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Abstract. An autonomous bicycle has been developed for repeatable
active safety tests of Advanced Driver Assistance Systems (ADAS). For
effective interaction with other test objects, precise bicycle trajectory
tracking control is essential. The repetitive nature of these tests suggest
an Iterative Learning Control (ILC) approach.

In this paper, we present a design of an ILC controller tailored for the
trajectory tracking problem of an autonomous bicycle. To illustrate the
performance of the controller, simulations have been conducted.

Keywords: Motion control · Iterative learning control · Trajectory
tracking

1 Introduction

Modern traffic safety is increasingly dependent on Advanced Driver Assistance
Systems (ADAS). Test track testing is required to ensuring effectiveness and
function of these systems. These tests are typically performed by replicating a
real traffic scenario, and may include many actors. For scenarios including bicy-
clists, a bicycle robot is required that can be controlled according to the specific
scenario be a specified trajectory. In response to the complexities of evaluating
ADAS in cycling-related scenarios, we have developed a robotic bicycle equipped
with self-balancing and path-tracking capabilities.

A common nature of ADAS test track test problem is repeatability. In prac-
tice, multiple test objects may be configured to repeat the same motion pro-
file to simulate a traffic situation. However, lackness of prior knowledge about
test uncertainties such as side wind, leaning pavement etc., might influence the
robustness and precision of the test.

The problem formulation fits the framework of iterative learning con-
trol(ILC), where adaptive feed forward is learnt from previous test interactions.
Iterative learning control have been proposed previously in the literature for
vehicles. In Kapania and Gerdes, [3], controllers are proposed for race car driv-
ing, where the lateral control is improved over the laps. Both a PD and an LQ
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controller were proposed. With a similar concept but more innovation, [4] uses
iterative learning scheme to realize an adaptive model predictive controller for
a rover on Mars. The dynamical model of the system is improved after each
iteration for better overall performance. Both of the papers reduce the lateral
errors using ILC controllers.

ILC algorithms acquire information from the previous errors and utilize them
to reduce the errors over iterations. For multiple-input multiple-output(MIMO)
and nonlinear systems, more techniques need to be combined with ILC to guar-
antee convergence. The challenge comes from the coupled dynamics in different
dimensions [5]. In this paper, to track the two-dimensional trajectory represented
in Cartesian coordinates (X(T ), Y (T )), we have decomposed the ILC trajectory
tracking problem into a longitudinal and a lateral motion ILC tracking problems.
This decomposition is based on several underlying assumptions related to lower
level controllers and no tyre side-slip.

Fig. 1. Bike schematics Fig. 2. Schematic Block of the roll tracking con-
troller

2 Method

In this section, we first discuss the problem formulation and setup. Models will
be given to describe the involved dynamics. Then the ILC framework will be
introduced with the aim to reduce the tracking errors for each iteration. A theme
across the approach taken is the separation in the dynamic states such that
simpler control strategies can be applied. We start with the roll dynamics and
its connection to the planar motion of the bicycle.

On the bicycle robot, tracking the planar position (X(T ), Y (T )) can be
achieved by lateral and longitudinal control using steering motor and drive motor
respectively. The lateral control controls the steering angle δ and longitudinal
control controls the rear wheel speed v.

The roll dynamics of the unstable bicycle Gϕδ is given by (16) in [1]

d2ϕ

dt2
=

g

hCM
ϕ +

av sin λ

bhCM

dδ

dt
+

(v2hCM − acg) sin λ

bh2
CM

δ (1)

where g = 9.81 m/s2 and other parameters are detailed in Fig. 1.
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The unstable bicycle is balanced by a cascaded controller, as illustrated in
Fig. 2. The inner balancing loop in Fig. 2 stabilzing the roll dynamics Gϕδ by
controlling the steering angle rate δ̇. The outer loop is a roll angle tracking
controller that tracks a roll angle reference ϕref . There is a physical connection
between the heading direction changes of the bicycle ψ̇ and the leaning angle
ϕ. Hence, the outer loop also influence the orientation of the bicycle. Under the
assumption of fast closed loops in Fig. 2, we may neglect the dynamics from roll
angle reference to heading. The model (1), can be used to obtain a function of a
steering angle δ and a roll angle ϕ in steady state. Hence, the reference steering
angle δref can be translated into reference roll angle ϕref and fed into the control
loop (Fig. 4).

Fig. 3. Tracking error definitions Fig. 4. The bicycle robot

The dynamics of position (X,Y ) relates to the heading ψ and the steering
angle δ:

Ẋ = v cos (δeff + ψ) Ẏ = v sin (δeff + ψ) (2)

To evaluate the tracking performance, tracking errors can be computed in bicycle
local coordinate, resulting in lateral and heading components (e1 and eψ in
Fig. 3):

ė1 = v(δeff + eψ) ėψ = ψ̇ − vK ≈ v(
δeff

b
− K) (3)

de1
dds

= (δeff + eψ)
deψ

dds
≈ (

δeff

b
− K) (4)

In these formulations, δeff = δ sin (λ) represents the effective steering angle ref-
erence δeff computed by the lateral controller, and K the path curvature. ds is
the travel distance, with v = ḋs as its time derivative. A key insight derived from
(4) is that, if the lateral controller only depends on position (X,Y ), or equiva-
lently ds, the lateral and heading errors e1 and eψ are both time-independent.
This is because δeff does not depend on time. This result is based on several



Trajectory Tracking for a Bicycle 353

assumptions on the model (2): non-slip tyre ground contact and ideal control
of steering angle δ. The slip-free assumption accords with the relatively slow
speed (<4 m/s) and the ideal control of steering requires fast enough balancing
and steering control loops, such that the transients can be neglected. We uti-
lized a time-independent controller from [2] to reduce the lateral error, denoted
as Klat(X,Y ). Then the learned ILC feedforward signal KδILC(T ) can be re-
indexed into KδILC(ds), independent of time T or speed v.

As another important factor, the longitudinal control relates to the test
progress. The rear wheel speed v determines how fast the bicycle runs and the
total duration of the iteration. Noticing path length to be roughly unaffected by
the path deviation due to the lateral controller, we assume the speed v is indepen-
dent on the lateral tracking errors e1 and eψ. This assumption allows us to split
the ILC trajectory tracking problem into a lateral ILC and a longitudinal ILC
problem. Integrated into the motor microcontroller, a local speed PID controller
tracks a given speed reference vref . By changing vref , ILC controller influences
the progress indirectly. The propulsion motor dynamics can be modelled simply
as resistor, inductor , voltage source and motor connected in series. The load of
the motor in longitudinal dynamics can be modelled as a Mass-Damping system
and a speed controller integrated in the motor driver tracks a reference speed
vref . A longitudinal controller Kv(X,Y, T ) = v0 + kve2(T ) tracks the progress
with a constant gain kv.

The ILC framework refines feedforward signals for steering angle δ and speed
v over repetitions. As the lateral path is independent of speed variations, the
lateral feedforward signals KδILC(ds) can also be indexed by the travel distance
ds, resulting in,

δref (X,Y ) = Klat(X,Y ) + KδILC(ds) (5)
vref (X,Y, T ) = Kv(X,Y, T ) + KvILC(T ) (6)

where KvILC(T ) is the ILC feedforward for longitudinal speed v. δref is con-
verted into ϕref and fed into the outer loop in Fig. 2 according to (1) in steady
state.

The ILC controllers, KδILC(ds) and KvILC(T ) are chosen to be standard
Proportional-Derivative controllers, as in e.g. [3]:

K+
vILC(T ) = vref (T ) − kvpe2(T ) − kvd(e2(T ) − e2(T − 1)) (7)

K+
δILC(ds) = δref (ds) − kδpe1(ds) − kδd(e1(ds) − e1(ds − Δds)) (8)

ds(T ) =
∫ T

0

vdt (9)

with the superscript + denotes the variable in the new iteration. Δds is a constant
longitudinal step to obtain equidistant samples. k�p and k�d denote the propor-
tional and derivative gains in the dimension � respectively. Zero-phase low-pass
filters have been further added on K+

vILC(T ) and K+
vILC(T ) for robustness. See

(16) in [3] for details (Fig. 5).
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Fig. 5. Control structure of the overall system

3 Result

To assess the effectiveness of the ILC framework (5)(6), we conducted a simula-
tion with the unstable linearized model of the bicycle in (1). A dynamical drive
motor model is also used for longitudinal dynamics, together with the modeling
of road inclinations and uneven road surfaces. Incorporating curves and straight
lines, an infinite-shaped path with equidistant waypoints profile was selected
for the simulation. The ILC speed controller is expected to dynamically adjust
vref to counteract longitudinal speed v variations induced by steering actions δ.
The results visualized in Fig. 6 show a progressive reduction in the root-mean-
square(RMS) error across multiple iterations. Initial offsets in heading ψ and
position (X,Y ) have also been imposed to create initial transients. In 5 itera-
tions, the RMS is reduced from 1.7 m to 0.6 m. The residual errors may be related
to the coupling of longitudinal speed (acceleration) and steering with the lower
level balancing loops (Fig. 2). They are neglected in our previous assumptions
regarding ideal control in (3).

The absolute values of the lateral error e1 and longitudinal error e2 are further
visualized in time domain, shown in Fig. 7. The errors during the beginning of
each iteration (0–10 s) were similar, because of the overwhelming transients of
the balancing and longitudinal speed control loops. While improvements can be
seen after this start-up, where the maximum absolute errors are reduced from
1.49 m to 0.67 m and from 1.55 m to 0.73 m in e1 and e2, respectively.

Fig. 6. Validation tests
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Fig. 7. |e1|, |e2|, δ and v in time domain.

4 Conclusions

This paper presents the design of a MIMO Iterative Learning Controller specif-
ically tailored for the trajectory tracking of an autonomous bicycle. By assum-
ing ideal control over steering and neglectable balancing transients, the task
is effectively divided into longitudinal and lateral sub-problems. The lateral-
longitudinal error separation is the crucial component in this approach. Simu-
lation results demonstrate the effectiveness of this approach. Under the typical
position dependent disturbances from slopes and resistances, the ILC controllers
could reduce the errors over repeated test iterations.

However, the authors see more challenges in real application. Both the steer-
ing ILC controller KδILC and the path-tracking controller [2] are based on lin-
earization and may fail with large e1 or eψ. Moreover, the real roll-longitudinal
coupling may be more complicated than what we have modelled.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
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The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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