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Abstract—A new waveform design technique to improve the
energy efficiency of a communication system using quadrature
amplitude modulation (QAM) for a given throughput is pre-
sented. The proposed method optimizes the mutual information
using probabilistic shaping for a given power consumption. In
certain cases, we show that the optimization problem is convex
and can be solved efficiently. Our numerical results show that
the proposed waveform design technique outperforms standard
QAM signaling regarding spectral efficiency for any power
consumption level.

Index Terms—waveform design, energy efficiency, probabilistic
shaping, power amplifier, green communications

I. INTRODUCTION

Green communication has attracted much attention in recent
years [1], [2]. Communications systems have been studied
widely to achieve low energy consumption or high energy
efficiency (EE) while upholding the high quality of service
and spectral efficiency (SE) requirements.

Power amplifiers are often the most power-hungry compo-
nents of communication systems, and there has been extensive
research to deal with this component in the field of green
communication. In [3], authors have surveyed PA-centric tech-
nologies to improve EE in wireless communication systems
and investigated EE and SE trade-offs while considering
nonlinearity. The trade-off between EE and SE has been
extensively studied in the literature; see [4] and the references
therein.

There are different techniques for improving EE based on
the nature of the understudy system. For wireless systems,
mainly for Orthogonal Frequency Division Multiplexing sys-
tems, peak-to-average power ratio reduction techniques are in
use, as these techniques help systems to use less back-off and
hence have a better output power to consumed power ratio
[5]–[9].

Techniques like probabilistic and geometric shaping are now
widely used for shaping the modulations to decrease the gap
between modulation SE and capacity curves, i.e., finding the
constraint capacity [10]. These techniques, especially proba-
bilistic shaping (PS), are primarily limited to optic systems,
but some papers have been published in wireless systems, too.
For example, authors in [11] used PS for the WiFi standard.

In this paper, we are searching for the best SE for a specific
consumed power. We solve the trade-off rising from linearity
issues by including nonlinearity in our problem formulation.
We define super symbols by concatenating several consecutive
symbols and find the SE and the power consumption as a
function of the probabilities of the set of super symbols. Then,
we optimize the probabilities to obtain the best achievable SE
for a desired power consumption.

The following sections are the system model, problem
formulation, simulations, and conclusion. In the system model,
we provide a model for power consumption for power ampli-
fiers, which suits the PS framework. Then, we introduce a
model for nonlinearity, which can be used in our simulation.
In problem formulation, we discuss how we can formulate
the problem in a way that makes it tractable in terms of
probabilities. Then, we introduce some simplifications that
make the problem we formulated. In the numerical solution
and simulation section, we introduce our method for solving
and provide simulation results.

II. SYSTEM MODEL

This section describes the communication system model
and how power consumption is modeled. Our system model
considers the system using digital linear modulation.

Without considering nonlinearity or other impairments, the
selected channel model is simply an additive white Gaussian
noise (AWGN) channel

Y = X + Z, (1)

where Y is the output of the channel, X is the input, and Z
is the noise added by the channel, which is complex Gaussian
noise with zero mean and variance σ2.

A. Modeling the amplifier nonlinearity

Linear range in power amplifiers is a limiting factor for
system performance, and there are different models for it.
In this paper, we use the gain plus complex limiter model,
described as

V (x) =

{
x, |x| ≤ xmax

xmaxe
j∠x, |x| > xmax

(2)



where V (x) is the output, x is the input, xmax is the maximum
amplitude of the amplifier and ∠c denotes the phase of the
complex number c. The complete amplifier will include gain,
here α before the hard limiter, so the output of the amplifier
will be V (αx).

B. Consumed power model

As stated in [12], [13], instantaneous consumed power for
a relatively wide class of power amplifiers, including class B
amplifiers, can be modeled as a function of the absolute value
of the waveform in the output of the amplifier,

Pdc(x) ∝ |V (αx)|2ϵ, (3)

where x is the complex envelope of output and ϵ is a constant
for that amplifier. In this this work, we consider that ϵ equals
half. For turning (3) into equality, we need a factor that we
represent by κ. For the amplifier model that we described
in subsection II-A, this factor can be obtained in terms of
maximum amplitude and maximum efficiency as

κ =
xmax

ηmax
, (4)

where ηmax is the maximum value of η, power efficiency of
the amplifier, or maximum efficiency of the specific power
amplifier and xmax is the maximum amplitude of amplifier as
we have in (2).

By this assumption, we can find the consumed power of the
amplifier for a signal in time as

Pdc = κ lim
D→∞

1

2D

∫ D

−D

|V (αx(t))| dt. (5)

As a linear digital modulator generates the input signal to
the amplifier, we can write x(t) as

x (t) =

∞∑
k=−∞

xkh (t− kT ) , (6)

where xks are the digital symbols to be transmitted, h(t) is the
impulse response of the pulse shape filter, and T is the symbol
length. As (6) suggests, x(t) is a cyclo-stationary process, so
by assuming that the source is ergodic, we can rewrite (5) as

Pdc = κEX

[
1

T

∫
T

∣∣∣∣∣V
(
α

∞∑
k=−∞

xkh (t− kT )

)∣∣∣∣∣ dt
]
, (7)

where EX is the expected value operator over random variable
X , which is random variable representing digital symbols
generated by the source; And, xks, are identically independent
distributed (IID) symbols drawn from set X , the set of
constellation points, at symbol time k with probability mass
function PX .

As can be seen from (7), the consumed power is a function
of symbols’ distribution. Besides that, as the pulse shaping fil-
ter can be longer than a single symbol, the power consumption
is a function of possible sequences of symbols.

Note that (7) is an exact formula for consumed power
when symbols are IID. However, assuming IID symbols will

result in insufficient degrees of freedom in our feasible set
for optimization of mutual information constrained by power
consumption. Therefore, we proposed a new concept between
one symbol and an infinite sequence of the symbols, namely
supersymbols.

1) Introducing super symbol concept and reformulating
power consumption formula: A super symbol is defined as a
finite sequence of consecutive QAM symbols; in other words,
it can be viewed as a multidimensional symbol in which the
dimensions are quadrature and in-phase for several consecutive
symbols.

We define a super symbol with length N from symbols
xi ∈ X ,

s(n) = [xn·N+1, xn·N+2, ..., x(n+1)·N ]T , xi ∈ X ⊂ C (8)

where X is the set of constellation points of QAM (i.e. s ∈
S = XN ).

If we consider that super symbols are IID, then the con-
sumed power can be written as

Pdc = κE

[
1

NT

∫ NT

0

∣∣∣∣∣V
(
α

+∞∑
k=−∞

xkh(t− kT )

)∣∣∣∣∣ dt
]

= κE

[
1

NT

∫ NT

0

∣∣∣∣∣V
(
α

∞∑
n=−∞

N−1∑
i=0

xn(N−1)+i

× h(t− n(N − 1)T − iT )

)∣∣∣∣∣dt
]
.

(9)

To make (9) completely in terms of super symbols, we
define F , time domain super symbol,

F (s(n), n, t) :=

N−1∑
i=0

s(n)ih(t− n(N − 1)T − iT ) (10)

where s(n)i is the ith element of the vector s(n). We can
rewrite (9) by

Pdc = κE

[
1

NT

∫ NT

0

∣∣∣∣∣V
(
α

∞∑
n=−∞

F (s(n), n, t)

)∣∣∣∣∣ dt
]

(11)

where s(n) defined in (8) is the super symbol in nth super
symbol’s time slot, or as we can define, “super slot.”

Since most of the energy of the pulse shaping filter lies in
one symbol, we can approximate (11) with

Pdc ≈ κE

[
1

NT

∫ NT

0

∣∣∣∣∣V
(
α

K∑
n=−K

F (s(n), n, t)

)∣∣∣∣∣ dt
]

(12)

in which K controls the number of super slots we used in
the approximation, changing the precision. The expected value



operator can be replaced by a summation over super symbol
random space

Pdc ≈ κ
∑

∀[s(−K),...,s(K)]∈S2K+1

pS2K+1 (s(−K), ..., s(K))

× 1

NT

∫ NT

0

∣∣∣∣∣V
(
α

K∑
n=−K

F (s(n), n, t)

)∣∣∣∣∣ dt
= κ

∑
∀[s(−K),...,s(K)]∈S2K+1

K∏
k=−K

pS(s(k)))

× 1

NT

∫ NT

0

∣∣∣∣∣V
(
α

K∑
n=−K

F (s(n), n, t)

)∣∣∣∣∣ dt. (13)

The complexity of the computation of consumed power, as
the formula in (13) suggests, grows exponentially in terms of
the length of the super slot.

The main problem with this formula is that even for K = 1,
the memory needed can be huge; for example, if we consider
our primary constellation as QAM16 and each super symbol
consists of 3 consecutive symbols, then the number of the
cases we need to sum in (13) will be 169 which is more than
64 billion, although the case was almost minimal.

III. FORMULATION OF THE OPTIMIZATION PROBLEM

Here, we seek to minimize the power consumption for
a given system throughput or, equivalently, maximize the
throughput under a power consumption constraint. The method
consists of adjusting the probabilities of each sequence of input
constellation points. We do this optimization under a constraint
on consumed power, derived in (13). The multidimensional
constellation is formed by concatenating multiple QAM sym-
bols into a vector, as is described in (8). The probabilities
are defined over the set S = XN , where N is the number
of symbols in one super symbol. In the same way, we define
U = YN as the sampler output super symbols’ space and U
as the vector formed by concatenating consecutive sampler
outputs, Y s,

P ∗
S = argmax

PS

I(S;U) s.t. Pdc < Plim. (14)

According to (13), single-letterization is possible as the
constraint is a function of the probability of one super symbol.

Figure 1 shows the block diagram of the system we describe
with this optimization problem and the model we described
in section II for super symbols consisting of two consecutive
QAM16 symbols. The part after the sampler is not shown
because here we study mutual information between the super
symbol selector output (S) and sampler output (U).

The objective function, the mutual information between
source and sink, can be written in terms of probabilities of
input and output and their conditionals as

I (S;U) = h(U)− h(U | S)

=
∑
s∈S

pS (s)

∫
CN

pU|S (u | s) log2
(
pU|S (u | s)

)
du

−
∑
s∈S

pS (s)

∫
CN

pU|S (u | s) log2 (pU (u)) du. (15)

From (15), computing mutual information, as it should be
integrated over a multidimensional volume, is tedious. There-
fore, using the well-known Monte Carlo technique can be a
good option. In the following subsections, we will investigate
two cases of this problem.

A. Without nonlinearity

When |αx| ≤ xmax for all input sequences, the conditional
pdf in (15) is known and is equal to the entropy of multi-
dimensional Gaussian noise because we know U = αS + Z
and h(U | αS) = h(U | S), so it has no impact on our
optimization and can be excluded. Therefore, the equivalent
objective function is

P ∗
S = argmin

PS

1

K

K∑
k=1

log2 (pU (uk)) . (16)

In Monte Carlo calculations, we need to draw samples from
the probability density function at hand. We have opted for
importance sampling as it helps mitigate fluctuations caused
by varying sample counts for each constellation point, given
that probability serves as the optimization argument. For
importance sampling, we use NG Gaussian distributed samples
per each one of uniformly distributed centroids, amplifier
transformed super symbols. So, the sample distribution is

q(uk) =
1

M

M∑
m=1

pU|S̃ (uk | s̃m) , ∀k 1 ≤ k ≤ K (17)

where sm is the mth possible s, selected from multidimen-
sional constellation points, M is the size of this constellation,
s̃m = αsm, K = MNG and pU|S (uk | s̃m) is multivariate
normal distribution with center s̃m and covariance matrix
equal to 2σ2IN, in which IN is N-dimensional identity matrix.

The difference between the distribution we integrate on
it and the sample distribution is that it is not uniform on
centroid selection, but it is equivalent to the probabilities of
constellation points we are searching to find.

By implementing the idea of importance sampling with this
sample distribution, the objective function can be written as

P ∗
S = argmin

PS̃

1

K

K∑
k=1

log2

(
M∑

m=1

pU|S̃ (uk | s̃m) pS̃ (s̃m)

)

×

(∑M
m=1 pU|S̃ (uk | s̃m) pS̃ (s̃m)∑M

m=1 pU|S̃ (uk | s̃m) 1
M

)
. (18)

The probabilities of S̃ are equal to the ones of S, so the
objective function is actually in terms of probabilities of super
symbols. To obtain the final form of the problem, we rewrite all
the optimization problems in terms of super symbol probability
vector p = [pS (s1) , ..., pS (sM )]

T as
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Fig. 1. Block diagram of the whole system for 2-symbol QAM16 super symbol

P ∗
S = argmin

p

1

K

K∑
k=1

log2

(
M∑

m=1

pU|S̃ (uk | s̃m)pm

)

×

(∑M
m=1 pU|S̃ (uk | s̃m)pm

1
M

∑M
m=1 pU|S̃ (uk | s̃m)

)
s.t.

κ
∑

∀k=[k−Ns ,...,kNs ]
ki∈1,2,...,M

(
Ns∏

i=−Ns

pki

)

× 1

NT

∫ NT

0

∣∣∣∣∣V
(
α

Ns∑
n=−Ns

F (ski
, n, t)

)∣∣∣∣∣ dt < Plim (19)

where Ns is the number of consecutive super symbols we
use to approximate the power consumption, ki is the index of
constellation point selected at i the super slot.

As we discussed earlier, the calculation complexity of
constraint is very high. Therefore, we need to simplify the
problem to reduce the complexity. Besides that, we should
include the cases in which |αx| > xmax, i.e., clipping occurs.

B. One super symbol with nonlinearity

To include nonlinearity effects and to avoid the complexity
of the ”almost precise” system, we use a simplifying assump-
tion; we assume that all symbols outside of the understudy
super symbol are zero. This assumption will lead to a new
problem: information content maximization for one super-
symbol under power consumption constraint.

There are two ways to map the result of this new problem to
the primary one: First if the understudy super symbol’s length
tends to infinity. Second, if we have all neighboring IID super
symbols in both mappings, we can quantify the distance with
the primary optimization problem in constraint and objective
function.

At the end of the day, we will simulate and see if the system
we described with this assumption will outperform uniform
QAM in terms of mutual information for all consumed power
levels, which is our objective.

In the system with one super symbol, the effect of non-
linearity is simply a displacement in the output constellation.
We can see that deterministic (even unknown) displacement
in U as it is a function of S, will not change h(U | S) [14].
Hence, to include the effect of the nonlinearity, we only need
to add the nonlinearity effect to the constellation points in our
calculation of h(U).

Therefore, the optimization problem for one super symbol
using importance sampling can be expressed as

P ∗
S = argmin

p

1

K

K∑
k=1

log2

(
M∑

m=1

pU|S̃ (uk | s̃m)pm

)

×

(∑M
m=1 pU|S̃ (uk | s̃m)pm

1
M

∑M
m=1 pU|S̃ (uk | s̃m)

)
s.t.

κ

M∑
k=1

pk
1

NT

∫ NT

0

∣∣∣∣∣V
(
αF (sk, 0, t)

)∣∣∣∣∣ dt < Plim (20)

where s̃m are the outputs of the sampler at the receiver in the
noiseless situation.

It is evident from (20) that the left-hand side of the
inequality in the constraint part is a linear combination of the
optimization argument, so it represents a convex subspace.

The implicit constraints on the optimization argument that
all elements should be between 0 and 1 and its elements
should sum up to 1 also represent a convex set. Therefore,
the intersection of all sets defined by constraints will result in
a convex feasible set for the problem.

To prove the problem’s convexity, we should also show that
the objective function is convex. For that, we need to compute
the Hessian of the objective function,

Hij =
∂2

∂pj∂pi

1

K

K∑
k=1

ln

(
M∑

m=1

pU|S (uk | sm)pm

)

×

(∑M
m=1 pU|S (uk | sm)pm

1
M

∑M
m=1 pU|S (uk | sm)

)

=
1

K

K∑
k=1

(
pU|S (uk | sj)

1
M

∑M
m=1 pU|S (uk | sm)

)

×

(
pU|S (uk | si)∑M

m=1 pU|S (uk | sm)pm

)
. (21)

As it is deductible from (21), the Hessian matrix is the
summation of K rank one positive semi-definite matrices,
which results in a positive semi-definite matrix, so we can
conclude that the objective function is convex (not necessarily
strictly convex).

We showed that the problem is convex. Therefore, we can
employ an Interior-Points method [15] to solve this optimiza-
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tion problem efficiently, and also, we can be sure that the
answer will be the global optimum.

IV. SIMULATION RESULTS

In this section, we show the simulation results of the system
with one super symbol, which we introduced earlier in (20).

For describing the power amplifier with the hard limiter
model, we need to specify two amplifier parameters’ values
ηmax, maximum efficiency of the amplifier, and xmax, maxi-
mum amplitude of the amplifier. For the pulse shape filter in
the simulation, we consider a truncated sinc function.

We can scale the amplifier’s power consumption by either
changing the amplifier’s gain or by using our proposed scheme
and introducing a probabilistic back-off. We combine these
two techniques in this way: First, we use a back-off, or
equivalently a gain, for the amplifier, and then we sweep the
Plim from one hundred percent of power consumption at that
point, to some percentage of that by using the problem stated
in (20). The curves generated by this change in Plim are shown
in Figure 2 by dashed lines.

In Figure 2, we also have the uniform QAM curve, the
red one, which is obtained by just changing the gain, and the
green curve, which shows the maximum mutual information
we can get by our combined gain control and PS method. As
can be seen, the green curve outperforms the red curve in all
consumed power levels in which the green curve is drawn. In
the point that the level of consumed power is equal to 2, there
is no room for improvement as the system saturates because of
xmax. Still, in lower power consumption levels, there is room
for a probabilistic back-off from a higher gain point, and this
probabilistic back-off outperforms a gain back-off.

Based on the results in Figure 2, we can propose this algo-
rithm for finding the best setting of gain and PS probabilities:

• Draw a vertical line to cross the green curve.
• Find the dashed (black) curve that goes through that

point and get the gain and probabilities for that curve
by following it to the red curve.

It is noteworthy that if both gain and PMF were the argu-
ments of our optimization, the resulting optimization problem
would not be convex; but, by using the proposed method,

we successfully found the global optimum point for this
optimization problem.

V. CONCLUSION

By probabilistic shaping and metrics based on distortion and
energy consumption of power amplifiers, we have proposed
a framework for optimizations of waveforms for energy-
efficient communication. Using the proposed technique, we
have optimized the probabilities and gain for a simple case,
and it was shown that the technique can outperform regular
uniform QAM systems in terms of mutual information at a
specific consumed energy. As a future work, we expect that by
extending the study to larger sizes, higher performance gains
are within reach.
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