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2 Linköping University, Linköping, Sweden
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Abstract. Residual range estimation plays a crucial role in route selec-
tion and the trust of electric vehicles (EVs). With inspiration from lon-
gitudinal vehicle dynamics, a simple and computationally efficient model
for traction power is presented. Such a model has the advantage of being
exclusively based on vehicle exogenous parameters. The model allows for
insight into variations in power usage along a transport operation and
separation of power losses originating from air drag, rolling resistance,
hill climbing, and inertial forces. A model of this structure can handle
regenerative braking and estimate service brake usage as an additional
feature. Also, it treats the inherent truncation bias resulting from trun-
cating a stochastic process. Evaluation of the performance is presented
using Monte Carlo simulations, comparing the estimation error against
a simple benchmark model and vehicle log data.

Keywords: Range estimation · Energy consumption · Truncation

1 Introduction

Electric vehicles (EVs) are an attractive medium of transportation, with excel-
lent performance. The possibility of zero-emission fuel makes them a cornerstone
in reaching the climate goals set by the European Commission. The vehicle indus-
try’s objective to meet climate goals typically translates into increasing sales of
EVs. In 2023, the worldwide sales of electric cars almost reached 14 million and
have seen an exponential increase in sold units over the recent year. However,
the number of electric trucks sold remains small in 2023, resulting in about 54
thousand units sold [2].

In line with the sale numbers, electric trucks suffer from the lack of charging
infrastructure, low power delivery at the connector, and yet small battery sizes.
As a result, the feasibility of using an electric truck varies from operation to
operation. The uncertainty the driver experiences posed by the variation is typ-
ically referred to as range anxiety, halting haulage from transitioning to electric
c© The Author(s) 2024
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vehicles. Hence, a logistical effort targeting the variation in operations would
benefit the rate of electrification. The foundation of such logistic effort is a good
residual range estimate or energy prediction. The former is the distance until
empty, and the latter is the energy consumed up to a distance ahead.

The vast literature covering residual range estimation can be divided into
model-free approaches and model-based approaches. The model-free approach is
generally based on the assumption that energy consumption is linearly increasing
with traveled distance. The slope of the linear trend is the average specific energy
consumption (SEC), typically calculated as a moving average of past driving,
imposing similarities in future driving to that of the past. In [5], a model-free
approach is presented, fitting SEC values to specific driving patterns. The model
clusters regions of similar driving patterns based on average speed and average
power and fits an SEC value to each cluster that matches the data. The model
received an average relative error of 9 % when validated against log data from a
BMW i3. However, the model is yet to be tested for heavy vehicles.

In [9], a semi-physical model, calculating the energy consumed over each road
segment as the sum of energy losses due to road grade, air drag, change in kinetic
energy, and a cruise penalty is presented. In this model, energy consumption is
assumed to be constant over a road segment but allowed to vary from segment
to segment, thus capturing the slow dynamics tide to the geometrical space, but
not the fast dynamics and phenomena tide to other entities such as traffic. Also,
the performance of the model is yet to be evaluated.

In a model-based approach, the main energy consumers are divided into
the auxiliary load (air conditioner, displays, battery thermal management, and
more) and propulsion load (energy consumed to propel the vehicle). In combi-
nation with a powertrain and an energy storage model, one can predict the total
energy consumption of any vehicle, including internal combustion engine vehi-
cles (ICEVs), and EVs. Hence, in the model-based approach, authors can make
minor improvements to the whole model by studying the auxiliary or propulsion
load in isolation. In this article, a traction force estimator derived from longitu-
dinal vehicle dynamics is presented under Sect. 3. The model is complemented
by a constrained Kalman filter state estimator, see Sect. 2, and a truncation
bias correction method, see Sect. 4. In Sect. 5, the propulsion energy estimator
is compared against vehicle log data and a simple benchmark model based on
SEC.

2 State Estimation

A vehicle’s longitudinal position, velocity, and acceleration, are integral parts
to propulsion energy estimation. To estimate the states using a Kalman filter, a
motion, and measurement model should be decided on. The measurement model
uses vehicle wheel speed and odometer sensor measurements. To keep it simple,
a kinematic motion model, namely the constant acceleration motion model (CA)
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(CA)

xk =

⎡
⎣

1 T 1
2T 2
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0 0 1

⎤
⎦ xk−1 + qk−1, with qk−1 ∼ N (0,Qk−1),

yk =
[
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]
xk + rk, with rk ∼ N (0, σ2

r),

(1)

is used. The process noise covariance matrix Qk−1 =
∫ T

0
eÃτ Q̃eÃ�τdτ is the

analytical solution to the discretization of the continuous-time CA model with
jerk modeled as a Gaussian white noise process. The measurement noise rk is
uniformly distributed around the CAN bus rounding error. To facilitate the
assumption of normally distributed noise, the best approximation of the uni-
form distribution U(a, b) is the normal distribution N (a+b

2 , (a−b)2

12 ). In addition,
the speedometer cannot measure negative velocities, which excludes reversing
maneuvers. The Kalman filter is hence modified to facilitate the inequality con-
straint xk(2) ≤ 0. The constrained solution to the Kalman filter is obtained by
projecting the unconstrained a posteriori state estimate to the constrained space
[6,7]:

minimize (x − x̂k|k)�W−1
k (x − x̂k|k),

subject to x(2) ≥ 0.
(2)

A solution to the quadratic programming (QP) problem (2) is found by applying
the active set method

x̂P
k|k = x̂k|k − Υ(Ax̂k|k − b), Υ = W−1

k A�(AW−1
k A�)−1, (3)

with weighting matrix Wk being the inverse of the covariance matrix, A =
[0, 1, 0], and b = 0. The same method is also applied for the a priori state
estimate allowing the Kalman filter to do better predictions.

The yaw angle must also be estimated since it affects the air drag through the
attack angle. Another kinematic motion model is used to estimate the yaw angle
in the world frame, namely the coordinated turn (CT) motion model. Since the
procedure is similar, no further explanation is provided.

3 Traction Force Estimation

At any time k, the total traction force Ft,k for a road vehicle is a linear combina-
tion of five forces: rolling resistance force Frr,k, air drag force Fad,k, hill climbing
force Fhc,k, translational inertial force Fit,k, and rotational inertial force Fir,k,

Ft,k = Frr,k + Fad,k + Fhc,k + Fit,k + Fir,k. (4)

Rolling resistance force is the resistive force associated with a tire rolling
under vertical load. In this paper, only the linear relationship between the nom-
inal rolling resistance coefficient (Cr) and the vehicle’s vertical load is modeled:

F̂rr,k = Crmkg cos (ϕk) + err,k, (5)
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where the error err captures model inaccuracies coupled with using a simplified
model that does not consider the temperature and pressure dependency of Cr.
In [4], the mean relative error of a constant Cr over a certain driving cycle was
found to be 12.9%. In this paper, the error is assumed to be normally distributed
with zero mean and variance, σ2

rr,k = (mkgCr · 0.1)2.
Aerodynamic drag force is the resistive force acting on an object moving

in air and in this paper, model 1 [1] is used. The model is based on the state-of-art
model:

F̂ad,k =
1
2
ρCDAp(θk)(vx,k + vwx,k)2 + ead,k, (6)

in which the air density ρ and the drag coefficient CD are constants. The rela-
tive longitudinal velocity experienced by the vehicle is the sum of the longitudi-
nal vehicle vx,k and wind vwx,k speed. Additionally, the projected frontal area
Ap(θk),

Ap(θk) = Afcos(θk) + As,ksin(θk), θk = arctan
|vwy,k|
vx,k

, (7)

is a function of the attack angle θk, a constant front area Af, and a varying
side area As,k, which is allowed to change between two discrete values repre-
senting with and without a trailer. The model has a root mean squared error
RMS(yk − CDAp(θk)) = 1.19 when compared against CFD simulation results
using a tractor with a semi-trailer. In this paper, the error is assumed to be nor-
mally distributed with zero mean, and variance, σ2

ad,k = (1.2 1
2ρ(vx,k +vwx,k)2)2.

Hill climbing force is the gravitational force parallel to the road slope ϕk,

Fhc,k = mkg sin(ϕk). (8)

Inertial force consists of a translational and a rotational force. The trans-
lational inertial force is associated with longitudinal acceleration and the rota-
tional with acceleration of the powertrain. They can be coupled by introducing
the equivalent mass m∗:

F̂it,k + Fir,k = m∗
kak + ei,k, m∗

k = mk + I
G2

k

ηgr2
. (9)

Here G is the gear ratio, I is the moment of inertia of the rotor, ηg is the gear
efficiency, and r is the tire radius. Thus, a model for gear selection is required.
A simple switch algorithm based on vehicle longitudinal speed is used.

The normally distributed acceleration estimation error propagates to the
inertial force and hence, is the inertial force error ei,k normally distributed with
zero mean, and variance, σ2

i,k = (m∗σa)2.

4 Propulsion Power

The traction force Ft is the force applied at the wheel to propel and brake
the vehicle. A negative traction force corresponds to braking, and a positive to
propelling the vehicle. The propulsion power is thus:
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Pp,k = max(0, Ft,kvx,k). (10)

But since Ft is unknown, the traction force estimate F̂t has to be used. However,
truncating a random variable will move the mean resulting in a truncation bias
in the model. First, the traction force estimation error,

et,k = Ft,k − F̂t,k, et,k = err,k + ead,k + ei,k, (11)

is a linear combination of random normal distributed variables with zero mean.
The error ead comes from simplifications in Ap,k(θ)Cd, err from simplifica-
tions in cr, and ei,k from kalman filter uncertainties in the acceleration. Since
none of the errors is a function of the same variable, one can claim indepen-
dence resulting in a zero mean, normally distributed variable with variance,
σ2
t,k = σ2

rr,k + σ2
ad,k + σ2

i,k. The author acknowledges that the errors are likely
auto-correlated, but are here regarded as time-independent. The traction power
estimate P̂t,k is thus also normally distributed with mean μk = Ft,kvx,k and
variance σ2

k = v2
x,kσ2

t,k. Now, consider the truncated traction power estimate, i.e.
the propulsion power estimate P̂p,k = max(0, P̂t,k), corresponding to a lower-tail
truncation at 0 with α = −μk

σk
= −Ft,k

σt,k
and β = ∞. The probability density func-

tion and the cumulative distribution function evaluated in β are thus ϕ(β) = 0
and Φ(β) = 1. The first moment of the propulsion power estimate can now be
expressed as:

E(P̂t,k|P̂t,k > 0) = E(P̂p,k) = μk + σk
ϕ(α)

1 − Φ(α)
(12)

5 Result

The model presented under Sect. 2, 3, and 4 is now to be evaluated under real
operating conditions. That is, using vehicle log data from a single heavy vehicle
operating all over Sweden, mainly transporting gravel. The vehicle log data is
complimented with road [3] and weather [8] data from 3rd party data suppliers
and the estimated propulsion power is compared against the on-board torque
estimate, P = Tω. The original validation data set is composed of 86 transport
operations, typically 8–10 hours each, and after removing transport operations
shorter than 10 km, the total number was now reduced to 59. As a reference,
a primal history-based benchmark model is designed. It predicts today’s (i)
energy consumption Ei based on today’s total travel distance di, and the previous
transport operations’ SEC value, fi−1,

Ei = fi−1di. (13)

The benchmark model, although simple, is built on the same postulate that was
discussed in Sect. 1. That is, the near future is likely to be similar to the near
past.

In Fig. 1, the x-axis represents the relative error Ê−E
d which has the same

unit as SEC, kWh km−1, and the y-axis, the represent the probability density
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of a certain error. The figure has two histograms, the benchmark error (orange),
representing the difference in SEC comparing transport mission k and k−1, and
the model error (blue). On top of the histograms, two normal distributions are
drawn, the the model error pdf (green) has a mean μm = −0.01 and standard
deviation σm = 0.40, and the benchmark error pdf (red) has a mean μB = −0.02
and standard deviation σB = 0.52. Hence, for each 100km driven, with 68%
certainty, the benchmark error is smaller or equal to

[−54 50
]

kWh and the
model rror is smaller or equal to

[−41 39
]

kWh.

Fig. 1. The model (blue), and benchmark (orange) represent the relative error when
compared against vehicle log data. Two normal distributions fitted using the model
error (green), and benchmark error (red) are drawn on top. (Color figure online)
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