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Abstract. As articulated heavy vehicles are over-actuated, achieving
a safe control allocation is crucial to ensure stability. This study intro-
duces a machine learning model developed to identify unsafe behaviours
and modes, such as jack-knifing and trailer swing, enabling the control
scheme to prioritize stability. High-fidelity simulations, focusing on high-
risk scenarios, generate data for training the machine learning model.
This model is integrated into the control scheme to predict safe brak-
ing allocations and prevent unsafe vehicle modes during real-time driv-
ing scenarios. Initial tests showed promising results regarding prediction
accuracy and a safety margin that can be implemented to further ensure
that safe vehicle motion is achieved.

Keywords: Control allocation - articulated heavy vehicles - machine
learning - yaw instability

1 Introduction

Articulated heavy vehicles (AHVs) have proven to be excellent candidates for
road transportation due to their significant positive impact on environmental
and economic efficiency [1,2]. However, concerns remain regarding their stabil-
ity, including risks like jackknifing and trailer swing. The electrification of trucks
introduced the concept of distributed propulsion across different vehicle units.
To maximize power regeneration, braking with the propelled vehicle units and
axles is preferred, which might cause instabilities such as jackknifing [3]. Dis-
tributed propulsion in AHVs adds another layer of complexity, impacting these
vehicles which are already dynamically complex due to over-actuation and their
articulation joints. Therefore, achieving a safe control allocation (CA) is crucial
to ensure stability while maximizing the regenerated energy [4].

Using machine learning (ML) in the automotive industry is growing as a
strong technique, bringing several benefits such as improved safety measures,
enhanced vehicle efficiency, and better performance (e.g., [5-7]). To the best of
our knowledge, there has been no work done to use ML in the control allocation

© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 1-7, 2024.
https://doi.org/10.1007/978-3-031-70392-8_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70392-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-70392-8_1

2 S. van Dam et al.

of forces in heavy vehicle applications. In this study, ML is applied to heavy
vehicle applications to identify unsafe behaviours for a tractor-semitrailer vehicle
combination, specifically yaw instabilities. This enables the control scheme to
maintain the vehicle within safe operating conditions by requesting safe braking
allocation, ensuring no unsafe modes will appear.

2 Machine Learning Model Development

To predict safe allocations, a high-fidelity vehicle model, referred to as Volvo
Transport Model (VIM) [8], was used to perform simulations, collecting data
on factors contributing to the unsafe behaviour of the tractor-semitrailer vehi-
cle combination. Multiple simulations were performed focusing particularly on
high-risk environmental and operational conditions such as low friction and high
lateral acceleration on a circular track for different radii.

Approximately 25,000 uniformly random distributed simulations were per-
formed for a range of brake-in-turn manoeuvres, varying parameters such as the
initial velocity at which braking begins, friction, radius of the turn, load on the
trailer, and braking allocations. The simulation was initialised during steady-
state cornering of the vehicle, and data samples were collected until the vehicle
either reached a standstill or an unsafe mode occurred. To differentiate between
safe and unsafe modes, criteria were checked during the entire simulation on
important vehicle states to monitor the state of the vehicle and classify the sim-
ulation as safe or unsafe. The criteria used were based on the value of the side-slip
angle rate of the vehicle combination, as discussed in [9]. This metric captures
whether the truck or trailer exhibits a fast change in yaw angle within a short
amount of time, indicating unsafe behaviour in the form of either jack-knifing
or trailer swing. The chosen thresholds to limit the side-slip angle rates of the
tractor and trailer were set at 6 deg/s. This threshold value was validated with
VTM and found to be effective in identifying yaw instabilities.

From these simulations, 20% were used for test data and 80% for training
data. Each simulation yielded about 25 data points by sampling the vehicle state
throughout the manoeuvre, resulting in around 625,000 data points overall. This
extensive dataset was obtained with a total simulation time of about 275 h.

During each simulation, data was collected about the most informative states
of the vehicle from a vehicle safety perspective. The selected states were used
as features for the ML model, with labels classifying the state as feasible or
infeasible. Using this labelled dataset, an ML model could be trained offline to
be used as an online prediction tool within the control scheme. The chosen state
vector as the features of the ML model included road friction, steering wheel
angle, brake force of the tractor, brake force of the trailer, longitudinal velocity,
side slip angle of each unit, side slip angle rate of each unit, articulation angle,
articulation angle rate and axle loads of each axle, i.e. a total of 17 features. Con-
sidering the high dimensional inputs of the problem with these many features, it
is too intricate to determine the safe allocation with simple boundaries and any
analytical solution. Therefore, ML is a good tool to address this complexity.
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Fig. 1. Control scheme overview

Several ML models were evaluated on the dataset, including decision trees,
random forest and neural networks. Among these, neural networks proved to
be the most accurate with a training and validation accuracy of around 97%.
The models were trained using the MATLAB classification learner app with
default values for the hyperparameters not explicitly mentioned in this paper.
The chosen model was a neural network consisting of three layers, each with 12
nodes. A higher cost was assigned to false positives since it is crucial for a safety
critical system to accurately predict all unsafe points, even if it allows some error
in predicting safe points.

3 Machine Learning Based Control Allocation Strategy

The control system is divided into a three-part process, as illustrated in Fig. 1. It
begins by reading the vehicle state and brake request from the vehicle. This infor-
mation is then used to calculate a set of potential braking allocations. The brak-
ing request, Frequest, represents the total force request and is divided between
the tractor and the trailer as Frequest = Firactor + Firaiter- From this set, 100
allocations are uniformly sampled that fulfil the total braking request, as illus-
trated by the points in Fig. 2a. All forces are normalised and therefore varying
between 0 and —1, where —1 corresponds to the maximum possible braking
that each unit can achieve given the current friction, p. This normalization is
expressed as F* = F/(F, - u) for each unit, where F} is the unit normal force.
These points together with the vehicle state are then inputted to the ML model,
which predicts the safety of each allocation, distinguishing between safe (green)
and unsafe (red) points as in Fig. 2a. The predictions are performed assuming
the driver input to the vehicle is kept constant until standstill. Lastly, a decision
is made to select one of these safe allocations, as indicated by an orange circle
in the last plot of Fig. 2a.

The decision of which allocation to choose provides considerable flexibility. As
the ML model assigns labels to each point, this part becomes modular, allowing
for an easily interchangeable strategy without affecting the overall design. This
paper will not present any optimal solution to this, instead showing multiple
viable options are possible, and that the safety prediction is reliable. For a given
state, the predictions are similar to what can be seen in Fig.2a (steps 2 and
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Fig. 2. Illustrations of the control allocation and the implemented safety margins.

3), demonstrating that extreme choices, braking only with the tractor or trailer,
are the most unsafe, while intermediate options are safe. This is consistent with
findings from previous research [3].

The proposed strategy was tested by picking an allocation that brakes as
hard as predicatively possible with the tractor and with some safety margin.
This corresponds to, for example, the orange circled point in “step 3” of Fig. 2a.
However, when implementing this strategy, the edge can change rapidly due to
the changing state of the vehicle. This is unwanted and could lead to unsafe
behaviour of the vehicle combination. To accommodate this issue, a low-pass
filter was added to the output of the CA. In Fig.3a, the CA for the tractor
is shown in one of these cases. The important observation here is that the CA
varies rapidly and discretely. Figure 3a illustrates how the CA appears without
a filter, while Fig. 3b shows the same scenario with the filter activated. It can be
seen that the filter improves the allocation by eliminating these very fast changes
in the CA.
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Fig. 3. Illustrations of force allocation for the tractor in the scenario with parameters:
ve =43 kph, p=0.3, R=T72m, F.jyest = —0.6.
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4 Validation of Proposed Control Allocation Strategy

Simulations were conducted to validate these predictions and ensure the con-
troller functions as intended. During these simulations, a safety margin of 5 and
10% of the total amount of sampled allocations was applied around the pre-
diction border, with simulations running on points from both safe and unsafe
margins (see Fig.2b). The safety margin addresses uncertainties and inaccura-
cies in vehicle parameters, modelling simplifications, etc. Ideally, selecting a safe
point should result in a safe simulation, and choosing an allocation predicted as
unsafe should lead to an unsafe outcome. Doing this verifies that the estimation
of the prediction border is accurate. This was done for a number of test sce-
narios that were divided into edge and normal cases. Edge cases are defined as
scenarios where the vehicle is in an initial state close to where the vehicle can
no longer operate without showing unsafe behaviour. Normal cases are further
from an unsafe initial state than edge cases which still contain control inputs
that can result in unsafe modes.

The system was tested by running 26 cases, 13 normal and 13 edge cases,
of the above mentioned cases. Table1 illustrates the success rate (whether the
prediction matches the simulated outcome) for different margins. Throughout
the simulations, it was assumed that the tractor is electric with a conventional
trailer, prioritizing tractor braking for enhancing energy regeneration. Besides
testing with constant steering and perfect knowledge about the state (as during
training), the system was also tested with disturbances. An active path-follower,
emulating a driver trying to stay on the road (marked by “steering” in Table 1),
was introduced. The system was also tested under “wrong friction” conditions,
where friction measurement was intentionally increased to simulate a misestima-
tion. During these tests, the steering input was kept constant. Additionally, all
other parameters remained the same as the initial test case.

Table 1. Prediction accuracies for different cases (%)

Case Unsafe 10%|Unsafe 5% Safe 5%|Safe 10%|Safe 15%) Safe 20%
Normal 100 69.23 92.31 [100 100 100
Edge 84.62 61.54 61.54 192.31 100 100
Steering normal 76.92 46.15 84.62 |100 100 100
Steering edge 92.31 92.31 92.31 |100 100 100
Wrong friction normal 100 100 7.69 53.85 84.62 100
Wrong friction edge 100 100 7.69 15.38 69.23 76.92

The controller accurately predicted safety and responded well, with high
accuracy rates, particularly for the normal cases and a slight decrease for edge
cases. A margin of 10% from the predicted edge gave results close to 100%,
while a 5% margin resulted in accuracy ranging from 60-95%, depending on the
cases. The controller and ML model performed well when a path controller was
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active during braking, despite all training data being conducted under constant
steering conditions.

5 Conclusion

This paper introduces a novel method of predicting the yaw instability in a
tractor-semitrailer vehicle combination using machine learning. Additionally, it
allocates the driver’s brake request to individual vehicle units to avoid such yaw
instability. To enhance the overall performance of the controller including ML,
different ML models were tested and strategies were developed for allocation.
The neural network classification model was found to outperform other models,
even when integrated with the controller during random test manoeuvres in
real time. The controller proved to be accurate at predicting the safety and
responding accordingly. Accuracies were high, especially for the normal cases,
but dropped somewhat for edge cases. The controller and ML model worked well
when a path controller was active during braking, even though all training data
was obtained with constant steering. This paper has shown that it is possible
to predict safe allocations using a data-driven ML model, specifically a neural
network model.
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