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Numerical methods for multiscale modelling of fibre composites
ELIAS BORJESSON

Department of Industrial and Materials Science
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ABSTRACT

Fibre composite materials are inherently heterogeneous, often characterised by a complex
internal substructure that includes various material phases and interfaces. The intricate
substructure, at both the microscale and mesoscale, gives rise to a wide range of damage
mechanisms that grow and propagate before they eventually manifest at the macroscale.
To accurately capture and predict fibre composite behaviour at the macroscale, a com-
prehensive multiscale approach which includes information from the subscale is essential.
This thesis addresses key challenges for multiscale modelling of fibre composites, focusing
on the development of numerical methods at the macroscale, mesoscale, and the coupling
between them.

In order to incorporate information from the mesoscale into the model at the macroscale,
we develop a two-scale computational homogenisation framework. As fibre composites
are often used in thin-ply applications, the homogenisation framework is developed for
plate elements, specifically plates with Reissner—-Mindlin kinematics. Moreover, a vital
part for any effective homogenisation framework is to establish accurate prolongation and
homogenisation constraints. To this end, we demonstrate how Variationally Consistent
Homogenisation (VCH) can be employed to derive constraints which link the mesoscale
and macroscale in a kinematically consistent manner.

At the macroscale, we address the challenges related to efficient and robust modelling
of delamination in multilayered composites. Current state-of-the-art modelling techniques
typically resolve each individual layer using multiple solid elements in conjunction with
cohesive zone elements at the laminae interfaces, which results in computationally de-
manding models. In response to this, we develop an isogeometric shell element which can
adaptively refine its through-thickness discretisation in areas where delamination is active.
Thereby, the computational effort is kept low. To address the convergence issues typically
encountered when simulating brittle delamination, we develop an arc-length solver that is
augmented with the dissipation rate of the system. In this manner, we are able to trace
the initiation and propagation of multiple delamination in a robust manner.

For accurate mesoscale modelling, it is crucial to include a detailed representation of
the geometry and material constituents (fibre and matrix phases). However, incorporating
high levels of geometric detail of the mesoscale structure presents significant challenges
for meshing software, as it complicates the generation of good quality meshes. To address
these challenges, we investigate the use of Immersed Boundary Methods, whose primary
advantage is the automation of the discretisation process. We propose a modelling
framework that streamlines the discretisation process for mesoscale models, demonstrating
its ability to homogenise stiffness properties and accurately predict the subscale stress
field.

Keywords: Multiscale Modelling, Fibre Composites, Isogeometric Analysis, Immersed
Boundary Methods, Finite Cell Method, Mesoscale modelling, Path-following solver
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Part 1
Extended summery

1 Introduction

The ability to design lightweight structures is crucial in many industries, including
aerospace, automotive, and sports technology [1, 2]. A class of material that possesses
favourable lightweight characteristics is fibre reinforced composites. These materials
consist of strong and light fibres (e.g., carbon, glass, kevlar) embedded in a binding
polymer matrix (e.g., epoxy). Fibre composites offer numerous advantages, for instance,
they exhibit excellent stiffness-to-weight and strength-to-weight ratios, and can be tailored
to obtain desired material properties for specific applications.

Despite their advantages, fibre composites present significant challenges in modelling
and simulation [3]. These challenges manifest as difficulties in, for example, accurately
predicting the various failure mechanisms (damage initiation and propagation), in con-
junction with computationally efficiency. These challenges (among others) hinder the
broader adoption of fibre composites in various products, as material and structural
analysis through Computer Aided Engineering (CAE) are crucial for the product develop-
ment process in many industries. Consequently, there is a need for (continued) research
into efficient and accurate numerical simulation tools to support engineers in developing
components in fibre composite materials.

One contributing factor to the significant challenges in modelling fibre composite
structures is the heterogeneous and complex nature of the substructure at the meso-
and microscale. Depending on the specific fibre architecture (i.e. the fibre and matrix
configuration at the subscale), a wide range of damage phenomena can occur, such as
matrix cracking, fibre kinking, and delamination. The heterogeneity and complexity of
the subscale highlights that adopting a multiscale perspective, by explicitly incorporating
details from the subscale structure into the macroscale model, would be beneficial for
analysis and design. Accordingly, the overarching goal of this thesis is to investigate and
provide new insights into modelling aspects at both the macroscale and subscale levels
(here, we specifically focus on the mesoscale).

The following subsections provide a general overview of various modelling aspects and
challenges encountered at macro- and mesoscale levels, and the coupling between them,
which will be used to motivate the research scope of this thesis.

1.1 Multiscale modelling via computational homogeni-
sation
Fibre composites exhibit a heterogeneous structure, spanning multiple hierarchical scales

across the micro-, meso-, and macro-level. This heterogeneous and hierarchical nature
introduces challenges in understanding and predicting composite behaviour; both in terms
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Figure 1.1: Illustration of computational homogenisation.

of anisotropic elastic behaviour and, more critically, in damage mechanisms such as matrix
cracking, fibre kinking and breakage, or delamination. Consequently, it is important to
develop multiscale modelling frameworks that include the behaviour at the mesoscale
with the overall response at the macroscale.

A popular multiscale approach is Computational Homogenisation [4], wherein the
constitutive behaviour at a material point on the macroscale is derived by solving a
boundary value problem on a statistical or representative volume element (SVE or RVE)
of the substructure. For a visual representation of computational homogenisation, see
Figure 1.1. Two advantages of computational homogenisation include: the macroscopic
local constitutive equations can be derived directly from the solution of the corresponding
microscale boundary value problem, and one may include arbitrary subscale complexity,
including physically non-linear and time-dependent characteristics. Research on compu-
tational homogenisation techniques has predominantly been focused towards methods
where solid/continuum elements are used on the macroscale. However, fibre composite
materials are frequently employed in thin shell applications, which are more appropriately
modelled using plate or shell elements. In response to this, research efforts over the past
two decades have begun to address computational homogenisation techniques specifically
tailored to structural elements such beams, plates, and shells [5-7]. Nonetheless, further
research is still required in this area and is addressed in this thesis.



1.2 Fibre composite modelling on the macroscale

Fibre composite modelling at the macro level involves trying to predict the structural
properties and response (e.g. structural stiffness, risk of damage initiation, crashworthiness)
of composite structures under various loading conditions. A common approach to model
thin shell composite structures is to use equivalent single-layer (ESL) shell elements,
where the composite material properties have been homogenised to the midsurface of
a shell element. This modelling approach has generally demonstrated the ability to
accurately and efficiently predict the overall stiffness and in-plane stresses of structural
components, see e.g. [8]. Moreover, these models can be combined with failure criteria
such as LARC [3], to predict when the material and structure fails. A shortcoming of
ESL models, however, is that they do not resolve the through-thickness properties in
a detailed manner, which limit their accuracy and applicability to model the different
failure mechanisms experienced by fibre composites.

One failure mechanism that is prevalent in layered/laminated fibre composites is
delamination. As indicated by the name, delamination occurs in layered structures (e.g.,
unidirectional (UD) layer composites), where cracks form and propagate between layers.
Because delamination involves the separation of individual laminae, it is impossible to
represent this with efficient shell models such as ESL. Therefore, the preferred way of
modelling delamination is to use so-called Layer-Wise (LW) models, where each individual
layer is represented by one or more solid elements, together with cohesive zone elements
at each layer interface. For a visual representation of a LW model, see Figure 1.2a [9].
While LW models accurately capture the kinematics of the delamination phenomenon
and have been used in many applications, the computational demand is significant, as
UD fibre composites can consist of 10-100 layers.

Another challenge with modelling delamination in fibre composites is that it generally
creates a brittle failure event. As with all brittle failures, it is typically difficult to obtain
converged results in incremental quasi-static simulations beyond the maximum force
peak [10]. Consequently, it is even more difficult to trace the full equilibrium path of the
failure event. This limitation means that a significant amount of important information
about the progressive failure event is lost.

1.3 Fibre composite modelling on the mesoscale

Mesoscale modelling focuses on the detailed representation of the internal structure
of textile fibre composite materials, where the interactions between impregnated fibre
bundles and the polymer matrix are explicitly considered, see Figure 1.2b which depicts
the bundles in a woven composite. Note that in mesoscale models, the individual fibre
filaments are not accounted for, but rather a homogenised representation of a collection
of filaments (bundles) is used. These mesoscale models are used to obtain homogenised
stiffness properties [11], monitor stresses and strains [12], or to investigate failure and
damage mechanisms [13].

In order to be able to make accurate predictions with mesoscale composite models, it
is essential to include a detailed representation of the geometry of the bundles and the



1 mm

10 mmn

(a) Layer wise model. (b) Mesoscale structure.

Figure 1.2: Two fibre composite models at differnet scales. (a) A layer-wise model at the
macroscale [9]. (b) A meshed mesoscale structure of a 3D-woven composite [21].

matrix, as well as their interfaces [14]. Consequently, there is substantial research devoted
to the generation of geometries for different fibre composite materials. For instance,
TexGen and WiseTex are commonly used for generating planar and 3D weave composite
geometries [15, 16], while other authors focuses on the generation of realistic 3D composite
geometries through process simulation [17-19].

Irrespective of their fibre composite architecture and how it is generated, the mesoscale
geometry can often be classified as ”complex.” Fibre bundles are typically closely situated,
leading to small gaps and sharp angles between them. These geometric features pose
significant challenges during the meshing process, particularly in pure matrix regions. This
can result in an excessive number of elements, poor-quality elements, or situations where
the mesh generator is unable to produce a mesh at all. Consequently, time-intensive manual
intervention is often required to achieve desirable models. This is partially evidenced
by the large number of authors who employ automatic voxel meshing procedures to
circumvent the difficulties associated with generating boundary-conforming meshes, see
e.g. [20] and references therein.

1.4 Research scope

The purpose of this thesis is to investigate and bring new insights into numerical modelling
methods at both the macroscale and mesoscale levels, as well as the coupling between
them. Based on the limitations and challenges described in the previous subsections, four
research goals have been identified.

The first goal relates to the need for two-scale modelling framework for (thin) structural
elements, in order to link the mesoscale mechanical response to macroscale models. As
such, the first research goal is to:

e Develop a multiscale framework for plate-based computational homogenisation, and
devise consistent prolongation and homogenisation conditions linking the macro-
and subscale. This is addressed in Paper A.

Next, the delamination process of layered fibre-reinforced composites presents signif-
icant challenges for efficient evaluation, primarily due to the necessity of high-fidelity



models. Moreover, quasi-static simulations of brittle delamination (and other failure
mechanisms), using incremental- and Newton-based solvers, often fail to convergence
past the force-peak when structural failure initiates. Consequently, the second and third
research goals, pertaining the macroscale, are to:

e Develop an isogeometric shell model that can adaptively refine its discretisation
at arbitrary interfaces through the thickness, with the aim of creating an efficient
shell model with refined areas only where the delamination initiates and propagates.
This is addressed in Paper B.

e Develop a dissipation based path-following solver which can trace the full failure
event and improve convergence in quasi-static simulations of delamination and
brittle material failures. This is addressed in Paper C.

Finally, as the geometric features of mesoscale models bring considerable challenges in
the discretisation/meshing process, there is a need of modelling approaches which can
simplify the discretisation process of these structures. The forth research goal, pertaining
to the mesoscale, is therefore to :

e Develop and investigate the use of immersed boundary methods for the modelling
of complex mesoscale structures of textile fibre composites. The goal is to obtain
a method that automates the meshing procedure of complex subscale geometries.
This is addressed in Paper D.

1.5 Limitations

The development of the plate-based computational homogenisation framework in Paper A,
the macroscopic shell Paper B, and the mesoscale modelling approach in Paper D,
can in the current form be seen as stand-alone pieces of a puzzle. The individual papers
propose solutions to address key challenges within each domain, but are currently not
connected to demonstrate their feasibility in a coupled multiscale approach.

Furthermore, the following key limitations have been identified for each research goal
and related paper.

e In Paper A, we do not consider homogenisation of non-linear material behaviour,
but focus on demonstrating convergence properties of homogenised plate stiffness
properties for linear elastic materials. Furthermore, we only consider prolongation
and homogenisation for flat plates, where arbitrary curved shells are left for future
work.

e In Paper B, we do not consider intralaminar damage, but limit our-selves to
interlaminar damage (i.e. delamination). This is motivated by the fact that
delamination is inherently a global phenomenon (layers separating from each other),
which needs to be captured with models with refined through-thickness kinematics.
Intra-laminar damage on the other hand, can often can be viewed local phenomenon
that can be modelled with (for example) smeared crack models.



e In Paper D, we emphasise the development of a framework that simplifies the
discretises process, whereby initially only linear elastic material behaviour on the
macroscale will be considered when verifying the method.

1.6 Thesis outline

The thesis is divided into three parts relating to homogenisation, macroscale modelling and
the mesoscale modelling. In Chapter 2, we present a kinematically consistent homogenisa-
tion framework for plate elements. Next, in Chapter 3, we present the developments of
an isogeometric shell elements with adaptive through-thickness capabilities, for efficient
modelling of delamination. In the same chapter, we also present the dissipation based
arc-length solver for modelling of brittle failure in quasi-static simulations. In Chapter 4,
a modelling framework based on the Finite Cell Method is presented, for streamlining the
discretisation process of complex fibre composite mesoscale structures. Finally, the main
conclusions are presented in chapter 5, and suggestions on future work is outlined.



2 Multiscale modelling for structural elements

Multiscale methods are techniques designed to bridge different length scales in the
analysis of materials or structures. These methods are particularly beneficial when
phenomena at smaller scales (such as the microscale or mesoscale) significantly influence
the behaviour at larger scales (such as the macroscale), and when empirical constitutive
models are insufficient. One widely recognised multiscale method is Computational
Homogenisation [4], where the constitutive behaviour at a material point on the macroscale
is derived (homogenised) from a detailed model and boundary value problem of the
substructure (e.g., a mesoscale segment of a fibre composite). This can either be performed
concurrently for all material points and time steps, if the subscale SVE is non-linear, or
performed once in offline stage, if the SVE is linear elastic.

Fibre composite materials are often used in thin-shell applications, which are suitably
modelled with plate or shell elements. As such, computational homogenisation techniques
tailored to structural elements such as beams, plates, and shells is required. The following
subsection provides a short overview of multiscale frameworks specifically designed for
structural elements.

2.1 Computational homogenisation for structural ele-
ments

The first publications on computational homogenisation techniques for structural elements
is attributed to Geers et al. [22], who developed a multiscale framework for Reissner-
Mindlin type shells. Shell-based homogenisation was later extended to other shell theories,
e.g. Kirchhoff-Love shells in [7], and 7-parameter shell model in [23]. The aforementioned
homogenisation frameworks were demonstrated to work well for various micro-structures.
However, in a study conducted by Framby et al. [24], it was noted that when the length-
to-height aspect ratio of the SVE became large, the homogenisation of transverse shear
stresses breaks down. Specifically, the transverse shear stiffness becomes under predicted.
The phenomenon is reasonably well understood; Klarmann et al. [5] showed that a
prolongation of macroscopic transverse shear strains on the SVE lateral faces, creates an
unbalanced linear moment distribution, which suppresses the transverse shear deformation
at the sub scale.

The deficiencies in the homogenisation of transverse shear stiffness has been identified
by other authors as well, see e.g. [5, 6, 25], and various solutions has been proposed
therein. While achieving satisfactory results, the proposed methods often use a-priori
assumptions on the macro- and subscale, or add a-posteriori constraints to compensate
for erroneous shear responses. However, as we show in Paper A, it is possible to derive
a kinematically consistent homogenisation framework for Reissner-Mindlin type plates,
without any a-priori specification of knowledge of the macro- or subscale problems, using
Variationally Consistent Homogenisation (VCH) [26]. VCH provides a framework to derive
consistent prolongation and homogenisaiton conditions for multi-physics problem [27], or
for non-standard kinematics [28] (as in the case for plates kinematics).



2.2 Variationally consistent homogenisation for plates

The derivations in VCH start from a single scale (fully resolved) problem, from which the
macroscale and subscale problems can be consistently derived from. The fully resolved
problem is in this case represented by the plate-like body in Figure 2.1a, with domain £,
midsurface A and thickness h. The boundary of € is divided into an edge surface I, and
a top surfaces 7. We consider Dirichlet boundaries on I'p € I'; and a prescribed traction
t, on 7. The weak format of the elasticity problem for the fully resolved problem can be
formulated as: find the displacements u € U such that:

/ o(efu]) : e(du)dQ = /tp SSudl Vou € U°, (2.1)
Q v

where o is the Cauchy stress, and e(u) = (u® V)™ is the linear strain tensors. Moreover,
U and U° are sufficiently smooth spaces that fulfill the boundary conditions.

The goal of two-scale computational homogenisation frameworks is to solve for smooth
fields on the macroscale, in this case the plate-based fields such as deflection or cross-
sectional rotation, without explicitly resolving the substructure on the subscale. As a step
towards acquiring a two-scale formulation, we introduce a split of the displacement u, into
a macroscopic part, uM and subscale (or fluctuation) part, u®, according to u = u™ + u®.
The same split is assumed for the test function du.

Next, to further deviate from a single scale formulation, we introduce the SVE domains
Qp, see Figure 2.1b, for each macroscopic point in A, and introduce the running average
approximation:

~ def 1
Jraox [ haea g [ ran

Lng“A<9>EdA, <9>Ed:f%/ gdr, (2.2)

where v is the top surface of the SVE. We can now go from the single scale problem,
to a two-scale formulation, by introducing the decomposition 4™ 4 u* and the running
average approximation in to Equation (2.1):

/ (o(e[uM + ) : e[duM])qdA = / (tp-ouM)LdA veuM e UMO,  (2.3)
A

A
/ (or(efu™ + w)) : eldu)y dA = / (b, Su)LdA Vew e U (2.4)
A A

Here, Equation (2.3) constitutes the macroscale problem, while Equation (2.4) defines
the subscale problem. Before introducing the macroscale and subscale formulations, we
will need to define kinematically consistent prolongation and homogenisaiton operators,
for linking the two scales. This is done in the following subsections.
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(a) Plate domain on the macroscale (b) SVE

Figure 2.1: The plate at the macroscale and the SVE at the subscale.

Prolongation operator

The prolongation, 4™ describes how the plate kinematical variables at a macroscale
coordinate, * = ri1e; + x2es + zes, is projected on to the SVE. The prolongation operator
is here obtained using first order homogenisation, meaning that we take the first order
Taylor series expansion around the centroid of a SVE, & = Ti1e; + Z2e3. Employing
Reissner-Mindlin kinematics, the following prolongation condition is established:

ui/[ = Uy + Bag[xﬁ — .i'ﬁ] — Zéa — Zﬁaﬁ[xﬁ — i‘@] (2.5)

Uéw =W+ JalTa — Tal,

where we have used index-notation with Greek letters signify the in-plate components 1 and
2. In Equation (2.6), 44, w, and 6, are, respectively, the in-plane displacement, deflection,
and cross-sectional rotation of the plate, evaluated at the coordinate &. Furthermore,

- Olig, _ a0, _ Ow

h’O‘B IQQ[—} (27)

- 8565 a::i7 - 8.’1)6 z:i, o = al‘g m:i7

are the membrane strains, curvatures, and transverse shear strains, respectively. Note
that these quantities only live on the midsurface of the reference body.

The fields @, 6,0, h, &, § can be viewed has quantities that are known to the subscale
boundary value problem. They represent different deformation modes prolonged on the
SVE. As an illustration, in Figure 2.2, we evaluate Equation (2.6) on an unit square for
in-plane stretch, bending and transverse shear, respectively.

Homogenisation operator

Next we consider the homogenisation of the macroscopic field variables and their gradients.
For consistency, it is reasonable to require that the homogenisation of substructural
deformations should recover the macroscopic field variables. As an example, consider the
homogenisation of the in-plane deformation:

0,6 (u) = Ua, (2.8)



where ()5 denote homogenisation operators. Moreover, in order the have a unique

decomposition of uM and u, it can be shown that the homogenisation operator must
fulfil

up o (uM) = U, (2.9)
0. (u°) = 0. (2.10)
Here, Equation (2.9) sets an explicit requirement on 4m ., whereas Equation (2.10)

serves as a constraint for the subscale problem. Consequently, a natural selection of the
homogenisation operators that satisfy Equation (2.9) is:

- una(u) = € U A (2.11)
’ Q0] Jag
x _ 1
wo(u) = 75— | uszdQ (2.12)
Q0] Jaog
B 1
On,a(u) = 2Ugq A (2.13)
’ ol Jan
I | [ lualnsar (2.14)
O,ap(U) = |QE|| ot Ua | T0B .
[
00w = o [ Tuslna dr (2.15)
7 |QD| s
T . I
ROep(u) = — 2[ua]ng dT (2.16)
|IEI| s

where [Qg| = [, dQ, [Ig| = [, 2* dQ and n = ne, is the normal vector (from the surface
I'f). Furthermore, we have introduced the jump operator [f](z*) = f(z*) — f(z ™),

(a) h1 = 0.5 (b) R1 = 0.5 (c) g1 =0.5

Figure 2.2: Visualisation of the prolongation u™ on a unit cube (SVE).
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where x is a point on the image part of the boundary I't, and «~ is the corresponding
point on the adjacent face mirror part of the boundary I' (c.f. Figure 2.1b). Finally,
the icons next to the equations illustrates the different deformation modes that each
homogenisaiton operator represents.

Macroscale problem

The weak form for the macroscopic plate problem can be established by introducing
Equation (2.6) in to Equation (2.3). After some derivations, and using the simplifying
assumption that t,, is uniformly distributed and only act in the out-of-plane direction,
the macroscale problem can be formulated as: find @, € U,, w € U, and 0, € Uy s.t.

/ Z\_]agéilag dA=0 Vi, € [Ug,

A

/ Vibgo dA = / g owdA Vw12,
A A

/ V800 + Magbitag dA =0 Vi, € T,
A

where U, and U9 are sufficiently smooth spaces that fulfil the boundary conditions, and

v’ = % ' tpLS dl'. Furthermore, N,g is the membrane forces, M,z are the bending

moments, and V,, are the transverse shear forces, defined as:

_ 1 _ 1 - 1
Nag = 7/ Oaf de, Mag = 7/ ZO’ag—l—O'ag(xg—ig) dQ, V, = 7/ a3 d€D.
Ao Jog Ao Jog Ao Jog

(2.17)
Interestingly, we can note that the moment ]\7[,15 gets an extra contribution from the
transverse shear stresses, with a lever that depends on the size of the SVE. Furthermore,
from Equation (2.17), the two-scale coupling becomes apparent, as the plate forces are
obtained from volume averages of the stresses from the subscale (SVE).

Subscale problem

The boundary value problem for the subscale can be established by performing a local
approximation of each SVE domain Qg in Equation (2.4), i.e. we consider each SVE
as independent of each other. The subscale problem reads: find the displacement field
u® € U s.t.

= a(e[u]);s(auS)dQ:i/ t,-outdl, Vou' € Uy
Ao Jog Ao Jyg

subjected to

0, Ooa(u®)=0, (2.18)
hoes(u®) =0, go.(u®) =0, Egas(u®)=0 (2.19)



where U}, is a sufficiently smooth space, and where the homogenisation operators enters
as constraints. These constraints can be enforced weakly with Lagrange parameters (i.e.
Neumann), or strongly with Dirichlet or Periodic boundary conditions on I'g. Note,
however, that ég)a(u) constitutes a volume constraint that can not be enforced with

constraints on the boundary, and must therefore be enforced weakly using e.g. Lagrange
parameters.
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3 Macroscale: Robust modelling of delam-
ination using adaptive isogeometric shell
element

Delamination is a prominent failure mode in layered fibre composites, characterized by the
propagation of cracks between layers. Experimental investigation has demonstrated that
delamination occurs early in the failure process, subsequently influencing the mechanisms
of failure, see e.g. Grauers et al. [29] on the crushing of laminated fibre composites. This
finding underscores the necessity of incorporating delamination into models to achieve
accurate simulations of fibre composite failure. However, modelling delamination presents
significant computational challenges, as it often necessitates the use of high fidelity models.
Consequently, there is a need for efficient tools to facilitate the modelling of delamination.

3.1 Adaptive modelling of layered composites

To address the challenges associated with efficiently modelling delamination in layered fibre
composite structures, authors has devised adaptive models to limit the computational effort.
The core idea behind adaptive simulation models, is to only use refined models (e.g. refined
meshes) in areas where it is needed, while using a coarser modelling approach elsewhere.
In the context of delamination, this means that a refined through-thickness discretisation
(which can capture the separation of layers) is only used where the delamination event is
active.

The use of adaptive finite element models for analysing delamination in layered fibre-
reinforced composites is not a new concept, and various approaches have been proposed.
For instance, in the work of Framby et al. [8], a quadratic triangular shell element with
adaptive through-thickness refinement was developed for crash simulations in LS-DYNA.
Moreover, in Trabal et al. [30], adaptive continuum elements with both in-plane and
out-of-plane refinement capabilities were introduced through the floating node method to
simulate delamination under high cycle fatigue. Both mentioned references demonstrated
significant speed-up, when compared to fully resolved counterparts (i.e. models where
each layer and cohesive zones are present from the beginning of the simulation).

3.2 Adaptive isogeometric shell element

In this thesis (and Paper B), an adaptive shell model is developed in an isogeometric
(IGA) framework, which comes with some interesting advantages (outlined in Section 3.2.1).
The main concepts of the present shell element can be summarised as follows:

o A shell formulation with spline basis functions from IGA is used to describe the
midsurface geometry and undeformed configuration.
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e A isogeometric continuum-shell formulation for describing the displacement field. An
isogeometric framework allows for flexible control of the out-of-plane displacement
discretisation, using the knot-insertion technique from IGA.

e The utilisation of the stress recovery method with the goal to improve the prediction
of transverse stresses in elements with coarse through-thickness discretisation.

e Criteria based on the stress and damage state, to determine when the adaptive
model requires refinement. These criteria are designed to trigger refinement only
when necessary, thus enhancing computational efficiency while ensuring accuracy in
regions subjected to high stress or progressed damage.

These points will be discussed in greater detail in the following subsections. However,
before that, a discussion on isogeometric analysis and its relevance to shell modelling will
be presented.

3.2.1 Notes on IGA and shell modelling

Isogeometric Analysis was first proposed in 2005 by Hughes et al. [31], with the aim of
bridging the gap between Computer-Aided Design (CAD) and Computer-Aided Engineer-
ing (CAE). At the time, the process of translating CAD geometries into analysis-suitable
meshes was considered to be one of the most time-consuming tasks for finite element
analysts. Bridging the gap between CAD and CAE therefore offers significant potential
to save both time and money. To facilitate this connection, it was proposed to utilise
the basis functions used in the geometric description of CAD models (specifically spline
functions such as B-splines or NURBS), directly as basis functions in the finite element
approximation. Furthermore, another attractive benefit of this approach, is that no
geometrical approximation would be introduced, as the splines can describe conical section
such as holes exactly. The ultimate goal of having a seamless transition between CAD and
CAE is however still an open question, mainly due to the CAD geometries often being
non-suitable for analysis, which in turn requires pre-processing of the CAD geometry [32].

Regardless of the progress in closing the gap between CAD and CAE, the utilisation of
spline functions for the FE approximation has shown to bring other benefits. Splines are
by construction CP~! continuous (where p is the order of the splines). In fact, B-splines
provide higher order functions for the minimum number of DOFs, which makes higher
order approximation especially efficient (via k-refinement [31]). Moreover, splines create a
very smooth basis for the analysis, which has shown to provide beneficial properties in e.g.
structural vibration problems [33]. Finally, the higher order continuity makes gradients
(e.g. strains) continuous in the entire patch.

IGA has also been shown to bring advantages in shell modelling. Firstly, due to the
at least C'' continuity of the spline basis, it is straight-forward to implement classical
Kirchhoff-Love theory. This has created a renaissance of Kirchhoff-Love formulations [34,
35], which has previously not been possible with C° Lagrange elements. In regard to
Reissner-Mindlin type shells, Benson et al. [36] developed an IGA-based Reissner-Mindlin
shell for linear elastic and non-linear dynamic analysis. Interestingly, the element is
rather insensitive to shear locking (with mesh-refinement) without the need for special
element-technologies for removing locking.
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Figure 3.1: A midsurface X° described with B-Splines with 6 x 5 elements. Red curves
represent the univariate splines in each parametric directions, and the blue function
represents one of the B-splines functions (S35) for the IGA mesh. Black dots are the
control points.

A considerable amount of research has also been devoted to IGA-based solid-shell ele-
ments, where the work presented in Paper B is positioned. In a series of publications [37—
39], an isogeometric solid-shell element was developed, which forms the foundation for
the adaptive shell element in Paper B. It has been demonstrated that with the use of
higher-order and smooth spline bases, the element is rather insensitivity to locking. In
related works by Caseiro et al. [40, 41], it was shown that classical locking alleviation
techniques, such as the Assumed Natural Strain (ANS) method, can further suppress
issues like shear and membrane locking. This allows the use of relatively coarse meshes
with second-order basis functions while maintaining accuracy.

3.2.2 Shell geometry and Adaptive shell kinematics

The (geometric) input for the shell model is the midsurface, which is constructed using
Spline functions. A midsurface and some spline functions are illustrated in Figure 3.1.
The midsurface (of the undeformed configuration) is denoted X (81, 65), and is described
by a curve-linear coordinate system with coordinates 61, 0o:

Nep
XO(01,02) =Y Si(61,02)p;. (3.1)
i=1
Here, S;(61,02) are isogeometric spline basis functions (e.g. B-Splines, NURBS, T-Splines),
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N¢p, is the number of control points, and p; are positions of the control points. Using the
midsurface as a base, we use standard shell theory to define co-variant and contra-variant
base vectors, deformation gradient, and other related shell kinematic variables. For
detailed information about the shell formulation, we refer to Adams et al. [39].

The underlying discretisation of the displacement field, w (61, 62, 03), of the shell element
is described with a continuum-shell representation:

Ny

w(6h,02,03) = > Ni(61,02,05)ar, (3.2)

I=1

where N, are the total number of shape functions for the displacement field (in the current
configuration), and aj are displacement degrees of freedom. Ny(61,02,05) are constructed
as a combination of bivariate in-plane spline functions and univariate out-of-plane B-spline
functions:

Np = Si(61,02)H;(03),
=L, Noyl, (3.3)
Jg=11...,m,

For the in-plane functions, an isoperimetric formulation is used, i.e. we use the same
spline function S;(6;,62) used to describe the midsurface in Equation (3.1). Then, for
each in-plane shape function (or control point), i, we associate with it a set of out-of-
plane B-Spline functions H;(f3). These out-of-plane shape functions are the heart of the
adaptive shell formulation, as it is these that we adaptively refine in order to control
the kinematics through the thickness. The refinement of the shape functions H;(6s) is
performed using knot-insertion, which is a technique used in IGA for mesh refinement
and controlling the continuity of the B-spline basis functions.

Based on the refinement level of H;(f3), we introduce three different configurations,
which are dubbed lumped, layered and discontinuous. In order to describe the three
different configurations, consider the case of a laminated structure with three layers and
a set of second order (out-of-plane) shape-functions Hj.

lumped A control point in the lumped configuration, ho-
mogenises (lumps) all the layers in to one ”element” through
the thickness. This is similar to an ESL representation, which
is known to predict in-plane stresses accurately and is rela-
tively computational efficient. However, due to the coarse
out-of-plane resolution (in this case only three control points
through the thickness), a in-plane control point in the lumped
configuration can not predict the transverse stresses normal to
the midsurface with sufficient accuracy.
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layered Using knot-insertion, the number of shape-function
and their continuity can be controlled to obtain the layered con-
figuration. Here, we desire C° continuity at the ply-interfaces
to model the strain discontinuity between the layers, effectively
becoming a LW model. The layered configuration increases the
through-thickness accuracy (of e.g. stresses) significantly, how-
ever, as a consequence, becomes much more computationally
demanding.

discontinuous The goal of the discontinuous control point
configuration is to represent separation between the layers, in
order to model delamination. The configuration is obtained by
once again applying knot-insertion at layer coordinates where
we want to insert C~! continuity. Furthermore, cohesive zone
elements are inserted in this configuration to capture the energy
release rate during the delamination propagation.

The three configurations presented above (lumped, layered and discontinuous) can
now be used to adaptively refine the model. The shell model is initiated with control
points in a lumped configuration, and then progressively refined as damage is detected
and propagated. In this manner, a combination of an ELS and LW modelling approach is
achieved, which will reduce the total computational effort of the model.

3.2.3 Refinement criteria

An important aspect of any adaptive method is to decide when a kinematical refinement
of the model should be performed. In this thesis, we follow the work by Framby [42],
in which two refinement criteria are proposed. The first criterion is based on the stress
state, and is used to determine when a new delamination zone should be initiated. The
criterion monitors the transverse stresses at the location of the interface between two
adjacent plies:

2 2 2
g
{ 32>+ 4 Tis ‘2023 > 2 (3.4)
o o
fn fs

where o, and og are the interlaminar normal and shear strengths, respectively, and
Macaulay brackets (o) are used as compressive stresses should not contribute to crack
initiation. Moreover, r1 is a user-defined parameter between 0 and 1 which indicates
when the configuration should be updated. Note that it is crucial to enhance the element
(whether from lumped or layered to discontinuous) well before the quadratic failure
criterion exceeds 1, ensuring that the newly introduced cohesive zone element does not
immediately enter the damage zone upon insertion.
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The second refinement criterion is used to determine when a delamination zone should
propagate. In cohesive zone modelling, it is well established that the traction profile ahead
of the crack tip significantly influences the behaviour of the cohesive zone [43]. Therefore,
maintaining a number of elements in front of the cohesive zone in a discontinuous
configuration is essential. At each converged time-step, the damage variables in the
cohesive elements surrounding the crack front are monitored. If the damage state exceeds
a predefined threshold (set by the user), a search is conducted in the vicinity of the
element. Within the search radius, any lumped or layered elements are upgraded to a
discontinuous state.

3.2.4 Stress recovery

As previously discussed, the coarse out-of-plane discretisation in the lumped elements
results in poor predictions of the out-of-plane transverse stresses. This makes the lumped
configuration inadequate to be used to predict when and at which ply-interface refinement
is needed, according to the criterion in Equation (3.4). In order to improve the transverse
stress prediction, a method known as stress recovery is used [44, 45]. The main idea of
the stress recovery method is to re-compute the transverse stresses from the equilibrium
equations and the in-plane stresses.

The stress recovery technique is now a well-established approach for enhancing stress
predictions in ESL models. Numerous studies have demonstrated its effectiveness in
the context of flat plates and shells [24, 46-48]. The usefulness of stress recovery in
flat plates is however limited, as the transverse stresses in flat plates and shells are in
many cases small compared to the in-plane stresses (see the results in e.g. [39]). However,
in curved geometries, with the influence of curvature, the transverse stresses become
more pronounced [49]. Due to the influence of curvature have on transverse stresses,
authors have recently developed methods for stress recovery for curved shell. In Daniel et
al [50], a stress recovery method was developed in curve-linear coordinates of the linear
momentum balance equations. A closed form expression for the transverse stresses was
obtained by considering the formulation in the principal curvature directions. With the
same goal, Patton et al. [51] developed a stress recovery method for curved shells, but
instead considered point-wise local Cartesian coordinate systems for the derivation of the
framework.

For the current shell element, we use the stress recovery formulation for curved
geometries, derived in Daniel et al.. Since our shell element is formulated in an isogeometric
framework, we expect some advantages compared to standard finite elements. First, the
higher continuity of the spline functions in IGA results in in-plane continuity of the stress
field. This means that it is possible to obtain first and second order stress gradients
directly in each material point (which is required for the stress recovery method). This is
in contrast to standard finite elements where the C basis requires patch-wise least square
fitting to obtain accurate estimations of the stress gradients.
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Figure 3.2: [llustration of snap-back in a quasi-static simulation of an end-notch-flexure
test.

3.3 Dissipation based path-following solver

The initiation and propagation of delamination in layered composites is characterised
by the release of significant amounts of stored elastic energy in the form of brittle and
fast moving cracks. When simulating delamination using standard incremental Newton
solvers in a quasi-static setting, convergence difficulties are frequently encountered. To
exemplify this, consider the force-displacement curve from the end-notch flexure (ENF)
test depicted in Figure 3.2. In this scenario, elastic energy accumulates as the applied
force increases, until the limit of structure is reached, at which delamination begins to
propagate. This leads to the structure exhibiting a ”snap-back” response after the peak
force is surpassed. This snap-back behaviour cannot be traced with a displacement or
force controlled Newton solver, leading to the loss of valuable information regarding the
post-peak response of the material.

To accurately trace the complete equilibrium path in problems with by brittle failure
mechanisms within quasi-static simulations, it is necessary to employ so-called path-
following solvers. These solvers, often referred to as arc-length solvers, have been exten-
sively used within the computational mechanics community for analysing geometrically
non-linear problems, such as buckling. Pioneering works on arc-length solvers were made
by Wempner [52] and Riks [53]. Another class of path-following solvers, which have
also gained widespread use, are dissipation-based path-following solvers. These solvers
have been shown to efficiently handle problems involving material non-linearities, such as
delamination and phase-field models [10, 54].

In Paper C, we develop an arc-length solver that is based on the local dissipation rate
at each material point. This solver generalises the concept of dissipation-based arc-length
methods, enabling the use of any material or damage model that can be formulated with
a dissipation rate. We demonstrate that the solver efficiently addresses a wide range of
problems involving non-linear material damage and failure. It is particularly effective for
tracing the delamination of multiple layers in fibre composite structures.
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3.3.1 Path-following solvers

In this section, we provide an overview of the basic equations used in path-following
solvers. Consider the discretised governing equations in finite element form:

r(a) = f™(a) — \f, (3.5)

where a is a vector of unknown degrees of freedom (typically displacements), r(a) is the
residual vector, £ is the internal force vector, A is a load multiplier, and f is a unit
vector defining the direction of the forces. In a quasi-static simulations, Equation (3.5)
is usually solved with Newton-Raphson iterations in a incremental manner, where the
load parameter A is controlled directly. In contrast, path-following solvers treat the load
parameter as an additional unknown, reformulating the residual as a function of both a
and A, i.e., 7(a,\). By solving for both variables simultaneously, path-following methods
can trace the equilibrium path across the complete force-displacement space.

With the introduction of an additional unknown variable to the system, it becomes
necessary to include an additional equation. This equation is known as the path-following
constraint, ¢(a, A), and is generally expressed in the following form:

p(a,A) =0 (3.6)

The constraint equation ¢ should depend on a (and potentially on A as well) and must
exhibit a monotonically increasing behaviour.
By combining Equation (3.5) and Equation (3.6), we arrive at the following system of

equations:
] =[] 6

By linearising the above equations, both A and a can be incrementally solved using a
Newton-Raphson scheme. This yields the following system of linearized equations:

da| |K —f [-r

-0 2 6
where da and d\ are the incremental updates in a Newton-Rapson scheme. Furthermore,
the Jacobian consists of the following components:

1

afint 880 880

= , h=_—, w=—.

da Jda oA

Here, K is the standard tangent stiffness matrix, while h and w are additional terms that
arise from the addition of the path-following constraint.

(3.9)

3.3.2 Dissipation based path-following constraint

In Paper C, we propose to express the path following constraint ¢(a) based on the
dissipation rate of the problem:
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pla) = /QAD dQ — AT =0, (3.10)

where AD is the incremental energy dissipation between two load steps, and Ar is
used-defined parameter defining the allowed dissipation rate (step length) between two
steps. Moreover, €2 is domain of interest where dissipation is active, e.g. in the bulk
material or in an interface zone. The path following constraint in Equation (3.10) is
formulated in a generic form, and requires that an explicit expression for AD exists (or
can be formulated) for the failure mechanism in question. In Paper C, we demonstrate
how the method can be applied for problems with large strain plasticity, phase-field
damage and delamination. Furthermore, Equation (3.10) allows for several mechanisms
to be considered simultaneously. However, if one failure mechanism dissipates less energy
than the others, it will control the allowable size of the step-length Ar.

In terms of implementation, Equation (3.10) is computed for each element and quadra-
ture point. This calculation can be performed either during the assembly of the element
internal force vector or stiffness matrix, or in a separate assembly loop. Moreover, h is
required. In the case of e.g. cohesive zone elements with the interface jump J, the entries

of h can be computed as:
OAD 0J
hr = —  —dQ 3.11
=), 0  da; (3.11)

where ay are the entries of a. The term %A—JD is most conveniently computed during the

evaluation of the material response (i.e. in the material routine), and (,%]I is a quantity
evaluated during the construction of the element local stiffness matrix.

21



4 Mesoscale: Modelling of complex fibre ge-
ometries using Finite Cell Method

Mesoscale modelling is employed to model the behaviour of materials at an intermediate
level between the microscopic structure and the macroscopic response. In the context of
fibre-reinforced textile composite materials, the mesoscale involves a detailed representation
of the fibre bundles, matrix, and their interfaces. This level of modelling is particularly
advantageous for fibre composites, as mesoscale features significantly influence the overall
mechanical performance. Common applications of mesoscale modelling of fibre composites
include estimation of effective mechanical properties [12], or investigation into failure and
damage [13].

In Lomov et al. [55], a road map with key steps for FE modelling of mesoscale textile
composites is outlined.

1. Building a model of the internal geometry of the reinforcement
2. Transferring the geometry into a volume description

3. Preparation for meshing: correction of the interpenetration of volumes of yarns in
the solid model and providing space for the thin matrix layers between the yarns

4. Meshing
5. Assigning local material properties to the impregnated yarns and the matrix;

6. Definition of the minimum possible unit cell using symmetry of the reinforcement
and assigning periodic boundary conditions

7. Homogenisation procedure
8. Damage initiation criteria

9. Damage propagation modelling

From this road map, it is evident that a substantial amount of effort is invested in model
creation (steps 1-4). Therefore, it is important to establish an efficient model creation
process. In Paper D, we focus on a method for simplifying the meshing processes in step
4, which is particularly challenging for textile fibre composites. However, we first review
common tools used to generate the mesoscale geometries (steps 1-3).

4.1 Generation of mesoscale structure

The first step in analysing the mesoscale structure of fibre composites, or any other
material sub-structure for that matter, is the generation of the corresponding geometry.
This task is far from straightforward, and multiple approaches for generating the mesoscale
geometries for various textile fibre architectures has been proposed.
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A common approach is to generate idealised geometries based on basic geometric
shapes and curves. For instance, tools such as TexGen [15] and WiseTex [16] can be used
to create geometries for woven composites, accommodating both two-dimensional and
three-dimensional weaves, see Figure 4.1 for an example of a 3D-woven composite. The
mesoscale geometries are relatively fast to generate, but may often contain intersections
which needs to be resolved before being used in mechanical simulations.

Another method for generating the mesoscale structure of fibre composites involves
process modelling [19]. A popular approach in this category is the digital chain method [17],
where fibre bundles are represented by multiple chains of 1D beam elements (using a
finite amount of beam-chains per bundle). Unlike the idealised geometry generation,
process simulation introduces randomness and imperfections, and results in more realistic
geometries. Process modelling is typically computationally intensive, and converting the
digital-chain bundles into a solid representation suitable for simulations is non-trivial.

A third method involves generating mesoscale structures based on CT-scan data. This
approach provides geometrically exact models, incorporating realistic voids and defects,
as it is derived from real samples. For early work on this topic, see [56].

4.2 Discretisation of textile fibre composite structures
at the mesoscale

Regardless of the method employed to generate the mesoscale structure, the resulting
geometry is typically complex. Fibre bundles or reinforcements are often intertwined and
form narrow regions, which makes the generation of meshes particularly challenging. This
difficulty has been consistently reported in the literature [55, 57, 58]. The challenge of
producing high-quality meshes is further evidenced by the widespread use of voxel meshes
for discretising mesoscale structures by many authors, see e.g. [59, 60]. The generation of
voxel meshes can be automatised, but do have inherent flaws [20].

There is a clear need for improved discretisation process for complex mesoscale
structures. In response to this, researchers have explored enhancements to traditional
meshing techniques to produce boundary-conforming tetrahedral meshes, see Li et al [61]
or Zhang et al. [62]. Alternatively, a popular method that is often touted for its ability
to simplify the meshing procedure, is Immersed Boundary Methods. Many versions of
immersed boundary methods has been developed, e.g. Finite Cell Method [63] (FCM)
and CutFEM [64] to name a few. The core concept behind these methods is to simplify
meshing by immersing, or embedding, the geometry into a simple, rectilinear background
grid. This makes the process of creating a discretisation automatic, which is highly
beneficial when a standard meshing procedure would be to time intensive or cumbersome.
A drawback with Immersed boundary methods, however, is that the background grid
does not conform to the boundaries of the geometry, resulting in some of elements being
cut or trimmed by the geometry. Consequently, special numerical integration rules are
required to handle the integration of these cut elements.

In Paper D, we investigate the use of FCM for modelling of fibre composite mesoscale
structures. The important steps of the method is outlined in the following sections.
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Figure 4.1: SVE of a 3D fibre composite generated by Texgen.

4.3 Discretisation of textile fibre composite mesoscale
structures using Finite Cell Method

With the geometric description of the mesoscale structure in-place (following section 4.1
and possibly steps 1-3 in the road map), the next step is to create a discretisation. First,
we propose meshing the fibre bundle (or reinforcements) independently, using boundary-
fitted elements (e.g. tetrahedral or hexahedral elements). It is important to note that
fibre bundles are often relatively simple geometrical structures, typically composed of
cylindrical tubes, which does not pose large problems for meshing tools. As an illustration,
we use here a unit-cell of a woven composite, see Figure 4.2a. Here, the geometry of the
woven composite is represented with B-Splines, and can therefore be utilised directly as
the boundary-fitted mesh (after appropriate mesh refinement with knot-insertion).

Next, we embed/immerse the bundle geometry in a FCM background grid, see Fig-
ure 4.2b. The background grid will act as the basis for the discretisation of the matrix.
The background mesh can consist of e.g. standard hexahedral Lagrange elements, however,
here we opt for the use of IGA elements with higher order continuity spline functions.
Many of the elements in the FCM background grid will be fully contained in the reinforce-
ment phase. These elements and their corresponding shape functions, will not contribute
to the displacement field of the matrix, and may therefore be discarded. The final version
of the FCM mesh for the matrix phase is seen in Figure 4.2c.

At this point, we have a set of uncoupled meshes; the individual (boundary-fitted)
meshes for the bundles, and the unfitted background grid for the matrix. These individual
meshes need to be coupled in some way. Firstly, for the interfaces between the bundles
and the matrix, we assume that they are perfectly bonded, and model that with the use
of a penalty-based interface constraint. Next, the bundle-bundle interfaces are assumed
to be coupled through a cohesive interface. Note, however, that we here only consider
linear elasticity, which means that the linear cohesive interface is the same as a standard
penalty constraint. In future application this may be extended to non-linear cohesive zone
laws. Furthermore, note that the discretization of the bundles are independent, which
means that the interface meshes are non-matching. This means that the cohesive zone
interface needs to be applied with a mortar-type approach, where the interface constraint
is integrated on one of the bundle sides.
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Figure 4.3: Process for creating new numerical integration schemes for trimmed elements.
The collection of all quadrature points in the sub-cells are used for volume integration of
the trimmed elements.

4.3.1 Numerical treatment of non boundary-fitted discretisation

An unavoidable consequence of the matrix discretisation being non-boundary-fitted is
that some elements will be intersected by the boundaries of the fibre bundles. These
intersected elements, often referred to as trimmed elements, cannot be treated using
standard numerical integration rules for operations such as volume integrals. Instead,
specialised integration rules must be developed for these elements. One approach to
generating such specialised quadrature rules involves subdividing the trimmed element
into smaller sub-cells, where the sub-cells are subsequently used to build quadrature rules
within each sub-cell, see Figure 4.3. This subdivision is often performed recursively, using
methods such as quad-trees in 2D and octrees in 3D [65].

Another unavoidable consequence of using unfitted boundary meshes is that some
trimmed elements may become arbitrarily small, particularly in cases of arbitrary mesh
refinement. This phenomenon is known to result in ill-conditioned systems and stability
issues. Consequently, significant research has been devoted to developing stability meth-
ods [66]. One widely adopted approach to stabilise the solutions, is the a-stabilisation
method [67], where artificial stiffness is introduced to the problematic elements. Another
approach, employed in Paper D, is the ghost penalty method [68]. This method penalises
jumps in displacement gradients across element faces of the affected trimmed elements.
By doing so, it suppresses large jumps in displacement gradients, which are common
in ill-conditioned trimmed elements. A feature of the ghost penalty method is that it
mitigates issues related to ill-conditioned matrices and stability, while also maintaining
variational consistency.
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5 Concluding remarks and outlook

The present work is concerned with numerical methods for multiscale modelling of fibre
composites. The thesis is divided into three main parts; computational homogenisation,
macroscale modelling, and mesoscale modelling.

In order to couple the macroscale and mesoscale, it is essential to use kinematically
consistent prolongation and homogenisation conditions. These coupling conditions are
however not always trivial to postulate, for example when considering shell and plate
kinematics. Therefore, it is important with mathematical frameworks that facilitate a
consistent derivation procedure. To this extent, we demonstrate in Paper A that VCH
can be used to derive a kinematically consistent homogenisation framework for plates,
and that appropriate coupling conditions are obtained. Specifically, we derive appropriate
homogenisation condition for the transverse shear angles (or cross-sectional rotations),
which lead to size independent results with respect to the homogenised shear stiffness.

The plate-based homgenisation framework is currently limited to small strains and
flat structures. As an outlook,

In Paper B, we develop an adaptive isogeometric shell element for the modelling
of delamination. Based on our findings, several conclusions can be drawn. First, we
observe that the stress recovery method performs well within the isogeometric framework.
The C! continuous stresses allow for straightforward computation of stress gradients on
a element-local level, a feature not present with C° Lagrange elements. Additionally,
geometrical properties such as curvature, which are essential for the stress recovery
method, are represented exactly in isogeometric analysis (IGA), further enhancing accuracy.
With respect to the adaptive aspects associated with the isogeometric shell element, we
conclude that the overhead coming from the (i) stress recovery method and (ii) checking
the refinement criteria, is justifiable. Based on the numerical results of the paper, we
demonstrate that a speed-up factor of 1.3 is obtained (when compared to a fully resolved
model), in a problem with a four layered cantilever beam with two propagation cracks.
Additional speed gains are expected when the number of layers in the composite structure
increases, or when the size of the delamination zone is small compared to the rest of the
structure.

The adaptive shell element capabilities are currently only demonstrated on rather small
problems. As an outlook, we would like to apply the shell element to larger and more
industrial applications. Here, interesting aspects relating to numerical implementation
will become relevant, such as how to efficiently represent adaptive data structures, efficient
solution of the linear systems, and more. Furthermore, when applying the adaptive
shell element to more realistic problems, the significance of other failure mechanisms
than delamination will increase. Indeed, intralaminar damage (such as tansverse matrix
cracking) are often a pre-cursor to delamination, and this interplay is important to capture.
Intralaminar damage can be modelled with both discrete and smeared crack models. In
the current setting, smeared crack models is most straightforward to implement, as the
adaptive element can incorporate any constitutive models within the individual layers. It
does not, however, have the kinematic capabilities to represent discrete through-thickness
cracks.

To address the challenges of brittle material damage and fracture in quasi-static
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simulations, in Paper C, we introduce an arc-length solver that leverages the material
dissipation rate. This solver allows for robust tracing of the equilibrium path in a range
of damage and material models, including cohesive zone damage, phase-field damage,
and large-strain plasticity. At the moment, the solver is limited to rate-independent
problems, which restricts its applicability scenarios involving cyclic loading or rate-
dependent material models. As an outlook, we would therefore like to extend the solver to
also include time evolution. This extension poses an interesting challenge, as the concept
of time in quasi-static simulations is somewhat artificial. A potential approach to address
this, is to make the (pseudo) time variable dependent on the dissipation rate, thereby
enuring that the time variable is monotonically increasing.

In Paper D, we investigate the application of immersed methods for modelling fibre-
reinforced mesoscale structures. Based on the numerical examples, we conclude that the
proposed modelling approach offers a viable alternative for linear elastic simulations, such
as analysing stresses and strains or predicting elastic stiffness. Compared to voxel-based
methods, the immersed approach predicts the stress distribution more accuratly, avoiding
the erroneous stress peaks that often arise from the step-like nature of voxel discretisation.
However, a significant drawback of the proposed method is the large number of quadrature
points generated for the unfitted matrix discretisation, which increases computational
demand. While this challenge is manageable for linear and static simulations, it will lead
to substantial computational costs, both in memory and processing time, when applied to
non-linear simulations. Further research is therefore necessary to optimise the framework
for efficient non-linear analysis. In this context, the development of more efficient adaptive
integration schemes, such as moment fitting, could be highly beneficial.

The homogenisation framework for plates in Paper A, the adaptive shell element at
the macroscale in Paper B, and the mesoscale modelling framework in Paper D can be
viewed as independent methods that has not been demonstrated to work in unisent. As
an outlook, it we would like to combine these methods in a coupled two-scale modelling
framework. Here, the multiscale vision can be adopted, wherein the macroscopic structure
would be modelled using adaptive isogeometric shell elements, while damage initiation
and propagation (whether interlaminar or intralaminar) would be informed by detailed
mesoscale modelling. The plate-based homogenisation framework would serve as the
link between the two scales. Homogenisation of damage does, however, presents notable
challenges, as the fundamental assumptions of separation of scale breaks down. In this
regard, the work of Svenning et al. [69] on the multiscale modelling of ductile fracture
provides valuable guidance for addressing these issues.
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