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Abstract. This paper presents a technique for automated reversing con-
trol of articulated vehicles. Reversing articulated Heavy Goods Vehicles
(HGVs) can be a challenging and time consuming task for a human
driver, sometimes requiring multiple forward and backward motions to
reduce errors. Here, the aim is to automate the task to provide high
levels of precision using Artificial Flow Guidance (AFG). AFG uses sim-
ple geometry to define a spatially distributed motion reference, requir-
ing only short-range error corrections and possessing global conver-
gence properties. AFG has previously been applied to rigid and artic-
ulated vehicles in forward motion, with demonstrable benefits in terms
of tracking precision and robustness. Here results focus on the tractor-
semitrailer, but the AFG approach is equally applicable to the reversing
of longer combination vehicles.

Keywords: Automated Reversing · Articulated Vehicles

1 Introduction

Efficient goods transportation is vital to smart manufacturing, industrial
automation and commerce in general. HGVs, which are popularly used for goods
transportation [11] can however pose stability issues, especially when docking or
reversing as the open-loop system is unstable [2,3]. The problem is three-fold:
(i) the system is unstable and require the driver feedback to stabilise the vehicle
[2] (ii) the trailer moves in the opposite direction to the steering applied at the
lead vehicle unit and [5] (iii) the driver cannot always see the rear end of the
vehicle, which makes it harder to track the vehicle state as it reaches its control
limit [5].

Thus, automated reversing control of articulated vehicles is an active field of
research. Notable publications include [2,3,12,13] among others. In [12] a state
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feedback controller was designed based on a linear dynamic model. The controller
was seen to provide good path-tracking performance for vehicles formed of one to
three trailers. Altafini et al. [2] also used linear state feedback, a switching logic
was applied to allow the multi-unit vehicle to drive forward when at the risk of
jackknifing. Yue et al. [13] used a kinematic model to form a Model Predictive
Control (MPC) which provides path tracking for both forward and backward
direction. In [3] Pure Pursuit was combined with a hitch angle compensator to
provide stable reversing on tractor-semitrailers. Again a kinematic model was
used. While several other methods have also been successful in providing motion
control for reversing, this reliance on vehicle modelling is a common feature.
Moreover, prior research have often used optimal or predictive control, which
increases design complexity and the number of tuning parameters.

Artificial Flow Guidance (AFG) is a general motion planning method that
uses a spatial distribution of desired motion vectors in place of an explicit target
path [7,10]. AFG has minimal tuning parameters and does not rely on detailed
vehicle modelling [11]. The method has previously been used for path-tracking
in forward motion for a conventional car [7], 4-wheel-steering car [6] and multi-
axle steered articulated HGVs [10,11]. In [9] experimental tests were carried
out on a full-size articulated HGV. This showed that AFG can provide precise
path-tracking and is feasible for real-time applications [9].

While previous research have demonstrated a number of advantages for AFG
in forwards motion, it has not been applied to the reversing of articulated
vehicles. Here, for simplicity, we focus on designing a reversing controller for
a tractor-semitrailer combination.

2 Artificial Flow Guidance

Individual 2D vectors in the AFG field are calculated using simple geometry
and a reference path – see Eq. 1 and Fig. 1(a) respectively. Here, R is a tracking
point on the vehicle intended to follow the flow vectors and hence converge to
the target path. P is a preview point and Q is the nearest point to R on the
desired path. Unit vectors t̂1 and t̂2 are tangents at points Q and P , respectively,
and t̂3 is a unit vector at R which points towards P ; 2θ is the angle between
tangents t̂1 and t̂2 [11]:

w =

{
t̂3 + t̂1−t̂2

2 cos θ , if |Sy| ≥ Sy0

[cos Γ sin Γ ]T , otherwise
(1)

Γ = Γ0 +
( |Sy|

Sy0

)
Γb (2)

The flow is modified in the immediate vicinity of the target path in the form
of a ‘boundary layer’, where flow angle Γ is interpolated from the exterior flow
Γb at the boundary – see Fig. 1(b). Sy is the lateral distance between points R
and Q, and Sy0 is half of the width of the boundary layer. This boundary layer
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improves the uniformity of the flow in the presence of sharp curvature changes
[11]. Also, imposing a constant magnitude for Γb, global convergence is assured
provided local tracking errors are bounded [11].

Fig. 1. The AFG vector w is calculated based on the path geometry. A 0.1 m boundary
is imposed around the desired path to improve the tracking performance.

The distance between Q and P is the preview distance, L:

L = v̄

√
|Sy|
2a

(3)

where v̄ is the vehicle speed. There are just two tuning parameters: a = 0.2 m/s2

is a flow acceleration parameter, and the boundary-layer half-width Sy0 =
0.05 m.

3 Controller Design

We chose the rear end of the semitrailer as the tracking point, for which the AFG
vector is found from Eqs. 1–3. The longitudinal component of all velocity vectors
on the trailer centre-line are equal, and normalized to unity for interpolation.
The AFG vector is also normalised to give ŵT as the reference (see Fig. 2a).

For low-speed motion we assume zero-sideslip at the 2nd axle on the
trailer. In terms of the trailer yaw angle ψ2, its normalized velocity is v̂z =
[cos ψ2 sin ψ2]T . From this and ŵT , the interpolated velocity at the hitch is
found:

V d
H = −xT

L2
ŵT +

(
1 +

xT

L2

)
v̂z (4)

Here, xT is the distance between the 2nd axle on the trailer and the tracking
point, and, L2 is the trailer wheelbase as shown in Fig. 2(a). The lower-level
controller (shown in Fig. 2b) converts this to a yaw rate motion reference using
the following:

rref
1 = −K(ψ1 − φ) + rref

2 (5)

Here, φ is the angle of the velocity reference at the hitch point with respect
to the global X-axis and rref

2 is the reference yaw rate for the trailer, calculated
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by considering the desired lateral velocity at the tracking point VT using rref
2 =

VT /xT . We assume that the hitch point coincides with the zero-sideslip point on
the tractor. This means, lateral velocity at the hitch point cannot be controlled
directly, and the tractor must be aligned with φ to give the correct directional
motion. Thus the feedback control aims match the tractor yaw angle ψ1 to φ.
K = 10 is a proportional gain.

Fig. 2. The lower-level controller uses vehicle kinematics to align the tractor to the
direction of the desired velocity vector at the hitch point.

This method also works for cases where the hitch point may be in front of
the zero-sideslip point (such as in a 2-axle tractor) but this introduces some
tracking error. Finally, the steering angle at the front axle δ is calculated using
Ackermann as shown in Eq. 6. Here, U1 and L1 are the longitudinal velocity and
the effective wheelbase of the tractor, respectively.

rref
1 =

U1 tan δ

L1
(6)

Furthermore, the steering angle is saturated within −π/4 ≤ δ ≤ π/4. This
also limits the articulation angle to prevent jackknifing [8].

4 Results and Discussion

All simulations were carried out in TruckMaker, which is a commercial simulation
software with a library of high-fidelity models. Here, a 6x4 tractor and a 3-axle
semitrailer are chosen. The performance of the controller is tested using two
maneuvers: (i) a 450◦ roundabout of radius 20 m and (ii) a 20 m lane change
formed using a cosine (equivalent radius is 250 m). The longitudinal velocity is
kept constant at −1 m/s for both cases – note that this method also works for
variable speeds provided slip angles at the tyres remain small. Figures 3 and
4 shows the results. Here, offtracking is defined as the lateral offset from the
desired path.

For the roundabout maneuver shown in Fig. 3, maximum offtracking at the
tracking point is 10 cm. This occurs when the vehicle is exiting the roundabout
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due to the large change in curvature experienced. With a single steered axle,
AFG can only control a single point – this is the rear end of the trailer. The rest
of the vehicle follows this point passively.

Figure 4 shows the lane change, maximum offtracking is only 1 cm at the
tracking point. For both cases, the vehicle remains stable throughout with the
articulation angle staying within 21.2◦ for the roundabout and 1.7◦ for the lane
change.

Fig. 3. Simulation results for the roundabout maneuver. Here, 1st axle is the front axle
on the tractor and the 6th axle is the rearmost axle on the trailer.

Fig. 4. Simulation results for the lane change maneuver. Here, 1st axle is the front axle
on the tractor and the 6th axle is the rearmost axle on the trailer.

5 Conclusion

Reversing HGVs can be a time consuming and challenging task for the human
driver. Automating this process can improve supply chain efficiency and con-
tribute positively towards smart manufacturing. AFG was used to design a con-
troller for automated reversing control on tractor-semitrailers. A simple lower-
level controller is used to convert the velocity reference at the rear end of the
trailer to a yaw rate reference at the fifth wheel.
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Simulations rendered in TruckMaker show good tracking performance at the
rear end of the semitrailer. For the maneuvers tested, the rear end of the trailer
stays within 10 cm of the desired path, even during large changes in path cur-
vature. These results are comparable, if not better than recent publications on
reversing control of tractor-semitrailers [1,4]. This, combined with the simplicity
of the control method makes this an attractive solution to the reversing problem.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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