memory
components, divided into three parts. The first part, known as the MP model [55],
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Figure 2.4: Block diagram of the PA in a transmitter. The up-conversion represents the
process of converting the baseband signal z(t) to the RF signal xRF(t)7 such
as an 1Q modulator.
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Figure 2.5: AM/AM, AM/PM, and PSDs of a GMP-based PA. Signal bandwidth 50 MHz.

includes KPAMPA coefficients, {aqym}, capturing interactions of the input signal
itself. The second part contains lagging cross-terms, with KA MPAGPA coefficients,
{d4.m}, capturing interactions between current and previous inputs. The final part
consists of leading cross-terms, also with KP4 MPAGPA coefficients, {@y.m}, capturing
interactions between the current and future inputs.

Figure illustrates the nonlinear behavior of the PA, showing the AM/AM
and AM/PM characteristics using a GMP model with K4 = 7, MPA = 5 and
GPA = 3. The input signal is an OFDM signal with a bandwidth of 50 MHz. The
AM/AM and AM/PM characteristics describe how the output amplitude and phase
of the PA change in response to variations in input amplitude. Ideally, the PA should
exhibit a linear relationship, where the output power increases proportionally with
the input power, as depicted by the black solid line. However, due to nonlinearities,
the AM/AM and AM/PM plots in Figure demonstrate saturation in the output
amplitude at high input levels, with corresponding phase distortion in the same
region. Furthermore, Figure 2.5b| presents the PSD of the PA output, comparing the
results with and without nonlinearities. This figure highlights the introduction of
both in-band and OOB distortions due to the nonlinear behavior of the PA.
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(a) The IQ modulator up-converts baseband signal z(t) to RF signal 22 (t), which is then amplified
by the PA. The baseband modulation represents the process of converting symbols {sy } to the
baseband signal z(t) (2.1).
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(b) Components of an IQ modulator in the direct conversion transmitter. Imperfect DACs, LPFs,
mixers, and LO cause IQ imbalance. Discrete-time modeling is considered.

Figure 2.6: IQ modulator.

2.2.2 1Q Imbalance

1Q imbalance is an important impairment in wireless systems, caused by mismatches
in gain and phase between the in-phase and quadrature signal paths of the IQ
(de)modulator, also known as quadrature (de)modulator. These imbalances can sig-
nificantly degrade the performance of wireless communication systems, affecting both
transmission and reception [62]-[69]. Figure shows the block diagram of an 1Q
modulator at the transmitter, and Figure [2.6D] shows detailed components of the 1Q
modulator. Gain mismatches typically arise from differences in the DACs or LPFs
within the in-phase and quadrature branches, while phase mismatches result from
imperfections in the LO during up- and down-conversion processes [67]. Different
from the PA that introduces nonlinear distortion, IQ imbalance is primarily modeled
as linear distortion. It is generally frequency-dependent, impacting the signal across
different frequencies [69).

Figure shows a detailed process of the IQ modulator. Although IQ imbalance
arises from continuous-time operations on analog signals, it is common and simpler to
use a discrete-time model as long as the sampling frequency meets the Nquirist rate.
Also, modeling in discrete-time allows for easy mitigation of IQ imbalance in the
digital domain. Therefore, discrete-time signals are considered here. For example,
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Figure 2.7: 16-QAM symbols with and without frequency-selective IQ imbalance in a
single-carrier system. Gain mismatch g§ / g(? = 1 dB, phase mismatch ¢1q =
87, and SNR = 20 dB. The function of I and Q branches, fi and fq, are real-
ized by two FIR filters from [69].

Tp = 2(NTsamp) and zRF = 2B (nTy,,,) are the n-th sample of baseband signal z(t)
and RF signal 2®¥(¢) at sample n, respectively. The discrete-time baseband signal
T, is up-converted by the IQ modulator to passband, where its real and imaginal
parts, z}, = Rz, and 2@ = Jz,, are sent to the I and Q branches of the modulator,
respectively. The combination effect of imperfect DAC and LPF is represented by
the nonlinear function f; : RM'*+! — R and fq : RM®+1 4 R for the I and Q
branches, respectively, where M! and M® represent the memory lengths of any
memory effects in LPFs and DACs. In practice, f; and fq are commonly modeled by
two finite impulse response (FIR) filters, which model the linear frequency-selective
1Q imbalance. The input-output relations of the DAC-LPF in the I and Q branches
can be expressed in discrete-time as [69]

MI
T = fi@) = 3 Innms (2.16)
m=0
MK
= fo@d) =Y e (2.17)
m=0
where @, £ [zL,--- 2! ]T and 2@ £ [2Q,- - ,xS_MQ}T are the input signal

at time sample n with memory, Z., and ZQ are the corresponding output at time
sample n of the DAC-LPF for the I and Q branches, respectively. g% and g% are the
coefficients of the in-phase and quadrature FIR filters, respectively, M and MQ are
the number of filter taps.

The DAC-LPF outputs, #}, and Z1,, are up-converted by two separate mixers using
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the carrier signals from the LO. Ideally, the carrier signals from LO should be exactly
90 degrees out of phase, however, imperfections in the LO, mixer, and other analog
components can cause a phase imbalance ¢1q. The IQ modulator output at time

RF 'is given by

sample n, z,

aRE = gRED 4, REQ (2.18)

n n

RF,I

)
n

I
n

where = 7L —sin(¢1q)EQ and & = cos(¢1q)EL. (2.18) can be rewritten as
@, = &, —sin(910);; + 1j cos(¢1q)Z;}

= 71 + ljeti 7zl
M! Me

= Z ghal 4 1jeli%a Z g%x%_m. (2.19)
m=0 m=0

([2:19) can be rewritten in a compact form using the nonlinear function fiq : CM RN
C with memory length M'® £ max (MM Q) to represent the IQ modulator system,

o8 = fig (Tps s @y ppia) = f1Q (T aria) - (2.20)

i = T 7xn7MIQ]T. In the case of a perfect IQ modulator, ¢iq = 0,
MI:MQ:O,g(I):g(?:L

Figure [2.7] presents an example of a constellation diagram of 16-QAM with and
without linear, frequency-dependent IQ imbalance. The imbalance includes a gain
mismatch of gé/géQ = 1 dB, a phase mismatch of ¢;q = 8°, and an SNR of 20 dB. The
results demonstrate how IQ imbalance distorts the ideal grid structure of the 16-QAM
constellation, affecting both the phase and amplitude of the symbols. IQ imbalance
also degrades channel estimation accuracy, impairing beamforming, reducing beam
directivity, increasing, for instance, OOB distortion [63], [67], |70]-[72].

where x

nycee

2.2.3 Phase Noise

Maintaining phase coherence between the transmitter and receiver is crucial for com-
munication blocks such as demodulation and beamforming. For example, in massive
MIMO systems, phase coherence is necessary for accurate beamforming to enable sig-
nals from multiple antennas to combine constructively, achieving array gain and en-
suring high spectral efficiency. However, imperfections in LOs introduce PN at both
the transmitter and receiver in the process of up-conversion and down-conversion,
which disrupts this phase coherence and degrades system performance. For instance,
in OFDM systems, PN causes inter-carrier interference (ICI), leading to signal overlap
between neighboring subcarriers and reducing spectral efficiency |73], [74]. Similarly,
in multi-user (MU) massive MIMO, PN results in inter-user interference (ICI), mak-

19



Chapter 2 Hardware Impairments and Mitigation in Communication Systems

ing it harder to separate users and ultimately reducing data rates [74], |[75]. The
effects of PN become more severe at higher frequencies, such as mmWave bands, due
to the manufacturing properties of LOs. Further research has explored the impact
of PN in both cellular and cell-free massive MIMO systems [76]—[82], as well as in
OFDM 73], |83]-[86] and single-carrier systems [87], [88]. Advanced compensation
techniques are necessary to mitigate PN and maintain system performance.

Depending on the specific implementation of the LO, different PN models may be
applied. Typically, two practical LO configurations are used: a free-running oscillator
or a PLL synthesizer. The PN from a free-running oscillator at a UE can be described
by a discrete-time Wiener process asﬂ

¢t = P11+ 0y, (2.21)

where the incremental PN d4, at time sample ¢ follows a Gaussian distribution
N(0,03%). When the UE up-converts the baseband signal z(t) to RF following 25),
due to the PN, the corresponding discrete-time RF signal with PN at time sample ¢
is given by

P = R{x, e 72 et Toamp giPe ) (2.22)

Similarly, the PN from a base-station (BS) or access point (AP) at time sample ¢ can
be modeled as,

Ot = Pt—1+ 0p, s (2.23)

where the incremental PN §,, also follows a Gaussian distribution N (0, oi). When
the BS down-converts the received RF signal y(t) to baseband following , due
to the PN, the corresponding discrete-time baseband signal with PN at time sample
t is given by

&y = fupr (y,e > T el 0) (2.24)

The PN-impaired signal from the UE is received at the BS, where the PN at time
sample ¢ from the UE and BS are combined as [

0y = ¢ + 4, (2.25)

where 6, is the received PN at the BS.
The variance of the PN increments is related to the quality of the LO, carrier

n this subsection, a different notation is used to simplify the model of PN in OFDM systems:
t represents the time sample index in the time-domain (TD), while n is used to denote the
subcarrier index in the frequency-domain (FD).

2 Assume perfect time synchronization, frequency synchronization, and ideal hardware components,
with only PN from LOs.
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0.5 o

Quadrature
Quadrature

—0.5 4

-1 —0.5 0 0.5 1 -1 —0.5 0 0.5 1
In-phase In-phase
(a) Without PN. (b) With PN.

Figure 2.8: 16-QAM symbols with and without PN in a single-carrier system. PN variance
0% =1, SNR = 20 dB.

frequency, and sampling time, which can be modeled as
of =4’ 2Ty, fori € {¢, ¢}, (2.26)

where 4 and v, are constants related to the LO quality of the UE and BS. An
example value is 10717 . It is important to note that in cellular massive MIMO
networks, multiple antennas might share a common LO, while in distributed antenna
deployments, such as in cell-free massive MIMO networks, each antenna may use
an individual LO. Consequently, the PN associated with different antennas may be
the same or independent. Figure shows the constellation diagrams of received
16-QAM symbols with and without PN, i.e., demodulated from and .
PN variance 02 = 1, and SNR = 20 dB. The constellation affected by PN exhibits a
noticeable rotation of the symbols. In the case of severe PN, the symbol points may
also spread out more, complicating detection and leading to a rise in symbol error
rate (SER).

Considering an OFDM system with N subcarriers, the PN realizations for an
arbitrary OFDM symbol forms a PN vector, 8 = [0y, -+ ,0;,--- ,0n_1]". The corre-
sponding PN vector that affects the carrier signal is

IO L [l .. eION-a]T (2.27)
and its corresponding FD phase-drift vector is expressed as J € CV. Its i-th entry
Ji, fori=—-N/2,--- | N/2 — 1, is given by Eq. (6)]

;N ‘
J, > edfeem I i/N, (2.28)

1:N
t=0
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Chapter 2 Hardware Impairments and Mitigation in Communication Systems

where the first phase-drift element, Jy, is also known as the common phase error
(CPE).

Consider an MU case with U user equipments (UEs). In the absence of PN, the
received uplink symbols from UE u to BS over subcarrier n, y,,, is given by

K
Yn = > hunSy s (2.29)
u=1

where h,, ., is the channel between UE u and the BS, and s is the transmitted

u,n

symbol from UE u at subcarrier n. In the presence of PN, (2.29) can be written as

U
Yn = Z (J"’Oh“’nsu,n + Cu,n) ) (230)
u=1

where J,, o denotes the CPE of UE u, and the ICI component over subcarrier n, y n,
is given by

N—-1
Cu,n = Z Ju,n—n’h%"’Su,n" (231)

n'/=0,n'#n

Comparing with , one notes that the presence of PN introduces the chan-
nel aging effect, meaning the effective channel begins to deviate from the true channel
h, with this deviation increasing over time. PN disrupts the OFDM orthogonality
and the pilot orthogonality between UEs, leading to ICI, which negatively impacts
channel estimation as well as the corresponding uplink combining and downlink pre-
coding.

2.2.4 Antenna Crosstalk

In MIMO systems, antenna crosstalk, also referred to as mutual coupling, occurs
due to the interaction between closely spaced antennas and signal paths within an
array [89], [90]. This crosstalk can cause both nonlinear and linear distortions. An-
tenna crosstalk presents a time-varying load-impedance to each PA through mutual
coupling, which in terms creates nonlinear distortion. This particular source of distor-
tion is not covered in most conventional PA modeling, and requires specific attention,
both in terms of modeling and compensation [91]. Linear crosstalk, on the other hand,
typically arises after the PA [89]. Antenna crosstalk can negatively impact system
capacity [92], carrier frequency offset estimation [93], channel estimation [94], beam-
forming accuracy [95], [96], and PA linearization [91]. Specifically, within the scope
of this thesis, antenna crosstalk affects beamforming by causing beams to become
less focused or misaligned, and nonlinear crosstalk worsens the PA’s nonlinear char-
acteristics. This results in spectral regrowth, increased in-band errors, and unwanted
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PA Crosstalk
Crosstalk xy o (1) »{ z, " (t) (Mutual coupling)
PA

Figure 2.9: Antenna crosstalk between RF chains happens before and after the PAs. Lin-
ear discrete-time antenna crosstalk models (2.32)) and (2.35) are used.

emissions in the OOB.

The effects of antenna crosstalk are challenging to model accurately because it
originates from multiple sources and interacts with other hardware impairments such
as nonlinear PAs [90], [91]. Nonlinear crosstalk arises from nonlinear elements in the
RF chain, such as the PA, which produce harmonics and intermodulation products
that couple into nearby antenna elements. Figure [2.9]illustrates antenna crosstalk
between RF chains before and after the PAs. Although antenna crosstalk affects
analog signals in continuous-time, it is common to model this effect in discrete-time
for further mitigation in the digital domain. In an array with B RF chains and
antennas, the impact of crosstalk on the PA input signal x?ﬁ at time sample n and
RF chain b can be described by a discrete-time nonlinear function fbcmss'In :CB = C,

i,[l){)g _ beross—In(wRF) (2.32)

n

where xBF = [:1751;;, e ,z%lfn]T € CP, and :EZI}’S is the input RF signal of PA b at time

sample n with crosstalk, which introduces nonlinear crosstalk when the output i&g
is passing through a nonlinear PA such as . '

The antenna crosstalk between PA output signals, i.e., mutual coupling, can be
modeled by a discrete-time nonlinear function fross-Out . CB — C,

R (239
where 7% = [274,-- ,2}}]T € CP, and ibpﬁ is the output signal of PA b at time

sample n with crosstalk.

In practice, crosstalk between RF chains is commonly modeled as linear relations.
A simplified yet accurate and very common linear crosstalk model is adopted [89).
In this model, only linear crosstalk between RF chains is modeled, which reduces
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Figure 2.10: Radiation patterns from a uniform linear array consisting of 32 antennas
with zero-forcing precoding in a LOS channel, comparing scenarios with and
without linear antenna crosstalk.

fErossIn to a linear function, and (2.32) can be rewritten as [89)

l’b t = :ZZb t + Z Cb b’xb/ . (234)
b #b

Here c}fb, € C is the crosstalk parameter between the inputs of PA b and o’. In prac-
tice, this crosstalk parameter’s amplitude represents the crosstalk strength, which
is proportional to the square of the physical distance between two RF chains. The
phase of the crosstalk parameter depends on the effective physical distance relative
to the wavelength [89]. A linear crosstalk between antennas model reduces fross-Out
to a linear function, and can be rewritten as [89]

A=A 4 Z ot (2.35)
b 7&1;

where cb ;)l,t € C is the crosstalk parameter between the outputs of PA b and b'. Fig-
ure [2.10| shows the radiation beampatterns from a uniform linear array consisting of

= 32 antennas with zero-forcing precoding in an LOS channel, comparing the case
with and without antenna crosstalk. Only linear antenna crosstalk is considered with
ideal PAs. It shows that the antenna crosstalk distorts the beamforming accuracy,
especially for the sidelobes and the case of 2 UEs.

2.2.5 Other Hardware Impairments

Other hardware impairments, such as those from ADCs and DACs, are commonly
modeled as AWGN. This modeling approach is especially prevalent in OFDM sys-

24



2.8 Classical Mitigation Techniques

tems, even for some deterministic hardware impairments. The reasoning behind this
approximation is that although hardware impairments originate in the TD, they
spread across the FD when transformed into the FD. This spread causes the im-
pairments at any single subcarrier or frequency to reflect contributions from various
time-domain effects. As a result, using the central limit theorem, these impairments
can be reasonably modeled as Gaussian distributed noise in the FD, aligning with the
assumption of AWGN. This approach is widely employed in the literature [64], [79],
[97]-[101] thanks to its simplicity and reasonable accuracy. It has proven effective
in assessing the impact of such impairments on massive MIMO systems compared
to more deterministic hardware impairment models [102]. Although this model is
effective for evaluating the impact of hardware impairments, it is less practical for
designing mitigation strategies.

2.3 Classical Mitigation Techniques

In this section, classical model-based mitigation techniques to mitigate the PA non-
linearity, IQ imbalance, PN, and antenna crosstalk are discussed.

Digital Predistorion

To address the nonlinear behavior of PAs, DPD is widely used. It works by intro-
ducing pre-distortion in the digital domain to counteract the distortion caused by
PA nonlinearity, thereby linearizing the overall system response. Implementing DPD
reduces spectral regrowth, improves in-band signal quality, and minimizes adjacent
channel interference. These improvements are critical for maintaining low error rates,
high data rates, and efficient spectrum use [11], [103]. Figure shows the block
diagram of the cascaded DPD and PA system, assuming ideal hardware between the
DPD and the PA. Additionally, Figure [2.11] provides a simplified illustration of the
inverse behavior of the DPD and the PA without considering memory effects.

The DPD behavior in continuous-time can be represented by the nonlinear function
fDPD

2PPP (1) = fDPD({x(T) : 7€ [t—TPPP 4] }), (2.36)

where the baseband input signal of DPD is with a memory length in time 7PFP,

DPD (1) DPD (1) is sent to the

and z
PA. There are various DPD models to represent the DPD function fppp, including
the lookup table (LuT)[104], Volterra series-based model [105], MP model [55], [106],
GMP [57], [107], Wiener model [108], and Hammerstein model [109]. Among these,

the GMP model [57] is recognized for offering the best tradeoff between complexity

is the DPD output signal at time t. The output =

and performance, making it widely adopted. In practice, these DPD models usu-
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x(t) zPPP (1) Aoy FA (L)
— | DPD PP ——>|

Figure 2.11: Block diagram of the DPD-PA system. Note that DPD is in the digital
domain, and PA is in the analog domain. Components between DPD and
PA such as DAC and mixers are omitted here.

ally represent the continuous-time DPD function fPFP in discrete-time to simplify
analysis and implementation.

Specifically, for an arbitrary PA, the input-output relation of the DPD using the
GMP model in discrete-time at time sample n can be expressed as

KDPD 1 MDPD

DPD Z Z dqun m|xn m’q

KDPD -1 ]\[DPD GDPD

q
+ ( q7m,gxn m|xn m— g| +dq, 7gxn m’xn m+g| )
q=1 m=0 g=1

(2.37)

are the discrete-time DPD input and output signal at time
AJDPD GDPD

where z,, and xDPD

K pPD’ is memory length,

sample n. is the nonlinear order parameter,
is the cross-term length, dg m,, dqm g» and dg ., are complex-valued coefficients.
Figure [2.12] gives an example of using a GMP-based DPD to linearize a GMP-based
PA used in Figure Specifically, the AM/AM results in Figure illustrate
that DPD tends to increase the output amplitude to compensate for the reduction
in the nonlinear PA, and the PSD results in Figure show that DPD effectively
reduces both the in-band and OOB distortion.

The implementation of DPD brings significant computational challenges, which
grow with the number of PAs and the signal bandwidth. This issue is especially
noticeable in large antenna arrays, where up to hundreds of PAs need to be linearized.
While each PA in such arrays typically uses less power compared to traditional SISO
systems, the processing demands for DPD remain the same, creating an imbalance
where DPD consumes a disproportionate amount of power [11]. Using separate DPD
units for each PA increases the overall computational load. To reduce this complexity,
shared DPD methods, where one DPD is used across multiple PAs in a subarray,
have been explored, but this often requires hybrid or analog beamforming, which can
reduce performance compared to digital precoding. Additionally, DPD often requires
oversampling at rates up to five times the signal bandwidth to control nonlinear PA
effects such as spectral regrowth, which further drives up the power consumption.
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Figure 2.12: AM/AM and PSD results with and without DPD. Both PA and DPD are
GMP models. Signal bandwidth 50 MHz.

These factors highlight the growing need for simplified DPD solutions that maintain
performance while reducing complexity.

IQ Imbalance Compensation

1Q imbalance can severely degrade the performance of communication systems. Com-
pensation for IQ imbalance can be implemented either at the receiver [110], or
at the transmitter before transmission , . An example of IQ) imbalance com-
pensation at the transmitter is adopted using the approach from , which is shown
in Figure IQ pre-compensator compensates the IQ imbalance in the digital
domain using models such as FIR filters or Volterra series. Before it is applied, its
parameters are estimated by minimizing the mean square error (MSE) between the
baseband signal z(t) and the IQ) imbalance impaired baseband signal y(t) collected
via a feedback path

&9 = argmin B, {|x(t) - y(t)\2} , (2.38)

where a'® denotes the parameters of any IQ pre-compensator. The estimation can be
performed using algorithms such as least squares to derive an inverse model of the IQ
imbalance, fiq. A straightforward method to estimate this inverse model is to input
the received signal y(t) into the IQ pre-compensator and use the original baseband
signal z(t) as the reference output during the estimation process . Figure m
shows the constellation diagram of transmitted 16 QAM symbols with and without
an 1Q pre-compensator. A frequency-selective 1Q imbalance is used, with a gain mis-
match gé/gég = 1 dB, phase mismatch ¢1q = 8°, and SNR = 20 dB. The function of I
and Q branches, f1 and fq, are realized by two FIR filters from . A frequency-flat
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Figure 2.13: 1Q imbalance pre-compensator at the transmitter. The pre-compensator is in
the digital domain, whose parameters are estimated by minimizing the MSE
between the baseband signal z(¢) and the IQ imbalance impaired baseband
signal y(t) collected via a feedback path.

linear IQ pre-compensator model is estimated using the least squares algorithm. It
shows that residual IQQ imbalance remains after the IQ pre-compensator, mainly due
to the fact that the IQ imbalance is frequency-dependent while the pre-compensator
is frequency-flat.

Phase Noise Mitigation

Mitigating PN is crucial, especially in high-frequency systems such as mmWave bands
since the variance of the PN grows with the square of the carrier frequency. PN mit-
igation is generally carried out at the receiver using techniques such as pilot-based
estimation, which relies on pilots to estimate PN. As discussed in Chapter 2:2.3] PN
leads to both CPE and ICI in OFDM systems. The PN mitigation can be done
by only mitigating the CPE [112], [113] or more advanced mitigation including ICI
mitigation 73], [86]. A more complex iterative approach uses decision-directed meth-
ods |73], [114], [115], which not only uses pilots but also refines PN estimates by itera-
tively incorporating decisions on the transmitted data symbols to enhance estimation
accuracy. The choice of PN mitigation techniques depends on system requirements
and cost considerations. For example, in the 3GPP standardization [116], pilot-
based estimation is employed, where the phase tracking reference signals (PTRS)
are strategically placed with specified spacing in both time (between every 2 or 4
resource blocks) and frequency (between 1, 2, or 4 OFDM symbol times). These
configurations can be selected based on factors such as channel conditions, including
mobility, and hardware impairments such as LO quality.

The problem of estimating the phase shifts J; up to a certain order can be for-
mulated as a linear estimation problem. For a [-th order estimation, the goal is to
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Figure 2.14: Constellation diagram of transmitted 16-QAM symbols with frequency-
selective IQ imbalance, under the case with and without frequency-flat 1Q
imbalance compensator. Gain mismatch gf/ gg2 = 1 dB, phase mismatch
¢1q = 8%, SNR = 20 dB. Residual IQ imbalance remains due to residual
frequency-selective 1QQ imbalance.

estimate the vector J; = [Jo, J1,J_1,- -+ ,J;,J_;]T, which contains (2] + 1) elements
of the phase shift vector J. For example, the 0-th order phase shift represents the
CPE. This estimation can be solved using the least squares algorithm as detailed
in [73], and Figure demonstrates the reconstructed PN using different orders
of estimated phase shifts J;. The figure illustrates that even using the second-order
phase drift coefficients yields a close approximation of the true PN realization. This
is due to the lowpass nature of PN, where only a few frequency components are
necessary to accurately capture its frequency response.

Antenna Crosstalk Mitigation

Increasing the physical distance between antennas is an effective way to reduce
crosstalk, making careful antenna placement crucial based on the operating frequency
and environmental factors. However, at high frequencies such as mmWave, the small
spacing between antennas can lead to significant coupling effects [90], [117]. An-
other approach involves using decoupling networks, which employ components such
as inductors, capacitors, and resistors to mitigate coupling and improve antenna iso-
lation [118]. These networks use techniques such as phase shifts, impedance adjust-
ments, and electrical isolation to separate antennas and reduce crosstalk. However,
incorporating these components can increase design costs, which is a challenge for
large-scale systems such as massive MIMO that prioritize integrated designs and
aim to avoid expensive and bulky components, such as isolators between PAs and
antennas, to keep system complexity and cost low |119)].
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Figure 2.15: Example of reconstructed PN in the TD using different orders of estimated
phase shifts {J;} in the FD. The phase shifts are estimated in the FD, which
is then used to reconstruct the PN in the TD. OFDM with 100 subcarriers.

Except for these decoupling techniques in the analog domain, similar to IQ pre-
compensator and DPD, antenna crosstalk can also be mitigated in the digital do-
main [89], [91], [120]. The mutual coupling between antennas creates a non-constant
load impedance for the PAs, which in turn alters their non-linear behavior. For
instance, linear antenna crosstalk between RF chains before the PA leads to non-
linear distortion because of passing through the nonlinear PA. Therefore one can
jointly mitigate the antenna crosstalk and the PA nonlinearity using DPD , 7
which can effectively mitigate both linear and nonlinear crosstalk. Here, the antenna
crosstalk parameters can be represented in a matrix form

C= [017 e ch] € (CBXBv (239)

where the crosstalk parameters of the other B — 1 antenna to the b-th antenna is

ey =[Pyt ept L ety T e €L (2.40)
The crosstalk parameter between the PA output b and ¥’, cl?’};f“, is defined in .
This antenna crosstalk matrix can be estimated using measurements at the array
side in an anechoic chamber or at the receiver side , . The former is more
accurate and more robust to noise but is time-consuming and costly. The latter is
less costly and more adaptive to different antenna configurations and channels. With
an estimated mutual coupling matrix, C, one can mitigate the antenna crosstalk. In
practice, other hardware impairments such as nonlinear PAs affect the estimation,
providing potential for nonlinear estimation using deep learning method .
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2.4 Performance and Complexity Metrics

2.4.1 Performance Metrics

The performance of a hardware impairment mitigation method can be measured
by normalized mean squared error (NMSE), error vector magnitude (EVM), and
adjacent channel power ratio (ACPR). The NMSE is defined as [124]

Ey {|yn - gn|2}
Ey {lyn?}

where y, and ¢, are the original and measured signal at time sample n, respec-
tively. E, denotes the expectation over all a set of samples {y,}. NMSE is usually
used to measure the distortion level arising from hardware impairments such as PA
nonlinearity, and IQ imbalance. The EVM is defined as [125, Eq. (2.4)]

_ 35 |2
pvM — | Budlsn = 5. in‘ b (2.42)
By {|sn|?}

where s, and §,, are the n-th ideal and measured symbols. EVM results are commonly
expressed as a percentage. EVM is commonly used to measure the distortion between
the transmitted and received symbols due to many hardware impairments such as
the PN, IQ imbalance, PA nonlinearity, and antenna crosstalk. Table shows the
transmitter EVM requirements for different QAM in 5G new radio (NR) from 3GPP
standardization [126]. The ACPR is defined as [124]

fadjacent |Y(f)|2df
fmain. |Y(f)|2df ’

where Y'(f) denotes the Fourier transform of the signal y(¢). ACPR measures the
ratio of power in the adjacent band to the power in the main band. It is therefore
used to measure the OOB emission levels due to nonlinear hardware impairments,
such as PA nonlinearity, nonlinear IQ imbalance, and nonlinear antenna crosstalk.
In , the integration in the numerator is performed over the adjacent channel
(the one with the larger power between the lower and upper adjacent channels),
while the denominator integrates over the main channel. Table [2.2] outlines the
ACPR requirements for different frequency bands in 5G NR, as specified by 3GPP
standardization [126].

Besides these metrics, other commonly used metrics include SER, which measures

NMSE = 101log,, (2.41)

ACPR = 10log;, (2.43)

the fraction of symbols that are received incorrectly. SNR, quantifies how much
stronger the signal is compared to the noise, and signal-to-interference-and-noise ratio
(SINR) extends this by also considering interference from sources such as interference
between UEs and hardware impairments. Both SNR and SINR can be used to
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Table 2.1: Transmitted EVM requirements for different QAM in 5G NR from 3GPP stan-
dardization [127].
QPSK 16-QAM 64-QAM 256 QAM
EVM (%) 17.5 12.5 8 3.5

Table 2.2: ACPR requirements for different frequency bands in 5G NR from 3GPP stan-
dardization [127].

sub-6GHz 28GHz 39GHz
ACPR (dBc) -45 -28 -26

determine the channel capacity, where SINR is more commonly used in scenarios
with interference, such as MU MIMO systems.

2.4.2 Complexity Metrics

When comparing algorithm complexity, common methods include big-O notation,
parameter count, and floating point operationss (FLOPs). Each offers insights from
different perspectives, with varying suitability depending on the algorithm and ap-
plication.

Measure by Bachmann-Landau measure

Bachmann-Landau measure, commonly known as big-O notation, O(+), is often used
to describe the asymptotic upper bound of an algorithm’s growth with respect to its
input size [128]. It is commonly used to measure algorithm complexity in communi-
cation systems [129]—[131]. While it provides valuable insight into how an algorithm
scales in terms of runtime or space requirements, it focuses mainly on theoretical
growth. It does not offer precise information about the actual runtime or compu-
tational cost in practical applications. Moreover, big-O notation does not consider
important factors such as memory usage or specific hardware architectures, mak-
ing it less suitable for evaluating power consumption or performance in real-world
scenarios, such as hardware mitigation algorithms in communication systems.

Measure by Number of Parameters

Another common method for assessing algorithm complexity is by analyzing the
number of parameters, which is widely used in both NN-based and conventional
model-based algorithms, including hardware impairment mitigation studies [132]—
[135]. This measure is particularly relevant when implementing algorithms on field-
programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs),
or Graphics processing units (GPUs), as it impacts memory usage and indirectly
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relates to computational complexity and power consumption. A higher number of
parameters requires more memory and logic resources, which can affect performance
and power efficiency. When deploying such as FPGAs and GPUs, limited on-chip
memory and logic resources may be strained by large parameter sets, while on ASICs,
this could result in increased circuit area and higher power consumptions.

While the number of parameters can be useful for comparing algorithms imple-
mented on the same platform, it is still an approximation of computational com-
plexity. It does not fully account for the exact number or types of operations in-
volved, such as additions or multiplications, which influence the true computational
load. Additionally, a model with many parameters could still be efficient if opera-
tions are highly parallelized or the parameters are sparsely utilized. Conversely, a
model with fewer parameters might be computationally intensive due to complex,
non-linear operations. Therefore, the number of parameters is more suitable for es-
timating memory requirements than for comparing the computational complexity or
power consumption of different algorithms, particularly in tasks involving complex
operations, such as hardware impairment mitigation techniques.

Measure by Number of FLOPs

The number of FLOPs is a more precise metric for evaluating computational com-
plexity compared to methods such as big-O notation or counting the number of
parameters. Unlike these measures, which either provide a theoretical upper bound
or focus on memory usage, FLOPs directly count fundamental operations such as
addition, subtraction, and multiplication, offering a more detailed view of actual
computational demands. Different variants of this metric are widely applied to mea-
sure algorithm complexity in communication systems such as uplink precoding |136],
channel estimation [100], [137], downlink combining [138], and PA behavior model-
ing, such as Volterra series-based models [135], [139], [140], and deep learning-based
methods [141]-|148]. Tt can also capture the operations needed during both training
and inference for deep learning-based methods [141]. Aside from training complexity,
where deep learning-based methods are resource-intensive due to large datasets and
iterative updates, FLOPs serve as a useful metric for comparing inference complex-
ity with conventional methods. This is particularly relevant for applications such as
DPD, where real-time processing contributes significantly to total power consump-
tion [135]. The strength of the FLOPs metric also lies in its hardware relevance such
as GPUs and FPGAs. It is highly related to processing time and power consumption
on different hardware platforms. However, the metric is less useful for algorithms
involving significant non-arithmetic operations, such as memory access or control
logic, which are not accounted for in FLOPs. Despite these limitations, FLOPs re-
main a widely accepted metric for assessing the computational complexity of signal
processing algorithms and deep learning models.
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CHAPTER 3

Deep Learning for Communication Systems

This chapter starts by introducing the fundamentals of deep learning, covering three
types of deep learning techniques. It then explains different NN architectures and
provides details on how to effectively train them. Finally, the chapter explores the
application of deep learning in the physical layer of communication systems, sum-
marizing and discussing three key motivations for using deep learning in this field,
along with the corresponding studies driven by these motivations.

3.1 Deep Learning Introduction

Deep learning is a subset of machine learning focused on multi-layered NNs. The
term “deep” refers to the numerous hidden layers (depth of an NN), which enable the
network to learn complex patterns and intricate relationships within the data [149).
Although the history of deep learning is extensive, its impact has significantly in-
creased in recent years due to the vast amounts of data generated by Internet-scale
applications and advances in computing infrastructure, particularly through GPUs.
These improvements have allowed deep learning models to grow in size and com-
plexity, enabling them to tackle increasingly challenging applications with greater
accuracy over time [149], [150]. Deep learning has become highly effective in solving
various applications, including natural language processing |18], object detection [19],
autonomous driving [20], and image semantic segmentation [151]. In the following
sections, the basics of deep learning is introduced, covering learning methods, NN
architectures, implementation, and training.
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3.1.1 Types of Deep Learning Techniques

Training of deep learning models can be broadly categorized as supervised, unsuper-
vised, and reinforcement learning algorithms |149].

Supervised Learning

Supervised learning involves training a model on a dataset that contains pairs of
inputs and their corresponding correct outputs, or labels. The term “supervised” re-
flects the fact that the designer, as the “supervisor”, provide the labeled data during
the training phase |[150]. During training, the model learns the mapping between
inputs and outputs by adjusting its internal parameters based on the error between
its predictions and the true labels, typically using an optimization algorithm such as
gradient descent. The goal is for the model to generalize this learned mapping to
make accurate predictions on new, unseen inputs. Figure illustrates this process.
Supervised learning is widely applied to both classification (e.g., identifying hand-
written digits) and regression tasks (e.g., predicting housing prices based on features
such as size and location). In classification, the model assigns inputs to one of several
predefined categories. Regression, on the other hand, predicts a continuous value.

Specifically, consider a supervised learning regression task with input x, labeled
output y, and model f, with parameters ««. The prediction step in supervised
learning is,

ﬁ:fa(w)v (31)

and the training step involves minimizing the error between the model output ¥y
and labeled output y. Supervised learning comes with both benefits and drawbacks.
On the positive side, when there is a sufficient amount of labeled data, it achieves
high accuracy and can be applied to a wide range of tasks, from classification to
regression. This versatility has made supervised learning the dominant approach in
deep learning, particularly in areas with abundant labeled data. It is also effective

Training inputs Training labels
———  »| Supervised Learning ¢——
4
Input Output
Model

Figure 3.1: Supervised learning diagram. Training inputs and corresponding training la-
bels are used to update a model’s parameters, enabling it to learn the rela-
tionship between inputs and outputs. Once trained, the model can predict
outputs for new, unseen data.
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for fine-tuning advanced models for specific tasks, such as adapting a pre-trained
Chatgenerative transformer (GPT) model for particular applications such as question
answering or text classification [152]. However, the need for a large volume of labeled
data can be a significant limitation, both in terms of cost and time. In summary,
supervised learning is highly effective for tasks with large datasets and well-defined
objectives, offering excellent accuracy when sufficient labeled data is available.

Unsupervised Learning

Unlike supervised learning, which relies on labeled input-output pairs provided by a
“supervisor” to learn a mapping from inputs to outputs, unsupervised learning trains
a model to uncover patterns or structures in data without labeled outputs. Common
applications of unsupervised learning include clustering and dimensionality reduc-
tion [153]-|155]. Traditional clustering tasks, such as image compression, customer
segmentation, and anomaly detection, are key examples of unsupervised learning ap-
plications and play a crucial role in preprocessing and understanding large datasets.
One classic example of unsupervised learning is K-means clustering, where a dataset
is divided into clusters such that data points within the same cluster are more similar
to each other than to those in different clusters [156]. Another advanced application
of unsupervised learning can be seen in the pre-training phase of large language mod-
els such as the ChatGPT [152], where the model processes vast amounts of unlabeled
text data (e.g., from the internet, books, and other sources) to learn to predict the
next word in a sequence, a task known as language modeling. This pre-training en-
ables the model to build a foundational understanding of language structure before
being fine-tuned with supervised learning. Overall, unsupervised learning is valuable
for exploring and interpreting large unlabeled datasets, though it typically yields less
precise predictions compared to supervised methods and its evaluation can be more
challenging [155].

Input ——— | Unsupervised Learning [——  » Output

(Training data)

Figure 3.2: Unsupervised learning discovers hidden patterns or structures in data without
relying on labeled outputs.

Reinforcement Learning

Reinforcement learning (RL) involves an autonomous agent learning to take actions
by interacting with an environment through trial-and-error and feedback mecha-
nisms [149], [157]. Unlike supervised learning, where models are trained on prede-
fined labeled datasets, RL is based on learning from experiences and adapting through
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Reward
\ 4
Action
Agent P»| Environment
A
State

Figure 3.3: Reinforcement learning diagram: The agent takes actions based on the cur-
rent state following a certain policy, interacts with the environment, receives
rewards, and observes new states. Over time, the agent adjusts its policy based
on the accumulated experiences to learn optimal behavior.

feedback in the form of rewards. At each step, the agent observes the current state
of the environment, selects an action and receives a reward and a new state from
the environment. The reward, which reflects how beneficial the chosen action was,
can either be naturally derived from the environment or be custom-designed by the
system’s developer to encourage specific behaviors. The ultimate goal of the agent is
to learn an optimal strategy, or policy, that maximizes the cumulative reward over
time by mapping states to actions effectively.

A key benefit of RL is its ability to enable an agent to autonomously make deci-
sions in complex and dynamic environments where it is impractical to define explicit
instructions for every scenario. By learning from experience, RL excels in tasks that
require a sequence of actions to achieve long-term objectives. Its versatility has led
to widespread applications across various fields [158]-[161]. For example, in game
playing, RL has achieved superhuman performance in games like Chess, Go, and
video games, as demonstrated by AlphaGo [158]. In robotic control, RL is used to
train robots for tasks such as manipulation, locomotion, and navigation, allowing
them to develop advanced motor skills [159]. Additionally, in autonomous vehicles,
RL plays a key role in learning driving policies through interaction with simulated
environments, advancing self-driving technology [160)].

A policy in RL is a strategy or rule that defines how an agent selects actions. It
effectively maps states, or observations of states, to actions, acting as the agent’s
“brain”. The policy can be either deterministic, where the agent always takes the
same action for a given state, or stochastic, where the agent selects actions according
to a probability distribution over possible actions for each state. Some examples of
RL policy techniques are Q-learning [162], which focuses on learning a value function
to implicitly derive a policy, policy gradient methods [163], which directly optimizes
the policy, and deep RL [164], which leverages deep NNs to handle complex envi-
ronments. In continuous action spaces, policies are often represented as Gaussian
distributions to model stochastic action selection. In this thesis, a Gaussian policy
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is introduced [165], [166], which can be applied in communication systems. In this
context, consider a memoryless RL problem, meaning there is no action-dependent
transition to the future states, which simplifies the model. In Gaussian policy, the
policy maps from state observations s € RY to mean actions

o =T7u(s), (3.2)

where 74,(8) denote the policy parameterized by parameters o, which could be real-
ized by a NN. Given the mean action g and a vector of perturbations from a Gaussian
distribution w ~ N(0Onx1,02Ix) with diagonal variance o2

=, action samples a can
be computed Wit}ﬂ

a=+/1-0c2p+w. (3.3)

The log-likelihood of an arbitrary action sample a,,, using policy mq(an|sn), is given
by

an — /1 — 02[7a(8)]n ’

2
Ox

log m(an|sn) x — (3.4)
This Gaussian policy introduces variations to the agent’s actions, enabling the agent
to explore the environment in a manner consistent with Gaussian statistics.

After taking an action a, the environment transitions to a new state. A reward
is then computed by a reward function R, which provides feedback on how good or
bad the action was. Often, R is simplified to depend only on the current state and
is usually custom-designed to encourage specific behaviors R(s). The rewards are
used to compute the return r, which is commonly the cumulative sum of rewards
over time r = ), R(s;), where s; represents the state at time ¢. The RL goal is to
maximize the expected return J(mq),

J(ma) =B, {r}. (3.5)
This RL optimization problem can be formulated as

e = argmax J(7g,). (3.6)
T
The optimization in can be achieved by calculating the gradients of the expected
return with respect to the parameters and updating the parameters using the gradient
descent method, as explained in Chapter [3.1.2
RL has several benefits compared to other learning techniques. It enables agents to
learn and adapt autonomously without needing explicit programming for every situ-

1A simplified non-correlated Gaussian policy is considered.
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Input Layer Hidden Layers Output Layer

Figure 3.4: An example of a fully-connected NN with 3 hidden layers.

ation, and it excels in optimizing long-term goals by focusing on cumulative rewards.
However, RL has its limitations. It typically requires a large number of interactions
with the environment, which can be computationally expensive and time-consuming.
Additionally, designing effective RL algorithms involves careful tuning of reward func-
tions, exploration strategies, and hyperparameters, which can be challenging and
complex [167].

3.1.2 Implementation of Deep Learning

In this section, the implementation of deep learning is presented, including NN ar-
chitectures, and key components such as loss functions, activation functions, residual
connections, and gradient updates.

Fully-connected Neural Networks

At the core of deep learning is the use of NNs with multiple layers to learn data rep-
resentations. One of the most fundamental types of neural networks is the multilayer
perceptron (MLP), a specific instance of a fully connected NN. Figure shows an
example structure of an MLP, where multiple layers of neurons are arranged in a
feedforward architecture including input and output layers, and three hidden layers.
These layers allow the network to capture intricate patterns in data by progressively
learning more abstract features. This process can be mathematically represented as,

81 = fo(Wisi—1 + ), (3.7)

where s;_1 and s; are the input and output of layer [. Here, W is the weight matrix
of layer I, and e; is the bias vector of layer [, and f,(-) is the activation function,
which is typically element-wise function on arbitrary input x.

Convolutional Neural Networks

Fully-connected layers are not efficient for processing input data with multiple di-
mensions, such as images, because fully connecting each input leads to an exponential
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increase in the number of parameters as the input size grows. This causes significant
memory and computational costs. Convolutional neural network (CNN), first pro-
posed by LeCun et al. in 1998, is designed to address this inefficiency by using local
receptive fields, shared weights, and pooling layers to process high-dimensional data
such as images more effectively |168]. CNNs have since been widely adopted for tasks
such as image classification, as demonstrated in AlexNet’s success in the ImageNet
competition in 2012, object detection, and segmentation tasks [151], [169]. These
applications leverage CNN’s ability to automatically capture spatial hierarchies of
features, significantly reducing computational complexity while maintaining perfor-
mance in high-dimensional tasks. Figure. [3.5 shows an example of the convolutional
operation in CNN. The convolutional process can be written as

C
St=> Wresi,, (3.8)

c=1

where S‘lk is the output at the k-th feature map in the I-th layer, and ® denotes the
cross-correlation operation |149, Eq. 9.6],

SPlig) =YY St ali+m, g+ n]Wfm,n], (3.9)

m n

After this, the output S’lk at the k-th feature map, and also the input to the next
layer, is obtained by applying bias EF and activation function as

Sf=fo (S/ +E). (3.10)

CNN-based models typically consist of both convolutional and fully-connected layers.
To connect these layers, a flattened layer is commonly used, which converts the multi-
dimensional output of the convolutional layers into a one-dimensional vector.

Activation Functions

Activation function f,(-) introduces non-linearity into NNs, and its widespread use
allows NNs to model complex data patterns [149]. Without activation functions, the
NN would behave like a linear regression model, regardless of the number of layers.
There are various types of activation functions used in deep learning. Three com-
mon activation functions are introduced. The rectified linear unit (ReLU) activation
function is given by

fRLU (1) = max (0, z). (3.11)

ReLU and its variants (like Leaky ReLU) are widely used for hidden layers due to
their simplicity and effectiveness in mitigating the vanishing gradient problem [170].
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Figure 3.5: An example of the convolutional operation in CNN. A convolutional filter W}*
cross-correlates the input S;_; at layer [ — 1 and channel ¢ to obtain one of
the output at layer [ and channel k.

Softmax activation is given by

Zi

€

Z;‘L:I evs’

which outputs a probability distribution over multiple classes. It is commonly used
in the output layer for multi-class classification problems such as in and constellation
de-mapper. Sigmoid activation is given by

Fetma () — (3.12)

1

Sigmoid _
fo5 ) = T

(3.13)
which outputs a value between —1 and 1, which is commonly used in the output layer
for binary classification problems.

Residual Connections

Residual connections, also known as skip connections, are a structural feature in NNs
designed to address vanishing and exploding gradient issues. By making it easier
for the network to learn identity mappings, these connections facilitate the training
of very deep networks and improve convergence speed by stabilizing gradient flow.
ResNet [171] played a key role in popularizing residual connections, which are now
widely used in many applications, including GPT [152]. These connections create
shortcuts by directly passing the input of one or more layers to their output, as
illustrated in Figure [3.6] A modified version of the residual connections, described
in |171] can be written as

Sipir = IR ({Sz/ it_l?) + Whrojsis (3.14)
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Figure 3.6: An example of a residual connection that bypasses several layers (I to I + Ir)
by a residual connection layer.

where [g denotes the number of bypassed layers, fr({sy éﬁ?) denotes a function

representing the layers from [ to | + Ir, and Wy,.; is the projection matrix. The
projection matrix can also address the dimensional mismatch between the input and
the output. For identity residual connections, Wp,.; simplifies to 1, resulting in the
input being directly added to the output.

Loss Functions

A loss function, also known as a cost function, measures how closely a machine learn-
ing model’s predictions align with the expected outcomes. It evaluates the model’s
performance by calculating the difference between the predicted values and the ac-
tual target values. During training, the model iteratively updates its parameters to
minimize this loss, thereby improving its accuracy. The loss functions used in this
thesis are introduced.

A general loss function quantifies the discrepancy between the prediction g and the
actual labels y as L(y,9). Common loss functions include MSE and cross-entropy,
with the MSE loss function defined as

N
. 1 N
LYy, 9) = 5 D llyn — Gal* (3.15)
n=1

The MSE loss function is commonly used in regression tasks [149]. Another widely
used loss function is the cross-entropy loss, given by

N
N 1 R
Ly, 9) =~ D ¥n108(dn), (3.16)
n=1

where {y,})_, and {§,}Y_, are the true and predicted probability distributions,
respectively. It is widely used in binary and multi-class classification tasks [172].
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Stochastic Gradient Descent

The parameters « in deep learning models, such as NNs, can be updated through
back-propagation via a stochastic gradient descent (SGD) algorithm as

o =o; —nVala,, (3.17)

where 7 > 0 denotes the learning rate and Vaﬁaj is the derivatives of the loss
function Lo with respect to a; at step j [173]. '

3.2 Deep Learning for the Physical Layer in
Communication Systems

Deep learning has demonstrated promising potential in communication systems, par-
ticularly in the physical layer, with various studies exploring its applications across
different scenarios. These works are primarily motivated by three key factors: en-
abling joint optimization of multiple communication blocks, balancing complexity
with performance, and addressing model mismatches. Each of these motivations is
discussed in the following sections.

Optimizing Multiple Blocks Jointly with Deep Learning

One motivation is that deep learning models can be designed to optimize multiple
conventional methods in the physical layer simultaneously using one model. Conven-
tional systems are designed using cascaded blocks—each responsible for tasks such
as modulation, channel estimation, and hardware impairment compensation. These
blocks are optimized separately, which can result in suboptimal system-wide perfor-
mance. Deep learning methods can use one single model, e.g., an NN, to optimize
multiple blocks rather than optimizing individual blocks such as modulation, coding,
or channel estimation. Such examples are joint MIMO detection and channel decod-
ing [174], joint beamforming and channel prediction [175], joint receiver design [176],
[177], joint pilot design and channel estimation [178], [179], joint channel estimation
and feedback [180], [181], joint scheduling and beamforming |182], joint power control
and pilot assignment [183], power control and channel allocation [26], joint channel
estimation and symbol detection [184], joint channel state information (CSI) feedback
and precoding [185], end-to-end communication antoencoder [27], [186]-[190], joint
channel feedback and estimation [191], joint constellation and pulse shaping [192],
[193], and joint hardware impairments mitigation, including IQ imbalance, PA non-
linearities, and PN [15], |17], [31], [194]. These studies demonstrate the potential
of deep learning to simultaneously optimize multiple conventional methods in the
physical layer using a single model, rather than the traditional approach of optimiz-
ing individual blocks separately, leading to more efficient and cohesive system-wide
performance.
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Balancing Performance and Complexity with Deep Learning

Another motivation for using deep learning in communication systems is the need to
balance performance and computational complexity. Unlike deep learning tasks that
use large, deep NNs, physical layer applications typically require less layers. This
is because communication systems, especially in massive MIMO setups, are real-
time and resource-constrained. In these systems, the power consumed by the RF
chain is high, leaving less power for the digital processing of high-bandwidth signals,
making computational efficiency critical. As a result, low-complexity considerations
are essential when designing deep learning models for the physical layer. The com-
plexity aspect of using deep learning has been explored in various areas, including
MIMO detection [21], [174], [195]-[198], channel estimation [22], [178], [199], [200],
CSI feedback [23], [201], [202], MIMO precoding [203]-[207], communication autoen-
coders [24], [186], |193], [208], [209], OFDM receiver |210|, direction-of-arrival (DOA)
estimation [211], and power allocation [25], [212]-[214], which not only design low-
complexity deep learning models but also use techniques to reduce computational
complexity such as NN pruning techniques [141]—[143]. These studies demonstrate
the potential of deep learning to achieve a better balance between computational
complexity and performance trade-offs in the physical layer.

Addressing Model and Method Deficits with Deep Learning

Deep learning methods can address both the model and method deficits in the phys-
ical layer. The mismatches arise from the limitations of conventional, theoretically
derived models or methods, which often rely on simplified or ideal assumptions,
such as system linearity, that do not fully reflect real-world non-ideal conditions.
Real-world scenarios include complexities such as non-linearities, noise, interference,
and hardware impairments that are difficult to model accurately. In contrast, deep
learning models, especially NNs, do not require such explicit assumptions. They
learn directly from large datasets, capturing the complexities of the physical layer
and reducing mismatches found in traditional models. For instance, in tasks such
as channel estimation or MIMO detection, deep learning-based models have demon-
strated improvements over conventional methods, particularly in handling non-ideal
hardware and channel conditions [30], [215]-|218]. In full-duplex systems, RL can
solve the ICI problem [193]. Similarly, in MIMO power allocation, deep learning
methods have been shown to improve system performance while reducing computa-
tional complexity [25], [212]. These studies highlight the potential of deep learning
to more effectively handle both model and method mismatches in the physical layer,
particularly in addressing the complexities of real-world, non-ideal conditions that
are difficult for conventional methods to model.

In the next Chapter, the application of deep learning for hardware impairment
mitigation is introduced.
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CHAPTER 4

Hardware Impairments Mitigation Using Deep Learning

Mitigating multiple hardware impairments in communication systems involves bal-
ancing performance with complexity, a challenge where traditional methods may face
limitations. Deep learning shows the potential to offer more adaptable and efficient
solutions for addressing a wider range of impairments. This chapter explores the
application of deep learning in mitigating multiple hardware impairments, beginning
with the motivations, challenges, and highlights in the literature. It then uses DPD
as a case study to demonstrate how deep learning, through both supervised and
reinforcement learning, can pre-compensate for multiple impairments, showcasing
examples of joint mitigation.

4.1 Motivations, Challenges, and Applications

Deep learning offers promising solutions for addressing hardware impairments in
communication systems. As discussed in Chapter the key motivations and chal-
lenges for applying deep learning in the physical layer include addressing model and
method mismatches, balancing performance and complexity, and optimizing multiple
communication tasks jointly. This section explores how these motivations drive ad-
vancements in hardware impairment mitigation and the challenges involved in fully
realizing the benefits of deep learning.
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Joint Mitigation of Multiple Hardware Impairments

One of the strengths of deep learning is its ability to jointly address multiple hardware
impairments, which is often difficult for traditional methods. In practical commu-
nication systems, impairments like IQ imbalance, PA nonlinearity, mutual coupling,
and PN frequently occur together and interact with each other. This interaction
complicates the mitigation process, as focusing on one impairment may cause sub-
optimal performance for others. For instance, PN from the LO can interfere with IQ
imbalance compensation at the receiver, leading to degraded performance for both
impairments. Additionally, using separate mitigation techniques for each impairment
increases computational load and reduces power efficiency, especially in large-scale
systems like massive MIMO, where impairments scale with the number of antennas.

While model-based mitigation methods can address multiple hardware impair-
ments simultaneously [68], [219]-]222], they often rely on simplified assumptions that
may not fully capture the complexities of real-world scenarios, leading to suboptimal
performance. For instance, the parallel Hammerstein (PH) model [68] accounts for
frequency-dependent IQ imbalance using a Hammerstein model, but its performance
is limited when applied to systems with both frequency-dependent IQ imbalance and
real PAs [15]. Similarly, [220] assumes static IQ imbalance, while [221] is based on
a MP model, which may not provide enough linearization performance. Another ex-
ample is in [91] which assumes linear crosstalk or specific PA behavior, which limits
the general applicability of the used Volterra-based model. Moreover, linear estima-
tion methods like least squares and linear minimum mean square error (LMMSE) are
challenged by the interaction between the PN and nonlinearities [30], [74].

Deep learning-based approaches, particularly those using NNs, offer a more flexi-
ble solution. These models can learn directly from data, capturing the complex de-
pendencies between impairments and providing more accurate compensation. This
ability to jointly mitigate multiple impairments can simplify system design and re-
duce overall complexity. For instance, deep learning has been successfully applied
to mitigate IQ imbalance, PA nonlinearity, PN, carrier frequency offset (CFO), and
antenna crosstalk [15], [17], [31], [193], |223]-[226], and to mitigate PA nonlinearity
jointly with constellation shaping and demodulation [193]. These aspects are also
covered in Paper A, C, and D. Specifically, in Papers A and C, deep learning-based
methods are shown to improve performance and reduce complexity when mitigating
impairments like IQ imbalance, PA nonlinearity, and antenna crosstalk., and in Pa-
per D, deep learning-based channel estimator is shown to improve channel and PN
estimation performance.

Balance Complexity and Performance of Mitigation

While deep learning shows potential for mitigating hardware impairments, manag-
ing computational complexity is crucial for practical deployment. Massive MIMO
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systems, for example, face strict computational and energy constraints, making it
important to design low-complexity deep learning models. Selecting the right model
architecture, such as choosing between fully connected layers and more efficient ar-
chitectures like CNNs, is key to balancing complexity and performance. CNNs, for
instance, handle large input dimensions more efficiently, as demonstrated in various
DPD applications [17], [29], [227]. In addition, techniques like deep unfolding, which
incorporate model-based knowledge into NNs, have shown improvements in both per-
formance and complexity by turning iterative algorithms into NN layers [228]. This
approach can be particularly effective in scenarios where traditional mathematical
models are available but need further optimization.

When no clear mathematical model is available, deep learning offers alternatives.
For example, traditional TD GMP-based models struggle to operate effectively in
the frequency domain, limiting their ability to reduce power consumption. Deep
learning-based DPD methods using NNs present a promising alternative, particularly
in massive MIMO systems [16], as discussed in Paper C. Furthermore, deep learning
offers improved performance-complexity trade-offs in tasks such as channel estimation
under nonlinearities or PN, where traditional estimators like minimum mean square
error (MMSE) incur significant computational costs [30].

In the next section, DPD is used as an example to show how deep learning is
implemented to mitigate multiple hardware impairments.

4.2 Deep Learning for DPD

We use DPD as an example of using deep learning for hardware impairment mit-
igation because it is well-suited for optimization through supervised learning and
can leverage deep learning’s ability to compensate for multiple impairments using
a single DPD block. As discussed in Chapter supervised learning with labeled
input-output data is highly effective for optimizing deep learning-based techniques.
DPD is particularly easy to train, as it operates in the digital domain, where the
undistorted input (baseband signal) is readily accessible and the distorted output
can be obtained through feedback paths or over-the-air measurements. We first fo-
cus on how to obtain labeled data for supervised learning using the indirect learning
architecture (ILA). When obtaining large amounts of labeled data is challenging, RL
is employed to train deep learning-based DPD models. Additionally, low-complexity
NN structures for DPD to achieve low complexity and power efficiency, covering both
TD and FD DPD implementations designed to optimize performance while minimiz-
ing computational overhead.

4.2.1 Optimization deep learning-based DPD

In practice, obtaining labeled input-output data for DPD directly from real hardware
is challenging, as the desired DPD output is often unknown. Additionally, separating
distorted and undistorted signals is difficult when multiple impairments, such as PAs
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Figure 4.1: Block diagram of the ILA enabling supervised learning to train deep learning-

based DPD, acquiring analog PA output z7*® via feedback path to digital
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or IQQ modulators, are involved. Furthermore, acquiring PA measurements typically
requires a dedicated feedback path, which becomes costly for wideband signals. These
challenges make it difficult to effectively apply supervised learning in such scenarios.
In cases where labeled DPD output is not available, one approach is to use simulated
data from model-based hardware models. However, this approach not only adds
complexity but is also limited in performance, as simulations may not fully capture
real hardware behavior, leading to potentially suboptimal results when deployed.
To address this, RL offers a promising alternative, as it eliminates the need for
labeled data and allows models to learn effectively through direct interaction with
the environment.

DPD Learning by Supervised Learning

To enable supervised learning for DPD training, it is common to use the ILA to obtain
the labeled input and output data, as shown in Figure A deep learning-based
DPD model can be trained by feeding the measured PA output signal, {zDA}N_
the undistorted baseband signal {z,, })__, as the labeled input and output data. In a
such way, a post-inverse of the PA can be learned by the DPD. The ILA makes the
training of DPD done by supervised learning. Specifically, consider a deep learning-
based DPD, e.g., a NN, represented by f_oeo(-) with DPD parameters aPPP | the
parameters can be learned by minimizing the loss between the DPD output xPFP =
f.oen ({z52}) and the baseband signal ,,

and

&PPP = arg min B, {£ (foro ({23,*}), 7,.) }, (4.1)

where the expectation is taken over the training dataset {zLA, z,,,}. In practice, the
optimization of the DPD parameters (4.1)) is typically implemented using the SGD
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algorithm (3.17)) with a batch-size N using the MSE loss function (3.15)),

N
Lysk (JCEPD, T,) == Z |zn — mBPD|2 . (4.2)

N n=1
In summary, the ILA provides a practical approach to address the challenge of
obtaining an unknown or difficult-to-measure DPD output. It enables the use of
straightforward supervised learning to train a deep learning-based post-distorter.
However, it is important to note that the ultimate goal is to develop a pre-distorter
rather than a post-distorter. Any noise or distortion in the PA output measurements
can introduce bias, which may degrade DPD performance [229]. For instance, studies
have shown that the ILA requires an SNR of at least 22 dB to improve linearization
compared to the case without DPD [230]. Fortunately, in practice, since the ILA
operates on the transmitter side, the measured data typically has a high enough

SNR to minimize the impact of such bias [229].

DPD Learning by Reinforcement Learning

Learning DPD parameters through the ILA is a straightforward approach but requires
a dedicated data acquisition path from the PA. This feedback path can be costly,
especially for large bandwidth signals, as high sampling rates ADCs are needed,
typically requiring a sampling rate exceeding five times the signal bandwidth to
capture the full-band behavior of the PA. In systems with multiple RF chains, such as
massive MIMO, the cost of these feedback paths can increase significantly, presenting
a major challenge. To mitigate these costs, recent studies have explored the use of low
sampling rate ADCs [231]-]234], which attempt to recover the full-rate PA output
from under-sampled ADC data for DPD optimization. To further reduce costs, over-
the-air (OTA) methods have emerged as an alternative [119], [235], [236]. These
methods employ an observation receiver to capture the PA output signal over the
wireless channel, enabling DPD optimization without the need for expensive high-
rate feedback paths. However, these approaches are primarily effective in line-of-sight
(LOS) scenarios.

The mentioned studies [119], [231]-]|236] employ a sample-based approach to op-
timize DPD models by minimizing sampling errors between over-sampled signals.
Implementing this approach is straightforward, as DPD typically operates at a simi-
lar oversampling rate as the PA to reduce in-band and OOB distortion from the PA.
However, in a massive MIMO environment, the requirement for OOB linearization
is significantly relaxed. This is because the in-band signal gains substantial power
through downlink beamforming, while the OOB components tend to interfere de-
structively, resulting in lower power gain [17], [237]. The reduced need for OOB
linearization encourages the use of low-complexity DPD and low-rate OTA DPD
optimization methods. Paper B explores the latter approach using RL, where RL
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Figure 4.2: Learning DPD parameters by RL. The DPD parameters aPFP are optimized

using OTA observations at the receiver side by minimizing a CE loss between
the probabilities of the transmitted and received messages, {p»} and {pn}.

is employed to eliminate the need for a known channel model in conventional OTA
learning algorithms. The block diagram of the RL-based DPD optimization is shown
in Figure [£.2] This OTA DPD optimization algorithm is described as follows.

In the context of RL, the agent is now a deep learning-based DPD model f,prp
DPD “such as a NN. The state and action are the baseband signal
u and the DPD output «, respectively, as defined by:

with parameters o

r = faDl”D (u) (4.3)

The Gaussian policy 7(&|x) is then applied to the DPD output, which adds
perturbations to the DPD output to explore the environment, i.e., the nonlinear PA
and channel.

The RL environment consists of the unknown nonlinear PA and channel, and other
hardware components such as the ADC, DAC, mixer, oscillators, and low-noise PA
at the receiver are assumed to be ideal, which can also be considered as non-ideal

in specific scenarios. The function fPemed

represents the demodulation process that
includes components such as down-conversion, matched filtering, and constellation
de-mapping. For an arbitrary demodulated symbol 5, at time sample n, the de-
mapper gives a prediction of the transmitted message represented by a probability

vector p, € Rf across M possible messages,

B = [P ([P (@) + w,,) (4.4)

where w,, € N'(0,0?) is the AWGN. This de-mapper can be realized by the maximum
likelihood demapper or an NN-based de-mapper as in [27], [186], [238], which can
be pre-trained to have similar decoding performance. The RL reward is calculated
using the cross-entropy loss function as

= _ECE(ﬁnvpn)v (45)
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where p,, = [0,---,1,0,---,0]" € RM is the labeled message m,, in a one-hot vector
form. The optimization goal is to maximize the expected return Jyoeo = E,,{r},
which is realized using gradient descent methods to update the DPD param-
eters aPPP.

In cases where supervised learning is impractical due to the lack of labeled DPD
input-output data, RL presents an alternative for optimizing OTA DPD parameters.
This approach eliminates the need for complex feedback paths or precise models of
non-ideal hardware and channels. Paper B explores the use of RL in single-carrier
SISO systems addressing only PA nonlinearity, but the method can be extended to
account for multiple hardware impairments. Additionally, the RL-based method has
been validated by real-world measurements in a similar DPD optimization context for
optical communication systems [239]. While promising, further research is needed to
apply RL to multi-carrier and massive MIMO systems, where challenges like increased
hardware impairments must be addressed. Nevertheless, the large antenna arrays in
massive MIMO can help ease constraints such as OOB distortion, making RL an
attractive solution for these scenarios. follow-up research will be crucial in fully
leveraging its potential.

4.2.2 Neural Network-based DPD in the Time-Domain and
Frequency-Domain

As discussed in Chapter [£.1] designing a low-complexity NN structure is one of the
challenges to enabling the practical implementation of hardware impairment mit-
igation techniques. The structure design is substaintially exlpored for NNs-based
DPD |[15]-]17], [60], [61], [240]-[247], and can generally be categorized into two
groups: NN-based TD-DPD [15], [60], [61], [241]-|246] and NN-based FD-DPD [16],
[17], [247]. Both types operate in the baseband and digital domain but differ in where
they are applied in the signal chain. The structure design for NN-based TD-DPD and
FD-DPD follows different principles, but the overall goal remains the same: to min-
imize complexity while maximizing the linearization performance of DPD, including
Paper A for designing a TD-DPD NN and Paper C for designing an FD-DPD NN.
The choice between TD-DPD and FD-DPD is far from obvious in massive MIMO
systems, TD-DPD becomes computationally expensive as the number of PAs in-
creases, with its complexity scaling directly with the number of PAs. FD-DPD,
applied before the inverse discrete Fourier transform (IDFT) and digital precod-
ing, offers a more efficient solution by scaling with the number of UEs rather than
PAs, making it a more power-efficient choice for massive MIMO systems [16], |17].
FD-DPD also offers power savings since it can mitigate OOB distortion with lower
oversampling rates, reducing power consumption for wideband signals in 5G and
future networks. While shared DPD approaches attempt to reduce complexity by
managing multiple PAs across arrays or subarrays [248]—[251], they are often con-
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Figure 4.3: Comparison of deep learning-based DPD with traditional methods for hard-
ware impairment mitigation. (a) In a SISO system, NN-based DPD effectively
compensates for both PA nonlinearity and IQ imbalance with the same com-
putational complexity as the model-based PH approach, while significantly
reducing residual distortion. (b) In a MIMO system, FD NN-based DPD out-
performs conventional TD GMP-based DPD by offering superior mitigation of
PA nonlinearity and mutual coupling effects with significantly lower computa-
tional complexity.

strained by analog or hybrid architectures. In contrast, massive MIMO systems
benefit from reduced OOB linearization requirements, where in-band signals are en-
hanced by beamforming and OOB components are suppressed through destructive
interference |237], [252]. Despite the potential, NN-based FD-DPD is still a develop-
ing field that requires further validation [253]. Traditional DPD models like GMP,
which are designed for TD mapping, are difficult to adapt to the frequency domain,
as demonstrated in [16], where the solution still relies on IDFT and discrete Fourier
transform (DFT) operations. Paper C further explores this problem, exploring how
CNN can be used in FD-DPD to effectively handle large input sizes from OFDM
subcarriers and UEs while managing complexity. This is a relatively new area, and
further applications of deep learning are essential to fully explore its potential and
address existing challenges.

4.2.3 Joint Mitigation of Hardware Impairments Using DPD

Numerous studies have investigated DPD for mitigating multiple hardware impair-
ments, including both model-based [68], [219], [220] and NN-based approaches [15],
[17], [222], [223], [244], [245], [254], including Paper A and Paper C. DPD is effec-
tive at mitigating multiple impairments, such as IQ imbalance, PA nonlinearity, and
mutual coupling, for several reasons. First, as a pre-compensation technique, DPD
compensates for these impairments directly at the transmitter. Second, NN-based
DPD leverages the modeling capabilities of NNs, enabling it to outperform tradi-
tional models designed for either joint or separate compensation. Third, by using
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the ILA approach, the combined effects of multiple impairments are captured at the
PA output, allowing the effective training of DPD by supervised learning.

For example, Figure shows how an NN-based DPD improves the mitigation
of both I1Q imbalance and PA nonlinearity with the same computational complexity
as the model-based PH approach [68], unlike the NN-based method, the PH model
leaves significant residual distortion, as discussed in Paper A. Similarly, Figure [£.3D)]
shows how FD NN-based DPD can jointly pre-compensate for PA nonlinearity and
mutual coupling in a massive MIMO system with significantly lower complexity. In
contrast, the conventional TD-GMP-based DPD not only fails but worsens the OOB
distortion, as explored in Paper C.
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CHAPTER b

Contributions and Future Work

This chapter summarizes the contributions of each included publication and suggests
some potential directions for future research.

5.1 Paper A

Low Complexity Joint Impairment Mitigation of 1/Q Modulator
and PA Using Neural Networks

In paper A, we investigate the joint hardware impairments mitigation problem.
Specifically, we address the joint mitigation of nonlinear frequency-dependent I1/Q
imbalance and PA in direct conversion transmitters in SISO systems. While DPD
can jointly mitigate these impairments, model-based methods often underperform,
and existing NN-based methods suffer from high computational complexity, making
them impractical for real-world applications.

We propose a novel NN-based architecture, called the shortcut real-valued time-
delay neural network (SVDEN), which incorporates shortcut connections to effec-
tively mitigate both IQ imbalance and PA nonlinearity with lower complexity. We
utilize a NN pruning algorithm to further reduce the computational complexity of the
SVDEN by selectively removing connections with minimal impact on performance.
Experimental results from a GaN PA demonstrate that the proposed SVDEN with
pruning achieves superior linearization performance in both in-band and OOB com-
pared to existing models, while also reducing computational complexity. The pro-
posed SVDEN architecture, along with the pruning algorithm, offers a practical and
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effective solution for joint hardware mitigation of the PA and IQ modulator in direct
conversion transmitters, balancing both performance and complexity.

5.2 Paper B

Symbol-Based Over-the-Air Digital Predistortion Using
Reinforcement Learning

In Paper B, we address the challenge of optimizing DPD for PA linearization in a
single-carrier SISO system, focusing on low-sampling rate optimization. Traditional
DPD optimization approaches that based on the ILA often require high sampling
rate feedback paths, which are costly and complex for wideband signals and multi-
antenna systems. Optimization using OTA observations at an observation receiver
can alleviate the use of a high-sampling rate feedback path, but existing works still
require over-sampling rate optimization, which is not optimal and not appropriate
when the target is to minimize the SER.

By utilizing the Gaussian policy RL, we introduce a novel DPD optimization al-
gorithm using OTA measurements. This algorithm minimizes the cross-entropy loss
between the transmitted and received symbols, instead of the conventional sample-
based approach between over-sampled signals. This RL-driven DPD optimization
method operates without the need for hardware and channel models. Results on a
GaN PA show that the RL-driven DPD optimization algorithm results in SER im-
provements while preserving acceptable OOB distortion levels, outperforming con-
ventional ILA, even when using full-rate ADCs in the feedback path. This RL-driven
DPD optimization algorithm offers a practical and low-complexity solution for PA
linearization, reducing costs in wideband systems and potentially helpful in multi-
antenna systems and other hardware impairments mitigation.

5.3 Paper C

Time vs. Frequency Domain DPD for Massive MIMO: Methods
and Performance Analysis

In Paper C, we extend the hardware impairments mitigation problem from SISO
systems in Paper A and Paper B to massive MU-MIMO systems. Specifically, we
address the complexity challenge of PA linearization in massive MU-MIMO-OFDM
systems. The deployment of numerous antennas and their corresponding PAs creates
a complexity issue for DPD to achieve the required PA linearization performance.
While the complexity of conventional TD DPD, whose dimension is related to the
number of PAs, scales with the number of PAs, the complexity of FD DPD, whose
dimension is related to the number of UEs, scales with the number of UEs.
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5.4 Paper D

The main motivation is that current FD-DPD models fail to fully address the
DPD complexity issue with antennas because of their reliance on IDFTs and DFTs.
We propose a low-complexity FD CNN DPD which reduces complexity by replacing
IDFTs and DFTs with convolutional layers. We develop a new learning algorithm
for FD-DPDs with differentiable structures, enabling simple supervised learning and
resulting in better linearization performance of NN-based DPDs in scenarios with
antenna crosstalk. We provide a comprehensive analysis of different state-of-the-art
TD and FD-DPD schemes in terms of complexity and linearization performance in
rich scattering and LOS channels, and also scenarios with antenna crosstalk. The
analysis shows that FD-DPDs, particularly the proposed FD-CNN DPD, are prefer-
able in LOS scenarios with few UEs. On the other hand, in scenarios with more UEs
or isotropic scattering channels, significant intermodulation distortions among UEs
degrade FD-DPD performance, making TD-DPD more suitable.

5.4 Paper D

Uplink Cell-Free massive MIMO OFDM with Phase Noise-Aware
Channel Estimation: Separate and Shared LOs

In Paper D, we study the hardware impairments mitigation problem in cell-free mas-
sive MIMO. Specifically, we investigate the impact of PN on the uplink performance
of cell-free massive MIMO OFDM systems. Hardware impairments originating from
LOs in both APs and UEs pose considerable challenges in achieving phase-coherent
transmission. Traditional single-carrier PN models underestimate the PN impact in
OFDM systems, resulting in inaccurate channel estimation, uplink combining, and
downlink precoding, and also give overly optimistic SE predictions due to under-
estimating the impact of PN. Moreover, using a shared common LO between APs
can save costs but introduce correlated PN interference, impacting system perfor-
mance without leveraging PN correlation, while a solution to address this in cell-free
massive MIMO is missing in the literature. In addition to deriving novel channel
estimators under the OFDM PN model, this paper also addresses two research ques-
tions. To what extent does applying the single-carrier PN model degrade the system
performance in OFDM systems? What are the performance gains of using accurate
channel estimation based on the OFDM PN model in OFDM systems? We consider
two scenarios: uncorrelated PN with separate LOs for each AP, and correlated PN
with a shared common LO for each AP, covering both conventional cell-free and radio
stripes scenarios.

Specifically, we develop a novel uplink OFDM signal model for cell-free massive
MIMO networks, including for both correlated and uncorrelated PN scenarios. For
scenarios with separate LOs, we propose a distributed PN-aware joint LMMSE chan-
nel and CPE estimator, showing improved SE over single-carrier estimators. For
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shared LO scenarios, we propose a centralized joint channel and CPE estimator that
alternates between distributed channel estimation and centralized CPE estimation,
leveraging PN correlation to enhance performance. Furthermore, we propose a deep
learning-based distributed channel estimator to initialize the centralized estimator,
improving accuracy and reducing iteration times.

5.5 Future work

In this thesis, various hardware impairment mitigation scenarios using deep learning
techniques have been explored, focusing on both performance and complexity aspects,
which are crucial for practical systems.

Here are some potential directions for future work:

e In Paper A, the joint mitigation of imperfect IQ modulators and PA is only
explored for SISO systems. A potential direction for future work is to extend
this approach to massive MIMO systems. While similar hardware impairment
models from Paper C can be applied, the main challenge remains in finding a
low-complexity mitigation solution for these hardware impairments in massive
MIMO scenarios.

e In Paper B, RL-based DPD optimization is studied only in single-carrier SISO
systems. Future work could explore its application in OFDM and MIMO sys-
tems. For OFDM systems, incorporating components like IDFT, DFT, and
cyclic prefix should not directly affect the Gaussian policy RL used for DPD
optimization, though the performance transition from single-carrier to OFDM
systems still needs to be evaluated. Extending this method to MIMO systems
presents a challenge due to the differing dimensions between the reward (re-
lated to the number of UEs) and DPD (related to the number of antennas),
requiring significant modifications to the RL algorithm.

e In Paper C, although the CNN-based FD-DPD achieves a better complexity-
performance trade-off, its size and complexity increase linearly with the number
of data subcarriers, making it unsuitable for large bandwidth applications and
increasing training costs. Additionally, it requires re-training when the band-
width changes. Future research can focus on improving deep learning-based
FD-DPD designs to address these limitations.

e In Paper D, the PN impact and PN-aware channel and PN estimators are only
investigated for the uplink scenario. A future research direction could extend
this investigation to the downlink, exploring the PN impact, the limitations
of single-carrier PN-aware estimators, and the potential performance gains of
accurate PN-aware estimators for downlink transmission.
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