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We theoretically investigate the properties of magnetically levitated superconducting elements confined in
anti-Helmholtz traps, for application in magnetomechanical experiments. We study both the translational modes
and the librational mode. The librational mode gives an additional degree of freedom that levitated spheres do
not have access to. We compare levitated particles of different shapes: ellipsoids (with analytical and numerical
treatment), cylinders, and rectangular cuboids (numerical treatment). We find that the stable orientations of the
particles depend on their aspect ratios.

DOI: 10.1103/PhysRevResearch.6.043046

I. INTRODUCTION

When an external uniform magnetic field Ha is applied
over a magnetic material with the shape of an ellipsoid, it
magnetizes with a uniform magnetization M [1]. If the mag-
netic material is linear, B = μH inside the ellipsoid (μ is
the constant permeability), and the magnetization is related
to the internal field through the susceptibility constant χ as
M = χH. Thus, χ = (μ/μ0) − 1, where μ0 is the vacuum
permeability.

When μ → 0 (χ → −1) the material behaves as a perfect
diamagnet (B = 0 inside). A superconductor can be modeled
as a perfect diamagnet, although there are extra properties,
i.e., flux quantization, that are not captured by just χ → −1.
On the other limit, when μ → ∞ (χ → ∞) we would be
considering a perfectly soft ferromagnet (H = 0 inside).

The demagnetizing factors are commonly used in magnetic
experiments. Indeed, the experimentalist controls the applied
field, while the intrinsic properties one usually wants to mea-
sure (i.e., the susceptibility) depend on the internal field. Both
are related through the demagnetizing factors.

We focus our study on levitation systems in the context of
quantum magnetomechanics. Indeed, the levitation of small
diamagnetic microparticles in specially designed magnetic
traps has been proposed as the experimental platform to
perform ground-state cooling of the center-of-mass degrees
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of freedom of the superconductor [2–4]. Different magnetic
traps have been proposed, such as surface superconductors
[5–7], quadrupolar magnets [8], chip-based multi-winding
planar coils [4], 3D arranged coils [3], or anti-Helmholtz
coils (AHCs) [2], to cite some. Stable levitation of lead
microspheres (�50 µm in diameter, 700 ng of mass) in anti-
Helmholtz traps has been recently demonstrated [4,9]. Using a
similar system (with elliptical coils to break the xy-axis sym-
metry) the center-of-mass motion of levitated lead-tin spheres
(now of �100 µm in diameter) have been feedback controlled
after coupling with a superconducting quantum interference
device achieving quality factors up to 2.6 × 107 [10].

As for the applied field, we shall consider AHCs generating
the applied fields. In these levitation experiments, the applied
field is not uniform and the use of demagnetizing factors
should be carefully considered. At the equilibrium position,
the applied field is quadrupolar with a value of zero at the
center. The assumption of a uniform applied field does not
apply. However, we will see how to take advantage of the
demagnetizing factors to account for the restoring force and
obtain useful expressions for the trapping frequency.

As for the levitated particle, not only the size, but its shape
can play an important role, since the demagnetizing fields can
change drastically the total field it experiences. Although the
spherical shape is the most used in magnetomechanics levita-
tion experiments [11], finding a perfect sphere is complicated
and studying how the shape affects the levitation is important.
The nonsphericity lifts some of the symmetries and some
vibrational modes become nondegenerate. Moreover, non-
spherical particles exhibit torques in the nonuniform magnetic
field which lead to librational modes (rotational oscillations)
as additional degrees of freedom [12]. Ellipsoids repre-
sent a good approximation for many other shapes ranging
from long cylinders to disks (and including the sphere). Al-
though the levitation of superconducting rings (including flux
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FIG. 1. Sketch of a general rotation of an ellipsoid. The axes after
rotating the ellipsoid are red, and the ellipsoid once rotated is intense
green. When a = b, the α angle can be skipped and the γ angle is
irrelevant (since x and y are identical). Thus, when a = b, only β is a
relevant rotation angle.

quantization) has been considered [11,13], there is a lack
of work devoted to studying the superconductor’s shape
influence.

In this work, we aim to conduct an investigation of the lev-
itation characteristics of magnetic particles in a quadrupolar
(anti-Helmholtz) magnetic trap. We mainly focus on super-
conducting ellipsoids, but some comparison with cylinders
and rectangular cuboids is also presented. For the ellipsoids,
we derive analytic expressions for the translational trapping
frequencies as a function of the principal axis lengths. For
the librational frequencies, as well as for the comparison
with cylinders and rectangular cuboids, we use finite-element
simulations.

The paper is structured as follows. In Sec. II we derive
the expressions for the magnetization of a generic ellipsoidal
linear magnetic material in the presence of a uniform applied
field. We find the external susceptibility matrix that relates the
magnetization of the ellipsoid with the external applied field.
In Sec. III, we consider a quadrupolar field and find how the
forces and torques over the levitated ellipsoid near its center
can be found. We evaluate the translational and librational
torques for this trap. In Secs. III C and III D, numerical results
comparing translational and librational frequencies, respec-
tively, of the trap for levitated superconducting ellipsoids,

cylinders, and rectangular cuboids are presented. We finish
with conclusions in Sec. IV.

II. THE EXTERNAL SUSCEPTIBILITY FOR ELLIPSOIDS

We consider a linear magnetic material with susceptibility
χ (an ideal superconductor would be χ = −1) and with the
shape of an ellipsoid with principal semiaxes a, b, and c.
The induction field B inside the ellipsoid is related to the
magnetization M, the magnetic field H, the applied field Ha

(uniform, in this section), and the demagnetizing field Hd,
through

B = μ0(M + H) = μ0(M + Ha + Hd ). (1)

The magnetization of the ellipsoid is related to the de-
magnetizing field through the diagonal demagnetizing factor
matrix N when both M and Hd components are expressed
as projections along the principal axes (â, b̂, and ĉ) of the
ellipsoid. In this case, one has H′

d = −NM′ where the primes
(′) indicate projections along principal axes and

N =
⎛
⎝Na 0 0

0 Nb 0
0 0 Nc

⎞
⎠. (2)

The demagnetizing factors Na, Nb, and Nc satisfy Na + Nb +
Nc = 1. Using Eq. (1),

M′ = χ (1 + χN)−1H′
a. (3)

We describe the orientation of the ellipsoid using the Euler
angles zyz representation of rotation [14] defined as follows
(see Fig. 1): (i) Initially the ellipsoid’s principal axis coincides
with the Cartesian axis, â = x̂, b̂ = ŷ, and ĉ = ẑ; (ii) first,
rotate the ellipsoid an angle α with respect to the z axis; (iii)
second, rotate the (already rotated) ellipsoid an angle β with
respect to the rotated y axis; (iv) finally, rotate the (already
rotated) ellipsoid an angle γ with respect to the rotated z axis.

Any rotation within this representation can be described by
(α, β, γ ). The rotation matrix Q is

Q =
⎛
⎝cos α cos β cos γ − sin α sin γ − cos γ sin α − cos α cos β sin γ cos α sin β

cos β cos γ sin α + cos α sin γ cos α cos γ − cos β sin α sin γ sin α sin β

− cos γ sin β sin β sin γ cos β

⎞
⎠. (4)

We use this Q matrix to change the coordinates of the vec-
tors. Actually, we have H′

a = QHa or Ha = QT H′
a, where T

indicates the transposed matrix. From Eq. (3) we can write
the magnetization vector, expressed in Cartesian coordinates
as a function of the applied field, also expressed in Cartesian
coordinates:

M = SHa, (5)

where we have defined the external susceptibility matrix S as

S = χQT (1 + χN)−1Q. (6)

The importance of Eq. (5) relies on that it gives the
magnetization of an arbitrarily rotated linear, homogeneous,

isotropic, and magnetic ellipsoid as a consequence of a uni-
form applied field, directly as a function of the applied field
(not the internal field H). The obtained matrix S is general
and can be applied to any ellipsoid as long as the applied
field is considered uniform through the ellipsoid. The explicit
general expression is cumbersome although straightforward
from Eqs. (2), (4), and (6).

Spheroid, a = b

As a particular case of the general treatment done above,
we consider here that the ellipsoid has two identical principal
axes, a = b. Then, Na = Nb ≡ Nab. Considering the applied
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field along the z direction, any rotation is described only by
β. That is, we are rotating the spheroid about the y axis at an

angle β. In this case, the external susceptibility matrix reduces
to

S =

⎛
⎜⎝

χ[(Nab+Nc )χ−(Nab−Nc ) cos(2β )χ+2]
2(Nabχ+1)(Ncχ+1) 0 (Nc−Nab)χ2 cos β sin β

(Nabχ+1)(Ncχ+1)
0 χ

Nabχ+1 0
(Nc−Nab)χ2 cos β sin β

(Nabχ+1)(Ncχ+1) 0 χ[(Nab+Nc )χ+(Nab−Nc ) cos(2β )χ+2]
2(Nabχ+1)(Ncχ+1)

⎞
⎟⎠. (7)

Importantly, for the spheroid, the demagnetizing factors of N have been analytically found [15–17] as

Nc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1−
(

c
a

)2

(
1 − c

a√
1−

(
c
a

)2
arccos c

a

)
, if c < a,

1

( c
a )2−1

[ c
a√

1−( c
a )2

ln
(

c
a +

√(
c
a

)2 − 1
) − 1

]
, if c > a,

(8)

Nab = 1
2 (1 − Nc). (9)

In Figs. 2 and 3 we plot the values of different components of
the S matrix as a function of c/a for several values of β and
χ . When β = 0 and when β = π/2 one obtains, respectively,

S(β = 0) =

⎛
⎜⎝

χ

Nabχ+1 0 0
0 χ

Nabχ+1 0
0 0 χ

Ncχ+1

⎞
⎟⎠, (10)

S(β = π/2) =

⎛
⎜⎝

χ

Ncχ+1 0 0
0 χ

Nabχ+1 0
0 0 χ

Nabχ+1

⎞
⎟⎠. (11)

For spheres, Nc = Nab = 1/3, the rotation matrix is the iden-
tity matrix, and the external susceptibility tensor becomes

S = 3χ

3 + χ
1. (12)

For the ideal superconducting sphere (χ = −1), we have
S = −(3/2)1.

FIG. 2. Szz (blue-green) and Sxz (red-purple) matrix elements of
a spheroid, as a function of c/a for different values of β from 0
to π/2 in intervals of π/20 (following the arrows). In this figure,
χ = −1. Note that the rest of the matrix is given by Szx (β ) =
Sxz(β ), Szz(β ) = Sxx (β + π/2), Syy(β ) = Sxx (0) = Szz(π/2), and
Sxy = Syx = Syz = Szy = 0.

III. FORCES AND TORQUES OVER THE ELLIPSOID
IN A QUADRUPOLAR EXTERNAL FIELD

A. Anti-Helmholtz coil field

One of the common traps for quantum magnetomechanics
experiments is the AHC trap. It consists of two coaxial coils
of radius R separated by a distance R. A current I circulates
through the coils in the opposite direction. The origin of
coordinates is located on the coaxial axis of the coils, at the
equidistant point between all the points of both coils. The
field created by the AHC at positions r = (x, y, z) close to the
origin (|r| � R) is a quadrupolar field that can be written as

Ha = H0

R
(−xx̂ − yŷ + 2zẑ), (13)

where H0 ≡ 24I
25

√
5R

.
We consider a, b, and c small enough with respect to R so

that in all situations, all the points of the ellipsoid will be on
the region where Eq. (13) holds.

FIG. 3. Sxx (green), Szz (blue), and Sxz (red) matrix elements of
a spheroid, as a function of c/a for different values of χ , from 0 to
−1 in intervals of −0.1 (following the arrows). The thickest lines
correspond to curves with χ = −1. In this figure, β = 0. Note that
the rest of the matrix is given by Szx (χ ) = Sxz(χ ), Sxx (χ ) = Syy(χ ),
and Sxy = Syx = Syz = Szy = 0.
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FIG. 4. Magnetic field lines interacting with a diamagnetic ellip-
soid, (a) for a uniform external magnetic field and (b) for an external
quadrupolar magnetic field.

To simplify the treatment we shall consider, unless explic-
itly indicated, that we have a perfectly diamagnetic (χ = −1)
ellipsoid with a = b (a spheroid), near the center of the trap. In
Fig. 4 we show an example of field lines for a uniform applied
field and an AHC field.

B. Forces after translations

The stable position for translation of a levitated spheroid is
when its center coincides with the center of the AHC, where
the applied field is zero (we neglect gravity). Any translation
of the ellipsoid from this position results in a restoring force
that tends to push the ellipsoid to the center again.

In general, the magnetization inside the ellipsoid is not
uniform. Since we are considering a region where the applied
field is linear, if the center of the ellipsoid is moved to a point
r0, we have

Ha(r) = Ha(r0) + Ha(r′), (14)

where r′ = r − r0 points to an ellipsoid’s point as if it were
located at the origin.

As we have assumed linear materials, the magnetization of
the spheroid will be the sum of the magnetization induced by
these two fields. The currents induced by the second term will
have a complicated distribution but, because of the symmetry,
the forces they receive sum up to zero when integrated all over
the spheroid’s surface.

Thus, as far as the force evaluation is concerned, we can
consider only the currents induced because of the field given
by the first term of the right-hand side of Eq. (14). That is, the
force exerted over the ellipsoid with its center at r0 can then
be written, using Eq. (5), as

F = μ0V (SHa · ∇)Ha

∣∣∣
r=r0

, (15)

where V is the volume of the spheroid and the applied field
and its derivatives should be evaluated at r0, the “displaced”
center of the spheroid (see Appendix A for a detailed demon-
stration).

The trapping frequencies are then evaluated from the vari-
ations of the force components with respect to the coordinates
(xl = x, y, or z):

ωkl =
√√√√ 1

m

(
− ∂Fk

∂xl

∣∣∣∣
xl →0

)
, (16)

where m is the mass of the ellipsoid. Using Eqs. (13) and (15)
one gets

ωxx = ω0

√
−Sxx, (17)

ωyy = ω0

√−Syy, (18)

ωzz = 2ω0

√
−Szz, (19)

where ω0 is defined as

ω0 = H0

R

√
μ0

	
, (20)

	 being the mass density of the ellipsoid. When β = 0 or
β = π/2, ωkl = 0 for all k 	= l . For an ideal superconduct-
ing sphere, Eqs. (17)–(19) reduce to ωxx = ωyy = (1/2)ωzz =
ω0

√
3/2, which coincides with Ref. [2]. Considering a lead

levitating particle, 	 = 1.09 × 104 kg/m3, in an AHC of
μ0H0/R � 75 T/m [10], we obtain ω0 � 640 rad s−1 � 2π ×
100 Hz.

C. Comparison with cylinders and cuboids

Up to now, we have considered the levitated superconduc-
tor with an ellipsoidal shape. It is clear that this is an excellent
case for extracting analytical expressions and it represents
a pretty good approximation for other shapes. However, the
fabrication of such samples is more complicated than other
“simpler” shapes such as cylinders or rectangular cuboids. In
this section we present numerical results of trapping frequen-
cies, comparing them with the results analytically obtained for
ellipsoids.

To compare the different geometries, we consider
spheroids with a = b, and compare them with cylinders of
radius a and length 2c and rectangular cuboids with a square
cross section of sides 2a and length 2c. Note that the volume
of the three samples is not the same: Vell = 4πa2c/3, Vcyl =
2πa2c, and Vcub = 8a2c for the ellipsoid, cylinder, and cuboid,
respectively. The mass density 	 is considered the same. To
compare different aspect ratios, we have fixed the value of a
and varied the value of c. In all the cases, we have considered
that all the samples are in the region where the approximation
of the quadrupolar external field holds.

In Fig. 5 we show the calculated frequency for the three
shapes as a function of the aspect ratio. It is important to note
that, as we shall see in Sec. III D, the equilibrium angle β0

with respect to rotation varies when c/a changes. In Fig. 5
we show the calculated translational frequencies considering
β = β0 (shown in Fig. 5 for cylinders, cuboids, and ellip-
soids). We have also calculated some values for the spheroid
to double-check the previous equations and to ensure that the
numerical imprecision of the calculations does not affect our
results (see Appendix B for further details). The values for
cylinders have also been double-checked with Ref. [18].

The main facts we observe are as follows: (i) the equi-
librium angle for stability, β0, is different depending on
the sample and its aspect ratio c/a; (ii) the evaluated ver-
tical frequencies are larger than the horizontal ones for all
the considered geometries; (iii) there is a sudden change in
β0 for the ellipsoids when c/a = 1 yielding a kink in the
ellipsoid’s plot; (iv) for oblate ellipsoids (c/a < 1), ωxx = ωyy

because β0 = 0; for prolate ellipsoids (c/a > 1), ωxx 	= ωyy
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FIG. 5. On top, there are the normalized translational frequen-
cies’ components (in logarithmic scale) as a function of c/a for
ellipsoids (green ellipsoids), cylinders (red circles), and rectangular
cuboids (blue squares). Each point is evaluated from the corre-
sponding stable-rotation angle β0. For the same aspect ratio, this
stabilization angle is different depending on the geometry. On the
bottom, we plot the numerically evaluated stabilization angle as a
function of the aspect ratio. Therefore, all frequencies are evalu-
ated with β = β0 (the corresponding rotational-stability angle) and
χ = −1. The lines for the ellipsoids correspond to the analytical
expressions [see Eqs. (17)–(19)]. For the cylinders and cuboids,
the dotted lines are guides for the eye, and the solid lines are the
analytical expression for the small c/a limits [Eqs. (21) and (22)].
The purple region corresponds to oblate ellipsoids and the orange one
to prolate ellipsoids. All the dots are numerically calculated values
using finite-element methods. The three insets below are schemes of
the definition of β0 using a cylinder as an example (red) and the two
β0 values for oblate and prolate spheroids (green).

because β0 = π/2; (v) the vertical and horizontal frequencies
for cylinders and cuboids are very similar in this comparison;
(vi) the frequencies become greater as a greater fraction of the
superconducting volume is located closer to the z = 0 plane
and/or the z axis (suggesting a z-revolution astroid-like shape
[19] for the levitated particle).

It is interesting to study the c � a limit (very thin sam-
ples). It is known that the external susceptibility at small
applied fields is χ0 = f0a/c with f0 = 4/(3π ) for cylinders
[20] and f0 = 0.9094 (numerically found value) for rect-
angular cuboids [21]. The resulting vertical and horizontal
frequencies are

ωzz = 2ω0

√
f0

a

c
, (21)

ωxx = ωyy = ω0. (22)

Note that, in this limit, β0 = 0 and ωxx and ωyy are the same
for both samples. For thin oblate spheroids, one can also find
that ωzz ∝ √

a/c and ωxx (= ωyy) tends to ω0.

D. Torques after rotations

Even if the center-of-mass of the ellipsoid is not displaced
from the origin of coordinates, the spheroid can rotate. Rota-
tion of microscale diamagnets can exhibit interesting quantum
phenomena [22]. In general, the torque on a given magnetized
body due to an external field is given by

T = μ0

∫
V

r × (M · ∇)Ha dV. (23)

When the spheroid is not rotated (their principal axes
point along the coordinates axes) the total torque is zero,
although the sample is magnetized. To simplify the treatment
of librations we consider that the rotation is over the y axis,
represented by the angle β. We can define the librational
frequency of the trap as

ωβ =
√√√√ 1

Iy

(
− ∂Ty

∂β

∣∣∣∣
β→β0

)
, (24)

where Iy is the moment of inertia of the spheroid with respect
to the y axis, I = (1/5)m(a2 + c2) = (4/15)πa2c(a2 + c2)	
for a solid spheroid.

β0 is the angle with respect to the z axis at which the total
torque cancels when only libration is considered. Thus, it rep-
resents the rotational equilibrium angle. Ellipsoids, cylinders,
and cuboids with identical c/a ratios will stabilize libration
at different β0 angles (see Fig. 5). For rectangular cuboids,
there would also be an α or γ dependency, which has not been
considered here.

In Ref. [23], the angular frequency was expressed as ωβ =
c

a
√

(a/c)2+1

√
15

4π	
kβ , where kβ = − 1

c2
∂Ty

∂β
|β→0. The term kβ was

defined as the effective spring constant of an effective libra-
tional oscillator of length c. This definition is similar to ours,
although adapted to the vibration of a cantilever.

Although the external field is known, after rotation, we
cannot separate the external field in a non-torque-producing
term plus a nonzero uniform term [as we did in Eq. (14)].
In the case of a superconducting spheroid with χ = −1, the
reaction of the superconductor is the induction of surface
currents K whose value is evaluated from the discontinuity
of the tangential component of the B field at the (rotated)
surface of the ellipsoid. In this case, the total torque can also
be expressed as

T = μ0

∫
S

r × (K × Ha ) dS. (25)

We could not find in this case an easy analytical expression for
the currents. Approximately, they could be evaluated from the
currents at the surface of a sphere [24] adequately distorted
to account for the spheroidal shape and then evaluate the
above integral. In any case, the expressions would not be
simple enough as they are in terms of elliptical integrals. We
present in Fig. 6 the librational frequencies evaluated with
Eq. (24), after numerically evaluating the torques. The kink
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FIG. 6. Librational frequencies for angular vibration of ellip-
soids (green), cylinders (red), and rectangular cuboids (blue), as
a function of the aspect ratio c/a. Each point is evaluated from
the corresponding stable-rotation angle β0; see Fig. 5. The purple
region corresponds to oblate ellipsoids and the orange one to prolate
ellipsoids. Dashed lines are guides for the eye.

in the librational frequency for the ellipsoids is explained by
the change in β0 from 0 to π/2 when the ellipsoid passes from
oblate to prolate, as shown in Fig. 5.

We observe in Fig. 6 that when c/a is close to unity, cylin-
ders and cuboids are more rigid than spheroids, concerning
libration (as expected, since for c/a = 1 the ellipsoid is a
sphere which can rotate freely, because of the symmetry).
However, as the ellipsoid becomes more prolate or more
oblate, it becomes more rigidly levitated.

Finally, note that an already rotated ellipsoid, if moved lat-
erally or vertically, would experience, apart from the evaluated
restoring force and torque, extra forces that go in the direction
perpendicular to the displacement, and, as a consequence,
also torques in other directions [see Fig. 2 and Eq. (7)]. The
general movement, taking into account all the possibilities, is
beyond the scope of this work, but we would like to note that
many different possible modes of vibration can appear and
that the particular geometry of the levitating sample can play
a significant role in their trapping frequencies.

E. Further discussion

The introduced scheme for force and torque evaluation has
been presented for the particular case of an AHC trap and
a particle that remains in the linear region of the trap. For
other types of harmonic traps, the general equations can also
be applied, as long as the linear region of the applied field is
large enough to keep the ellipsoid inside this region, including
its translational and rotational motion.

The ellipsoid geometry (and in general, any geometry be-
yond the sphere) can follow the symmetry of the traps. That
is, one could design a trap that takes advantage of the ellip-
soidal symmetry of the levitating particle. In our case, we
have a sharp change in the β0 equilibrium angle, but other
types of traps could result in a more tunable behavior. Beyond

ellipsoids, one could fine-tune the geometry of the levitated
object to maximize its trap frequencies.

In our work, we neglected the effects of gravity and as-
sumed that, at the particle’s equilibrium position, the magnetic
force on the particle is zero. Gravity causes the equilibrium
position to be shifted, to the point where the magnetic force
on the particle cancels the particle’s weight. If the z axis is
along the vertical direction, the displacement due to gravity
is 
z ∼ g/ω2

z (g is the gravity constant). At this displaced
position the particle has a magnetic dipole moment, which
can affect its rotational properties. It is reasonable to neglect
the effects of gravity if the displacement due to gravity 
z is
much less than the particle size.

IV. CONCLUSIONS

We have found the external susceptibility matrix, S, that
directly relates the magnetization of the ellipsoid with the
uniform applied field, for all possible relative orientations be-
tween them. The key result is that we can express the applied
field in the convenient coordinates needed for describing the
magnetic system and the magnetization is found directly as
a function of the demagnetizing factors, which are tabulated
assuming that the field is along one of the principal axes of
the ellipsoid.

We have used this result to evaluate the forces received
considering a χ = −1 spheroid located at the central region
of an anti-Helmholtz coil system. From these forces, the
translational (analytically and numerically) and the librational
(numerically) trapping frequencies have been evaluated.

The results found, although derived in an idealized case,
could be useful in the field of magnetomechanics, since the
knowledge of analytical (despite approximate) equations can
guide the design of the experimental systems. Moreover, the
detailed description of the levitation system and the geometry
effects can also serve to calibrate a given experiment and, thus,
increase the performance of the experimental setup.

In a more general scope, the described external sus-
ceptibility and its consequences could help in performing
demagnetization corrections in a broad type of experiments
since we have found the external susceptibility tensor as the
relation between the internal magnetization (a measure of the
reaction of the material) and the external applied field (an
easily controllable magnitude).
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APPENDIX A: DETAILS OF THE LINEAR
APPROXIMATION

In this Appendix, we will explicitly derive Eq. (15) when
considering an ellipsoid centered at the point r0 and located
in the linear region of the AHC field. Since the field is lin-
ear, Ha(r) = Gr, where r is the position vector and G is a
3 × 3 field gradient matrix, Gi j = ∂Ha,i/∂x j [where i, j =
1, 2, 3 and (x1, x2, x3) = (x, y, z)]. In our case, after Eq. (13),
G = (H0/R) diag(−1,−1, 2).

Consider an ellipsoid displaced from the origin of the trap
such that its center is at r0 (Fig. 7, left). Any point of the
ellipsoid is subjected to an external field given by Ha(r) = G ·
(r0 + r′) = Gr0 + Gr′ = Ha(r0) + Ha(r′), where r′ = r −
r0. Consequently, the applied field at any point of the ellipsoid
is a uniform field (the field at the center of the ellipsoid) plus
a quadrupolar field with origin at the center of the ellipsoid.

The force over the ellipsoid can be evaluated from

F = μ0

∫
V

[M(r) · ∇]Ha(r) d3r. (A1)

Taking into account that our G is a constant and diagonal ma-
trix (i.e., it does not depend on position), the above expression
can be rewritten as

F = μ0

∫
V

GM(r) d3r. (A2)

Now, as the ellipsoid’s material is assumed linear, we can
write M(Ha(r)) = M(Ha(r0)) + M(Ha(r′)) ≡ M1 + M2(r′).
Note that Ha(r0) acts as a uniform field at every point of the
ellipsoid, so M1 is also uniform for ellipsoids (see Fig. 7,
middle) and can be evaluated from Eq. (5). M2 depends on the
position inside the ellipsoid, but it has has the symmetry of a

FIG. 7. The total magnetization of a spheroid displaced along the
x axis M (left, red arrows) can be expressed as the superposition
of the magnetization M1 due to a uniform field equal to that at the
center of the spheroid (center, red arrows), plus the magnetization
M2 induced by the currents generated by the quadrupolar field at the
center of the trap (right, red arrows).

quadrupolar field (see Fig. 7, right). The above equation be-
comes

F = μ0

∫
V

GM1 d3r + μ0

∫
V

GM2(r′) d3r′. (A3)

Since G does not depend on position and M1 is a uniform
vector field, we get

F = μ0V GM1 + μ0G
∫

V
M2(r′) d3r′. (A4)

Because of the symmetry of M2(r′) (see Fig. 7, right), the
remaining integral must be zero. Rewriting back the G matrix
in terms of derivatives, and using M1 = SHa(r0) [Eq. (5)], we
obtain Eq. (15) of the main text:

F = μ0V GM1 = μ0V (SHa · ∇)Ha

∣∣∣
r=r0

. (A5)

Note that the field and the derivatives should be evaluated at
r = r0.

Observe that this argument of considering only the external
field at the center of the ellipsoid does not hold when treat-
ing rotational modes, since, in this case, the rotation could
produce a net angular momentum. For torque evaluation, a
numerical calculation of the Maxwell stress tensor inside the
ellipsoid is performed (see Sec. III D and Appendix B). Note
also that we have not imposed any geometric condition for
the levitating particle (apart from symmetry). Therefore, the
argument applies to ellipsoids, as well as to cylinders and
prisms, with the significant difference that the magnetization
generated by the uniform field Ha(r0) would not remain uni-
form in these last two shapes.

APPENDIX B: NUMERICAL CALCULATIONS

The numerical calculations were performed using finite-
element method simulation using COMSOL Multiphysics
software. The Magnetic Fields (mf) interface was used em-
ploying the A formulation to calculate the magnetic vector
potential A of a magnetic system.

The simulation space was set as a sphere with a radius
D � a, b, and c (D � 20a), with the levitating particle at the
center. The boundary conditions were set to have a quadrupo-
lar field, Eq. (13), at the surface of the large sphere. In this
way, we ensure that the ellipsoid is situated in a quadrupolar
field and does not disturb the field at greater distances. As
the system behaves linearly (concerning both the material
permeabilities and the external field), the particle’s absolute
length dimensions are irrelevant for numerical calculations;
only its relation to the entire simulated space has to be taken
into account.

The superconducting levitated particle (modeled as an el-
lipsoid, a cylinder, or a rectangular cuboid) was simulated as
a linear material with zero magnetic permeability. In practice,
the relative permeability of the material for the simulation
was set to 10−4, which gives a good approximation to a zero-
magnetic-permeability material. The rest of the space was
simulated as a vacuum with a relative magnetic permeability
equal to 1.

The Maxwell stress tensor was evaluated to determine the
total net force and torque exerted on each particle. The equi-
librium angle β0 for each particle was calculated by measuring
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the torque for different angles. A linear interpolation of angle
against torque was performed, and the β0 angle was taken as
the abscissa intercept of the plot.

To calculate the different displacement frequencies ωxx,
ωyy, and ωzz for all geometries, five force calculations were
performed at different positions for each of the three spa-
tial coordinates. Specifically, five force calculations were
done with different x positions while keeping z = y = 0,

and similarly for y and z. For all cases, we used the cor-
responding β0 for each particle. The slope of the force
against the position plot was then used to calculate the
frequency of the levitating particle along the three spatial
dimensions.

Finally, the torque for five different angles centered at β0

was calculated and the librational frequencies were obtained
from the slope of that torque against the displaced angle.
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