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Abstract. The Ice Cloud Imager (ICI) aboard the second
generation of the EUMETSAT Polar System (EPS-SG) will
provide novel measurements of ice hydrometeors. ICI is
a passive conically scanning radiometer that will operate
within a frequency range of 183 to 664 GHz, helping to cover
the present wavelength gap between microwave and infrared
observations. Reliable global data will be produced on a daily
basis. This paper presents the retrieval database to be used
operationally and performs a final pre-launch assessment of
ICI retrievals.

Simulations are performed within atmospheric states that
are consistent with radar reflectivities and represent the three-
dimensional (3D) variability of clouds. The radiative transfer
calculations use empirically based hydrometeor models. Az-
imuthal orientation of particles is mimicked, allowing for the
consideration of polarisation. The degrees of freedom (DoFs)
of the ICI retrieval database are shown to vary according to
cloud type. The simulations are considered to be the most de-
tailed performed to this date. Simulated radiances are shown
to be statistically consistent with real observations.

Machine learning is applied to perform inversions of the
simulated ICI observations. The method used allows for the
estimation of non-Gaussian uncertainties for each retrieved
case. Retrievals of ice water path (IWP), mean mass height
(Zm), and mean mass diameter (Dm) are presented. Distri-
butions and zonal means of both database and retrieved IWP
show agreement with DARDAR. Retrieval tests indicate that
ICI will be sensitive to IWP between 10−2 and 101 kgm−2.
Retrieval performance is shown to vary with climatic region
and surface type, with the best performance achieved over
tropical regions and over ocean. As a consequence of this
study, retrievals from real observations will be possible from
day one of the ICI operational phase.

1 Introduction

There is an urgent need for reliable and consistent estimates
of ice mass in the atmosphere. Measurements of ice mass
are pivotal to understanding global weather patterns and cur-
rent climate trends. The release of latent heat upon ice for-
mation drives circulation within the atmospheric water cycle
(Bony et al., 2015), giving rise to events such as deep con-
vective systems. Frozen hydrometeors also constitute the ice
clouds in our atmosphere. Such clouds modulate the amount
of outgoing longwave radiation (OLR) and reflect solar ra-
diation, and they thus hold significant influence over the cli-
mate. Consequently, ice clouds are considered a major cli-
mate feedback (Stephens et al., 1990).

Despite their importance, the mass of ice hydrometeors in
the atmosphere remains an uncertain quantity. A significant
factor contributing to this uncertainty is the complex relation-
ship between ice mass and satellite observation – the relation-
ship is difficult to characterise, thus leading to a large spread
between models and data-derived observational products and
even between the products themselves. Duncan and Eriksson
(2018) highlighted these shortcomings by showing the sig-
nificant discrepancies that exist between cloud ice datasets.
Consequently, ice hydrometeor mass observations remain a
gap in the atmospheric hydrological cycle. Given the present-
day state of the climate, it is becoming increasingly necessary
to address this gap (Waliser et al., 2009).

The upcoming Ice Cloud Imager (ICI) will address this is-
sue by specifically measuring atmospheric ice mass at mi-
crowave and sub-millimetre wavelengths (Mattioli et al.,
2019). ICI will be launched as part of the EUMETSAT (the
European Organisation for the Exploitation of Meteorologi-
cal Satellites) Polar System – Second Generation (EPS-SG)

Published by Copernicus Publications on behalf of the European Geosciences Union.



5958 E. May et al.: ICI retrieval of frozen water column properties

programme. While current satellite observations span a wide
range of frequencies, many face limitations in the measure-
ment of ice hydrometeors. High-frequency radars have good
sensitivity to ice but are limited to observing at only a single
frequency and thus poorly constrain hydrometeor properties.
Passive optical and infrared missions, such as MODIS (Mod-
erate Resolution Imaging Spectroradiometer; Platnick et al.,
2003) and SEVIRI (Spinning Enhanced Visible and Infrared
Imager; Schmid, 2000), are sensitive to small ice hydrome-
teors. However, these missions predominantly capture only
cloud-top data due to high attenuation. Passive microwave
sensors are able to penetrate clouds but measure at wave-
lengths that are sensitive only to the largest ice hydromete-
ors. Sub-millimetre frequencies are most suited to the mea-
surement of small ice crystals. However, sub-millimetre ob-
servations of the atmosphere are scarce.

ICI will pair sub-millimetre-wavelength observations with
passive microwave observations. This allows for sensitiv-
ity to a wider range of ice hydrometeor sizes and increases
the overall information content through the use of multi-
ple frequencies. ICI will cover a frequency range of 183 to
664 GHz. Alongside ICI on the same satellite will be the
MWI (Microwave Imager), extending the coverage down to
18.7 GHz. Together, ICI and MWI will offer an unparalleled
collection of passive measurements, helping to close the ex-
isting frequency gap in ice hydrometeor mass observations
(Accadia et al., 2020).

Evidence supports the improvement of cloud ice retrievals
in the presence of sub-millimetre observations. Success-
ful cloud ice retrievals have been performed using sub-
millimetre limb sounder observations (Wu et al., 2008; Eriks-
son et al., 2014). Brath et al. (2018) demonstrated that re-
trievals of ice water path (IWP) improved when combin-
ing microwave and sub-millimetre flight campaign observa-
tions. Pfreundschuh et al. (2022b) showed enhanced sensi-
tivity to hydrometeors when supplementing radar data with
sub-millimetre observations. In the context of a future ICI
launch, Wang et al. (2016) performed successful retrievals of
cloud parameters based on a synthetic database of ICI radi-
ances. Finally, Eriksson et al. (2020) – the precursor to this
study – presented the operational algorithm to be used within
the ICI Level 2 (L2) product at EUMETSAT. In the study, a
preliminary database of simulated ICI observations was used
to demonstrate successful ICI retrievals and to estimate the
retrieval performance.

This study presents the generation of the final retrieval
database, composed of ICI observation simulations and cor-
responding ice mass quantities. This database serves to com-
plete the operational algorithm and performs a pre-launch
characterisation of ICI retrievals. We emulate retrieval per-
formance using synthetic ICI data, where retrievals meet op-
erational standards; i.e. only ice hydrometeors are consid-
ered. The study focuses only on channels present on ICI, and
MWI measurement frequencies are not considered. The pri-
mary aim of the study is to confirm that both simulations

and retrievals are statistically consistent with reality. In the
absence of actual ground truth, flight campaign data and ex-
isting retrieval products are used. Additionally, we investi-
gate how retrieval performance varies according to climatic
region, surface conditions, and noise estimates. In summary,
we perform the best possible pre-launch assessment of the
retrieval of ice hydrometeor column values. To this end, we
evaluate whether the ICI L2 product is set to deliver reliable
information on ice mass in the form of ice water path (IWP),
mean mass height (Zm), and mean mass diameter (Dm) and
under which conditions.

A description of the retrieval database and the database
generation techniques is given in Sect. 3. Details on the re-
trieval approach are given in Sect. 4. In Sect. 5, radiances re-
sulting from simulations of two similar instruments are com-
pared with real observations, and an assessment of the overall
retrieval performance is given.

2 The Ice Cloud Imager (ICI) mission

2.1 The ICI instrument

ICI will be hosted on the MetOp-SG B satellite series as part
of the EPS-SG mission. The mission will launch a pair of
satellites: MetOp-SG A and B. MetOp-SG A will primar-
ily focus on visible and infrared observations, while MetOp-
SG B will host microwave instruments (EUMETSAT, 2022).
Each satellite has a planned lifetime of 7.5 years. With three
successive launches of the pair of satellites, continuous cov-
erage for over 21 years will be achieved. The satellites will
be in a sun-synchronous orbit, with a local time of descend-
ing node of 09:30, and will fly at a height within the range
of 823–843 km. At the time of writing, the launch of the first
satellite in each of the two EPS-SG series is scheduled for
2025 and 2026, respectively.

The ICI instrument is a conically scanning radiometer,
providing observations at an incidence angle of 53± 2°. Ob-
servations are taken over an angle of ± 65° around the for-
ward view of the orbital path, giving a swath width of ap-
proximately 1700 km, which results in near-global coverage
on a daily basis. ICI will observe using 13 channels, operat-
ing at local oscillator frequencies of 183.31, 243.2, 325.15,
448.0, and 664.0 GHz. Specifications of the channels can be
found in Eriksson et al. (2020). Nine channels around 183.31,
325.15, and 448.0 GHz cover water vapour molecule transi-
tions. The remaining channels at 243.2 and 664.0 GHz func-
tion as window channels, where decreased absorption by at-
mospheric gases enables observations down to relatively low
altitudes. The window channels will measure at both hori-
zontal polarisation and vertical polarisation. As such, ICI has
the potential to capture the effects of oriented hydromete-
ors and of polarisation as a result of surface interaction. The
other channels (183.31, 325.15, and 448.0 GHz) will mea-
sure at only vertical polarisation. Further details on the re-
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ceivers, antenna system, and calibration are given in Eriksson
et al. (2020). However, some updates have been made since
the publication of Eriksson et al. (2020); detailed estimates of
the spectral response function and the antenna response func-
tion are now available. Furthermore, the first actual estimates
of the noise performance are now at hand, indicating that the
noise requirements will be met with a margin. Consequently,
we assume below that the magnitude of thermal noise is at
75 % of the NE1T estimates given in Eriksson et al. (2020).

Also aboard MetOp-SG B will be MWI – another con-
ically scanning radiometer that will also observe at an in-
cidence angle of ≈ 53°. MWI will measure at frequencies
between 18.7 and 183 GHz, allowing for sensitivity to liq-
uid and frozen precipitation. It will offer both horizontal and
vertical polarisation up to frequencies of 89 GHz and vertical
polarisation only for the higher-frequency channels.

2.2 Operational L2 product

EUMETSAT will offer a Level 2 product (MWI-ICI-L2) con-
taining retrievals based on ICI and MWI observations in
near real time. Although retrievals will be performed sepa-
rately for ICI and MWI using different methods, they will
be present in the same product. This is the only operational
L2 product planned. As a result of the MWI contribution,
MWI-ICI L2 will offer liquid water path (LWP). The primary
variable offered on the ICI side of the MWI-ICI L2 product is
ice water path (IWP), defined as the vertical column of atmo-
spheric ice water content. Mean mass height (Zm) and mean
mass diameter (Dm) are also offered as retrieval products for
ICI, existing only for IWP> 0 kgm−2. This study deals only
with the ICI side variables, definitions of which are given in
Eriksson et al. (2020). The algorithm theoretical basis docu-
ment (ATBD) is provided by the EUMETSAT Satellite Ap-
plication Facility (SAF) supporting nowcasting (NWC SAF)
(Rydberg, 2018). The algorithm is finalised. What remains
for the L2 product is the development of a database (dis-
cussed below), which is of major importance for retrieval ac-
curacy.

Within the algorithm, pre-processing is undertaken before
the inversion takes place. The pre-processing steps include
the remapping of Level 1b (L1b) data, i.e. calibrated and ge-
olocated antenna temperatures, to a common footprint, which
was the output of an optimal interpolation scheme devel-
oped within a EUMETSAT study with results presented in
Eriksson et al. (2020). Additionally, there is a bias correc-
tion scheme applied in the case of any systematic differences
between L1b data and retrieval database cases. An optional
module for the detection of clear-sky cases, i.e. IWP= 0, is
also included within the algorithm. The reader is referred to
Eriksson et al. (2020) for further details of the pre-processing
steps.

To perform the inversion, the retrieval algorithm uses
an implementation of Bayesian Monte Carlo integration
(BMCI) (Eriksson et al., 2020). The inversion itself is cen-

tred around a retrieval database – a dataset containing ice
mass products and associated observations. The aim of the
algorithm is to map observations to ice mass products, using
the retrieval database as reference data. The input to the al-
gorithm is a vector of measurements, and the outputs are the
retrieval products (IWP, Zm, Dm) associated with the given
measurements. The measurements take the form of geolo-
cated and calibrated antenna temperatures. Alternatively, the
measurement vector can be replaced with a cloud signal, i.e.
a simulated clear-sky observation subtracted from the origi-
nal all-sky case. The ICI retrieval algorithm takes the latter
approach. This has the advantage of reducing the background
contribution to the observation, where Rydberg (2018) can be
referred to for more detail.

In Rydberg (2018), a retrieval database was developed
with the aim of testing the ICI retrieval algorithm and esti-
mating retrieval performance. Although the simulations were
detailed, this preliminary database was limited in some as-
pects. Particle orientation effects and three-dimensional (3D)
variability within clouds were not accounted for. The purpose
of this study is the development of a new and final retrieval
database for operational use in the L2 product and an up-
dated characterisation of expected retrievals. We refer to the
database of this previous study as the preliminary database.
The database generation method has been updated to reflect
any recent developments, and the limitations of the prelim-
inary database are addressed. This is discussed further in
the following section. The database generated in this study
is referred to as the new database or, simply, the retrieval
database. The development of the operational L2 product at
EUMETSAT was finalised with the completion of this new
retrieval database.

2.3 Numerical weather prediction

The main application of ICI is to provide global measure-
ments related to ice clouds in support of climate monitoring.
Another application area of ICI is numerical weather predic-
tion (NWP). ICI could be of some interest for assimilation
systems of clear-sky character; its radiances could provide
some additional information on humidity or could be used
for cloud filtering (Kaur et al., 2021) of MWI data. However,
as ICI is designed to constrain ice hydrometeor properties
(Buehler et al., 2007), its data will be most useful if used in
all-sky assimilation. As a consequence, the preparatory work
inside NWP and developing L2 products has considerable
overlap; both applications require development of radiative
transfer involving scattering of ice particles.

A common step in this direction was the EUMETSAT
study that resulted in the single-scattering data presented in
Eriksson et al. (2018), which were developed for use within
the Atmospheric Radiative Transfer Simulator (ARTS) soft-
ware (Buehler et al., 2018). This ARTS database is not
only used for the L2 retrievals of concern here, but parts
of it are now also incorporated in the leading NWP for-
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ward operators RTTOV (Radiative Transfer for TOVS) (Geer
et al., 2021) and the Community Radiative Transfer Model
(CRTM) (Moradi et al., 2022). One aim of Eriksson et al.
(2018) was to offer a broad set of particle shapes, and for
practical issues effects of particle orientation could not be
accommodated in this relatively large database. As a com-
plement, Brath et al. (2020) cover particle orientation for two
habits. The later data were developed for supporting research
and L2 retrievals but turned out to be vital for developing
a fast scheme to approximate the impact of particle orienta-
tion (Barlakas et al., 2021) inside RTTOV-SCATT (the mi-
crowave all-sky module of RTTOV). This development, in
turn, triggered an extension of the fast scheme that became
used in the production of the new retrieval database (Sect. 3).

The ARTS software itself is supporting NWP by acting
as a reference model (Barlakas et al., 2022a). Reversely, the
new microwave absorption model developed for RTTOV is
applied when running ARTS inside this study (Sect. 3.1).
Largely based on these efforts, there is already infrastructure
in place at the European Centre for Medium-Range Weather
Forecasts (ECMWF) to make use of ICI radiances in all-sky
assimilation (Duncan et al., 2024).

3 Retrieval database

The novelty of ICI lies in its ability to provide new and
unique observations at sub-millimetre wavelengths. How-
ever, this presents a challenge when creating a retrieval
database, given the current unavailability of sub-millimetre
observations. The retrieval database must be assembled in
the absence of actual observations, preventing the creation
of an empirically based database. Instead, it is necessary to
simulate ICI observations.

There have been several attempts at generating retrieval
databases of simulated sub-millimetre observations. One
early use of a retrieval database is Evans et al. (2002).
Stochastic cloud profiles were constructed based on the
in situ microphysical data, which are then used within
radiative transfer calculations. The result was simulated
brightness temperatures as they would be measured by the
aircraft-mounted Submillimeter-Wave Cloud Ice Radiometer
(SWCIR). A later attempt to develop a retrieval database is
detailed in Rydberg et al. (2007). This database was limited
to one-dimensional (1D) atmospheric states, used only sin-
gle frequency channels, and was limited to northern mid-
latitudes. The method was later extended (Rydberg et al.,
2009) to include CloudSat (Stephens et al., 2002) data in the
generation of 3D atmospheric scenes using a Fourier trans-
form algorithm, but simplified cloud microphysics remained
a limitation. Evans et al. (2012) performed ice water content
(IWC) retrievals using sub-millimetre flight campaign data.
The retrieval database was built upon stochastic hydrometeor
profiles that were generated using CloudSat radar reflectivi-
ties and microphysics probability distributions. The micro-

physical information was based on in situ data and is there-
fore detailed but limited by the region of flight and the loca-
tion of in-cloud sampling. In Wang et al. (2016), a synthetic
database of ICI observations was created by performing ra-
diative transfer calculations on simulated hydrometeor pro-
files. The database was successfully used to perform cloud
ice retrievals specifically for ICI but was limited to cases
over Europe. Finally, the preliminary database developed by
Eriksson et al. (2020) marked the most recent major develop-
ment. The database reflects global variability with regard to
atmospheric and surface scenarios. Additionally, the micro-
physical assumptions were improved. However, some areas
remain to be improved upon for the new retrieval database.

3.1 Overview

The reliability of the retrievals relies strongly on the quality
of the retrieval database. As such, there are several require-
ments placed on the database. Firstly, the database must con-
tain realistic simulations of the future ICI observations, thus
considering all relevant atmospheric, surface, and instrumen-
tal variables. Secondly, the database as a whole shall statis-
tically represent the variability of the observations. Finally,
to ensure successful inversions, there should be a sufficiently
large number of database cases to ensure that each obser-
vation matches multiple states. Therefore, a high number of
rigorous all-sky simulations must be performed.

To capture the global and annual variability of the observa-
tions, coverage was chosen to correspond to CloudSat over-
passes from 2009 and 2010. ERA5 was selected as ancillary
data to provide atmospheric, meteorological, and surface in-
formation for these overpasses. Further details are provided
in Sect. 3.2.

The basic strategy applied for the generation of the pre-
liminary database was found to be consistent with the re-
quirements and was therefore kept. However, several exten-
sions were required for the new database. Therefore, a full
reimplementation of the simulation environment was neces-
sary in order to increase the calculation efficiency in such a
way that the extensions were feasible. In particular, a sim-
plified description of the sensor was used for the generation
of the preliminary database. Incorporating a more complete
description of the antenna and channel responses in the new
database results in a significant increase in radiative transfer
calculations.

A second main area of improvement was to extend the
description of ice hydrometeor properties to include a non-
uniform probability of occurrence and a computationally ef-
ficient, approximate treatment of particle orientation. The lat-
ter was required to cover the polarisation response of ICI’s
channels, which was not accounted for in the preliminary
database. Remaining improvements include considering the
full interference of ozone in the atmospheric radiative trans-
fer calculations, a better description of the emissivity of
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Figure 1. Summary of the inputs, processes, and outputs of the retrieval database generation scheme.

snow-covered surfaces, and a small correction originating in
the calibration procedure.

The omission of a full antenna pattern has been a signif-
icant limitation in all previous attempts to develop retrieval
databases. If an observation is represented with a single pen-
cil beam calculation, the decrease in radiance caused by
the presence of ice hydrometeors tends to be overestimated
(Barlakas and Eriksson, 2020). Accordingly, the beam filling
must be captured (Davis et al., 2007). By including the along-
track antenna response, the preliminary database went fur-
ther than most earlier works. However, incorporating a two-
dimensional (2D) antenna response provided the largest chal-
lenge in the extension of the framework. This challenge had
several parts. Firstly, it raised the question of how to gener-
ate 3D atmospheric scenes based on CloudSat data that have
only a coverage of 2D character (height and along the track).
This was solved by implementing the method of Barker et al.
(2011).

The next consideration is how to perform the radiative
transfer calculations. Full 3D calculations are infeasible due
to the associated high computational burden. Instead, an in-
dependent beam approximation (IBA) was selected. This en-
tails sampling the atmosphere along a number of (slanted)
directions and performing local 1D radiative calculations.
This is followed by a weighting of the obtained pencil beam
brightness temperatures with the antenna response to obtain
the antenna temperature for each frequency. Barlakas and
Eriksson (2020) showed that this IBA approach, when ap-
plied within the frequency range of ICI, removes the sim-
ulation bias typically present for single pencil beam calcu-
lations, albeit with a smaller random error remaining. More
details are found in Sect. 3.5.

A summary of the inputs, process, and outputs of the sim-
ulation environment is given in Fig. 1. The different parts of
the framework are presented in the subsequent sections. For
further details, the reader may refer to the study report (Ry-

dberg et al., 2023). The content of the database delivered to
EUMETSAT is found in Table 1. The core variables of the
database are IWP, Zm and Dm, and corresponding simulated
ICI observations in the form of antenna temperatures Ta. The
atmospheric variables are antenna-weighted values, and there
is an assumption of remapped ICI data to a common footprint
(see Eriksson et al., 2020). An extended database containing,
for example, the profiles of ice water content underlying the
IWP values has been saved to be used for future research
purposes.

3.2 Generation of 3D hydrometeor fields

Cloud radars are currently the best source of information on
vertical cloud structure. The 94 GHz Cloud Profiling Radar
(CPR) aboard CloudSat provides measurements in the form
of radar reflectivities at 500 m vertical resolution, offering
nearly global coverage. CloudSat data from 2009 and 2010
were used, avoiding the fact that CloudSat offers only day-
time coverage since 2011. However, CloudSat offers only
2D data, lacking information in the across-track direction.
To expand into a 3D representation and therefore cover hor-
izontal cloud structure, the 3D cloud-construction algorithm
of Barker et al. (2011) was implemented. In the algorithm,
a 3D cloud structure is generated through the collocation of
passive satellite and 2D radar data. Both CloudSat and the
Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard Aqua are part of NASA’S A-train constellation, and
therefore collocated data from the two instruments exist. The
Barker algorithm was applied directly to CloudSat radar re-
flectivities, avoiding the use of retrieved data.

The 3D cloud structures obtained using the Barker algo-
rithm are then merged with ERA5 data to provide a full de-
scription of atmospheric gases, meteorological conditions,
and the surface type within the scene. The output is a 3D
scene containing all relevant atmospheric and surface param-
eters.
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Table 1. Variables included in the ICI cloud radiation retrieval database to be used operationally at EUMETSAT. Ice water path refers to the
total ice water path, i.e. both cloud ice water path and precipitating ice.

Variable Unit Description

Ta,cs,i K Simulated clear-sky antenna temperature for ICI channel i.
Ta,as,i K Simulated all-sky antenna temperature for ICI channel i.
1Ta,i K Simulated cloud signals in antenna temperature (Eq. 3).
τi – Cloud optical depth for ICI channel i.
IWP kgm−2 Ice water path (total).
Zm m Mean ice hydrometeor height by mass.
Dm m Mean particle size by mass, in terms of a mass equivalent spherical diameter.
RWP kgm−2 Rain water path.
LWP kgm−2 Liquid water path.
TCWV kgm−2 Column water vapour.
Surface type – Possible types: ocean, land, snow, sea ice, and mixed.
Surface pressure Pa –
Surface temperature K –
Surface wind m s−1 Surface wind speed.
Latitude degrees –
Longitude degrees –
Ice habit – Frozen hydrometeor model, incorporating habit and particle size distribution.

Finally, the 3D distributions of radar reflectivities are con-
verted to fields of hydrometeor contents. The relationship
between radar reflectivity and IWC is conditioned on mi-
crophysical assumptions (Kulie et al., 2010; Ekelund et al.,
2020). The reflectivities, based on the microphysics de-
scribed in Sect. 3.3, are calculated on a grid of IWC, leading
to a table of IWC–dBZ values and associated attenuation.
The inversion of radar reflectivities within a given scene to
IWC fields makes use of the lookup table, following the setup
described in Sect. 3.2 of Ekelund et al. (2020). The same ap-
proach is used for the generation of rain water content (RWC)
for temperatures above 0 °C. Liquid water content (LWC) is
taken from ERA5, since CloudSat is largely insensitive to
non-precipitating water. The final scenes each span approx-
imately 2000 km× 50 km in the along- and across-track di-
rection.

3.3 Ice hydrometeor particle models

At microwave and sub-millimetre wavelengths, scattering by
atmospheric ice has a significant effect on measured radi-
ances. Radiative transfer simulations for ICI therefore re-
quire assumptions on the optical properties of frozen hy-
drometeors. Six distinct particle models were implemented
for this purpose, where the term particle model refers to a
particle habit, an associated particle size distribution, and a
range of scaling factors to imitate orientation effects. The
six particle models are shown in Table 2. A greater number
of particle models are now used in simulations for the new
database than used for the preliminary database.

Since scattering calculations of ice hydrometeors are
computationally expensive, it is preferable that the single-

scattering properties are pre-calculated. Additionally, ice hy-
drometeors are highly variable in shape (O’Shea et al., 2016).
Taking these factors into consideration, the chosen habits re-
flect a sample of the standard habits present in the ARTS
single-scattering database (Eriksson et al., 2018), which of-
fers single-scattering data at microwave and sub-millimetre
wavelengths for hydrometeors ranging from simple liquid
spheres to more advanced ice aggregates.

The three particle models denoted with “AA” in Table 2
each use a mixture of two distinct habits: one for smaller
particles and one for larger particles. To represent large parti-
cles, aggregates are used. The smaller-particle habits are sin-
gle crystals that correspond in shape to the aggregate they
are paired with. For example, the large-plate-aggregate habit
is complemented with the thick plate crystal. These three par-
ticle models are intended to be generic, exhibiting different
levels of extinction (Ekelund and Eriksson, 2019). The name
used to represent the habit mixture under the “Habit” column
in Table 2 refers to the name of the large-particle habit, i.e.
the ARTS aggregate (AA) habit. The remaining three habits
used are an attempt to cover specific hydrometeor categories,
e.g. graupel.

Particle size distributions (PSDs) are sourced from Field
et al. (2007) (represented as F07 and available for both the
tropics and mid-latitudes) and Delanoë et al. (2014) (repre-
sented as D14). The inclusion of D14 is a new addition to
the database. A single-moment version is used, with the co-
efficients for the modified gamma taken from Table 4 in De-
lanoë et al. (2014), under “All (DARDAR)”. The parameter-
isation for N∗0 (T ), the intercept parameter of the normalised
size distribution, follows “DARDAR” in Table 5 of Delanoë
et al. (2014).
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Table 2. Particle models used within simulations of the ICI retrieval database, given alongside habit and particle size distribution (PSD). The
source for the PSD is given in each case. The aARO scaling factor is randomly chosen within the given range. Also given is the occurrence
fraction, or the probability that a given model is randomly selected for each atmospheric scene, denoted as pi .

Model Habit PSD aARO factor pi

AA1 Large plate aggregate F07 – tropics 1–1.6 0.3
AA2 Large column aggregate F07 – tropics 1–1.6 0.1
AA3 Large block aggregate D14 1–1.6 0.13
IWC Six-bullet rosette D14 1–1.6 0.2
Snow Evans snow aggregate F07 – mid-latitude 1.4–1.6 0.1
Graupel Eight-column aggregate D14 1–1.2 0.17

The assumption of totally random orientation (TRO) of
frozen hydrometeors is frequently made in radiative transfer
simulations of microwave observations. In reality, microwave
imagers observe polarisation differences, i.e. differences in
measured brightness temperatures between vertical (V) and
horizontal (H) polarisations (Defer et al., 2014; Gong and
Wu, 2017). This is consistent with the presence of oriented
ice particles. However, the small simulated polarisation dif-
ferences that arise when using TRO are far from realistic.
Therefore, we implement an approximation of azimuthally
random orientation (aARO) according to the scheme devel-
oped by Barlakas et al. (2021) and extended by Kaur et al.
(2022).

In the scheme, azimuthally random orientation effects are
mimicked by scaling the extinction values obtained from the
TRO assumption. This is achieved with a factor by which
extinction at V and H polarisation is weakened and strength-
ened, respectively. The factor is equal to 1.0 for TRO, and a
higher factor increases the difference between V and H po-
larisation. The factor for a given simulation is randomly se-
lected from within a pre-determined range, denoted as the
aARO factor in Table 2. Kaur et al. (2022) demonstrated that
the best performance at microwave wavelengths (166 GHz)
was achieved when using a uniform distribution between 1.0
and 1.4, although the result was somewhat dependent on
microphysics assumptions and thus may be adjusted ac-
cording to the choice of habit. To account for the pres-
ence of sub-millimetre wavelengths in ICI and thus poten-
tially larger polarisation differences, the distributions were
extended to 1.6 for most particle models. Additionally, Bar-
lakas et al. (2022b) demonstrated that asymmetry exists be-
tween the polarisations, and therefore a larger scaling was
applied to H polarisation than V polarisation.

Particle habit and PSD can both depend strongly on envi-
ronmental conditions and cloud type (Yau and Rogers, 1989)
and therefore do not occur at the same rate (O’Shea et al.,
2016). Additionally, the parameters describing the assumed
particle model (including the aARO factor) can have a strong
impact on the mapping of IWC from reflectivity inversions
(Ekelund and Eriksson, 2019). In light of these considera-
tions, the six particle models are not used with equal fre-

quency within the simulations. Instead, the selection of par-
ticle model to use within the simulations in a given scene is
a weighted random selection process, where the probability
of selecting a particle model follows a non-uniform probabil-
ity distribution. To assign the selection probabilities, a batch
of reflectivity–IWC inversions were performed for each of
the particle models. An overall distribution of IWC at an al-
titude of 8 km was constructed by weighting the IWC dis-
tributions from each individual particle model at the same
altitude. The weights were chosen according to three crite-
ria: firstly, each particle model should occur in a minimum
of 10 % of the database cases; secondly, the particle model
AA1 should occur in a minimum of 30 % of the cases, moti-
vated by its strong performance in previous studies (Ekelund
et al., 2020; Pfreundschuh et al., 2020; Geer et al., 2021;
Kim et al., 2024); and, finally, the weighted IWC distribu-
tion should agree with the true distribution of IWC, so far as
the previous two criteria allow.

In the absence of true IWC data, satellite observations are
used. The DARDAR (radar–lidar) product offers reliable re-
trievals of IWC (Cazenave et al., 2019). The product is de-
rived from the 95 GHz Cloud Profiling Radar (CPR), car-
ried on CloudSat, and the 532 and 1064 nm Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP), carried on
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation). The observed distribution used for our
analysis was calculated using the CloudSat-based product
DARDAR v3.1.

3.4 Radiative transfer

This section outlines the calculation of monochromatic pen-
cil beam brightness temperatures. The weighting of these
with sensor response data is discussed in the subsequent sec-
tion. The radiative transfer calculations were performed us-
ing the Atmospheric Radiative Transfer Simulator (ARTS)
(Buehler et al., 2018).

The static forward model input includes absorption data.
The data are taken from the following sources: nitrogen
(Liebe, 1993), oxygen (Rosenkranz, 1993), water vapour
(Mlawer et al., 2012), and ozone (Pickett et al., 1998). The
choice of absorption models for oxygen and water vapour
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followed recommendations of a EUMETSAT study updating
and developing RTTOV for sub-millimetre wavelengths (Fox
et al., 2024).

At frequencies below 325 GHz, surface contributions can
be non-negligible and the surface emissivity must be con-
sidered. Over ocean and land, simulations use the Tool to
Estimate Sea-Surface Emissivity from Microwaves to sub-
Millimetre waves (TESSEM2) (Prigent et al., 2017) and the
Tool to Estimate Land Surface Emissivity from Microwave
to Submillimeter Waves (TELSEM2) (Wang et al., 2017).
TELSEM2 provides full emissivity parameterisations up to
85 GHz for all land and sea-ice surfaces, except for new and
first-year ice where an extension up to 183 GHz is made.
Above these frequencies, constant surface emissivities are
generally assumed. However, Harlow and Essery (2012) ob-
served increasing emissivity with frequency for stratified
snow and decreasing emissivity with frequency for new
snow. Additionally, at higher frequencies, Wang et al. (2017)
found some disagreement between retrieved sea-ice emissiv-
ities from ISMAR observations and TELSEM2 sea-ice emis-
sivities. Therefore, we developed an empirically based prob-
abilistic model for snow and sea-ice surface types. Emissivi-
ties at both V and H polarisations are generated from a mul-
tivariate Gaussian distribution. The ranges of the distribu-
tions were determined using emissivities from Hewison et al.
(2002), Harlow (2009), and Harlow and Essery (2012). The
means, variances, and correlation matrices of the distribu-
tions are built on emissivity retrievals performed in Munchak
et al. (2020). At frequencies of 183 GHz and greater, we use
Risse (2021) for reference values. Beyond 243 GHz, constant
emissivities are assumed.

It was judged too computationally expensive to perform
all calculations with a full scattering solver. Instead, two sets
of monochromatic pencil beam calculations were performed.
Clear-sky radiances were calculated with nominal humidity
or with relative humidity fixed to 50 %. These calculations
excluded all hydrometeors and were performed for multiple
frequencies inside each of ICI’s passbands.

All-sky simulations were made with ARTS’ interface to
the DISORT (Discrete Ordinate Radiative Transfer) scatter-
ing solver, at one frequency per passband. The DISORT algo-
rithm uses the discrete ordinate method to solve the radiative
transfer equation in a multi-layered medium, handling the ab-
sorption, emission, multiple scattering, and lower-boundary
reflection of monochromatic radiation (Stamnes et al., 1988).
For reference, a clear-sky DISORT run was also made. How
these calculations were combined to obtain final values is dis-
cussed in the following section.

3.5 Sensor characteristics

Radiances observed by the ICI antenna depend on the fre-
quency response and the angular response of the sensor, and
both of these factors must be taken into consideration.

Measured spectral response functions vary within the
channel passbands. Therefore, if a constant spectral response
function is applied, a bias in brightness temperature may
occur. The effect was seen to be strongest for channels
06V (325.15± 3.50 GHz) and 09V (448.00± 7.20 GHz). To
avoid such bias, the full spectral response functions, based
on measured ICI data, are now included for all channels.

As briefly discussed in Sect. 3.4, clear-sky calculations are
performed for multiple frequencies. The spectral radiances
must be obtained on a frequency grid with a resolution that
is fine enough to capture variation of the spectral response
function over the passband (resolution of 10 MHz). To lessen
computational load, simulations are run for a reduced num-
ber of frequencies across the sideband and then interpolated
onto the finer grid. The number of frequencies per sideband
to be simulated was allowed to vary between channels. The
number for each channel was chosen such that the resulting
uncertainties contribute less than 5 % of NE1T. The number
needed to fulfil this criterion largely depends on the contam-
ination of ozone at the given frequency; e.g. the 664 GHz
channel requires the highest amount at 25 frequencies per
sideband. Due to the high computational cost, all-sky simu-
lations are performed using only the centre frequency of the
two sidebands.

After application of the spectral response function, spec-
tral radiances are converted to a brightness temperature for a
given channel using the inverse Planck function. The conver-
sion of spectral radiances to brightness temperatures can be
well approximated by the linear relationship:

Tb =
B−1(fcentre,Ri)− bi

ai
. (1)

B−1 is the inverse Planck function, Ri is the spectral radi-
ance for channel i, and fcentre is the nominal centre frequency
of the channel. ai and bi are band-correction coefficients
that are derived pre-launch, based on the characteristics of
the channel spectral response function. The coefficients were
provided by EUMETSAT.

The incorporation of the full 2D antenna response is nec-
essary in order to avoid beam-filling errors. This is a partic-
ularly important consideration for ICI due to the relatively
large footprint size. To perform the antenna weighting, data
are integrated over the sensor field of view:

Ta =

∫
�

Tb(�)G(�)d�. (2)

G(�) is the normalised antenna gain function, provided by
EUMETSAT, and� is the solid angle. The pattern associated
with the 183 GHz channel is applied to all channels to be con-
sistent with the remapping of data within the operational al-
gorithm. Ta is a simulated antenna temperature that matches
a remapped observation on the sub-point of the satellite orbit.

To accurately estimate Ta, the Tb field over the antenna
footprint should be relatively dense. However, achieving this
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purely with simulations would not be computationally feasi-
ble. This was solved by using fewer pencil beam simulations
arranged in a pre-determined configuration within a foot-
print. The simulations are then interpolated onto a finer grid.
Within the convex hull of the simulations, a linear interpo-
lation is performed. Outside this region, a nearest-neighbour
extrapolation is applied.

The configuration of pencil beams will have an impact on
the accuracy of antenna-weighted data, but a high number
of simulations is undesirable. To achieve better efficiency
of the ARTS calculations, the 3D scenes were divided into
parallel 2D slices oriented in the along-track direction. As a
consequence, the arrangement of pencil beams consists of a
number of tracks corresponding to the 2D slices. In order to
determine a configuration that gives a reasonably low final
error, a number of combinations of tracks and spacing along
the track were tested. Once simulations were performed for a
given configuration, the interpolation onto the finer grid was
performed and Eq. (2) was applied. To provide a reference
value for the error calculations, Ta was also calculated using
simulations performed for each point on the finer grid.

The chosen configuration used simulations spaced approx-
imately 4.4 km apart along the centre track, i.e. the satellite
sub-point. This spacing was successively doubled for each
track away from the centre. A total of 38 pencil beam simu-
lations spaced across 11 tracks are used to represent the spa-
tial variation of brightness temperatures in each final antenna
temperature. Overall, the reduction in the number of simu-
lations achieved approximately zero bias and a standard de-
viation of 0.5 K. This standard deviation is an average over
all cases tested and is generally low for clear-sky cases but
increases with hydrometeor impact.

To compute the Tb field at a specific location, a target po-
sition is selected. The position is located along the centre
track, imitating the boresight of the antenna directed towards
the target. Targets were selected such that the along-track
distance between the database Ta values is approximately
8.9 km. As a result, there is some overlap in the antenna
patterns used to calculate each Ta. Upon selection of a tar-
get, the sensor position must be calculated. A challenge then
arises when deciding on which incidence angle to use. While
all channels produce a common footprint pattern, their in-
stantaneous footprints at surface level are not located at the
same position due to variation in incidence angle (Table 1
of Eriksson et al., 2020). To address this, the same ground-
level footprint was assumed for all channels. The position of
the sensor was then adjusted based on the relevant incidence
angle, accommodating the variation between channels.

The re-gridding of brightness temperatures is performed
on an area bounded by (± 0.7°, ± 0.8°) in zenith and az-
imuthal angle relative to the sensor line of sight, respectively.
This is approximately equivalent to twice the full width at
half maximum (FWHM) of the antenna pattern. Each set of
clear-sky and all-sky simulations is weighted with the an-
tenna response function separately.

The measurement vector, to be used in the operational
L2 retrieval for ICI, consists of cloud signals for each
ICI channel. The cloud signal is obtained by subtracting
a clear-sky simulation from the observed antenna tempera-
ture. The clear-sky antenna temperature is simulated using
RTTOV, incorporating geophysical data from ECMWF. The
data include atmospheric temperature, surface wind speed,
ozone, and surface characteristics. Since humidity data from
ECMWF can be unreliable, a fixed relative humidity is used
within the simulations. Further details on the geophysical
data used, and the humidity profile in particular, can be found
in Sect. 3.4.3 of Eriksson et al. (2020).

The objective for generating a cloud signal is to decrease
the contribution from the background. In the case of the
database, a cloud signal can be obtained from the differ-
ence between an all-sky simulation and an all-sky simula-
tion excluding hydrometeors, i.e. the clear-sky DISORT run
introduced in Sect. 3.4. This value can be viewed as a true
cloud signal, but there is a risk that uncertainties arising from
non-perfect humidity data could be introduced. To adjust for
the inclusion of ECMWF data and be consistent with the
measured ICI cloud signal, the quantity 1Ta is introduced.
Within 1Ta, the two clear-sky runs are also included as fol-
lows:

1Ta = Ta, cs+ Ta, as− Ta, as, no-hm− Ta, cs,fixed-rh. (3)

Ta, cs refers to a clear-sky antenna temperature, Ta, as to all-
sky, Ta, as, no-hm to a simulation with no hydrometeors in-
cluded, and Ta, cs,fixed-rh to a simulation with fixed relative
humidity.

Overall, passband properties are captured well in clear-sky
simulations. An increasing amount of scattering in simula-
tions (i.e. higher1Ta) leads to progressively worse represen-
tation of the passband and thus additional simulation uncer-
tainty. However, this uncertainty is small compared to uncer-
tainties arising from other aspects of the simulation, such as
hydrometeor assumptions and the neglect of some 3D effects
(Barlakas and Eriksson, 2020).

3.6 Output

The database consists of ∼ 9.4× 106 cases, where each
case is a set of simulated ICI radiances within a remapped
footprint, accompanied by aforementioned cloud ice vari-
ables. Simulations were performed using 5× 104 atmo-
spheric scenes. Each database case consists of the quanti-
ties given in Table 1. An example of simulation outputs for a
given swath is shown in Fig. 2.

4 Retrieval approach

The retrieval of atmospheric quantities is an ill-posed prob-
lem in the sense that for a given observation there may
be more than one solution describing the underlying atmo-
spheric state due to the associated uncertainties. Observation
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Figure 2. Representation of simulation outputs across the flight di-
rection of CloudSat. IWC, RWC, and LWC (top) are not included
in the cloud radiation retrieval database to be used operationally but
calculated as an intermediate step. Also shown are Zm, IWP, LWP,
RWP, TCWV, and Ta for all ICI channels, where Table 1 can be
referred to for variable definitions. Ta lines are plotted with a gradi-
ent colour, where increasing lightness of colour indicates increasing
frequency.

uncertainties are generally known only statistically, implying
that a retrieval method that retrieves only a single quantity
from an observation is unsuitable for the problem at hand.
Instead, it is more appropriate that the retrieval is given in
the form of a probability density function (PDF) (Rodgers,
2000).

A Bayesian approach is the obvious method if one wishes
to perform probabilistic retrievals. Within a Bayesian frame-
work, the solution to the inverse problem is provided in the
form of a posterior distribution p(x|y), representing the dis-
tribution of possible states conditional on the observation.
Since the posterior distribution represents our knowledge of
the retrieved quantity after taking into account observations,
prior beliefs, and measurement and model uncertainties, it
offers a natural way to characterise the uncertainty of the re-
trieval.

Commonly used inversion methods such as the optimal
estimation method (OEM) do adopt a Bayesian framework,
albeit a simplified version that produces an approximately
Gaussian posterior. However, this becomes unsuitable in the
presence of the non-Gaussian statistics and the non-linearity
of the forward model that often characterise the retrieval
problem (Pfreundschuh et al., 2018).

Bayesian Monte Carlo integration was shown to be suc-
cessful in the context of ICI retrievals (Eriksson et al., 2020)
and will be used in the ICI side of the L2 product at EU-
METSAT. However, after the operational algorithm was fi-
nalised, quantile regression neural networks (QRNNs) began
to emerge as an alternative. QRNNs have been shown to per-
form successful probabilistic retrievals (Pfreundschuh et al.,
2018) in the sense that they allow for the estimation of a
distribution rather than a single point estimate. Several stud-
ies have successfully implemented QRNNs in the retrieval
of cloud ice products (Amell et al., 2022). The method also
has the potential to perform inversions of an entire swath,
since it can make use of the spatial information from observa-
tions within the area of interest (Pfreundschuh et al., 2022a).
There are other retrieval approaches that allow for uncer-
tainty quantification. One such approach is to use a Bayesian
neural network (BNN). BNNs have the strength of being able
to estimate both aleatoric and epistemic uncertainty and have
been successfully used to retrieve of IWP and Dm (Dong
et al., 2023). However, Pfreundschuh (2022) observes that
aleatoric uncertainty is often the dominant source of uncer-
tainty in the retrieval problem, which QRNNs are suited to
handle. Furthermore, BNNs take more time to train and eval-
uate. Since the QRNN approach has established itself as a
faster and more flexible approach to the retrieval problem,
it became the obvious choice for our test ICI retrievals. A
description of the QRNN approach is given in Appendix A,
and details on the configuration of the model are provided in
Appendix A1.

5 Results and discussion

5.1 Simulation of other instruments

The success of the inversion method is highly reliant on the
simulation quality of the database. Due to the lack of real ICI
observations, assessing whether the simulations are consis-
tent with reality becomes challenging. The approach taken to
address this difficulty was to conduct simulations of similar,
existing instruments, namely the Global Precipitation Mea-
surement (GPM) Microwave Imager (GMI), the Microwave
Airborne Radiometer Scanning System (MARSS), and the
International Submillimetre Airborne Radiometer (ISMAR).
The simulated radiances were subsequently compared to real
observational data. Since actual flight paths were not sim-
ulated and the time period considered differs between sim-
ulation and observation, the comparisons were made in a
statistical sense. Simulation of GMI allows for a compari-
son of global simulations, whereas simulation of ISMAR and
MARSS functions as a regional study with the advantage of
covering sub-millimetre wavelengths.
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5.1.1 Simulation of GMI

The GMI instrument is a satellite-borne conically scan-
ning microwave radiometer operating at frequencies rang-
ing from 10 to 183 GHz. We simulated observations from
the four high-frequency GMI channels that measure at 166
and 183 GHz. The two 183 GHz channels were chosen due
to the benefit of the overlap with the ICI 183 GHz channels.
The two 166 GHz channels measure at V and H polarisation
and thus offer the opportunity to test the improvements to the
simulation framework with regard to polarisation and parti-
cle orientation. The simulations used GMI sensor character-
istics, i.e. incidence angle, spectral response function, and
footprint size. To account for GMI instrument error, noise
was added to the simulated Ta in the form of samples from
a zero-mean Gaussian distribution with standard deviation
according to Table 1 in Kaur et al. (2022). Since GMI has
only been operational since 2014, simulations are compared
to GMI observations from 2020.

The 1D and 2D distributions of Ta show good agreement
between observations and simulations, although a few small
discrepancies are present (Fig. 3). In the 1D distributions,
the peak at high Ta corresponds to clear-sky cases. There
is strong agreement in the peaks. However, the observations
reach slightly higher temperatures in the case of the 166 GHz
channels. It was found that these cases occurred in desert re-
gions. The reason for this difference is likely that the emissiv-
ities assumed in the simulations are too low. TELSEM land
emissivities are derived only for 85 GHz, and it is not known
if the extension to 166 GHz remains valid. This highlights
the need for improved estimates of emissivities at higher fre-
quencies. A second potential reason is that the ERA5 skin
temperatures used in the simulations are too low in desert
regions.

Good agreement is also seen for most cases with cloud
impact (lower Ta). There is some disagreement at the lowest
temperatures, where it can be seen that cases of Ta< 100 K
are present in the observations and not in the simulations.
However, these observed cases occur below a probability
density of 10−6 K−1. Since the simulation distributions are
computed with only ∼ 7×106 cases, it is unsurprising that
scenarios of Ta< 100 K are not well represented in the simu-
lations.

The aim of simulating GMI is not necessarily to achieve
perfect agreement with observations, since we do not simu-
late the same time frame and flight paths that the observations
cover. Rather, it is important that the simulations fully cover
the variability of the observations. Aside from the region of
Ta< 100 K and Ta> 300 K, this holds true.

Although cloudy simulations do agree well with observa-
tions, there is room for improvement. One factor to consider
is the particle models, which could be fine-tuned to better
capture the behaviour of the observations. For example, the
particle model could be selected based on the cloud type,
as would be the case in reality. However, we will wait for

real ICI observations to make adjustments to the simulation
setup, including the particle models. This allows us to com-
pare the distribution of Ta across all 13 ICI channels, provid-
ing a more comprehensive validation.

When comparing the joint distributions, simulations and
observations are in good agreement on both the extent of the
correlations and the location of the contour levels. Again, the
observed distributions extend to lower temperatures than the
simulations, which is expected due to fewer simulations in
total. There is a clear difference between the 166V and 166H
channel Ta. This implies that the introduction of the approxi-
mation of azimuthally oriented particles in the new database
produces the required effect in the simulations. To further
check the agreement on polarisation effects, the polarisation
difference was plotted (not shown) against the 166V chan-
nel Ta, across a range of surface types. The resulting figures
were very similar to Fig. 4 in Kaur et al. (2022). Likewise,
good agreement between the simulations and observations
was found, confirming that the simulations capture the vari-
ability in polarisation difference in the case of the 166V and
166H channels.

5.1.2 Simulation of ISMAR and MARSS

ISMAR is a sub-millimetre radiometer that operated on flight
campaigns that serve as airborne demonstrators for ICI (Fox
et al., 2017). Also aboard the aircraft were MARSS radiome-
ters (McGrath and Hewison, 2001), providing measurements
at microwave wavelengths. Together, the observations cover
the range of ICI channel frequencies. In the case of the
325.15± 1.5 GHz channel, only observations prior to 2019
were used due to issues with later flights.

Individual flights were not simulated. Instead, simulations
were performed within a subset of the 3D scenes used for cre-
ating the ICI retrieval database (similarly to the GMI simula-
tions). The location of the simulations and the observations
used is shown in Fig. 4. Noise was added to simulations ac-
cording to Table 3 in Fox et al. (2017).

Similarly to the GMI simulations, the aim of this compar-
ison is to verify that the simulated data span the measure-
ment space of real observations. Generally, the variability of
brightness temperatures present on the flight campaigns is
well captured by the simulations (Fig. 5). There are a small
number of cases where observations lie outside the simula-
tions. However, it is likely that some observations suffer from
higher noise than specified in Fox et al. (2017), possibly ex-
plaining the discrepancies. This is most evident in the distri-
butions of the channel at 325.15± 3.50 GHz.

Similar features are present in both the simulations and
the observations. For example, there are two distinct arms
of data visible in many of the plots in Fig. 5. In the case
of channels with low surface sensitivity, the two arms cor-
respond to clear-sky and cloudy cases. This can be seen
clearly in the joint distribution of the 183.25± 3.00 and the
325.15± 9.50 GHz channel. The clear-sky cases follow the
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Figure 3. Distributions of simulated (green) and observed (orange) antenna temperatures Ta for four high-frequency GMI channels, simulated
using the database generation framework developed for ICI. The plots in the upper-right triangle are identical to those in the lower-left
triangle but simply have the simulations plotted over the observations rather than under. Contour lines in the joint distributions (off-diagonal)
correspond to (10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7) K−2. Samples that occur in Ta bins with a probability density of less than
10−7 K−2 are represented by the scatter points in the joint distributions. GMI observations are taken from the year 2020. The simulations
and observations both lie within the latitude range of [−60°, 60°].

Figure 4. Locations of observations from the ISMAR and MARSS
flight campaigns are displayed in panel (a), using cases where flight
altitude was greater than 9 km. Locations of the simulated ISMAR
and MARSS observations are displayed in panel (b).

identity line. The arm that diverges from the identity line is
a product of scattering due to ice hydrometeors. It extends to
increasingly colder Ta as the difference between channel fre-
quencies increases. Such an effect is attributed to the scatter-
ing strength increasing with frequency. However, this is not
always the case; the channel at 183.25± 7.0 GHz produces
lower temperatures relative to the channel at 325.15± 3.50.
This is due to the lower-frequency channel having higher at-
mospheric transmission than the high-frequency channel and
therefore interaction with a larger fraction of the column of
hydrometeor ice.

In channels sensitive to the surface, the arm arises from
the surface contribution. The effect is most evident in chan-
nels at the same frequency but different polarisations, such
as for the two channels at 243.20± 2.50 GHz, where a sig-
nificant polarisation difference can be seen. This is more ev-
ident in the case of the simulations, where the polarisation
difference reaches 50 K. Such high polarisation differences
are attributed to dry conditions over the ocean, of which there
are significantly more cases present in the global simulations
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Figure 5. Comparison of observations (orange) from the ISMAR and MARSS flight campaigns and simulations (green) of ISMAR and
MARSS using the database generation framework. The plots in the upper-right triangle are identical to those in the lower-left triangle but
simply have the simulations plotted over the observations rather than under. The channels are labelled according to their centre frequency,
with the corresponding sensor and the frequencies given to a higher precision found in Table B1.

than in the limited region covered by the flight campaigns, as
shown in Fig. 4.

5.2 ICI database radiances

The 1D and 2D distributions of simulated Ta across all ICI
channels are displayed in Fig. 6. A relatively large spread
can be observed in the joint distributions between most chan-
nels, suggesting that all channels contain some independent
information. It can also be noted that in the case of the
243 GHz channels and the 664 GHz channels, the 2D dis-
tributions show a polarisation difference (the difference be-

tween vertically and horizontally polarised channels), which
was absent in the preliminary database. The polarisation dif-
ference is displayed as a function of the vertically polarised
Ta in Fig. 7. Horizontally polarised channels generally result
in colder Ta, leading to predominantly positive polarisation
differences. The 243 GHz channel is sensitive to the surface,
and therefore polarisation differences due to both surface and
cloud impact can be seen in panel (a) of Fig. 7. Polarisation
differences arising from surface interactions (high-Ta cases)
extend higher than cloud-impacted cases.

In the absence of the surface, the polarisation difference
depends on particle orientation, among other microphysical
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Figure 6. Distributions of simulated brightness temperatures for all ICI channels. ICI channels are labelled with their centre frequency,
and the frequencies at higher precision can be found in Table 1 of Eriksson et al. (2020). When polarisation is not indicated in the label,
the channel is V polarised. Contour lines in the joint distributions (off-diagonal) correspond to (10−1, 10−2, 10−3, 10−4, 10−5, 10−6,
10−7) K−2. Samples that occur in Ta bins with a probability density of less than 10−7 K−2 are represented by the green scatter points in the
joint distributions.

properties such as size and shape (Brath et al., 2020). We
stress that the results shown here are simulations and not
observations. Our simulations apply the same aARO factor
and particle model across a given cloud column. This likely
reduces the variation in polarisation difference between the
channels, despite different sensitivities to altitude and parti-
cle size. Kaur et al. (2022) demonstrated that simulations per-

formed at 166 and 660 GHz, sampling across the same range
of the aARO factor and employing the same microphysics,
led to a higher maximum polarisation difference at 166 GHz.
If we extend the same conclusion to our ICI simulations, it is
possible that a higher polarisation difference would be seen
at 243 GHz when neglecting the surface, albeit small.
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Figure 7. Polarisation differences as a function of Ta at V polarisation, plotted as contours of the 2D normalised probability density function.
The distribution at 243 GHz is shown in panel (a), and the distribution at 664 GHz is shown in panel (b). Contour lines correspond to (10−1,
10−2, 10−3, 10−4, 10−5, 10−6, 10−7) K−2. Samples that occur in bins with a probability density of less than 10−7 K−2 are represented by
the green scatter points.

The features discussed in Sect. 5.1.2, i.e. the two distinct
arms of data, are also present in the ICI simulations, confirm-
ing that the simulations are capable of emulating real physi-
cal behaviour.

Degrees of freedom

Retrievals will depend on the sensitivity of ICI observations
to atmospheric conditions, above the instrument noise level.
To assess the sensitivity, we performed an analysis of the de-
grees of freedom (DoFs) of the simulated ICI radiances. The
DoF was calculated as a function of IWP and water vapour
across all latitudes for both the new database and the pre-
liminary database. The DoF quantifies the number of inde-
pendent variables free to vary and may be considered to be a
measure of the information content of a measurement in the
presence of noise.

The DoF is essentially a comparison between the variance
of the measurements and the variance of the measurement
noise, conducted in eigenspace. To achieve this, an eigende-
composition of the covariance matrix Sy of noise-free simu-
lated Ta is performed:

Sy = E3ET, (4)

where E is the matrix whose columns contain the eigenvec-
tors of Sy , and 3 is a diagonal matrix containing the eigen-
values. The diagonal matrix Sε is constructed to hold NE1T2

in its diagonal elements and transformed to eigenvalue space:

S3 = ESεET. (5)

The DoF can then be calculated as the number of eigenval-
ues that are larger than the corresponding diagonal element
of S3. In the context of ICI, it can be interpreted as the effec-
tive number of channels.

Figure 8a presents the DoF of the simulated ICI obser-
vations as a function of IWP and water vapour. The over-
all trend in DoF is consistent with Fig. 8 in Eriksson et al.
(2020), although the DoF is now calculated across all lati-
tudes rather than only the tropics. An increase in either water
vapour or IWP corresponds to an increase in DoF, although
the change in DoF is much larger over the range of IWP. The
general conclusion drawn from this result is that ICI is sen-
sitive to humidity but demonstrates strong sensitivity to ice
hydrometeors.

We applied the same DoF analysis to both the new
database and the preliminary database, and the resulting dif-
ference in DoF is presented in Fig. 8b. Overall, there is an
increase in DoF; a positive difference in DoF is present for
all but very humid, clear-sky conditions, and a decrease in
DoF never occurs. The DoF changes depending on both wa-
ter vapour and IWP conditions, ranging from 3 (clear, hu-
mid conditions) to 10 (very cloudy, humid conditions). The
change relative to the preliminary database ranges from 0
to 3. In order to understand this variation in DoF, the regions
of Fig. 8 must be considered separately.

In the scenario of high WV and low IWP, a DoF of 3 to 4
is found. This is consistent with the three channels that sur-
round each of the water vapour molecule transitions covered.
A total of nine ICI channels cover three transitions, leading to
redundancy between these channels and thus a relatively low
DoF. The majority of this region sees no change in DoF rela-
tive to the preliminary database, although a small increase of
1 DoF can be seen for the highest-water-vapour cases.

Under conditions of low WV and low IWP, the DoF in-
creases to 5 and 6 due to increased sensitivity to lower levels
of the troposphere and the surface. This corresponds to an
increase of 1 DoF to 2 DoFs from the preliminary database.
This is likely due to the inclusion of V and H polarisation for
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Figure 8. The estimated degrees of freedom (DoFs) of the simulated observations within the ICI retrieval database are presented in panel (a).
The DoFs are given across total column water vapour (WV) and IWP. Shown in panel (b) is the difference in DoF achieved with the new
retrieval database and the preliminary database found in Eriksson et al. (2020). Cases at all latitudes are included.

the 243 GHz channel, allowing surface effects to be better
captured.

For IWP ≥ 40 g m−2 (slightly above ICI’s sensitivity
threshold), the DoF does not go below 6. A steady increase
in DoF occurs with increasing IWP. When comparing to the
preliminary database in the region of IWP above the sensi-
tivity threshold, an increase of 1 DoF to 2 DoFs is achieved
throughout.

The maximum DoF found is 10, occurring in the region
of very high IWP and water vapour. This corresponds to an
increase of 3 DoFs relative to the preliminary database. Al-
though a DoF of 13 would be consistent with the number
of channels, such a high value is not necessarily expected
due to correlation between the channels (see Fig. 6) and the
higher noise present for some channels decreasing their con-
tribution. However, as discussed previously, a relatively large
spread can be seen in the joint distributions between all chan-
nels, suggesting that every channel contributes to the DoF.

To investigate the contribution of channels to the DoF, we
recalculated the DoF across four datasets (results are not
shown), each excluding channels centred on a single fre-
quency: 243, 325, 448, or 664 GHz. When excluding the
surface-sensitive 243 GHz channels, a significant decrease
in DoF occurred for conditions of low water vapour and
low IWP, i.e. conditions at which the surface is somewhat
visible. The 325 GHz channels and the 448 GHz channels
cover water vapour transitions. As expected, removing ei-
ther of these sets of channels led to a decrease in DoF for
all low-IWP cases across the entire range of IWP. Exclusion
of the 325 GHz channels also lowered DoF for low-WV and
high-IWP values, whereas exclusion of the 448 GHz chan-
nels leads to a more prominent decrease in the region of high
WV and low IWP. This suggests that, although both sets of
channels cover water vapour transitions, neither set is redun-
dant and both contribute to ICI’s overall sensitivity. Finally,
removal of the ice-hydrometeor-sensitive 664 GHz channel

led to a decrease of up to 2 DoFs for all high-IWP cases. In
fact, all channels led to a small decrease in DoF for high-IWP
values, implying that every ICI channel can play a role in the
retrievals.

To assess the impact of the introduction of polarised chan-
nels in the database, we conducted an additional analysis of
the DoF on a polarisation-free version of the new database
(results are not shown). Namely, we replaced the individual
observations from V and H polarised channels at the same
frequency with their mean value. A decrease of at least 1 DoF
was observed over the entire region of IWP ≥ 40 gm−2, with
a decrease of 2 in the high-IWP and high-WV region. This
leads to a maximum DoF of 8. Despite the decrease in DoF
in this region, there still remains an overall positive differ-
ence in DoF between the new database and the preliminary
database. In the region of low IWP and low WV (conditions
under which the surface can be seen), a drop of 1 DoF to
2 DoFs occurred, resulting in little difference relative to the
preliminary database.

To check the impact of now assuming 75 % NE1T, an-
other analysis was performed using the original noise val-
ues of NE1T (results are not shown). The maximum DoF
achieved was 8, with an overall decrease in DoF seen across
the entire region of high IWP. Small decreases were seen
elsewhere, but these were not major.

Although the analyses performed were relatively simple,
they do allow us to infer that both the introduction of polar-
isation and the reduction in noise have improved the DoF of
the database. Additionally, increases to the DoF relative to
the preliminary database still occurred when attempting to
remove the influence of these factors. We conclude that other
developments to the database (see Sect. 3.1) also play a role
in the increases in DoF, although further analysis is required
to quantify this further.
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5.3 Ice water path retrievals

A QRNN was trained on a subset of the database and subse-
quently used to retrieve IWP,Dm, and Zm from observations
in a separate subset. The success of the retrievals was eval-
uated through a comparison of retrieved cases to true cases.
Evaluating a probabilistic estimate against a single true value
can be challenging unless done on a case-by-case basis. To
compare a set of retrieved distributions with the truth, a point
estimate must be selected from each distribution. There are
several options for choosing a point estimate. One simple op-
tion is to calculate the mean of the distribution. To do so, a
cumulative distribution function (CDF) is constructed by in-
terpolating between the retrieved quantiles and extrapolating
to 0 and 1 outside the minimum and maximum quantiles, re-
spectively. The first moment of the predicted PDF provides
the mean. An alternative choice of point estimate is to take
a single random sample from a posterior distribution, where
the posterior distribution is computed through an interpola-
tion of the inverse CDF. By definition, a mean does not con-
tain information on the values present in the tails of a distri-
bution. In contrast, there is some probability that a random
sample from the posterior will fall within this region. There-
fore, a large set of point estimates obtained by randomly sam-
pling the distributions is expected to capture more extreme
cases.

When comparing retrievals directly to the database values,
we use the mean as the point estimate. The mean, median,
16th quantile, and 84th quantile of all retrieved means are
subsequently calculated as a function of the database val-
ues, primarily to provide a visual comparison. The remaining
statistics, such as bias and correlation coefficient, are com-
puted on the complete set of posterior means.

Retrieval performance for IWP is presented in panel (a)
of Fig. 9. In the case of IWP retrievals, the correlation co-
efficient is found to be r = 0.87. The overall bias for re-
trievals of IWP> 1 gm−2 is −4 gm−2. We note that the bias
can be a misleading statistic due to its capacity to be influ-
enced by the density of samples in a particular region or
if the data range across orders of magnitude. Alternatively,
Fig. 9 offers a qualitative, and perhaps more intuitive, rep-
resentation of the bias. The median follows the true val-
ues closely for 10 gm−2< IWP< 1.7 kgm−2. Retrievals at
IWP> 1.7 kgm−2 display a negative bias, likely due to fewer
of these cases present in the training data. Values in this re-
gion are the main contributors to the negative bias. The over-
all bias is therefore small relative to these influential high-
IWP values. IWP data less than 1 gm−2 are not represented
in the figure but have an overall positive bias of 2 g m−2. A
positive bias appears in the median at IWP< 10 gm−2 and
in the mean at IWP< 15 gm−2. The increasing uncertainty
and bias of the retrievals in this region can be attributed to
the fact that observations become progressively less sensi-
tive to smaller amounts of ice mass, due to the low cloud im-
pact of these cases. The effect can be seen in the decreasing

gradient of the mean and median with decreasing IWP. The
overall bias across all IWP retrievals is 0.6 gm−2, indicating
that there is a trade-off between the negative and positive bias
present for low and high IWP, respectively.

Statistical distributions were made for both retrieved cases
and database cases and subsequently compared to DARDAR
(Fig. 10). The comparison is motivated by the fact that suc-
cessful retrievals are meaningful only if the true cases are
themselves realistic. DARDAR IWP was obtained by inte-
grating column-wise all IWC data available in the DAR-
DAR v3.1 product for the year 2010. Both of the aforemen-
tioned retrieval point estimates were used and compared to
the database simulations and to DARDAR.

Good agreement is seen for all data in the overall
distribution (shown in Fig. 10a). Since the retrieval dis-
tributions match the database, this is an indication that
the retrievals are successful in a statistical sense. The
model does not appear to be biased within the region of
10−3 kgm−2

≤ IWP≤ 102 kgm−2. This is supported by the
model statistics computed for this region (see Fig. 9).

In the zonal mean (shown in Fig. 10b), all distributions
agree relatively well. Although the retrievals appear higher
than the database around the Intertropical Convergence Zone
(ITCZ), plotting the zonal mean of the test set (not shown)
showed comparably high values. This indicates that there is
no problem with the retrievals in this region; instead, the
high values are an artefact of predicting on a subset of all
the overall data. At northern mid-latitudes, retrievals appear
somewhat low. However, this difference was notably reduced
when again plotting the test set (not shown). However, unlike
around the ITCZ, retrievals still appeared slightly lower than
the test set data at 55° N. We attribute this to poorer retrieval
performance at mid-latitudes (discussed further in Sect. 5.5).
Specifically, retrievals at mid-latitudes appear to underesti-
mate the high-IWP cases which have a large influence on the
zonal mean calculations.

The database simulations and, by extension, the retrievals
achieve a higher probability density of high-IWP values than
in DARDAR, which is visible in Fig. 10a. The DARDAR
distribution drops sharply for IWP> 10 kgm−2, whereas the
other distributions continue to higher IWP. However, we do
not aim to simply reproduce the variability of DARDAR
data. In fact, Cazenave et al. (2019) found that changes to
the DARDAR-CLOUD product between versions v2 and v3
led to a 24 % reduction in IWP on average. It is not automat-
ically true that v3 is better than v2. This emphasises the fact
that DARDAR does not necessarily represent the truth, and
therefore achieving a perfect match with DARDAR is not es-
sential. Additionally, simulations suggest the possibility of
up to 50 kgm−2 in the presence of tropical deep convection
(Bolot et al., 2023). It is therefore possible that DARDAR
fails to identify the highest-IWP cases. Besides, a greater
number of high-IWP cases in the database is not seen as a
cause for concern since the ICI retrievals will benefit from
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Figure 9. Retrieval performance for IWP, Zm, and Dm, shown in panels (a)–(c), respectively. The point estimate of the retrieval is taken
as the mean of the retrieved posterior distribution. The mean, median, 16th quantile, and 84th quantile of the retrieved mean are plotted
as a function of the database values (labelled as true). Summary statistics are shown, where r indicates the correlation coefficient. Bias is
given in units of kilograms per square metre (kgm−2), kilometres (km), and micrometres (µm) for IWP, Zm, and Dm, respectively. Cases of
IWP< 10−3 kgm−2 are not represented graphically but are included in the relevant summary statistics.

Figure 10. Distribution of IWP cases in the retrieval database and retrieved IWP, shown as an overall distribution and as the zonal mean. The
retrieval distributions are calculated either by taking the posterior mean as a point estimate or by taking a random sample of the posterior as
a point estimate. Also shown is the distribution of IWP calculated as the vertical integral of IWC in the DARDAR product for the year 2010.

more high-IWP cases a priori; such cases are rare and an in-
crease will lead to a better-trained model in this region.

The global distribution of IWP in the database, retrieved
IWP, and DARDAR is shown in Fig. 11. The same regional
features can be seen in all cases, e.g. ITCZ. The datasets also
agree on regions containing fewer ice clouds, such as over
the Sahara and Arabian deserts and the stratocumulus regions
over subtropical ocean. The retrievals appear noisier, but this
is simply attributed to the fact there are fewer retrieval cases
than present in the entire database and, to an even greater
extent, DARDAR.

5.4 Zm and Dm retrievals

Retrievals of mean mass altitude Zm have an overall bias
of 0.5 km (for cases with IWP> 10−2 kgm−2) and a corre-
lation coefficient of r = 0.75 (Fig. 9b). The retrievals cor-

respond well to true (database) values for Zm between ap-
proximately 2 and 12 km, which is similar behaviour to re-
trievals performed with the preliminary database (Eriksson
et al., 2020). Retrievals of Zm perform poorer outside this
range, though this is as expected.

Retrievals of Dm are presented in Fig. 9c. Good agree-
ment is seen for true (database) values below 600 µm, al-
though a slight underestimation is present within the range
of 250 µm<Dm< 600 µm. All retrievals corresponding to
cases with IWP> 10−2 kgm−2 contribute to an overall neg-
ative bias of −30 µm. The overall correlation coefficient is
r = 0.83. Retrievals of Dm≥ 600 µm display a high nega-
tive bias and appear to be increasingly less sensitive to the
true value as Dm increases. This is partially due to the fact
that higher Dm values are associated with lower altitudes, at
which less information is available from ICI radiances. How-
ever, the decrease in sensitivity can also be a saturation effect
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Figure 11. The global distribution of IWP cases in the database, retrieved IWP, and IWP calculated from DARDAR from the year 2010. The
plot titled “retrieval mean” uses the mean of the retrieved posterior distribution as a point estimate. The plot titled “retrieval sample” takes a
random sample from the posterior distribution as a point estimate.

in terms of ICI wavelengths. Adding the longer-wavelength
MWI observations could improve Dm retrievals in this re-
gion. At Dm< 140 µm, the retrievals display a significant
positive bias, with even the 16th percentile of the retrieved
mean falling well above the identity line. The retrievals ap-
pear to be insensitive to the true values within this region.

Overall distributions and zonal means were computed for
both database cases and retrieval cases. Results are presented
in Fig. 12. In the case of the zonal means, each case is
weighted with its corresponding IWP. Although not directly
available in the DARDAR product, Zm andDm can be calcu-
lated by applying Eqs. (4) and (5) in Eriksson et al. (2020) to
variables that are available. Zm and Dm data corresponding
to IWP< 10−2 kg m−2 were excluded from the distribution
calculations, as these data fall below the sensitivity threshold
of ICI.

In Fig. 12a, it can be seen that retrievals of Zm agree statis-
tically with the database (true values) forZm< 12 km, i.e. for
all clouds of concern for ICI. As previously discussed, tak-
ing the mean as a retrieval point estimate can lead to a failure
to capture extreme values in a distribution, as can be seen for
Zm> 12 km in Fig. 12. However, sampling the retrieved pos-
terior distribution does produce a distribution that includes
higher-Zm cases, with such cases appearing with a probabil-
ity density approximately matching that of DARDAR. This
acts as a good example of the benefits of retrieving quantiles
rather than a single estimate.

In the case of the Zm zonal means in Fig. 12b, database
cases, both retrieval estimates, and DARDAR all agree well.
This is expected, since Zm is well constrained by the Cloud-
Sat reflectivities used to construct the atmospheric scenes.
There are some small discrepancies when retrieving Zm at
very high and low latitudes, but this may be due to difficulties
when distinguishing between the surface and low-altitude
clouds.

The overall distributions of Dm are shown in Fig. 12c.
They are similar in shape and agree somewhat well but tend
to diverge for Dm> 700 µm. This was already evident in
Fig. 9 when taking the retrieval mean as a point estimate.
However, even when sampling the retrieved posterior dis-
tributions, we fail to capture the extreme values present in
the database, indicating that the model struggles to retrieve
larger particles in general. The difficulty in retrieving high
Dm is also present in the zonal mean, leading to an overall
underestimation.

There is one major difference between our simulations and
DARDAR: our simulations contain more higher-Dm cases
than DARDAR does. This difference is particularly evident
in the zonal mean in Fig. 12d. Fortunately, more high-Dm
cases probably improve the retrieval model in this region.
Furthermore, we again stress that DARDAR is not truth but
a retrieval product itself. The discrepancies occur due to dif-
ferences in particle model assumptions and serve to demon-
strate that we have not tuned our setup to replicate DARDAR.
Overall, our Dm retrievals serve to demonstrate that ICI has
sensitivity to Dm. This result is supported by Pfreundschuh
et al. (2020), which demonstrated that sub-millimetre obser-
vations can better constrain microphysical properties.

5.5 Retrieval sensitivity

There are multiple factors that may affect retrieval perfor-
mance. Some effects are related to the sensitivity of the ra-
diances to certain conditions, such as surface type, climatic
region, and the optical properties of the ice hydrometeors.
For example, it is difficult to isolate surface effects from
cloud observations, and therefore surface types associated
with higher uncertainties are expected to result in poorer re-
trievals. Additionally, the latitudinal region will also affect
the sensitivity of observations to ice mass, due to varying
cloud-base altitude. Alternatively, retrieval performance can
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Figure 12. Distributions of Zm and Dm, computed from database cases, retrieved means, and random samples from the retrieved posterior.
Probability density functions are shown for Zm and Dm in panels (a) and (c), respectively. Zonal means of Zm and Dm are presented
in panels (b) and (d), respectively. The distributions are calculated using only cases corresponding to IWP> 10−2 kgm−2, i.e. above the
sensitivity threshold for IWP. In the zonal means, Zm and Dm are also weighted with IWP. Also shown are reference distributions for Zm
and Dm calculated using variables available within the DARDAR product for the year 2010.

be impacted by the amount of thermal noise present in the
observations. This section is an investigation into the sensi-
tivity of retrieval performance to the aforementioned factors.
Retrieval performance is evaluated for various latitudinal re-
gions and surface types, as well as across the six particle
models used in the simulations. Finally, a simplified assess-
ment of the effect of thermal noise on model training is pre-
sented.

Retrieval performance is seen to vary according to lat-
itudinal region. Figure 13a demonstrates this accordingly.
Retrievals at tropical latitudes perform better than at mid-
latitudes, in the sense that retrievals and mid-latitudes
demonstrate a wider spread between the 16th and 84th quan-
tiles of the retrieval mean. Furthermore, the median line fol-
lows the truth closely down to as low as 1 gm−2. The finding
that retrieval performance improves at tropical latitudes cor-
responds to results in Eriksson et al. (2020). The decreased
performance at mid-latitudes can be attributed to ice clouds
lying closer to the surface. To see such clouds, observations

must be sensitive to the entire ice column, which is not the
case for all channels. However, channels that are sensitive to
the entire column will also produce observations affected by
the surface. Surface emissivity effects are still accompanied
by significant uncertainties, leading to increasing retrieval
uncertainty in the given regions.

The effect of surface type on retrieval performance was
also investigated (Fig. 13b). Retrieval performance is shown
for surface types of ocean, land, and snow. The surface emis-
sivities of snow-covered surfaces remain poorly modelled
due to significant variability with frequency. This uncertainty
in surface emissivity, as well as the fact that this surface
type is more common at higher latitudes, will contribute to a
poorer retrieval performance over snow-covered surfaces. At
IWP> 10 gm−2, retrievals of cases over snow-covered sur-
faces demonstrate an overall negative bias and a larger spread
between the 16th and 84th quantiles than seen for other sur-
face types. The negative bias is more evident with increasing
IWP.
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Figure 13. Retrieval performance for IWP, separated by latitudinal region in panel (a) and by surface type in panel (b). The mean of the
retrieved posterior is taken as the point estimate. Tropical refers to the region bounded by the Tropic of Cancer and the Tropic of Capricorn,
i.e. 23.44° N and 23.44° S. Mid-latitude refers to the region bounded by the Arctic Circle and the Antarctic Circle, i.e. 66° N and 66° S,
excluding the tropical region.

It is difficult to isolate the effect of surface type when some
surface types are more common in certain climatic regions,
e.g. snow at high latitudes. However, retrievals appear to per-
form better in tropical regions than at mid-latitudes, despite
a less pronounced difference in surface types between these
regions. Due to this and the physical explanations discussed
previously, it is likely that climatic region and surface type
independently have an impact on retrieval performance.

The bulk optical properties of the ice particle models im-
plemented in the simulations will have varying effects on the
observed radiances. The exact relationship is complex, but
the effect of scattering plays a major role. An ice particle
with a higher degree of extinction will tend to scatter more
radiation away from the sensor’s line of sight, thus causing
a greater impact on brightness temperatures. For example,
Geer et al. (2021) found that the level of extinction exhib-
ited by ARTS particle models approximately correlates with
the amount of brightness temperature depression. The dense,
rimed hydrometeors used in our study (AA3 and graupel)
produce the most scattering and thus have the greatest im-
pact on brightness temperature. Conversely, the low-density
particles (AA2 and snow) have a weaker effect on brightness
temperature.

In the simulations conducted for this study, clouds are as-
sumed to contain only one type of particle. For a cloud with
a given IWC, a highly scattering ice particle will cause a
greater depression in Ta. Reciprocally, when simulating a
cloud composed of highly scattering ice particles, less IWC
is needed to replicate the same Ta when compared to a cloud
consisting of particles with weaker scattering.

In an ideal scenario, the retrieval model has the capabil-
ity to infer the particle model used in a simulation and ad-
just its IWP prediction accordingly. Alternatively, our model
may assume a mean particle model that exhibits the average

level of extinction observed across all six ice particle mod-
els. If this is the case, then the accuracy of the retrievals can
be affected. For instance, if a dense, highly scattering par-
ticle was used in a simulation, the model may overestimate
IWP in an attempt to align its prediction with the simulated
Ta. The converse will also be true: if a particle with lower
relative extinction was used in a simulation, the model may
underestimate IWP.

To investigate the sensitivity of the retrievals to the choice
of particle model, we computed retrieval statistics for each
particle model individually (Fig. 14a). Above the sensitivity
threshold of IWP= 10−2 kgm−2, there is a trend of over-
estimation in the case of AA3 and graupel. Likewise, IWP
retrievals are generally underestimated in the case of AA2
and snow. Based on these findings, we conclude that the re-
trievals show sensitivity to the particle model used in the
simulations. This suggests that the model generally assumes
some average level of extinction. In Fig. 14b, we present
the mean IWP associated with each particle model for the
same set of data for both simulated cases and retrieved
cases. The spread of bar heights indicates variability between
the particle models within the simulated (pre-retrieval) data
(σpre= 0.06 kgm−2). This variability decreases post-retrieval
(σpost= 0.02 kgm−2). However, the variability does not dis-
appear completely. In conclusion, it may still be possible that
the model can distinguish between particle models but can-
not do so with total reliability. An in-depth analysis would be
required for further insights. An interesting avenue for such
an analysis would involve attempting to retrieve the particle
model itself.

Noise is incorporated into the retrievals at two stages:
noise was added to the observations during model training
and to the observations in the test dataset prior to inverting
them. To investigate the impact of NE1T, two tests were
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Figure 14. Panel (a) displays the retrieval performance for IWP, separated by the particle model used in the simulated case. The mean of the
retrieved posterior is taken as the point estimate, and the solid lines correspond to the median of the retrieved means. Bias is computed for
all retrievals corresponding to a true IWP≥ 10−2 kgm−2. In panel (b), the bars show the mean IWP for a given particle model. Statistics
were computed across the test set for both simulated (database) cases and retrieved cases. The solid horizontal line represents the mean IWP
for all simulated cases in the test set, and the dashed line represents the mean retrieved IWP for the same cases. The standard deviation σ
corresponds to the spread of mean IWP between the particle models and is in units of kilograms per square metre (kgm−2).

made that alter the inclusion of noise (results not shown).
In the first test, the original model, trained with noise, was
used to invert the cases in a noise-free test dataset. In the sec-
ond test, the model was re-trained without noise added to the
training observations. Next, noise-free observations were in-
verted. The second test is equivalent to assuming NE1T= 0,
i.e. an ideal but unrealistic observation with no thermal noise.
Only a very small increase in r was seen in the first case, with
r = 0.88 for IWP retrievals. In the second case, a decrease to
r = 0.79 was observed for IWP retrievals. This is likely due
to the model overfitting to the data in the total absence of
noise. In both cases, only very minor visual differences were
seen in the equivalents of Fig. 9. We conclude that the cur-
rent values of NE1T have little impact on the training of our
retrieval model. This implies that the retrieval performance
discussed in this study can be attributed to the quality of the
database simulations and to the sensitivity of ICI rather than
the influence of noise.

5.6 Limitations

Although efforts were made to produce the most realistic ICI
simulations available, limitations remain. Firstly, although a
range of particle models are used, melting ice particles are
not considered. Single-scattering data for mixed-phase par-
ticles are not currently available for sub-millimetre frequen-
cies, and calculating such properties would be computation-
ally costly (Kanngiesser and Eriksson, 2022). A second lim-
itation arises from the simplification of assuming the same
particle model across an entire column or footprint. This is an
unphysical assumption (Kim et al., 2024) that likely affects

the realism of the simulations. Another limitation relates to
the challenge of representing 3D variability in the simula-
tions. To this end, the Barker method was applied. However,
it is possible that this method underestimates the true vari-
ability.

It is difficult to identify all weaknesses in the absence of
real, global ICI data. After the launch of ICI, there will be
the possibility to compare to real observations. A compari-
son of observations and simulations at 243 GHz will allow a
better assessment of the surface emissivity parameterisation.
On the other hand, a clear-sky comparison using channels
with lower surface sensitivity will provide insight into the
gas absorption models. It will be more complex to identify
limitations for cloud-impacted cases, but an investigation of
polarisation differences could provide insight into the suc-
cess of the aARO scheme. It is noted that, in only 10 d, ICI
will generate the same number of observations as in the re-
trieval database. Statistically, there will be observations that
lie outside the variability of the simulations. However, if it is
found that the simulations clearly do not cover the variability
of real ICI observations, investigation will be required.

6 Summary and conclusions

In this study, we presented the state-of-the-art retrieval
database developed for use within the operational ICI re-
trieval algorithm. The database generation strategy was based
upon Eriksson et al. (2020), but multiple improvements were
made. Among the most significant extensions were the in-
clusion of the full channel responses and representation of
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the full 2D antenna pattern. Additionally, the treatment of
ice hydrometeors now incorporates an approximate treat-
ment of particle orientation, allowing polarisation effects to
be captured. Even taking into account the approaches taken
to improve calculation efficiency, the simulations performed
within this study are, to our knowledge, the most detailed
performed to date.

In the first part of the study, we performed an analysis of
simulated antenna temperatures. The DoFs of the antenna
temperatures were computed, and results were compared
to the same method applied to the preliminary database of
Eriksson et al. (2020). An overall increase in the DoF was
seen, indicating that simulations are more realistic and that
improvements made to the database have increased the infor-
mation content of the simulated radiances.

We also simulated radiances as observed by existing in-
struments in order to validate the simulation methods while
bypassing the need for real ICI observations. The database
generation framework was used to simulate antenna tem-
peratures as would be observed by sensors on the flight
campaigns ISMAR and MARSS. This allowed for a com-
parison of both microwave and sub-millimetre observations.
The simulations were validated against real observations and
were found to cover the entire measurement space. Likewise,
we simulated four high-frequency microwave GMI channels.
The simulated radiances overall followed the same statistical
distribution as real GMI observations and covered the mea-
surement space in most cases. Some differences were ob-
served but occurred only for more extreme brightness tem-
peratures, and they can partially be explained by too few sim-
ulated cases.

In the second part of the study, we characterised the
expected retrieval performance associated with using the
database within an inversion scheme. A probabilistic ma-
chine learning model was trained on the database simula-
tions. The model then performed inversions of simulated an-
tenna temperatures to retrieve ice water path, mean mass
height, and mean mass diameter. The results indicate a sensi-
tivity to IWP between 10 gm−2 and 10 kgm−2. The success
of retrievals at the higher end of the sensitivity range and
above is constrained by the number of similar cases used to
train the model, and such cases seldom occur in reality. This
highlights the importance of representing these cases in the
database.

Additionally, we show that both simulated and retrieved
IWP and Zm data are statistically consistent with the DAR-
DAR product. Simulated and retrievedDm cases slightly dif-
fer from DARDAR in their distributions, demonstrating that
our retrievals are not simply a replica of another product.

In this study, we decided to retrieve only the variables that
will be offered in the EUMETSAT L2 product. However, it
is possible that the radiances contain enough information to
retrieve other variables. For example, due to the high number
of ICI channels, observations could also provide information
on the vertical structure of ice hydrometeors. This possibil-

ity warrants further investigation, since it would expand the
already powerful dataset offered by ICI.

Eriksson et al. (2020) estimated that ICI will deliver sim-
ilar accuracy to the CloudSat- and CALIPSO-based DAR-
DAR product within the sensitivity range of IWP, and we
keep this opinion. Good retrieval accuracy was maintained
for Zm and Dm, even with the more diverse set of parti-
cle models used. In regard to Zm, ICI cannot compete with
radars. However, we have shown that it is possible to retrieve
Dm from ICI observations. Given that ICI spans microwave
and sub-millimetre wavelengths with multiple channels, it is
possible that there is more information available to constrain
Dm, allowing ICI to contend with radars.

Notably, both the CloudSat satellite and CALIPSO satel-
lite ended operations in 2023. Since alternative data sources
of atmospheric ice mass suffer from inconsistencies and
uncertainties, we are now left with a significant observa-
tional gap. Yet, the future is promising: EarthCARE (the
Earth Cloud Aerosol and Radiation Explorer) was recently
launched in 2024 (Illingworth et al., 2015), and ICI will be
launched in the following years. EarthCARE offers radar–
lidar cloud profile measurements, acting as a continuation
of the CloudSat and CALIPSO pairing. As this study has
demonstrated, ICI will offer observations specially suited
to the measurement of ice hydrometeors. With these new
sources of data, we move closer to achieving the reliable and
consistent global datasets of ice mass we need.

Appendix A: Machine learning

Machine learning problems are typically used to predict an
output y from a given input x such that f (x)= y. The
model f learns to map input to output from a training set{
xi,yi

}n
i
.

A QRNN is a machine learning approach designed to pro-
vide an estimation of the quantiles of the cumulative distri-
bution function of a prediction output value. The τ th quan-
tile xτ , where τ ∈ [0,1], of a cumulative distribution func-
tion F(x) can be defined as follows (Pfreundschuh et al.,
2018):

xτ = inf {x : F(x)≥ τ } . (A1)

A QRNN is essentially an extension of machine learning
regression models trained to predict the median. To this end,
a QRNN employs a quantile loss function that calculates the
loss between predicted and target values for a given quantile
level τ . This allows the variability of the prediction to be
captured. The quantile loss function is defined as

Lτ (xτ ,x)=
{
τ |x− xτ |, xτ < x

(1− τ)|xτ − x|, otherwise. (A2)

The expectation of Lτ (xτ ,x) with respect to x is min-
imised by xτ . Therefore, given the training data

{
xi,yi

}n
i
,
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the model f is trained to minimise the expectation of
Lτ (f (x),y). Extending the model to predict multiple in-
dependent quantiles allows a discrete approximation of the
cumulative distribution function (CDF) Fy|x(y) to be made.
From a Bayesian perspective, the PDF derived from the CDF
can be thought of as a posterior distribution that incorporates
the a priori knowledge inherent in the training data. We note
that machine learning terminology is used here; x is gener-
ally used in machine learning to represent the input to the
model, which in this case is a measurement. The same mea-
surement is typically represented as y when used in the con-
text of the forward model and the inverse problem.

A single model is trained to handle all observations in the
retrieval database; i.e. all surface types and latitudinal regions
are included. The input vector x includes observations from
the 13 ICI channels in the form of antenna temperatures Ta.
The use of1Ta as a model input (as to be used in the L2 prod-
uct) was also checked, and no major difference in retrieval
performance was observed between the two variables (Ap-
pendix C). Surface temperature, surface pressure, and surface
classification are also included within the input as ancillary
data. The output of the model is the 99th quantiles of the
CDF Fy|x(y) for each of the variables IWP, Zm, and Dm.

A1 Neural network architecture and input data

The architecture of the QRNN used to perform the retrievals
in this study is as follows.

– A single network was trained to predict all outputs –
IWP, IWC, Zm, andDm. The network consisted of mul-
tiple fully connected layers for all outputs, with several
final layers for each output individually.

– The QRNN was trained to predict 99 uniformly spaced
quantile levels τ ∈ [0.01,0.99] for all output variables.

– Hyperparameters, such as the number of neurons, num-
ber of layers, and batch size, were selected after train-
ing multiple networks and subsequently comparing their
performance on the test dataset.

The training and validation data were structured and pro-
cessed as follows.

– The input data consisted of antenna-weighted bright-
ness temperatures for each of the 13 ICI channels. A
classification of surface type, surface temperature, and
surface pressure (included as variables in the retrieval
database) was included as ancillary input data.

– Uncertainty due to thermal noise is generated as sam-
ples from a Gaussian distribution with zero mean and
variance NE1T2

j , where j is the ICI channel. To avoid
overfitting, noise was randomly generated and added to
each batch of training data during each epoch of train-
ing. Also, in each training epoch and batch of training

data, 1 % of the surface types were shuffled, both to
avoid overfitting of the model and to safeguard against
any misclassification of surface type in the dataset.

– Due to the large range of magnitudes possible for IWP,
a log-linear transformation was applied, where all val-
ues of IWP less than 1.0 kgm−2 were transformed into
logarithmic space. Additionally, any cases of IWP less
than 10−4 kgm−2 were replaced with a value uniformly
sampled from the range [10−6,10−4

] and subsequently
transformed into logarithmic space. The remainder of
the data were linearly normalised according to the statis-
tics of the training set.

Appendix B: ISMAR and MARSS channels

Table B1. Definitions of the MARSS and ISMAR channels simu-
lated in this study.

Sensor Channel frequency Polarisation
(GHz)

MARSS 157.07± 2.60 H
MARSS 183.25± 3.00 H
MARSS 183.25± 7.00 H
ISMAR 243.20± 2.50 H
ISMAR 243.20± 2.50 V
ISMAR 325.15± 1.50 V
ISMAR 325.15± 3.50 V
ISMAR 325.15± 9.50 V
ISMAR 664.00± 4.20 H
ISMAR 664.00± 4.20 V

Appendix C: Cloud-signal-based retrievals

Retrievals were performed using a model trained with simu-
lated ICI Ta as the primary input. In contrast, the operational
L2 product at EUMETSAT will perform inversions of 1Ta.
Our decision to focus on Ta is driven by the desire to min-
imise the complexity of the retrieval problem.

However, given that 1Ta is a key component in the re-
trieval algorithm, we wished to test the use of1Ta as a model
input in order to check that there was no major disadvan-
tage arising from the choice to use Ta. We continued to ex-
clude the pre-processing steps performed in the algorithm,
thus performing a direct comparison between Ta and 1Ta
when used as retrieval model inputs.

A QRNN was trained on the same training and validation
sets as the original model. The model was trained using the
same ancillary inputs (see Appendix A1), but the primary
input changed to1Ta values for each ICI channel. Inversions
were performed on the same test data partition as originally
used. In other words, 1Ta values are inverted to obtain IWP,
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Figure C1. Retrieval performance for IWP, Zm, and Dm. The predictions from the Ta model, shown in black, are the same as shown in
Fig. 9. The predictions from the1Ta model, shown in red, are a result of training a model to predict given a vector of1Ta instead of Ta. The
ancillary input data and outputs were kept the same in both models. r indicates the correlation coefficient. Bias is given in units of kilograms
per square metre (kgm−2), kilometres (km), and micrometres (µm) for IWP, Zm, and Dm, respectively.

Zm, and Dm, where the true values of IWP, Zm, and Dm are
the same for both retrieval models.

Both models exhibited very similar behaviour when pre-
dicting all three variables (Fig. C1). The most obvious dif-
ferences occur at the extreme ends of the shown ranges. Both
models produce the same correlation coefficient (at the preci-
sion shown), and this behaviour is again seen across all three
variables. In the case of IWP, a bias of −6× 10−4 kgm−2 is
seen for the 1Ta model. This is marginally smaller than the
bias of 2× 10−3 kg m−2 of the Ta model and notably nega-
tive rather than positive. The bias of the Dm 1Ta predictions
is slightly higher than for the Ta model, at 3 µm as opposed
to 2 µm.

The consistency in performance between the two models
suggests that the all-sky simulations Ta appear as equally ca-
pable as 1Ta in the context of machine learning retrievals.
However, it is stressed that this conclusion is made in the
context of machine learning retrievals and cannot necessarily
be extended to the BMCI method used for the L2 product.

Explaining the minor discrepancies between the models
is somewhat challenging. The bias was computed across
the entire test dataset and not limited to the dataset rep-
resented in Fig. C1. It is therefore likely that the differ-
ence in bias occurs in regions where the model is less well
trained. This is supported by the fact that the inversions pro-
duce almost identical results in regions where we expect
the model to be well trained, such as above the sensitiv-
ity threshold of ICI and where a large number of data exist
(e.g. 10−2 kgm−2

≤ IWP≤ 1 kgm−2). Given the small scale
of the differences, the differences could be attributed to the
nature of neural networks. Although the two networks were
similarly configured, the learning process and final weights
will not be identical, thus accounting for the small variation
between models.

Code and data availability. The code used for analysis and plot-
ting is available at https://doi.org/10.5281/zenodo.10839090 (May,
2024). The data pertaining to ICI used in this study are
available under licence for non-commercial purposes and on
the condition of no redistribution by contacting EUMETSAT
(vinia.mattioli@eumetsat.int). DARDAR-CLOUD v3-10 data are
available at https://doi.org/10.1029/2009JD012346 (Delanoë and
Hogan, 2010). GPM GMI data were accessed via NASA’s Goddard
Earth Sciences Data and Information Services Center (GES DISC)
at https://doi.org/10.5067/GPM/GMI/GPM/1B/07 (GPM Science
Team, 2022).

ISMAR and MARSS observations from the Facility for Airborne
Atmospheric Measurements (FAAM) flights were accessed via the
NERC CEDA archive. The specific flights used (with revisions indi-
cated by “R” and flight numbers by “B”) are listed in the following:

R014_B893, https://catalogue.ceda.ac.uk/uuid/bf75026bdd8448
ee9547b204ff62cd2b (Facility for Airborne Atmospheric
Measurements et al., 2016a);

R014_B895, https://catalogue.ceda.ac.uk/uuid/6ba397d6c8854
da19bcced8ea588c1f9 (Facility for Airborne Atmospheric
Measurements et al., 2016b);

R014_B896, https://catalogue.ceda.ac.uk/uuid/a6fca876b6be4dda
8c2ff2349acc629c (Facility for Airborne Atmospheric
Measurements et al., 2015);

R014_B897, https://catalogue.ceda.ac.uk/uuid/27451f8260854b7
baa6c18960d34b064 (Facility for Airborne Atmospheric
Measurements et al., 2016c);

R014_B898, https://catalogue.ceda.ac.uk/uuid/b5758a268bf74497
b658628e8b4d7199 (Facility for Airborne Atmospheric Mea-
surements et al., 2016d);

R005_B939, https://catalogue.ceda.ac.uk/uuid/dcc9dc73d8bc44c
aa51f5e8641f2c212 (Facility for Airborne Atmospheric
Measurements et al., 2016e);

R005_B940, https://catalogue.ceda.ac.uk/uuid/3b5348ea45cb455
aac0c97139233ab65 (Facility for Airborne Atmospheric
Measurements et al., 2016f);
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R005_B941, https://catalogue.ceda.ac.uk/uuid/35c0f63e11614cd
8853f2b75f780193b (Facility for Airborne Atmospheric
Measurements et al., 2016g);

R005_B945, https://catalogue.ceda.ac.uk/uuid/3d031fd113e04ca
b800c8fd58d1e9e61 (Facility for Airborne Atmospheric
Measurements et al., 2016h);

R005_B949, https://catalogue.ceda.ac.uk/uuid/7a1c976f7df14c87
84d9166b3e75522c (Facility for Airborne Atmospheric
Measurements et al., 2016i);

R006_B951, https://catalogue.ceda.ac.uk/uuid/36225d447ab04cb
6aad1a7e0ba9064bf (Facility for Airborne Atmospheric
Measurements et al., 2016j);

R006_B952, https://catalogue.ceda.ac.uk/uuid/72c383b0f97d46c
28454db3adcbdd3ec (Facility for Airborne Atmospheric
Measurements et al., 2016k);

R001_B984, https://catalogue.ceda.ac.uk/uuid/46ca2a2cc8ce497
fbf06beaf31f67098 (Facility for Airborne Atmospheric
Measurements et al., 2016l);

R002_C153, https://catalogue.ceda.ac.uk/uuid/6a2bc7a1edc346
50bd41e0f958cbd50a (Facility for Airborne Atmospheric
Measurements et al., 2019a);

R002_C156, https://catalogue.ceda.ac.uk/uuid/1c470a6cd7544aa
0b181491088688384 (Facility for Airborne Atmospheric
Measurements et al., 2019b);

R002_C157, https://catalogue.ceda.ac.uk/uuid/2dd33547716548d
9b0017c292d6156cd (Facility for Airborne Atmospheric
Measurements et al., 2019c);

R002_C158, https://catalogue.ceda.ac.uk/uuid/67fdcb450e87488
ab9ddd6e263966827 (Facility for Airborne Atmospheric
Measurements et al., 2019d);

R002_C159, https://catalogue.ceda.ac.uk/uuid/68cfc7f294554646
803c80b2a389e105 (Facility for Airborne Atmospheric
Measurements et al., 2019e);

R002_C160, https://catalogue.ceda.ac.uk/uuid/6abfeb3f8bd24489
9259c5c4cad3dc49 (Facility for Airborne Atmospheric
Measurements et al., 2019f);

R002_C161, https://catalogue.ceda.ac.uk/uuid/133e15c47c024aa
4b30e3f6f54af8b77 (Facility for Airborne Atmospheric
Measurements et al., 2019g);

R002_C164, https://catalogue.ceda.ac.uk/uuid/c3461c55e13942d
f9e3e217daeb4a909 (Facility for Airborne Atmospheric
Measurements et al., 2019h); and

R002_C168, https://catalogue.ceda.ac.uk/uuid/aee65288656346d
286eb1247638c1ebf (Facility for Airborne Atmospheric
Measurements et al., 2019i).
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