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Abstract. Balancing a bicycle through steering is similar to balancing
an inverted pendulum, with a travel-speed-dependent pivot point. This
paper derives a speed-dependent balancing controller for a self-balancing
bicycle. This controller is based on an identified gray box model. The
identification procedure is formulated as a weighted least squares prob-
lem with the time-varying parameter of the model. Identification data
was generated on a controlled bicycle robot. Excitation experiments were
designed to account for the unstable nature of the problem. Based on
this identified model, a gain-scheduled controller is derived for a speed-
independent closed-loop performance for a speed range. The controller
is further implemented on the bicycle and tested for a set of speeds.
Tests performed on the bicycle illustrate the gain-scheduled controller’s
performance gain.

Keywords: Bicycle dynamics · Gray-box identification ·
Gain-scheduled controller

1 Introduction

Modern traffic safety relies heavily on Advanced Driver Assistance Systems
(ADAS). Testing these systems often requires specific scenarios that include
a cyclist target to ensure safety and repeatability. To address the challenges of
testing ADAS in cyclist scenarios, a bicycle robot with self-balancing and path-
tracking capabilities has been developed. Compared to existing solutions with a
stable moving robot platform [1], this bicycle robot is inherently unstable and
hence will exhibit more natural leaning behavior.

Obtaining a reliable model usually requires measuring and computing phys-
ical parameters. However, such methods require additional tools and time to
dismantle the bicycle and measure its individual parts. In contrast, this paper
adopts an alternative approach: using system identification techniques to esti-
mate these model parameters from experimental data.

Gray-box identification offers an advantage in this context. It employs a
model structure informed by physical principles, which can enhance robustness
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against varying operational conditions. Given its benefits, we apply a gray-box
identification method, to compute a bicycle model parameterized by longitu-
dinal speeds. This strategy combines the merits of a physically-informed model
with system identification, enabling the identified model to extrapolate dynamics
across multiple speeds.

In this paper, we introduce a gray-box identification method to obtain a
semi-linear bicycle model. Tests are done in a closed loop and a model with an
explicit speed dependency is obtained. The speed-dependent model is then used
to derive a controller that achieves a speed independent closed loop using gain
scheduling (Fig. 2).

Fig. 1. Bike schematics Fig. 2. Schematic Block of the Control loops

2 Method

The steering angle of the bicycle is assumed to be controlled perfectly. Hence, we
do not need to consider models that include the interaction between the leaning
angle and the steering torque. Instead we adopted a point-mass model from [2]
for its simplicity and relevance to our actuator settings, as shown in Fig. 1. The
bicycle’s roll dynamics from steering angle δ to roll ϕ are given by, assuming
small caster,

Jxx
d2ϕ

dt2
− mghCMϕ =

Jxzv sin (λ)
b

dδ

dt
+

mv2hCM sin (λ)
b

δ, (1)

where Jxx, Jxz are the inertia with respect to the xz-axes and x-axes. Other
parameters are depicted in Fig. 1. The equation above can be recast to a LTI
transfer function for a constant speed with the structure,

Gϕ̇δ̇(s, v) =
A0vs + A1v

2

s2 + B0
(2)

where s is the Laplace operator and Ai, Bi are constant coefficients. This equa-
tion describes the roll dynamics, i.e., Gϕ̇δ̇(v) in Fig. 1.

To identify the parameters of the roll dynamics in (2), identification experi-
ments were conducted in closed loop. To mitigate biases induced by closed loop,



Gray Box Identification of a Self-Balancing Bicycle 681

periodic excitation signals were used and frequency responses are collected [3].
This was done by applying these periodic signals to the reference ϕect and noise
to δ̇ect. Further, to use the frequency response for our unstable system Gϕ̇δ̇, the
definition of transfer functions are also extended to include the imaginary axis,
since the imaginary axis is not in its region of convergence.

A next step in the identification process was to form empirical transfer func-
tion estimate (ETFE) F̂ (jω, vi) based on the measured tests,

F̂ (jω, vi) =
1
Pi

l=Pi∑

l=1

F{ ˆ̇ϕ[l](jω, vi)}
F{ˆ̇

δ[l](jω, vi)}
= R(jω, vi) + jI(jω, vi) (3)

where subscript l denotes the lth response out of Pi periodic responses conducted
at speed vi. F{x} denotes the Fourier transform of time series data x, and R and
I denote the coefficients of real and imaginary components, respectively. Such
an averaged ETFE is asymptotically unbiased if the noise e is Gaussian [3].

A final step in the identification process was to use the obtained ETFE in
(3) to fit the model (2).

To minimize the difference between the identified model Gϕ̇δ̇(jω, v) and the
empirical transfer function F̂ (jω, vi), a cost function of frequency responses
ε(jω, v) can be defined

ε(jω, v) = F̂ (jω, v) − Gϕ̇δ̇(jω, v) = F̂ (jω, vi) − N(jω, v)
D(jω, v)

(4)

Dε = DF̂ − N = a(jω, v) + jb(jω, v) (5)

where N and D are numerator and denominator of the transfer function in (2).
With a total of n experiments at speeds vi, i ∈ Z+ and each containing m+1

frequency points in frequency responses, we may sum the cost function ε(jω, v)
over all the experiments

E =
n∑

i=1

m∑

k=0

[a2(jωk, vi) + b2(jωk, vi)]. (6)

Here k denotes the index of the frequency points in Fourier Transformation of
the experiment data and i denotes the index of speeds. For simplicity in notation,
variables to the functions (jωk, vi) will be omitted henceforth. We notice that,
(6) is a weighted cost function of the difference between the identified model
Gϕ̇δ̇ and the empirical transfer function F̂ . Therefore, we can minimize (6) with
respect to all unknown coefficients - Ai’s and Bi’s in the transfer function

∂E

∂Ai
= 0,

∂E

∂Bi
= 0. (7)

To minimize the differences (6) over all the experiments spanned in a speed
range {v1, ..., vn}, we construct the equations into a linear regression form. Define
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intermediate variables λh, Sh, Th and Uh

λh =
m∑

k=0

Wkωh
k , Sh =

m∑

k=0

Wkωh
k R̂k, Th =

m∑

k=0

Wkωh
k Îk, Uh =

m∑

k=0

Wkωh
k (R̂2

k + Î2k)

where m denotes the number of frequency points in a frequency response. Wk,
which provides design freedom compared to the weight D from problem con-
struction in (5), is a user-defined weight for individual frequency points.

Substitute these variables and rewrite (7) in matrix form

n∑

i=1

⎡

⎣
2λ0v

4
i 0 −2S0v

2
i

0 2λ2v
2
i −2T1vi

−2S0v
2
i −2T1vi 2U0

⎤

⎦

⎡

⎣
A0

A1

B0

⎤

⎦ =
n∑

i=1

M(vi)N

=
n∑

i=1

⎡

⎣
−2S2v

2
i

−2T3vi

2U2

⎤

⎦ =
n∑

i=1

C(vi). (8)

Further, experiments can also be weighted individually

n∑

i=1

WiM(vi)N =
n∑

i=1

WiC(vi) (9)

where Wi is the user-defined weight for individual speeds i ∈ {1, ..., n}. This
complex linear curve fitting problem is thus solvable in a weighted least square
formulation. The weights for individual experiments and frequency points, i.e.
Wi and Wk, may be used as a tuning parameter, depending on the number of
periods in each experiment and frequency range of confidence.

Based on the derived parameter dependent LTI model of the roll dynamics,
a gain-scheduled PD controller was designed. The design criteria was a speed
independent closed loop performance for a range of speeds. Specifically, KI(v)
and KO(v) are computed, such that inner balancing and outer roll tracking loop
in Fig. 1 have speed-independent bandwidths.

3 Result

On the bicycle presented in Fig. 3, identification experiments have been con-
ducted, at speeds of 2.2, 2.4, 2.6, 2.8 m/s. Although these experiments were con-
ducted without a human dummy, our algorithm is prepared for scenarios involv-
ing a dummy, which can be modeled as a mass rigidly attached to the saddle.
Periodic multisine signals up to 25 Hz are chosen for ϕect and δ̇ect to control
the excitation frequency range. After the decay of initial transients, the peri-
odic responses are processed following (3). Table 1 summarizes the number of
identification periods and Fig. 3 visualizes the averaged frequency responses at
each speed. It is noteworthy that, in lower frequency range, a clear dependency
can be seen between the magnitudes of frequency responses and the speeds. At
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higher frequencies, this dependency dies out and it might be attributed to other
system dynamics in the control loop, e.g. sensors.

Substituting the computed averaged empirical transfer functions F̂ (jω, vi) =
Ḡi(jω) and letting the weights Wk, Wi be identity for simplicity, a model is
identified:

Ĝϕδ(s, v) =
0.8285vs + 1.9699v2

s2 − 20.2663
(10)

To evaluate this model and with a rough approximation of D = −Jxz ≈
−mahCM and J ≈ mh2

CM , a comparison between the identified parameters of
the roll dynamics and direct measurements of center of gravity is given in Table 2.
It can be observed that the differences are small in magnitude.

Based on the identified model, we compute KI(v) and KO(v) to limit the
closed-loop bandwidth of the inner balancing loop to be 1.5 Hz and the outer
roll-tracking loop 0.15 Hz respectively.

Against a same step references of ±3◦, this gain-scheduled PD controller was
tested on the bicycle robot. For comparison, a speed-independent P-D controller
is tested as well, referred to as conventional P-D controller. Figure 3 illustrates
the roll-tracking performance. While both the gain-scheduled (Blue) and con-
ventional P-D controllers (Red) performed similarly at the higher speed, the
gain-scheduled controller has better performance at the lower speed. This high-
lights the limitations of conventional controllers and confirm the practical need
of our gain-scheduled approach. With the same roll reference, the gain-scheduled
controller is further tested at an even lower speed of 1.7 m/s, visualized in Fig. 6.
Despite of constraints in the steering motor and IMU signal-to-noise ratio, the
gain-scheduled controller stabilzed the bicycle, showing the potential of speed
extrapolation (Figs. 5 and 4).

Table 1. The experiment profile

Speed (m/s) total number of Periods

2.2 11

2.4 19

2.6 12

2.8 7

Fig. 3. Figure to the right: the averaged
empirical transfer function (3)
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Table 2. The calculated physical param-
eters illustrated in Fig. 1

calculated (m) measured (m)

a 0.4206 0.6687

b 0.9580 1.1549

hCM 0.4841 0.534

Fig. 4. Bike modules overview

Fig. 5. Figure to the right: Tests of the Gain-
scheduled controller (Blue) and conventional
P-D controller (Red) at 2.4 and 3.0m/s with
ϕref = ±3◦

Fig. 6. Experiment with the
extrapolated Gain-scheduling
controller at lower speeds

4 Conclusions

An approach to obtain a gain scheduled controller for a balancing bicycle robot
using grey box identification is presented. The performance of the controller is
illustrated on a prototype bicycle robot. The gray box identification employs
periodic excitation signal to asymptotically remove the bias and the excitation
frequency ranges are tailored with multisine excitation signals.

Future work will focus on enhancing controller robustness and adapting the
model for changing conditions, e.g., loading different human dummies. Besides,
adaptive control and online identification based on dual-Youla method may be
explored as it fits our purpose well [5].
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