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Abstract—The inherent geometric relations between the propa-
gation environment and millimeter-wave (mmWave) signals can
be leveraged for simultaneous localization and mapping (SLAM)
in 5G and beyond networks. Conventional solutions either rely on
nonlinear filtering techniques or only solve the SLAM problem
for a single user equipment (UE) location. This paper presents
an integrated snapshot and filtering-based bistatic radio SLAM
approach which utilizes low complexity linear Bayesian filtering
equations for processing the measurements sequentially over time.
The proposed method is validated using 60 GHz experimental
data, indicating that the proposed processing pipeline combines
good accuracy with low computational overhead, outperforming
state-of-the-art benchmark algorithms.

Index Terms—millimeter wave, 5G/6G, simultaneous localization
and mapping, Bayesian filtering

I. INTRODUCTION

In addition to the improved data communication quality
and other connectivity related features, the evolving 5G and
forthcoming 6G mobile networks can enable precise localization
and sensing functions [1]. To extend situational awareness
beyond ordinary user equipment (UE) localization, one central
ingredient is related to appropriate processing and treatment
of the non-line-of-sight (NLoS) paths and the underlying
environment incidence points (IPs) [2]. Jointly estimating the
unknown location of the UE and those of the environment IPs,
using uplink or downlink reference signals, leads to the notion of
bistatic cellular simultaneous localization and mapping (SLAM)
[3] – being also the main scope of this paper.

Developing new methods for 5G/6G cellular SLAM is of
growing interest as it can enhance the UE positioning accuracy
[2] while allowing to carry out positioning without line-of-
sight (LoS) [4] – and potentially also with just a single base
station (BS) entity [3]. In general, one established approach
builds on sequential SLAM processing or filtering where the
UE location and the map are jointly estimated via recursive
processing of the measurements gathered over time. The other
alternative is snapshot SLAM where the problem is solved
independently at different measurement locations. One example
filtering approach utilizes random finite set (RFS) theory [5],
[6] and the attractiveness of the RFS approach lies in the
fact that it enables a fully integrated Bayesian framework
for SLAM. The snapshot SLAM problem on the other hand
is typically solved using geometry-based methods [4], [7] or
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maximum likelihood estimation [2], [8], and the approaches
are fundamentally important as they serve as a baseline for
what can be done with radio signals alone. One fundamental
drawback of RFS approaches is that the nonlinear observation
model is approximated using local linearization leading to
approximations in the filtering recursion. The main drawback
of snapshot SLAM methods is, since the problem is solved for
a single UE location only, that the available information is not
fully utilized if observations from multiple nearby UE locations
exist. This paper addresses the aforementioned drawbacks.

In this paper, we present an integrated snapshot and filtering-
based bistatic radio SLAM approach. While conventional
methods utilize channel parameter estimates as input to SLAM
algorithms, we propose to utilize the snaphsot SLAM algorithm
as an additional processing step. This can be seen as a trans-
formation of the observations from the nonlinear angle/delay
domain to linear Euclidean space. As a consequence, the
resulting measurement models are linear which enables us
to utilize low complexity linear Bayesian filtering equations
for processing the measurements sequentially over time. The
contributions of the paper can be summarized as follows:

1) We present a new linear bistatic radio SLAM approach
which integrates snapshot and filtering-based techniques;

2) A multi-hypothesis filtering framework based on the nearest
neighbour (NN) algorithm and the probability hypothesis
density (PHD) filter is devised to sequentially solve the
bistatic radio SLAM problem;

3) Using experimental data with off-the-shelf 60 GHz
millimeter-wave (mmWave) MIMO radios, we demonstrate
that the developed algorithm provides notable performance
gains over the state-of-the-art benchmark algorithms.

II. BACKGROUND

In the following, we consider a bistatic scenario in which the
transmitter and receiver are at the BS and UE side, respectively.
The focus is on describing the methods in the 2D/azimuth do-
main (position p = [x, y]⊺ and angle α) to simplify the notation
but extension to 3D is possible (conceptually similar to, e.g.,
[4]). In the following, time index k is omitted whenever possible.
The BS state is xBS = [p⊺BS, αBS]⊺ ∈ R3 and the UE state is
xUE = [p⊺UE, αUE, bUE]⊺ ∈ R4 in which bUE denotes the error
between the UE and BS clocks. The map of the environment with
M landmarks is modeled as a RFS with random cardinality and
random states, given by, P = {p1, . . . ,pM} in which state of the
ith landmark pi ∈ R2 represents the IP of the ith single-bounce
NLoS path. Furthermore, let zi = [ToAi, AoDi, AoAi]⊺ ∈ R3



denote the time-of-arrival (ToA), angle-of-departure (AoD), and
angle-of-arrival (AoA) estimates of the ith propagation path and
Z = {z1, . . . ,zN} the set of channel parameter estimates.

A. Robust Snapshot SLAM

The work in [7] introduced an algorithm that can solve
the SLAM problem using Z which contains outliers, that is,
channel parameter estimates that originate from multi-bounce
propagation paths and false detections. Let Nmin denote the
minimum number of channel parameter estimates required to
solve the snapshot SLAM problem (Nmin = 4 in our case), let
Zmin ∈ R1×Nmin denote a subset of Z and let Zall ∈ RL×Nmin

denote all L such possible combinations of Z . In essence, the
robust snapshot SLAM method first uses Zmin ∈ Zall to compute
an initial solution. Then, according to the principles of the
random sample consensus (RANSAC) algorithm, the channel
parameter estimates are partitioned into a set of inliers and a
set of outliers based on the initial solution. Lastly, the problem
is re-solved using the inlier set and a cost for the solution
is computed, denoted by C(αUE,Zmin). The robust snapshot
SLAM algorithm performs the above three steps for all possible
combinations Zall and UE orientations A = (−π, π]. Then, the
UE state estimate x̂UE and estimated inlier set Ẑ are obtained
by solving the following optimization problem

minimize
αUE∈A,Zmin∈Zall

C(αUE,Zmin), (1)

in which the UE position and clock bias estimates are given in
closed-form when solving (1). The problem is solved using a
grid search and we consider the more challenging scenario by
assuming that the LoS does not exist meaning that four or more
NLoS paths are required to solve (1). After solving x̂UE and for
every element of the inlier set Ẑ , landmark p̂i can be estimated
independently by solving a nonlinear optimization problem as
presented in [7]. From now on, x̂UE and p̂i are referred to as
measurements since they are used as measurement inputs to a
tracking filter in Section III.

B. Measurement Covariance

To tackle the online SLAM problem appropriately in a
Bayesian way, the measurement covariance matrix is required.
For notational convenience, let us assume M = N and that
each channel parameter estimate is associated with a single-
bounce propagation path so that we can express the joint
UE and map state as x = [x⊺UE,p

⊺
1, . . . ,p

⊺
N ]⊺. The Cramér-

Rao lower bound (CRLB) provides a lower bound on the
variance of an unbiased estimator, defined by the inverse of
the Fisher information matrix (FIM). Therefore, the unbiased
estimator x̂ satisfies Cov(x̂) = E[(x̂ − x)(x̂ − x)⊺] ≥ J(x)−1
[9], where J(x) ∈ R4+2N denotes the FIM. Let us assume the
likelihood function of the single-bounce NLoS paths is Gaussian,
N (zi ∣ g(xUE,pi),Wi), with covariance Wi and mean given
by

g(xUE,pi) =
⎡⎢⎢⎢⎢⎢⎣

∥pBS − pi∥/c + ∥pi − pUE∥/c + bUE
atan2(yi − yBS, xi − xBS) − αBS
atan2(yi − yUE, xi − xUE) − αUE

⎤⎥⎥⎥⎥⎥⎦
, (2)

in which ∥⋅∥ denotes the Euclidean norm and c the
speed of light. The FIM of the channel parameters,
g(x) = [g(xUE,p1)⊺, . . . ,g(xUE,pN)⊺]⊺, is J(z) =
blkdiag(W−1

1 , . . . ,W−1
N ) [3], in which blkdiag(⋅) denotes a

block diagonal matrix. Now, the FIM of state x is

J(x) = [∇xg(x)]⊺J(z)[∇xg(x)], (3)

in which ∇xg(x) ∈ R3N×(4+2N) denotes the Jacobian of g(x)
evaluated with respect to x with element in row i and column
j given by [∇xg(x)]i,j = ∂[g(x)]i/∂[x]j . Now, covariance of
the UE and landmark measurements are given by

RUE = [J(x)−1]1∶4,1∶4, (4)

RMAP
i = [J(x)−1]2i+3∶2i+4,2i+3∶2i+4. (5)

III. PROPOSED MULTI-HYPOTHESIS LINEAR SLAM FILTER

Ideally, the cost in (1) should only have one minimum that
locates near the ground truth UE orientation, but due to noise and
outliers, the cost can have multiple local minima, as defined after
(6), and the global minimum is not always the one that is closest
to the ground truth as illustrated in Fig. 1. To overcome this
challenge, we present a detector that finds every local minima
and since the detector gives rise to multiple measurements, we
formulate the UE tracking problem as single object tracking
(SOT) in clutter [10] which is a special case of multiple object
tracking (MOT) [11]. In addition, a map that is conditioned on
the UE state is computed and the mapping problem is formulated
as a MOT problem.

A. Multi-Hypothesis Detector

The measurements and covariances correspond to a specific
time instant k, denoted using subscript k from now on. The
measurements at time k are modeled using a RFS with random
cardinality and random elements, given by

YUE
k = {x̂UE

k ∣ C(αUE,Zmin) ≤ C(α∗UE,Zmin)
∧C(αUE,Zmin) ≤ Γ} (6)

where ∃δ > 0 s.t. C(αUE,Zmin) ≤ C(α∗UE,Zmin) ∀α∗UE ∈ (αUE −
δ,αUE+δ) is the condition defining the local minima in which δ
is the grid spacing of A. The second condition C(αUE,Zmin) ≤ Γ
is used to only account for local minima for which the cost is
below threshold Γ. The threshold is defined as Γ = (1+β)×Cmin
in which Cmin =min C(αUE,Zmin) is the global minimum and
β is a tuning parameter between two extremes. If β = 0 only the
global minimum is accounted for and if β =∞ all local minima
are taken into account. The total number of measurements at
time k is mk = ∣YUE

k ∣, in which ∣YUE
k ∣ denotes cardinalty of the

set. For every measurement i ∈ (1, . . . ,mk), a set of landmark
measurements YMAP

k,i = {p̂k,1, . . . , p̂k,∣Ẑ ∣} and the covariances
defined in Section II-B are associated.

B. Nearest Neighbour Filter for UE Tracking

The filtering recursion of SOT in clutter follows the conven-
tional prediction and update steps of Bayesian filtering but since
the number of hypotheses grows exponentially, approximations



(a) Cost function vs. UE orientation (b) Two candidate solutions

Fig. 1. In (a), cost function for a given set Z with two local minima and in
(b), the corresponding snapshot SLAM solutions are illustrated. In (b), solution
corresponding to the global minima is illustrated using dashed lines and the other
solution shown using solid lines. The ground truth UE position is illustrated
using ( ). The detection threshold is shown in (a) using a dashed red line and
the detection threshold value in the example is (1 + β) = 100.

are required to obtain a computationally feasible algorithm [10].
In the following, we device a NN filter which only keeps one
hypothesis after each update step and the rest are pruned.

1) Models: Posterior, transition density and likelihood func-
tion of measurement yUE

k,j ≜ {YUE
k }j are all represented using

Gaussians:

p(xUE
k ∣ YUE

1∶k) ≈ N (xUE
k ;mUE

k ,Pk), (7)

p(xUE
k ∣ xUE

k−1) = N (xUE
k ;FxUE

k−1,Q), (8)

p(yUE
k,j ∣ xUE

k ) = N (yUE
k,j ;HxUE

k ,RUE
k ). (9)

The posterior in (7) is parameterized by the mean mUE
k and

covariance Pk. The transition density in (8) describes the state
evolution in which F is the state transition matrix and Q
covariance of the process noise, both assumed time-invariant.
The connection between the UE measurements and the UE state
is represented using the likelihood function in (9) in which H
is a linear measurement matrix and RUE

k is the measurement
noise covariance given in (4) at time k.

2) Filter Recursion: Assume that at time k − 1 the posterior
is Gaussian and given by N (xUE

k−1;m
UE
k−1,Pk−1). In SOT, the

predicted density is given by the conventional Bayesian filtering
prediction step [10, Eq. 4.11]

p(xUE
k ∣ YUE

1∶k−1) = N (xUE
k∣k−1;m

UE
k∣k−1,Pk∣k−1), (10)

where mUE
k∣k−1 = FmUE

k−1 and Pk∣k−1 = FPk−1∣k−1F⊺ +Q. The
posterior at time k is:

p(xUE
k ∣ YUE

1∶k) =
mk

∑
θk=0

wθk
k N (x

UE
k ;mθk

k ,Pθk
k ), (11)

where θk is a data association (DA) variable, wθk
k represent

the DA probabilities and ∑mk

θk=0w
θk
k = 1. Let PD denote the

probability of detection and λc(yUE
k,θk
) the clutter intensity.

Parameters of the posterior for misdetection (θk = 0) are:

wθk
k = 1 − P

D, mθk
k =m

UE
k∣k−1 and Pθk

k = Pk∣k−1, (12)

and for detection (θk ∈ {1, . . . ,mk}) they are:

wθk
k =

PD

λc(yUE
k,θk

)N (y
UE
k,θk

;HmUE
k∣k−1,Sk), (13)

mθk
k =m

UE
k∣k−1 +Kk(yUE

k,θk
−HmUE

k∣k−1), (14)

Pθk
k = Pk∣k−1 −KkSkK

⊺
k, (15)

where yUE
k,θk

denotes element θk of YUE
k . The predicted innova-

tion covariance Sk and Kalman gain Kk can be computed using
the conventional Kalman filter update step [12, Eq. 4.21]. The
NN filter only keeps the most probable hypothesis and prunes
the rest, such that the posterior at time step k is approximated
as [10, Eq. 4.12]

p(xUE
k ∣ YUE

1∶k) ≈ N (xUE
k ;m

θ∗k
k ,P

θ∗k
k ), where (16)

θ∗k = arg maxθkw
θk
k . (17)

At the first time step k = 1, the NN filter is initialized using the
measurement with lowest cost.

C. PHD Filter for Mapping
The PHD filter can account for the RFS nature of the

landmarks and is therefore utilized for mapping [6]. However,
a significant difference with respect to prior works is that the
observation model of the proposed PHD filter is linear, whereas
in prior works the observation model is nonlinear [5], [6], [13].
The PHD filter recursively estimates the first-order statistical
moment of the posterior density p(Pk ∣ YMAP

1∶k ,xUE
k ) and in

this paper, the filter utilizes the measurement associated with
the most probable hypothesis θ∗k given in (17) such that the
measurement for time step k is YMAP

k ≜ YMAP
k,θ∗

k
.

1) Models: The PHD is represented using a Gaussian mixture,
vk(p) = ∑Jk

j=1 η
j
kN (p;µ

j
k,Σ

j
k), where ηjk, µj

k and Σj
k denote

the weight, mean and covariance of mixture component j, and
Jk is the number of components. The transition density and
likelihood function are represented using Gaussians:

p(pk ∣ pk−1) = N (pk;Fpk−1,Q), (18)

p(yMAP
k,j ∣ pk) = N (yMAP

k,j ;Hpk,R
MAP
k ), (19)

in which F is a linear transition matrix, Q the process noise
covariance, H the linear measurement matrix and RMAP

k the
measurement covariance matrix. The measurement covariance
is RMAP

k = 1

∣Ẑ ∣ ∑
∣Ẑ ∣
i=1R

MAP
k,i , in which RMAP

k,i is given in (5). The
covariance is averaged over all measurements since the DA
between measurements and existing landmarks is unknown.

2) Filter Recursion: If the PHD at time k − 1 is a Gaussian
mixture and since the models are linear Gaussian, it follows
that the predicted PHD is a Gaussian mixture [11, Eq. 24]

vk∣k−1(p) = vS
k∣k−1(p) + vB

k(p) (20)

and also the updated PHD is a Gaussian mixture [11, Eq. 32]

vk(p) = (1 − PD)vk∣k−1(p) + ∑
yMAP
k
∈YMAP

k

vD
k (p;yMAP

k ). (21)



The recursion to compute the means and covariances in (20)
and (21) can be efficiently computed using the Kalman filter
prediction and update steps [11, Table I]. Utilizing the Gaussian
component reduction algorithm [11, Table II], the PHD filter
complexity can be further reduced. Similar to [14], we utilize
an informative prior for the birth intensity vB

k(p) as follows.
In the PHD update step, we utilize gating to eliminate unlikely
observations and if an observation is not used to update any
landmark, we use the observation to create a new landmark.
For example, if element i of YMAP

k is not associated to any
landmark, the mean of the birth intensity is µB

k,i = [YMAP
k ]i and

covariance ΣB
k,i =RMAP

k,i is computed from the FIM using (5).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The performance of the proposed and benchmark SLAM
algorithms is evaluated using real-world 60 GHz measurement
data, obtained indoors at Tampere University campus, with
floorplan as illustrated in Fig. 3. Altogether 45 UE locations
were measured. Beamformed measurements were obtained using
400MHz transmission bandwidth utilizing 5G NR-specified
downlink positioning reference signals. Details of the experi-
ment, hardware and channel estimator are provided in [8].

In the following, the proposed algorithm is quantitatively
evaluated in two phases. In the first phase, the evaluation
solely focuses on the multi-hypothesis snapshot SLAM detector
whereas in the second phase, the entire processing pipeline is
considered. The proposed method is benchmarked against a
robust snapshot SLAM algorithm [7] referred to as BM1 and
a conventional filtering-based method that uses the channel
parameter estimates as input to a Rao-Blackwellized PHD-
SLAM filter [5] referred to as BM2. Since the ground truth
landmark locations are unknown, which is a common problem in
SLAM when using real-world data, the quantitative evaluation
focuses on the UE state. Accuracy is assessed using the position,
heading and clock bias root mean squared errors (RMSEs).

The filters are evaluated using two different dynamic models.
The first is a random walk (RW) model for which F = I4 and
Q = diag([10m2, 10m2, 0.01 rad2, 33ns2]), where I4 denotes
a 4×4 identity matrix and diag(⋅) a diagonal matrix. The second
is a RW model with a deterministic control input (RW+C) for
which F = I4, Q = diag([0.1m2, 0.1m2, 0.01 rad2, 33ns2])
and the ground truth 2D translation is added to the predicted
UE state. The PHD also utilizes a RW model with F = I2 and
Q = diag([0.1m2, 0.1m2]). The measurement matrices are
H = I4 and H = I2. The NN and PHD filters utilize the same
values for PD = 0.9 and λc(⋅) = 10−6. The covariance of the
channel parameters is W = diag([1ns, 3π

180
rad, 3π

180
rad]2). The

snapshot SLAM algorithm and BM1 use the same parameters
that were used in [7]. BM2 uses 1000 particles and the other
parameters are tuned to maximize the filter performance.

B. Quantitative Results

1) Multi-Hypothesis Snapshot SLAM Accuracy: We evaluate
properties of the multi-hypothesis snapshot SLAM detector
by computing the position RMSE in three different ways. At

Fig. 2. Position RMSE as a function of detection threshold β. The RMSE is
computed using global minima ( ), oracle ( ) and weighted average
( ) methods. The dashed lines (RW ( ), RW+C ( )) illustrate
performance of the proposed filter with different detection thresholds.

UE location k, let P̂UE,k ∈ R2×mk denote the mk position
measurements of the detector and the corresponding costs as
Ĉk ∈ R1×mk , such that we can define the squared Euclidean
norm for the ith measurement as

ek,i = (pUE,k − [P̂UE,k]⋅,i)⊺(pUE,k − [P̂UE,k]⋅,i). (22)

Now, the RMSE is computed as follows: (i) Global min-
ima – RMSE is computed as ( 1

K ∑
K
k=1 ek,i)1/2 in which

i = arg minmk
Ĉk is index of the measurement with lowest cost;

(ii) Oracle – RMSE is computed as ( 1
K ∑

K
k=1 ek,j)1/2 in which

j = arg minmk
ek is index of the measurement that is closest to

the ground truth; (iii) Weighted average – RMSE is computed as
( 1
K ∑

K
k=1∑mk

i=1 wk,iek,i)1/2 in which wk,i = Ĉ−1k,i/∑
mk

i=1 Ĉ
−1
k,i. The

position RMSE using the three different methods as a function of
detection threshold β is illustrated in Fig. 2 and it is to be noted
that all methods yield comparative performance when β < 10−4
since there is only one measurement. The global minima method
is equivalent to solving (1) and β does not impact the RMSE
since the global minima is used as the measurement. On the other
hand, RMSE computed using the oracle method monotonically
decreases as β increases, which implies that the optimal solution
given by (1) is not always the one that is closest to the ground
truth and a multi-hypothesis detector should be considered
instead. Interestingly, the RMSE saturates to a nearly fixed
value already at β ≈ 10−1 indicating that the accuracy cannot
be improved indefinitely just by increasing β, which in general
increases the number of measurements. The weighted average
method reflects the benefit and disadvantage of the multi-
hypotheses detector. As illustrated, the weighted average method
outperforms the global minima method as long as the detection
threshold is set properly 10−4 < β < 100 indicating that it is
beneficial to consider multiple snapshot SLAM solutions. On the
other hand, the RMSE increases when β ≥ 100 since the multi-
hypothesis detector produces very inaccurate measurements and
such clutter measurements have a negative impact on SLAM.

2) Online SLAM Performance: The positioning RMSE of
the proposed filter as a function of β is illustrated in Fig. 2
and in this section, we fix the threshold to β = 10−1. The
performance of BM1 and the proposed approach is illustrated
in Fig. 3. BM1 yields good SLAM performance in majority of
the UE locations, but as illustrated in Fig. 3a, in few locations



(a) BM1 (b) BM2 (RW+C) (c) Proposed (RW) (d) Proposed (RW+C)
Fig. 3. Example SLAM performance using the benchmark algorithms and the proposed filtering approach with two different dynamic models. In the figures p̂UE
and p̂i’s shown for all 45 UE locations and the legend of the figures is: pBS ( ), pUE ( ), p̂UE ( ) and p̂i’s ( ).

TABLE I
PERFORMANCE SUMMARY OF THE ALGORITHMS

Method Model Pos. [m] Head. [deg] Clk [ns] Time [ms]
BM1 - 1.47 4.62 4.95 6.00
BM2 RW 0.48 2.45 1.30 165.13
BM2 RW+C 0.46 2.23 1.50 152.02

Proposed RW 0.40 2.28 1.34 6.44
Proposed RW+C 0.28 2.09 0.94 6.40

BM2⋆ RW 0.35 2.43 0.76 166.33
BM2⋆ RW+C 0.20 2.00 0.34 156.56
⋆Initialized using the ground truth UE state.

p̂UE is very inaccurate, for example at pUE = [3.56, −5.70]⊺.
At these locations, the cost function is typically multimodal
and BM1 selects the mode with minimum cost as the estimate
which is not the one closest to the ground truth. The proposed
method generates a measurement for every local minima that
has low enough cost which are then used as input to the NN
filter. Since the minima closest to the ground truth is typically
also the one closest to the predicted state estimate, the NN
filter is able to accurately estimate the UE state at every UE
location as illustrated in Fig. 3. Moreover, comparing Figs. 3c
and 3d, it is evident that a better dynamic model enhances the
UE tracking performance, but it is important to note that the
mapping performance is equivalent with both dynamic models
since the UE and landmark measurements are decoupled using
the proposed approach.

The performance of the algorithms are summarized in Table I.
With respect to BM1, the proposed method improves the accuracy
notably with only a slight increase in computational cost as
tabulated in the last column of Table I. The performance with
respect to BM2 depends on how the filter is initialized. If BM2 is
initialized utilizing the snapshot SLAM algorithm, the proposed
algorithm clearly outperforms BM2. The main drawback of BM2
when initialized using the measurements is that typically the
initial uncertainty of the UE state is high and occasionally the
filter converges to the wrong mode. Several different counter-
measures were tried, such as utilizing more particles and using
a burn-in period after initialization, but they were not effective
in practice. On the other hand, if BM2 is initialized using the
ground truth UE state, BM2 outperforms the proposed method
but this initialization procedure is very unrealistic. BM2 also has
a notably higher computational cost as tabulated in Table I.

V. CONCLUSIONS

In this paper, we presented an online bistatic radio SLAM
method that combines properties of conventional snapshot and
filtering-based solutions. The main advantage of the proposed
method is that the underlying measurement models are linear
so that the filtering recursion can be implemented using low
complexity linear Bayesian filtering equations. Experiments
conducted using real-world 60 GHz measurements demonstrated
that the proposed method combines good accuracy with low
computational overhead, outperforming state-of-the-art snapshot
and filtering-based bistatic radio SLAM methods.
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