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Abstract—With the increasing carrier frequencies and recon-
figurable intelligent surface (RIS) apertures in future sixth-
generation (6G) communication systems, the near-field region
expands, causing more pronounced wavefront curvature and
channel non-stationarity. By exploiting wavefront curvature-
enabled localization with passive RIS, we propose a virtual sub-
RIS-based channel model to approximate the true RIS channel.
Based on this mismatched model, we propose and evaluate an
iterative solution for localizing a user using narrowband pilots.
Our numerical results at 28 GHz demonstrate clearly improved
performance compared to the state-of-the-art reference method.

Index Terms—Reconfigurable Intelligent Surfaces (RISs),
mmWave Communication, Localization, Near-Field, 6G

I. INTRODUCTION

With the worldwide commercial use of 5G technologies,
researchers have shifted their focus to beyond fifth gener-
ation (B5G) and sixth-generation (6G) networks to meet
more stringent requirements for future applications, such as
extended reality [1]. Millimeter-wave (mmWave) and terahertz
(THz) communications support the demands for throughput,
latency, and localization accuracy but also suffer from severe
propagation attenuation [2], [3]. Under these circumstances,
reconfigurable intelligent surfaces (RISs) have been proposed
to modify the propagation channel, thereby enhancing commu-
nication quality, extending coverage, and enabling localization
functionality [4]–[6]. Moreover, with the increased carrier
frequencies, future wireless systems will likely operate in the
radiating near-field region, where the received signal on the
RISs is subject to wavefront curvature [7], [8].

Recent research has intensively explored RIS-aided near-field
localization, investigating various aspects of this technology,
see, e.g. [9]–[15], considering both hybrid and passive RIS.
Hybrid RISs have radio frequency (RF) chains to locally sense
the channel state at the RIS, based on which two compressed
sensing (CS) based estimation solutions using hybrid RIS are
proposed in [9] and [10]. However, extra RF chains and infor-
mation exchange increase system cost and overhead, leading to
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through Grant No 202107960017.

Fig. 1. Illustration of the considered SISO communication scenario involving a
UE and a BS, located at locations pBS and p, respectively. A large multi-panel
RIS is shown, and elements within each RIS panel are evenly and horizontally
deployed on the walls. The location of the m-th RIS element in the Cartesian
system is denoted as pRIS,m, and the red color marked element serves as the
reference point for computing the RIS steering vector.

scalability challenges. To tackle the localization problem with
passive RIS, [11] proposed a RIS profile optimization methods
that enhance the localization accuracy, based on the user’s
coarse location information. In [12], the RIS phase profile
was optimized and a near-field user localization method was
proposed. In contrast, [13] extracted location information by
exploring the covariance matrix of the RIS path’s channel state
information. However, all these methods fail to consider channel
non-stationarity and instead employ a constant amplitude
model for all RIS elements. To address this, [14] assumes
the perfect knowledge of channel gains and coarsely estimates
the user’s location by exploring the received signal strength
(RSS) in the region of interest, and then the iteration and
weighted least-squares methods are used to refine the estimation,
accounting for the channel non-stationarity. In [15], the whole
RIS was broken down into tiles so that each tile experiences
a predictable constant channel gain and then performs the
maximum likelihood and time-difference-of-arrival (TDoA)-
based localization solutions. These methods, however, depend
heavily on the alignment between theoretical assumptions and
practical channel conditions, with any mismatch leading to
errors.

In this paper, we propose a localization method for passive
RISs, accounting for both wavefront curvature and channel-



nonstationarity, without requiring a physical decomposition
of the RIS and knowledge of channel amplitudes. Our study
comprises the following key contributions: (i) We propose a
flexible mismatched sub-RISs model and use it to approximate
the true channel non-stationarity of the RIS link. (ii) We derive
an iterative estimator for localizing the user and estimating
the nonuniform channel amplitude, based on the flexible
mismatched model. (iii) To assess the performance of our
proposed estimators, we evaluate their root mean square
error (RMSE) and establish a position error bound (PEB)
using the proposed model. These evaluations demonstrate the
effectiveness of the proposed work, compared to the state of
the art.

Notations: Vectors and matrices are denoted by lowercase
and uppercase bold letters, respectively. Vector elements are
represented as [a]m. Sub-matrix of J from i-th to j-th rows
and k-th to l-th colums is denoted by [J][i:j,k:l]. Operators for
Hermitian, transpose, pseudo-inverse and conjugation are (·)H ,
(·)T , (·)†, and (·)∗, respectively. The L2 norm is ∥ · ∥ and the
argument of a complex number is arg(·). ℜ{β} extracts the
real components of complex input β. Moreover, the operator
Tr(X) denotes the trace of matrix X.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Geometry

We consider a 3D scenario where one base station (BS) acts
as a transmitter and one user equipment (UE) as a receiver,
while multiple phase-coherent RIS panels, acting as a large
RIS with M elements, reflect the signal from BS to UE (see
Fig. 1). BS and UE are equipped with an omnidirectional
antenna. The RIS elements have a square shape with a length
equal to a quarter of the carrier’s wavelength, λc. Within
every panel, element spacing is λc/2. The m-th element gain
in incoming and reflecting orientations are Gi,m and Gr,m,
respectively.1 In this Cartesian system, we present pBS =
[xBS, yBS, zBS]

⊤ ∈ R3×1 as a vector specifying BS’s location.
Likewise, the location of the m-th RIS element and the UE are
expressed as pRIS,m = [xRIS,m, yRIS,m, zRIS,m]⊤ ∈ R3×1 and
p = [xUE, yUE, zUE]

⊤ ∈ R3×1, respectively.

B. Signal and Channel Model

Assuming a narrowband transmission model, the BS trans-
mits constant amplitude pilot symbol st ∈ C to UE at instant
t ∈ {0, 1, . . . , 2T − 1} with the bandwidth W and transmit
power Pt = WEs. The corresponding received signal at UE
is given by

yt = (hLoS + hmp + hRIS,t)st + nt, (1)
where nt ∈ C is independent identically distributed (i.i.d)
complex Gaussian noise with zero mean and variance N0. The
channel models of the line-of-sight (LoS) path, multipath2, and

1Similar to [16], we assume RIS elements’ gains are constant in all directions.
2In this work, we consider only the first-order bounces [14], [15], [17].

the RIS path are described by

hLoS = α0e
jψe−j

2π
λc

(∥p−pBS∥), (2)

hmp = ejψ
L∑
l=1

αle
−j 2πdl

λc , (3)

hRIS,t = ejψa⊤(pBS)diag(β ⊙ ωt)a(p), (4)
where ψ indicates the global phase offset, αl ∈ R is the
amplitude of the l-th path (including LoS) and dl ∈ R is
the propagation distance [15]. The RIS phase profile vector
at instant t is ωt ∈ CM×1, and it can vary simultaneously
with the BS downlink transmission. The RIS steering vector
is described by a(q) ∈ CM×1, with m-th entry

[a(q)]m = e−j
2π
λc

(∥q−pRIS,m∥−∥q−pRIS, ref∥), (5)
where q ∈ {p,pBS} and pRIS, ref is the reference element’s
location. For the channel amplitude, we define the vector β ∈
RM×1
>0 to describe the link between BS to UE via the RIS. The

m-th entry of RIS’s amplitude vector is modeled as [16]

[β]m =

√
G(λc/4)

2

4π∥p− pRIS,m∥∥pBS − pRIS,m∥
, (6)

where G = Gi,mGr,m ∈ R.
To separate the RIS link with LoS path and other multipath

components, we can design the RIS phase profile so that it
results in a balanced sequence, e.g., by ωt = −ωt+1, so that
hRIS,t = −hRIS,t+1 for odd t and thus

∑2T
t=1 hRIS,t = 0 [15].

By substituting the channel model in adjacent time instants so
that 2hRIS,t = (hLoS+hmp+hRIS,t)−(hLoS+hmp+hRIS,t+1) and
scaling the signal, we can express the final signal y ∈ CT×1

of the RIS link as
y = ejψF⊤(β ⊙ a(p)) + n, (7)

where F = [f1, ..., fT ] ∈ CM×T and fτ =
diag(ω2τ−1)a(pBS) ∈ CM×1, for τ ∈ [1, 2, ..., T ]. The
added noise is n ∼ CN (0, ρI), where ρ = N0/(2Es).

C. Problem Description

Our goal is to recover the UE position p in the presence of
nuisance parameters β and ψ, from the received signal y. This
is challenging, as it generally involves M + 3 real unknowns
and 2T observations. Importantly, with 2T ≪ M + 3, the
problem is inherently unidentifiable. Next, we describe and
propose a mismatched model to reduce the unknown parameters
and estimate the user’s location.

III. MISMATCHED MODEL, ESTIMATOR, AND PEB

In this section, we first discuss the number of resolvable
parameters M + 3 in the estimation stage and propose
mismatched models of y to estimate parameters accordingly.
Then we derive the mismatched model’s theoretical PEB.

A. Mismatched Model Specification

The true model (7) contains M + 3 unknown parameters,
which is usually larger than the pilot number 2T in most
RIS-related research. Moreover, half of the pilots are used for
canceling the LoS and multipath components. Thus, (7) presents
a model with too many unknown parameters that cannot be



estimated from RIS’s reflections. However, β may not vary
significantly within each RIS panel, and we can break the whole
structure evenly into multiple (virtual) sub-RISs that each has
essentially a constant channel gain and decrease the number
of unknowns. Hence, we model the whole RIS structure as
comprising K virtual sub-RISs (M ≥ K ≥ 1), and the sub-RIS
dependent channel gain vector is b = [b1 . . . , bK ]⊤ ∈ RK×1

>0 ,
where bk is the unknown channel amplitude of the k-th virtual
sub-RIS, and the value ofK is not related to the number of phase-
coherent RIS panels. The mismatched model then becomes

y ≈ ejψA(p)b+ n, (8)
where

[A(p)][τ,k] = [F⊤]
[τ,

M(k−1)
K +1:Mk

K ]
ak(p) ∈ C (9)

ak(p) = [a(p)]
[
M(k−1)

K +1:Mk
K ]

∈ CM/K×1. (10)

in which ak(p) is the k-th sub-RIS’s steering vector, and M/K
is the element number of sub-RIS. Note that when K = 1, we
have A(p) = F⊤a(p) and b reverts to a scalar. Depending
on the values of K, M , and T , we observe the following: (i)
when K + 3 ≤ T , it is feasible to estimate the mismatched
model parameters; (ii) when K + 3 > T , the mismatched
model parameters become unfeasible to estimate; (iii) when
K → M , the mismatched model approaches the true model
and accurately describes the non-stationary RIS channel gain.

B. Proposed Mismatched Estimator

Assuming the condition K + 3 < T holds, we can derive
the associated loss function and maximum likelihood estimator
as

L(y|b,p, ψ) = ∥y − ejψA(p)b∥2, (11)

and
b̂, p̂, ψ̂ = arg min

b,p,ψ
L(y|b,p, ψ). (12)

To solve (12), we first identify the stationary conditions for
b(p) and ψ(p) by setting the derivatives of the loss function
with respect to these parameters to zero, yielding3

ψ(p) = −arg(yHA(p)b(p)), (13)

b(p) = (ℜ{A(p)HA(p)})−1ℜ{A(p)He−jψy}. (14)
We observe that these two parameters are mutually dependent.
To estimate the location p, a grid search is necessary, where
for each grid location pg , (13)–(14) are used to estimate ψ(pg)
and b(pg). Since these expressions are coupled, we break the
dependency by initializing the estimate of ψini with 0. The
entire estimation method is outlined in Algorithm 1.

C. Mismatched Model-Based Lower Bound

Generally, the analytical lower bound of parameters of
interest can be obtained by computing the corresponding Fisher
information matrix (FIM) JK(η) ∈ R(K+3)×(K+3) based on
the mismatched model in (8). Hence, we start by calculating

3For K = 1, a further simplification is possible since the scalar b and ejψ

can be merged into a single complex unknown variable.

Algorithm 1 Proposed mismatched estimator
1: Initialize variables:
2: P: Area contains possible values for parameter pg .
3: K: Number of virtual sub-RIS.
4: γ: Iteration stopping threshold.
5: I: Max iteration count to prevent infinite loops.
6: for each pg in P do
7: Compute A(pg)
8: Initialise ψini(pg) = 0
9: Set iteration index i = 1

10: while i ≤ I do
11: Update b̂i(pg) via (14).
12: δi(pg)=∥y − ejψ̂iA(pg)b̂i∥2
13: Compute ψ̂i+1(pg) via (13).
14: if i > 2 then
15: if |δi(pg)− δi−1(pg)| ≤ γ then
16: Break
17: end if
18: end if
19: i = i+ 1
20: end while
21: δ(pg) = δi(pg)
22: end for
23: p̂ = argmin

pg

δ(pg) and compute b̂i(p̂) and ψ̂i(p̂).

JK(η) of the noise-free signal µ = y − n regarding the
parameter vector η = [p⊤, b⊤, ψ]⊤ ∈ R(K+3) as follows:

JK(η) =
2

ρ
ℜ
{(

∂µ

∂η

)H
∂µ

∂η

}
, (15)

where the derivatives are provided in the Appendix. As our
estimation interest is the UE location, we first compute the
inverse of the (15) and extract the submatrix regarding the
location parameters, then we compute the trace and the square
root of [JK(η)−1][1:3,1:3] to get PEBK(F,η) [18]. This yields

PEBK(F,η) =
√

Tr([JK(η)−1][1:3,1:3]). (16)

IV. NUMERICAL RESULTS

In this section, we present simulation-based numerical results
to validate the model and assess the performance of the
proposed method while also benchmarking against the prior-art
method in [15].

A. Simulation Setup

The considered scenario has two 1-meter-long RIS pan-
els equipped along two walls; each panel has 188 evenly
deployed elements with half-wavelength spacing. More pre-
cisely, two RISs cover the linear region from the coordinate
[2, 0, 2]m to coordinate [3, 0, 2]m and coordinate [0, 2, 2]m
to coordinate [0, 3, 2]m, respectively. The reference element’s
coordinate used for computing the steering vector in (5) is
pRIS, ref = [2, 0, 2]m. For UE and BS locations, we assume
pUE = [4, 1, 1.8]m and pBS = [5, 5, 2]m. The gain factor G
is set to 0 dB. The noise power spectral density N0 is set to
−174 dBm/Hz and bandwidthW equals 120 kHz. Such narrow
bandwidth can reflect for example an individual subcarrier in
OFDM-based systems. The random phase offset ψ ∈ [0, π].



To evaluate the performance, we assess RMSEs with 1000
Monte Carlo simulations, and consider grid search over a
2m by 2m square region using xUE and yUE as the center
coordinate. For simplicity, UE height zUE is assumed known.
We consider randomized codebook F while collect the averaged
RMSEs and PEBs over ten independent instances of F. While
the received signal power among T observations is unequal,
we vary the transmit power Pt and pilot number T in the
evaluations to comprehensively assess the performance of the
proposed method.

B. Reference Algorithm
For comparison purposes, we also simulate and evaluate the

’Direct Positioning (DP)’ algorithm, described in [15], under
the same model mismatch scenario. This reference method
divides the entire RIS into K equal parts and assumes known
channel gains for the RIS link at the receiver. The channel
amplitudes for the elements of the k-th sub-RIS are set equal
to bDP

k , which is calculated from (6) by substituting pRIS,m
with the coordinates of the center element of the k-th sub-
RIS. The estimated location is the point causing the minimum
difference between the received signal with the expected signal.
The corresponding estimator and PEB can be detailed as:

p̂DP = argmin
p,ψ

T∑
τ=1

|[y]τ |2

ρ
sin2(γτ ), (17a)

γτ = arg
(
[y]τ

)
− arg

(
[A(p)][τ,1:K]b

DP)− ψ, (17b)

PEBDP
K =

√√√√Tr
(ρ
2

[
ℜ

{(
∂µDP

∂p

)H
∂µDP

∂p

}−1])
. (17c)

The intermediate parameter γτ measures the argument between
the received signal [y]τ with the expectation. The vector bDP =
[bDP

1 , ..., bDP
K ] ∈ RK×1

>0 contains sub-RIS’s channel amplitudes
under the assumption of K sub-RISs. The noiseless signal is
given by µDP = ejψA(p)bDP. Notably, the reference algorithm
is subject to more optimistic PEB with perfect knowledge of
the channel amplitude bDP and phase offset ψ.

C. Results and Discussion
1) Channel Non-Stationarity Estimation: We begin by exam-

ining the estimated channel non-stationarity. Fig. 2 illustrates the
estimated channel amplitudes for different numbers of sub-RISs
(K). We set T to 64, Pt to 25 dBm, and consider a random
realization or instance of F. The blue dashed line presents
the ground truth of channel amplitude (β). We can observe
a significant decrease in the ground-truth channel amplitudes
for the first 188 RIS elements, which range between −71 dB
and −74 dB. The channel amplitudes for the second RIS panel
elements have, in turn, more insignificant variations and remain
close to −77 dB. Then, we show the estimated b̂ for sub-RISs
with four values of K. When K = 1, the estimated value
approximates the average channel amplitude across all elements.
AsK increases, the estimated amplitudes get closer to the ground
truth, but performance is limited by the column number (T ) of F.
This is evident in the purple line (K = 47) with larger variations
compared to the ground truth, as K is already close to T .
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Fig. 2. True channel amplitudes and the estimated channel amplitudes for K
sub-RISs (K ∈ {1, 2, 4, 47}) with T = 64 and Pt = 25 dBm.

2) Performance Evaluation with Transmission Power Pt: To
evaluate the impact of transmission power on performance, we
next fix the number of pilots T = 64 and vary Pt from 0 dBm
to 35 dBm. Fig. 3 presents the RMSE and PEB curves for
the two methods, depicted with solid and dashed lines. In the
proposed method context, the PEB quantifies the achievable
localization accuracy of any unbiased estimator, while RMSE
encompasses both noise-induced estimation errors and bias
arising from the model mismatch. With higher values of Pt, the
bias becomes the dominant factor affecting RMSE. Employing
a mismatched model with a higher value of K helps to reduce
this bias, thereby narrowing the gap between the RMSE and
the PEB. Biased estimators are generally known to sometimes
result in a smaller RMSE compared to unbiased estimators
[19]. Consequently, the RMSE curves for the proposed method
occasionally fall slightly below the PEB. For the DP reference
method, the two RMSE curves are represented by green and
black solid lines. The RMSE for K = 4 at Pt = 35dBm shows
better accuracy and closer alignment with the corresponding
PEB than that of K = 1. Since the PEB of DP is the optimistic
lower bound with known channel amplitude and phase, the
PEB curves of the reference algorithm are lower than those of
the proposed method. We can observe that at higher Pt range,
both methods with K = 4 show comparable performance,
while the proposed method offers clearly increased resilience
in the important range of lower Pt values, compared to the
DP method, demonstrating its ability to maintain centimeter
scale or better accuracy in noisy environments.

3) Performance Evaluation with Pilot Number T : Given
that the proposed method requires K + 3 < T to estimate
all unknowns, and that Fig. 2 already indicated inaccurate
estimation when K + 3 is close to T , the number of pilots is
one important parameter controlling the proposed method’s per-
formance. To assess this, we provide Monte Carlo simulations
with Pt = 25dBm, while varying the number of T from 10 to
100 – with the results shown in Fig. 4. At such higher Pt value,
both methods with K = 1 show sensitivity to changes in T ,
where increasing the pilot number will significantly enhance
the performance. However, with the assumption of K = 4,
two methods work accurately across all T values. The results
show that the proposed method – despite operating under
more realistic and challenging assumptions – performs as well
as the reference work even with T = 10. Furthermore, the
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Fig. 3. RMSE and PEB curves of the proposed method and the reference
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20 40 60 80 100
10−4

10−3

10−2

10−1

100

Number of pilots T

R
M

SE
(m

)

RMSE, K = 1 PEB, K = 1

RMSE, K = 4 PEB, K = 4

RMSE (DP), K = 1 PEB (DP), K = 1

RMSE (DP), K = 4 PEB (DP), K = 4

Fig. 4. RMSE and PEB curves of the proposed method and the reference
method DP for fixed Pt of 25 dBm while varying T .

mismatched model-based estimator, which reduces the number
of unknowns from M + 3 to K + 3, eases the requirement of
T , thus proving the localization capability by using limited
pilots. The selection of an optimal K under the constraint of T
deserves further exploration, forming a topic for future work.

V. CONCLUSION

In this paper, we proposed and described a novel UE
localization method in the near-field region of RISs, addressing
the estimation challenge of channel non-stationarity over RIS
elements. Our approach utilizes a flexible mismatched model
to approximate the true signal model and develops an iterative
localization method that accounts for the RIS channel non-
stationarity. This allows for locating the user without requiring
physical decomposition of the RIS and the knowledge of
element-wise channel amplitudes. The Monte Carlo simula-
tions using a narrowband signal at 28GHz demonstrate the
estimator’s accuracy by comparing RMSE and PEB against
the prior-art reference algorithm. While the current evaluations
assumed the knowledge of the UE’s height and also involved
only two RIS panels, our approach can be extended to 3D
localization and more advanced RIS deployment scenarios.

APPENDIX

Corresponding to unknown parameters p, b and ψ, the partial
derivatives of (15) can be expressed as follows:

∂µ

∂p
= ejψ[F⊤]

[1:T,
M(k−1)

K +1:Mk
K ]

[∂a(p)]
[
M(k−1)+K

K +1:Mk
K ]

∂p
b,

(18)
in which [∂a(p)]m/∂xUE = −j2π[a(p)]mη(m,xUE)/λc,
∂µ/∂[b]k = ejψA(p)v, and ∂µ/∂ψ = jejψA(p)b,
where η(m,xUE) = (xUE − xRIS,m)/∥p− pRIS,m∥ −
(xUE − xRIS, ref)/∥p− pRIS, ref∥ and the k-th element of
v ∈ RK×1 is 1 while the rest are zeros.
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