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Abstract—We discuss the use of angle of arrival (AoA) as an
authentication measure in analog array multiple-input multiple-
output (MIMO) systems. A base station equipped with an analog
array authenticates users based on the AoA estimated from
certified pilot transmissions, while active attackers manipulate
their transmitted signals to mount impersonation attacks. We
study several attacks of increasing intensity (captured through
the availability of side information at the attackers) and assess
the performance of AoA-based authentication using one-class
classifiers. Our results show that some attack techniques with
knowledge of the combiners at the verifier are effective in falsi-
fying the AoA and compromising the security of the considered
type of physical layer authentication.

Index Terms—Physical layer authentication, AoA-based au-
thentication, Impersonation attack.

I. INTRODUCTION

Physical layer authentication (PLA) is gaining momentum
in the realm of wireless communication systems due to its
ability to be deployed relatively easily in device-to-device
setups without the need for a cumbersome public key in-
frastructure [1]. Unlike conventional cryptographic methods,
PLA authenticates devices or users based on unique signal
characteristics observed at the physical layer. In addition to
its fast processing and high interoperability in heterogeneous
systems, such as its ability to work jointly with or comple-
ment upper-layer authentication, PLA enables the construction
of multi-factor authentication schemes for enhanced security
[1], [2]. A typical PLA scenario is shown in Fig. 1: the
training process involves acquisition of initial features from
transmissions of a legitimate user (Alice), associating them
with her identity by leveraging some manual process or higher-
layer identification protocol. Subsequent transmissions from
Alice are then recognized by comparison with the signals
acquired during training, and possibly distinguished from
those of an attacker (Eve) attempting to impersonate Alice
by manipulating transmitted signals through precoding.

PLA can be used either in challenge-response authentication
protocols or in tag-based authentication protocols [3], and
includes hardware-based and channel-based authentication. As
an example of challenge-response PLA, hardware fingerprints,
referred to as physical unclonable functions (PUFs), serve as
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Fig. 1. Considered physical layer authentication scenario: (a) Offline Training
phase: Alice’s transmission is guaranteed to be authentic, the corresponding
signal is acquired by Bob and associated with her identity (b) Online classifi-
cation phase: Alice is recognized by the classifier through comparison of the
newly acquired signal with her original signal, collected during training (c)
Authentication system under successful impersonation attack: Eve transmits a
precoded signal with the aim to confuse Bob’s classifier and make it recognize
the received signal as being transmitted by Alice.

unclonable unique device identifiers [4]–[6]. Recently, channel
controllability using reflective intelligent surfaces (RIS) has
also been considered in challenge-response protocols [7].
Channel-based PLA employs various channel features for
authentication [8]–[13]. In some recent works on channel-
based PLA, like [14]–[16], the use of the angle of arrival
(AoA) as a unique identity feature has been proposed, and
also used to identify Sybil attacks in robotic networks [17].
Significantly, there has been a surge of interest in integrating
machine learning (ML) into PLA [12], [16], [18], as well as
model-based approaches for location spoofing [19], [20].

Similar to any authentication scheme, AoA-based PLA
solutions are susceptible to active attacks, in particular to im-
personation/spoofing. Such attacks aim to deceive the verifier
(Bob) – possibly by employing suitable precoders – to mis-



classify Eve as Alice due to induced errors in the estimated
AoA. Robustness against such attacks has been explored only
in a handful of works up to now, like [21], [22]. The former
focuses on jamming attacks and discusses the optimality of
maximum likelihood-based AoA estimation. The latter focuses
on spoofing attacks on AoA estimation in multiple-input
multiple-output (MIMO) systems with digital arrays at the
verifier. In digital arrays, each receive antenna corresponds
to a dedicated radio frequency (RF) chain and the verifier
estimates the AoA by examining phase variation across the
array. In the case of analog arrays with a single RF chain, the
AoA is estimated through multiple pilot transmissions, probing
different angles with appropriate beamforming vectors for each
transmission. In view of the fact that low-cost IoT devices
can possibly not afford digital array transceivers, the study
of spoofing attacks in AoA-based PLA systems using analog
arrays becomes very important and motivates the current study.

In this paper, we demonstrate that analog arrays are much
more vulnerable to spoofing attacks. Our contributions are as
follows: (i) We consider a standard authentication protocol in
a novel context, where a verifier, in this case the base station
(BS), is equipped with an analog array and identifies a node,
exploiting a one-class classifier trained using the estimated
AoAs of the legitimate node; (ii) We investigate impersonation
attacks by a malicious node and study the impact of the
impersonation attacks on the estimated AoAs; (iii) We study
the impact of the impersonation attacks on the ML-based
classifier’s performance.

Notation: Vectors x are denoted in bold, transpose as x⊤,
Hermitian as xH, and complex conjugate as x∗.

II. AUTHENTICATION MODEL

In this section, we first describe the system model, followed
by an authentication protocol, focusing on the AoA as the
primary feature.

A. System Model

Consider Alice’s single-antenna1 user equipment (UE) lo-
cated at coordinates xA = [xA

1 , x
A
2 ]

⊤. The BS, corresponding
to Bob, is situated at the origin [0, 0]⊤ and is equipped with
an analog array, i.e., N receive antennas and a single RF
chain, subject to the constraint N > 1. Alice transmits a
sequence of T > 1 uplink pilot signals sA = [sA

1 , . . . , s
A
T ]

⊤

to Bob satisfying the constraint ∥sA∥2 = 1, where T is the
number of pilot transmissions. The received signal at Bob can
be expressed as

yt =
√
PhAwH

t a(θ
A)sA

t + nt, t = 1, 2, . . . , T, (1)
where P represents the transmitted power from Alice, |hA| =
λ/(4πdA) is the channel amplitude between Alice and Bob (as
a function of the distance dA = ∥xA∥ and the wavelength λ),
nt is complex additive white Gaussian noise (AWGN) with
variance σ2/2 per real dimension, wt is the beamforming

1We have opted for a simple yet non-trivial system model to gain funda-
mental insights. This approach allows us to establish foundational principles
and understand core mechanisms without unnecessary complexities.

vector at time t, and a(θA) stands for the array steering
vector2 determined by the angle-of-arrival (AoA) θA, where
θA = arctan

(
xA
1 /x

A
2

)
. The beamforming vectors wt are

configured to directional beams, i.e., wt = a(θt), where
θt denotes the probing direction between [−90◦, 90◦]. Also,
σ2 = N0W , where N0 is the noise power spectral density
and W is the bandwidth. It is assumed that Bob possesses
knowledge of sA, based on which, the AoA θ̂ at the BS can
be estimated.

B. Physical Layer Authentication Protocol

We consider a standard authentication protocol in which
Bob needs to identify Alice, based on the estimated AoA.
Authentication protocols include an offline training phase and
an online verification phase, which are schematically depicted
in Fig. 1-(a) and Fig. 1-(b), and described next.

• Offline Training Phase: features (in our case estimated
AoAs θ̂) are recorded by Bob for each legitimate user;
a corresponding database of user/node identifiers (IDs)
and features is then created. The transmissions of Alice
received by Bob are guaranteed to be authentic by higher-
layer protocols. From an authentication perspective, this
corresponds to a one-class classification (OCC) scenario,
where only the positive class (target class) is present
during training, while the negative classes (non-target
classes) remain unknown [12].

• Online Verification Phase: Alice begins by announcing
her identity to Bob and transmitting pre-agreed pilot
sequences. This allows Bob to estimate Alice’s AoA and
authenticate her using an OCC classifier trained in the
previous phase.3

The purpose of this work is to study the robustness of such a
standard authentication protocol to several new impersonation
attacks, tailored to AoA estimation with analog arrays.

III. IMPERSONATION ATTACKS

Any authentication system is subject to attacks, notably
impersonation/spoofing attacks. We assume that the attacker
(Eve) is provided with a single-antenna UE and employs
suitable precoding with the aim that the received signals
prompt Bob’s classifier to mis-classify them as originating
from Alice, as schematically illustrated in Fig. 1-(c).

A. General Attack Model

Eve, located at coordinates xE = [xE
1, x

E
2]

⊤, induces an
array steering vector a(θE) at Bob, determined by the AoA
θE, where θE = arctan

(
xE
1/x

E
2

)
. Eve manipulates the AoA-

based authentication of Alice by altering the transmitted signal
sE = [sE

1, . . . , s
E
T ]

⊤ to Bob, while satisfying the constraint

2For a linear antenna array, the n-th element of the array steering vector
is given by [a(θA)]n = exp

(
ȷπn sin

(
θA

))
, for n = 1, 2, . . . , N

3In precise terms, we define identification as a process enabling the
authenticator to recognize the node’s identity without explicit inquiry. On
the other hand, authentication refers to a procedure where the node initially
declares its identity and subsequently provides proof to verify that they are
indeed the claimed identity.



∥sE∥2 = 1. The received signal at Bob originating from Eve
can be expressed as:

yt =
√
PhEwH

t a(θ
E)sE

t + nt, t = 1, 2, . . . , T, (2)
where P is Eve’s transmission power (here for simplicity set
equal to the transmission power of Alice), |hE| = λ/(4πdE)
is the channel amplitude, in which dE = ∥xE∥ is the distance
of Eve from Bob, θE = arctan

(
xE
1/x

E
2

)
, and nt denotes the

AWGN component with variance σ2/2 per real dimension.
Eve can manipulate the transmitted signal or its statistical
properties in different ways, depending on the knowledge
she has regarding Alice. In the following we describe some
strategies that Eve might follow to manipulate her signals and
the corresponding assumptions on her knowledge about Alice.

B. Random Attack

Eve knows when to transmit and the duration of the
transmission. Eve generates sE

t = exp(ȷϕt)/
√
T , where ϕt ∼

U [0, 2π]. Since sE
t ̸= sA

t , the AoA estimation capability at
Bob is compromised. However, it is unlikely that Eve can
impersonate Alice with this attack.

C. Code-based attack

Eve knows when to transmit, and the duration of the
transmission. Eve also knows the combiners wt (which can
be interpreted as a code, hence the name code-based attack),
the pilot sA, and Alice’s AoA θA. Eve does not know θE. Here,
Eve can manipulate sE

t as
sE
t = αEwH

t a(θ
A)sA

t , (3)
where αE is a normalization value set to meet the constraint
∥sE∥2 = 1, i.e., αE = (

∑T
t=1 |wH

t a(θ
A)sA

t |2)−1/2. Subse-
quently, the received signal at time t at the BS is given by

yt =
√
PhEαEwH

t a(θ
E)wH

t a(θ
A)sA

t + nt. (4)
This manipulation causes the BS to perceive a signal arriving
from both the impersonator AoA θE and the true AoA θA,
providing opportunities for Eve to impersonate Alice.

D. Location-based attack

In this case, Eve acquires knowledge of the combiners
wt, the pilot sA, the target angle θA and her own angle
θE, leveraging information about both the BS and her own
location. Eve can manipulate sE

t as follows:

sE
t = αE w

H
t a(θ

A)(wH
t a(θ

E))∗

|wH
t a(θ

E)|2
sA
t , (5)

where αE is again a normalization value set to meet the
constraint ∥sE∥2 = 1. The received signal at Bob at time t
is given by

yt =
√
PhEαEwH

t a(θ
E)
wH

t a(θ
A)(wH

t a(θ
E))∗

|wH
t a(θ

E)|2
sA
t + nt (6)

=
√
PhEαEwH

t a(θ
A)sA

t + nt. (7)
This manipulation causes the BS to perceive only a signal
arriving from θA, effectively eliminating any trace of the true
angle θE. However, the effectiveness of the attack depends
on the power of αE, which Eve cannot control. In particular,

if a combiner wt is such that |wH
t a(θ

E)| ≪ |wH
t a(θ

A)|, the
overall potency of the attack is reduced.

IV. NUMERICAL RESULTS

In this section, we assess the impact of impersonation
attacks on the considered authentication protocol.

A. Authentication Protocol and Performance Metrics

The authentication protocol comprises two stages: the AoA
estimator and the OCC, generating the decisions.

1) AoA Estimation: We adopt maximum likelihood estima-
tion of θA from (1) in the presence of an unknown complex
channel gain hA, leading to

θ̂ = argmin
θ

∥y − ĥ(θ)z(θ)∥2, (8)

where y = [y1, y2, . . . , yT ]
⊤, [z]t = wH

t a(θ), and ĥ(θ) =
zH(θ)y/∥z(θ)∥2.

2) Classifier: For authentication, we employ one-class sup-
port vector machine (OC-SVM) as the classifier at Bob [12].
OC-SVM aims to encapsulate the majority of training data
within a hypersphere R = {x ∈ RN |foc(x) > 0}, where x
is the feature vector and foc(x) is the decision function. New
samples are accepted or rejected based on the decision function
foc(x): if foc(x) > 0, the message is accepted; otherwise, it is
rejected. To assess the effectiveness of this decision process,
we exploit the classical metrics based on the probability of
false alarm (FA) and missed detection (MD). A FA occurs
when Bob wrongly rejects a message from Alice, while an
MD happens when a message from Eve is mistakenly accepted
by Bob as authentic. The probability of FA is calculated as:

PFA =
FN

TP + FN
, (9)

where FN and TP represent the number of false negatives and
true positives, respectively. Similarly, the probability of MD
is computed as:

PMD =
FP

FP + TN
, (10)

where FP and TN represent the number of false positives and
true negatives, respectively. Finally, overall accuracy is defined
as:

Acc =
TP + TN

TP + TN + FP + FN
. (11)

B. Simulation Parameters

We consider a system operating at 2.5 GHz with W =
20 MHz bandwidth and a transmit power P = 10 dBm. The
noise power spectral density is N0 = −174 dBm/Hz. Bob is
equipped with N = 16 antennas and expects T = 17 trans-
missions. The beamforming vectors wt are set to directional
beams, denoted as wt = a(θt), where θt represents the T
probing directions, uniformly spanning from −90◦ to 90◦.
Alice is located at dA = 10 m with θA = 0◦, while Eve
will have a variable location.
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Fig. 2. Negative log-likelihood cost function (8) as a function of the AoA
for different attacks for dE = 10 m.

C. Results and Discussion

1) Impact of the Attacks on the Estimated AoA: To illustrate
the effects of different attacks on the estimated AoA, we
position Eve at a distance of 10 meters from the BS with
an AoA of θE = 45◦, and we plot the negative log-likelihood
cost ∥y− ĥ(θ)z(θ)∥2 from (8) in Fig. 2. The cost originating
from Alice ( ) has a distinct minimum at θ = 0◦. Similarly,
if Eve does not deploy any attack, the corresponding cost
( ) has a minimum at θ = 45◦. Under the random attack
( ), this minimum is attenuated and shifted but does not
generate a minimum around θA, and hence Eve is incapable
of impersonating Alice. Nonetheless, a sufficient number of
random attacks could potentially facilitate successful Denial of
Service Attacks, undermining Bob’s capability to estimate the
AoA. The code-based attack ( ) does somewhat better and
an additional minimum is created around 0 degree apart from
the one at 45◦. Both minima are rather shallow and shifted
from their nominal value. In this case, Eve has opportunities
to impersonate Alice. Finally, with the location-based attack
( ) a new minimum appears at θ = 0◦, while the original
minimum at θ = 45◦ disappears. The minimum is pronounced
and sharp, indicating that this attack can be highly effective
at impersonating Alice.

From now on, we will disregard the random attack and
perform a more in-depth statistical analysis of the code-based
and location-based attacks. To this end, we compute the root
mean square error (RMSE), defined as (E{(θ̂ − θA)2})1/2
based on 1000 Monte Carlo trials for various dE and θE.
The RMSE resulting from the code-based and location-based
attacks is depicted in Fig. 3. For the location-based attack,
we observe that as the distance dE increases, the RMSE
increases due to a decrease in the signal-to-noise ratio (SNR),
leading to the failure of the attack. Additionally, the AoA
estimation trend shows a predominantly monotonic behavior
as θE increases but is also significantly influenced by nulls
in the beam response. When the null of Eve’s beam response
precisely aligns with the main lobe of Alice’s beam response,
for example, at θE = 30◦, achieving accurate emulation of
Alice’s response theoretically necessitates an infinite amount
of power, resulting in αE → 0. Nevertheless, in a broader
context, the overall trend suggests that with an increase in
θE, there is a corresponding increase in the RMSE of the
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Fig. 3. RMSE in estimated angle in degrees vs distance of Eve from Bob
and various AoA of Eve.

estimated AoA. Notably, the RMSE is more pronounced in the
code-based attack compared to the location-based attack. This
increased error is attributed to the presence of dual minima
in the negative log-likelihood function, leading to bias in the
estimates, as discussed in the context of Fig. 2. The code-based
attack thus introduces bias, resulting in increased RMSE; at
angles exceeding 80◦, a higher variance but reduced bias in
AoA estimates occurs for larger distances, leading to an overall
smaller RMSE compared to smaller distances.

2) Impact of the Attacks on the Classifier: The OC-SVM
classifier was trained on 1,000 AoA samples from Alice,
considering a distance between Alice and Bob equal to 10
meters. The test set consisted of 200,000 samples evenly
split between Alice and Eve, comprising 100,000 legitimate
signals and 100,000 attack signals. The reported results are
averaged over 100 randomly selected training and test sets.
Fig. 4 compares the accuracy achieved by the OC-SVM under
both code-based and location-based attacks. In the context
of the location-based attack, a parallel trend to the observed
RMSE patterns is evident: as the distance dE between Eve
and the verifier increases, the classification accuracy improves.
This improvement occurs because Eve’s ability to execute a
successful impersonation attack diminishes at greater distances
due to power limitations. Similarly, smaller values of θE lead
to more successful attacks, resulting in reduced classification
accuracy. This trend is evident in the lower classification
accuracy observed for θE = 5◦ in comparison to that observed
for θE = 20◦, which in turn is smaller when compared to that
of θE = 45◦, aligning with the RMSE trends illustrated in
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Fig. 3. For the case of θE = 30◦, the null of Eve’s beam
response aligns precisely with the main lobe of Alice’s beam
response, leading to the failure of impersonation attempts and
consequently achieving the highest authentication accuracy.
For the code-based attack, the impersonation attempt is less
effective, resulting in a high classifier accuracy even with
a smaller RMSE for θE. This disparity arises because the
location-based attack causes the disappearance of the original
minimum and introduces a new minimum at θA, providing
unbiased estimates with a variance dependent on Eve’s angle
and distance. Conversely, the code-based attack introduces bias
into the estimates, making them easier to detect.

We also analyze the probability of MD, which is illustrated
in Fig. 5 for both types of attacks. With a location-based attack,
a similar trend is observed in terms of MD probability as in
accuracy: the probability of MD for 5◦ is larger than that for
20◦, which in turn is larger than that for 45◦. Notably, for
θE = 30◦, the probability of MD is lower, aligning with the
already observed accuracy trends. The probability of FA is
not illustrated in the figures, as it remains consistently around
0.014 regardless of changes in Eve’s distance and AoA.4

V. CONCLUSIONS

We studied a physical layer authentication protocol in which
a BS equipped with an analog array aims at identifying a legit-

4In the specific scenario under consideration, an OCC is trained solely on
samples from Alice. Given that these samples remain unchanged from the
training phase to the verification phase, except for the random noise affecting
AoA estimation, Eve’s parameters have no impact on the probability of false
alarm.

imate transmitting node using an OC-SVM classifier trained
on the estimated AoA of the same node. We introduced several
attack techniques that could be exploited by a malicious node
to forge the estimated AoA and impersonate the legitimate
node. We studied the effectiveness of these attacks on an ML-
based classifier’s performance for various distances and angles,
observing that location-based and code-based attacks can be
successful in impersonating the AoA. Our study reveals that
a successful impersonation requires knowledge of the location
of the attacker and the victim, as well as the combiners
at the verifier. The effectiveness of the attack depends on
the available transmission power at the attacker, as well as
the nulls of the verifier’s beams. Future studies can include
investigating authentication spoofing with location mismatches
and exploring the impact of multipath channels.
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