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Abstract

Life is full of decision-making problems where only partial information is available
to the decision-maker and where the outcomes are uncertain. Whether choosing a
restaurant for dinner, selecting a movie on a streaming service, or conveying concepts
during a lecture, the decision-maker observes only the results of their choices without
knowing what would have happened if it had acted differently. Because of this, the
decision-maker needs to carefully balance between using its current knowledge, to
make good decisions, and exploring the unknown to gather new information that
might lead to even better decisions in the future.

In this thesis, we explore several topics in reinforcement learning - a computational
approach to sequential decision-making under uncertainty. The first part investigates
how efficient communication emerges between reinforcement learning agents in
signaling games. The support for efficient communication, in an information-theoretic
sense, is an important characteristic of human languages. Our agents create artificial
languages that are as efficient as human languages as well as similar to human ones.
We also combine reinforcement learning with iterated learning and find that this
combination accounts better for human color naming systems than what any of the
models do individually.

The second part focuses on sample-efficient algorithms for multi-armed bandits.
We propose Thompson sampling-based methods for regret minimization in multi-
armed bandits with clustered arms. Additionally, we address finding optimal policies
with fixed confidence in bandits with linear constraints. For this problem, we
characterize a lower bound and illustrate how it depends on a non-convex projection
onto the normal cone spanned by the constraints. We leverage these insights to
derive asymptotically optimal algorithms for pure exploration in bandits with linear
constraints. Finally, we apply techniques from multi-armed bandits to develop active
learning strategies for ordering items based on noisy preference feedback.

Keywords: Reinforcement Learning, Multi-armed Bandits, Contextual Ban-
dits, Efficient Communication, Emergent Communication, Iterated Learning, Pure
Exploration, Color Naming, Numeral Systems, Preference Learning.
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Chapter 1

Introduction

Life is full of decision-making problems where only partial information is available
to the decision-maker and where the outcomes are uncertain. Whether choosing a
restaurant for dinner, selecting a movie on a streaming service, or conveying concepts
during a lecture, the decision-maker observes only the results of their choices without
knowing what would have happened if it had acted differently. Because of this, the
decision-maker needs to carefully balance between using its current knowledge, to
make good decisions, and exploring the unknown to gather new information that
might lead to even better decisions in the future. This trade-off is known as the
exploration-exploitation trade-off and is a central challenge faced by both human and
artificial decision-makers in any sequential decision-making problem with uncertain
outcomes.

A computational approach to decision-making under uncertainty is reinforcement
learning (Sutton and Barto 1998) which has grown in popularity in recent years. In
this framework, an artificial agent interacts with its environment (and potentially
other agents) and receives feedback in the form of rewards. The goal of the agent is
to learn a policy, i.e., a way of acting given a certain state of the environment, that
maximizes the agent’s rewards over time. Reinforcement learning has been successfully
applied in a wide range of domains such as recommender systems (Li, Chu, et al.
2010), navigation (Åkerblom et al. 2023), healthcare (Yu et al. 2021), games (Mnih
et al. 2015; Silver et al. 2016), and robotics (Kober et al. 2013). In addition, due to
its emphasis on learning from interactions with the environment, something that is a
fundamental aspect of both animal and human intelligence (Thorndike 1898; Rovee
and Rovee 1969; Piaget 2013), reinforcement learning has also been used as a model
in neuroscience and psychology (Niv 2009; O’Doherty et al. 2015; Gershman and
Daw 2017).

A decision-making problem that will be central to this thesis, and which is often
studied in cognitive science, is how to communicate certain concepts to others. Why
are concepts mapped to words the way they are? What processes lead to patterns
found in human languages? These are all central questions in cognitive science
and a prominent proposal suggests that human languages are shaped to support
efficient communication in an information-theoretic sense (Kemp, Xu, et al. 2018;
Gibson, Futrell, Piantadosi, et al. 2019). This means that human languages are
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simultaneously optimized to be simple, to ease learnability and reduce cognitive load,
and to be informative, to support accurate communication.

The main contribution of this thesis is connecting concepts from reinforcement
learning with results regarding efficient communication in human languages. We
will study how reinforcement learning agents that communicate with each other in
various signaling games (Lewis 1969) develop joint artificial languages. In the basic
version of these games, a speaker observes a concept and tries to communicate this
concept to a listener. Upon hearing the message, the listener guesses which concept
the speaker refers to from a set of available concepts. A reward is provided to both
the speaker and listener depending on how well they communicated. The agents start
as tabula rasa and develop an artificial language by maximizing their joint reward
function. We find that reinforcement learning leads to artificial languages with similar
levels of efficiency as their human counterparts and these artificial languages tend
to be human-like. Our results open up the question of whether similar mechanisms
could be involved in shaping human languages toward efficiency and suggest that
reinforcement learning may be a useful building block for studying language evolution
in silico.

The aforementioned signaling game falls into a class of reinforcement learning
problems known as multi-armed bandit problems (Lattimore and Szepesvári 2020). In
a bandit problem, a reinforcement learner sequentially interacts with the environment
by executing actions, also known as arms, and then obtains, potentially noisy, rewards
associated with the arms that were played. An extension of this model is the contextual
bandit where contextual cues are revealed to the learner to help guide it towards
arms with high rewards. In contrast to the general reinforcement learning problem,
temporal dependencies between actions and contexts are not modeled in a bandit
problem. This means that the current context and potential rewards are assumed
to be independent of previously observed actions and contexts. As a result, bandit
models are simpler and more tractable models for studying decision-making under
uncertainty compared to general reinforcement learning.

The signaling game can be viewed as a multi-agent contextual bandit. From the
speaker’s perspective, the observed concept provides contextual information and the
set of possible messages can be viewed as the set of arms in a bandit problem. The
message sent serves as a contextual cue for the listener who then has to decide what
concept, or arm, to play from the set of available concepts. This view was recently
leveraged to study how humans use language (Sumers et al. 2023) and we will make
use of it throughout this thesis.

In addition to studying the emergence of efficient communication via reinforcement
learning, a second contribution of this thesis is sample-efficient algorithms designed
for various multi-armed bandit tasks. In practice, there are often structures and
various constraints imposed on the set of arms available to the learner. These
structures might be exploited for faster learning while constraints can make the
learning problem both easier and harder. One example of such a structure studied
in this thesis is when a clustering of the arms is available to the learner. We also
study the effect of constraints on the arms and characterize how this changes the
hardness of the problem.
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The papers forming this thesis are listed below. They have been categorized
depending on whether they study the emergence of efficient communication or if
they study efficient learning in the multi-armed bandit framework.

Efficient communication

• Paper 1 (Kågebäck et al. 2020) proposes a multi-agent reinforcement learning
approach to the partitioning of semantic spaces. This is explored in the domain
of colors where the reinforcement learning agents develop color naming systems
that achieve a near-optimal trade-off between communicative efficiency and
complexity. The efficiency of the artificial naming systems is on the same level
of efficiency as color naming systems found in human languages.

• Paper 2 (Carlsson, Dubhashi, and Johansson 2021a) explores how efficient
numeral systems emerge in a communicative dyad of reinforcement learning
agents. The agents develop efficient exact and approximate numeral systems
that are similar to those found in human languages. These results give a
learning-theoretic account of how these systems might have emerged to be
efficient.

• Paper 3 (Carlsson and Dubhashi 2022) studies what impact coupling reinforce-
ment learning with pragmatic reasoning has on the efficiency of the resulting
languages. The paper also introduces a pragmatic reasoning model that better
accounts for the structure of the domain and the current context the agents
communicate in. The model is evaluated in the domain of colors and the results
suggest that the emerging vocabulary becomes less complex when the agent’s
reasoning capabilities grow stronger.

• Paper 4 (Carlsson, Dubhashi, and Regier 2024) revisits the color experiments
from Paper 1 and couples reinforcement learning with iterated learning, a
model for how language is shaped over generations of agents. The resulting
color naming systems better match human systems than the systems produced
in Paper 1 and the systems produced by exclusively applying iterated learning.
The paper also introduces a simple random model that generates highly efficient
naming systems that share very little similarity with human systems. This
highlights the importance of studying plausible evolutionary models that result
in efficient and human-like languages. Note that this paper is an extended
version of our conference contribution Carlsson, Dubhashi, and Regier (2023).
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Efficient learning in the multi-armed bandit framework

• Paper 5 (Carlsson, Dubhashi, and Johansson 2021b) introduces Thompson
sampling algorithms for multi-armed bandits with clustered arms. Clusterings
appear naturally in many decision-making tasks and we show, both theoretically
and empirically, that our proposed algorithms outperform baselines.

• Paper 6 (Carlsson, Basu, et al. 2024) introduces algorithms for finding the opti-
mal policy in multi-armed bandits where arms are subject to linear constraints.
We prove that our proposed algorithms have optimal sample complexity in an
asymptotic sense. The algorithms also outperform baselines in our empirical
evaluation.

• Paper 7 (Bergström et al. 2024) introduces an active sampling strategy, based
on multi-armed bandits, for ordering items under noisy comparison feedback.
Our proposed sampling strategy outperforms the baseline in both synthetic
and real-world experiments.

During the time as a PhD student, the following publications have been made
by the author but are not part of the thesis: Jergéus et al. (2022), Kinyanjui et al.
(2023), Thomas, Silvi, et al. (2024), and Balcıoğlu et al. (2024).

The rest of the thesis is structured as follows. In Chapter 2 we introduce
relevant concepts from reinforcement learning and multi-armed bandits. In Chapter 3
we discuss relevant concepts and results from cognitive science, regarding human
languages, and how reinforcement learning fits into this picture. This chapter is
mostly relevant for Paper 1 to Paper 4. Chapter 4 summarizes the papers that this
thesis is based on, and in Chapter 5 we discuss our conclusions and potential future
directions. The papers are appended in the second part of this thesis and have been
reformatted for uniformity, but are otherwise unchanged.



Chapter 2

Reinforcement learning and
multi-armed bandits

This chapter gives a brief introduction to reinforcement learning and bandit problems.
For a more comprehensive introduction to reinforcement learning see Sutton and
Barto (1998) and for some recent textbooks on multi-armed bandits see Slivkins
(2019) and Lattimore and Szepesvári (2020).

2.1 What is reinforcement learning?
The goal of reinforcement learning is to design computational agents that seek to
maximize a notion of reward in their corresponding environments (Sutton and Barto
1998). In contrast to supervised learning, where the agent is provided a dataset of
input-output pairs, the reinforcement learning agent gathers its data by interacting
with the environment. This gives rise to the famous exploration-exploitation trade-off,
where the agent must balance between exploiting its current knowledge about the
environment, to achieve high reward, and exploring new actions that might lead to
even higher rewards in the future.

Algorithm 1 The Markov decision making process.
Require: A set of states X , a set of actions A, a transition kernel P , a reward

function R, initial state x1, a policy π.
for t=1,... do

Take action at P A by sampling from the policy at „ πpxtq.
The environment samples a new state xt`1 „ P pxt, atq and reveals a reward

rt „ Rpxt, xt`1, atq.
end for

In reinforcement learning, a learner sequentially interacts with the environment:
It observes the current state of the environment, takes an action, and observes a
reward and the new state. The core challenge is to design a policy π that maximizes
the cumulative reward the agent achieves in the environment. The interaction with
the environment is often modeled as a Markov decision process (MDP) (Bellman

7
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1957). This model assumes the Markov property which says that the state-transition
only depends on the current state and the action taken in this state. The MDP
model is not central to this thesis but we illustrate it in Algorithm 1 so that the
reader can more easily see how the bandit models, introduced in later sections, are
simplifications of this more general framing of reinforcement learning.

2.2 Multi-armed bandits
In a multi-armed bandit, a reinforcement learner iteratively interacts with the
environment by playing an action, also known as arm, at at every time step t and
observes a reward, rt, drawn from a probability distribution, with unknown mean,
associated with the chosen arm. In contrast to the general reinforcement learning
problem, there is either no state or the state is constant in the multi-armed bandit and
as a result, the learner doesn’t need to model any temporal dependencies or relations
between state and reward. Hence, the learner only needs to model the relationship
between arms and rewards. The problems one considers in the bandit model can
often be categorized into either regret minimization or best-arm identification, also
known as pure exploration.

Algorithm 2 The multi-armed bandit.
Require: A set of arms A, a reward distribution for each arm R, and a policy π.

for t=1,... do
Play arm according to learner’s policy at „ πt.
Observe reward rt „ Rpatq drawn from a probability distribution associated

with at.
Update learner’s policy to πt`1.

end for

Regret minimization: In regret minimization for multi-armed bandits, the goal
of the learner is to maximize its cumulative reward over a time horizon T (Lai and
Robbins 1985). Maximizing the cumulative reward is equivalent to minimizing the
cumulative regret, defined as

RegretT “

T
ÿ

t“1
r˚

´ rt,

where r˚ denotes the reward drawn from the arm with the highest expected reward,
a˚. In this regime, the goal is often to design algorithms with good guarantees on
their expected cumulative regret, ErRegretT s. We study regret minimization for
bandits with clustered arms in Paper 5.

Fixed-confidence best-arm identification: In this regime, the goal of the
learner is to interact with the bandit until they are sufficiently confident in which
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arm is the one with the largest mean (Chernoff 1959). More formally, the learner
interacts with the bandit and stops at some random time, τ , and recommends some
arm, âτ , which should be equal to the best arm, a˚, with probability at least 1 ´ δ,
for some predefined δ P p0, 1q, i.e.,

P pâ ‰ aq ď δ.

In this setting, one would like to design learning algorithms that minimize the
expected sample complexity, Erτ s, while still ensuring that the fixed confidence
level δ is reached. The property that the learner stops and outputs the correct arm
with probability at least 1 ´ δ is referred to as δ-PAC. Fixed confidence best-arm
identification is relevant for Paper 6.

Fixed-budget best-arm identification: Here the learner is given a fixed budget
T and needs to play arms such that the probability of recommending the wrong arm,
once the budget is depleted, is minimized (Audibert and Bubeck 2010). This problem
is, at least conceptually, the dual of the fixed confidence setting even though some
open problems for the fixed budget are closed in the fixed confidence version (Qin
2022). The reason there is a gap between the settings is because many theoretical
results in the fixed-confidence regime are in an asymptotic sense, e.g., when δ Ñ 0 and
thus not easy to translate to the fixed-budget setting since this setting is inherently
non-asymptotic. In Paper 7 we study active learning for ordering and our algorithm
builds on results from fixed-budget best-arm identification.

Remark: Even though regret minimization and best-arm identification are related,
algorithms for regret minimization are not suitable for best-arm identification and vice
versa (Bubeck et al. 2009; Russo 2016). The main reason is that regret minimization
algorithms focus on quickly identifying good arms, to minimize regret, while best-arm
identification algorithms often need to allocate more plays to sub-optimal arms to
gather enough statistical evidence.

2.3 The contextual bandit

Algorithm 3 The contextual bandit.
Require: A set of arms A, a set of contexts X , a reward function R, and a policy

π .
for t=1,... do

Observe context xt P X .
Play arm according to learner’s policy at „ πtpxtq.
Observe reward rt „ Rpxt, atq.
Update learner’s policy to πt`1.

end for

In the contextual bandit, the learner observes, at every time step, a context xt

before deciding which arm to play. The reward for an arm a at time t is assumed to
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be an unknown and stochastic function of both the arm and the context, rpx, aq. The
key distinction between the contextual bandit and the general reinforcement learning
problem is that the context xt is assumed to be independent of previous contexts
and actions. Thus, the learner does not need to model any temporal dependences, in
contrast to general reinforcement learning. The contextual bandit model is mostly
relevant for the appended papers related to the emergence of artificial languages
(Paper 1 to Paper 4). In these papers, we consider various signaling games, properly
introduced in Section 3.2.1, that can be viewed as instances of the contextual bandit.
We also study a contextual bandit in Paper 5.

2.4 Lower bounds in multi-armed bandits
In multi-armed bandit work, an important task is to characterize what is theoretically
possible under some given assumptions. This is done by deriving information-theoretic
lower bounds, on either the cumulative regret or the sample complexity, that holds
true for any learning algorithm from some family of algorithms.

Let M be the set of all possible bandit environments. Let µ P M be a particular
bandit environment and let µa denote the mean reward of arm a. In the case when
the reward distributions are parameterized only by their mean, we let M “ RK . We
assume the best arm to be unique and define the set of alternative instances w.r.t. µ
as

Λpµq :“
"

λ P M : arg max
a

λa ‰ arg max
a

µa

*

.

The set Λpµq contains all possible bandit environments where the best arm differs
from the best arm in the environment parameterized by µ1. If the true environment is
µ but we, given the data we observe so far, think it is some λ P Λpµq, we will make the
wrong decision. Thus, bandit problems can be viewed as sequential hypothesis testing
where to goal is to sample arms in a way that ensures, with high probability, that our
estimate µ̂t of the true environment µ satisfies µ̂t R Λpµq. Exactly how the sampling
should be done is dictated by whether we are performing regret minimization or
best-arm identification.

In the fixed confidence best-arm identification setting, mention in Section 2.2,
Kaufmann et al. (2016) derived the following generic lower bound on the expected
stopping time, Erτ s, of any δ-PAC learner and for any M

Erτ s ě T pµq log 1
2.4δ

(2.4.1)

where T pµq is the solution to

T ´1
pµq “ sup

w:
ř

a wa“1
inf

λPΛpµq

ÿ

a

waKLpµa||λaq. (2.4.2)

1This definition of the alternative set only works for the multi-armed bandit and not the
contextual version. However, it is possible to extend this to the contextual case (Magureanu et al.
2014; Kato and Ariu 2024)
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Here, w is the fraction of plays the learner allocates to the different arms and λ
is some instance from Λpµq. Equation (2.4.2) can be interpreted as a zero-sum
game where the learner plays an exploration strategy, w, and an adversary plays an
instance λ that will be hard to reject given the strategy of the learner. Note that
this bound doesn’t make any assumptions on the structure of the model class and
is thus a generic bound. However, the exact value of T pµq depends on the specific
model class considered since the model class dictates the structure of Λpµq and thus
controls the set over which the infimum is taken over. This lower bound result serves
as a starting point for our work in Paper 6.

Moreover, in Chapter 5 we briefly discuss how these types of results might open up
interesting research directions when it comes to language evolution and learnability
of language. In short, one could let µ be the language a learner is trying to learn
and let Λpµq be the set of languages that differs distinctly from µ. One could then
ask whether the language µ is fundamentally easy to learn, measured by whether
the lower bound on the sample complexity is relatively small.

2.5 Relevant algorithms
This section introduces some of the bandit algorithms relevant for this thesis.

2.5.1 REINFORCE
The REINFORCE algorithm (Williams 1992) is an algorithm used in reinforcement
learning when the policy is parameterized by some θ. In the case of contextual
bandits, the update rule of REINFORCE is

θt`1 “ θt ` ηprt ´ r̄tq∇ log πθtpat|xtq,

where η denotes the learning rate and r̄t the average reward achieved so far. In
practice, the update rule above is often performed over a batch of interactions with
the environment to make training more stable. The subtraction by r̄t is not necessary
but often introduced to reduce variance and make the algorithm more stable (Sutton
and Barto 1998).

2.5.2 Thompson sampling
Thompson sampling is probably the oldest bandit algorithm for regret minimization
and was introduced in 1933 by William R. Thompson (Thompson 1933). It is
a Bayesian approach to bandits that is very simple and intuitive. Given a set of
observations so far, Ht, Thompson sampling keeps a posterior distribution over
possible bandit models, ppµ|Htq, acts by sampling one model from the posterior and
then plays the arm that is optimal in the sampled model. In Algorithm 4 we show
Thompson sampling for a generic multi-armed bandit task.

Thompson sampling is not just limited to the multi-armed bandit but can be
applied to contextual bandits (Agrawal and Goyal 2013; Riquelme et al. 2018)
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Algorithm 4 Thompson sampling for multi-armed bandit
Require: A set of arms A and a prior distribution p0 over bandit models µ.

Initialize history H1 “ tu.
for t “ 1, ... do

Sample model from posterior µ̂ „ ppµ|Htq.
Play arm at “ arg maxa µ̂a.
Observe reward rt and update history Ht`1 “ Ht

Ť

tpat, rtqu.
end for

and more general reinforcement learning tasks (Strens 2000). It has also been
shown to work well in practice (Chapelle and Li 2011). For cases where precise
Bayesian inference is not possible, e.g., when the model is a neural network, there are
approximate versions of Thompson sampling (Gal and Ghahramani 2016; Riquelme
et al. 2018).

2.5.3 Optimism in the face of uncertainty
Optimism in the face of uncertainty (OFUL) is a general approach decision-making
under uncertainty that is often applied to bandits (Auer et al. 2002; Abbasi-Yadkori
et al. 2011). The core idea is to compute confidence intervals for the expected reward
of each arm and then always play the arm with the highest upper confidence bound
on the reward. Hence, the learner is always optimistic about the environment and
plays the arm with the highest plausible expected reward. In Algorithm 5, we show
the UCB1 algorithm (Auer et al. 2002) which is used as a baseline in Paper 5. In the
algorithm µ̂a,t denotes the average reward of arm a and Ntpaq the number of times
the arm has been played.

Algorithm 5 UCB1
Require: A set of arms A of size K.

Play each arm once.
for t “ K, ... do

for each a P A do
Itpaq :“ µ̂a,t `

b

2 log t
Ntpaq

.
end for
Play arm at “ arg maxa Itpaq.
Observe reward rt and update µ̂a,t and Ntpaq.

end for

2.5.4 Best-arm identification algorithms
In the case of fixed-confidence best-arm identification, a standard design pattern
in the literature is to solve the lower bound in Equation 2.4.2, using one’s current
estimate of the environment, and then track the exploration policy suggested by
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the lower bound. The idea is that our estimate of the environment will eventually
be close to the true environment, which will result in our exploration policy being
close to the optimal one suggested by the lower bound. There are mainly two ways
of approaching the optimization problem in Equation 2.4.2. In the Track-and-Stop
algorithm (Garivier and Kaufmann 2016) the optimization problem is solved at every
time step to get a new exploration policy to track. Degenne et al. (2019) proposed
an alternative approach and instead view Equation 2.4.2 as a zero-sum game and
apply game-strategies to solve the lower bound. This results, in a strategy that never
solves the optimization problem to convergence and is thus computationally much
cheaper. Both these approaches are used in Paper 6.





Chapter 3

Reinforcement learning and
efficient communication

In this chapter, we introduce relevant results and concepts from cognitive science
and language evolution and discuss how reinforcement learning is connected to these
things.

3.1 Why do languages look the way they do?
Why do languages look the way they do? This intriguing question lies at the very
heart of linguistics and cognitive science (Zipf 1949; Chomsky 1986; Pinker and
Bloom 1990). Surprisingly, there is a large variation between human languages across
the globe (Evans and Levinson 2009). For example, some languages completely lack
recursive numeral systems (Pica et al. 2004); color naming systems vary both in size
and structure between different languages (Berlin and Kay 1969); spatial systems
vary between languages both w.r.t. frame of reference (Majid et al. 2004) and in
lexicalized concepts (Levinson et al. 2003). Still, there are recurring patterns that
are found in many languages (Dryer 1998; Von Fintel and Matthewson 2008).

It is suggested that at least some of these observations can be explained by the
interaction between the cognitive constraints of the agents and the properties of
the environment in which they communicate (Rosch 1978; Gärdenfors 2014; Gibson,
Futrell, Piantadosi, et al. 2019). Especially, it is suggested that languages are shaped
by the need to efficiently communicate information (Kemp, Xu, et al. 2018; Gibson,
Futrell, Piantadosi, et al. 2019). That is, languages are under pressure to be both
informative, to convey the intended meaning as accurately as possible, and simple,
to minimize cognitive load.

3.1.1 Efficient semantic categories
In this chapter, we are mostly concerned with the efficiency of semantic categories,
i.e., how well a set of words can be used to convey a set of meanings, or concepts. It
has been shown that category systems found in human languages support efficient
communication across a wide range of domains, e.g., color naming (Regier, Kay,

15
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et al. 2007; Zaslavsky et al. 2018), kinship terms (Kemp and Regier 2012), spatial
relations (Khetarpal et al. 2013; Chen et al. 2023), modals (Imel and Steinert-
Threlkeld 2022), season naming (Kemp, Gaby, et al. 2019), and numeral systems (Xu,
Liu, et al. 2020)1.

Speaker
𝑆(𝑤|𝑐)

Listener
𝐿(𝑐!|𝑤)

Need
 Distribution

Communication 
Channel

Accuracy(𝑐, 𝑐′)

Communication Loss(𝑐, 𝑐′)

𝑐 𝑐′𝑝 𝐶
𝑤

Figure 3.1: The efficiency of semantic categories, or naming systems, is usually
studied in a communication setup grounded in Shannon’s information theory. A
concept is drawn from a need distribution over possible concepts and given to a
speaker. The speaker acts as an encoder and encodes the concept into a word.
The word is communicated over a, possibly noisy, channel to a listener. The
listener then decodes the message into a concept. The informativeness of the
speaker is measured in how well the listener’s reconstruction matches the original
concept in expectation over the need distribution.

These works all ground their notion of efficiency in the classical communication
setup of Claude Shannon (Shannon 1948), see Figure 3.1. In this setup, a speaker
tries to communicate a certain concept c, from a set of concepts C, to a listener by
uttering a certain word w drawn from a set of words W according to the speaker’s
distribution Spw|cq. Upon hearing the word, the listener decodes the message into
a concept using the distribution Lpc|wq, and the communication accuracy, or loss,
is measured based on how well the listener’s reconstruction matches the original
concept the speaker had in mind. These concepts are assumed to be drawn from
a need distribution, ppcq that controls how often the speaker has to refer to various
concepts. The need distribution is often skewed and puts more emphasis on certain
concepts, e.g., in the numeral domain the quantities 1 and 2 are more frequently
communicated than the quantity 78 (Xu, Liu, et al. 2020). A language is said to
be efficient, under a certain need distribution, if it finds a near-optimal trade-off
between language complexity and expected accuracy. That is, the language is near
the Pareto frontier between informativeness and complexity, see Figure 3.2.

There are various ways of measuring the complexity and informativeness, or
communication loss, of a naming system. One way of measuring the loss of information

1Note that some of these works consider the minimization of communication loss, rather than
maximization of accuracy/informativeness, given a certain level of complexity. However, these
problems are essentially duals of each other.



Chapter 3. Reinforcement learning and efficient communication 17

Complexity

In
fo

rm
at

iv
en

es
s

Pareto Frontier

Efficient

Impossible

Inefficient

Figure 3.2: Illustration of the trade-off between complexity and accuracy studied
in, e.g., Kemp, Xu, et al. (2018) and Zaslavsky et al. (2018). The Pareto frontier
corresponds to the languages that achieves highest possible informativeness given
a fixed level of complexity. Thus, it is not possible to improve the informativeness
of these languages without increasing their complexity as well. As a result, the
blue triangles correspond to impossible languages that cannot exist. The green
boxes corresponds to highly inefficient languages since the have a high complexity,
and induces a high cognitive load on the user, while they do not support accurate
communication. It is suggested that human languages find a near-optimal balance
between these two forces and populate the region close to the Pareto frontier, like
the red circles.

during communication is the expected surprisal (Gibson, Futrell, Jara-Ettinger, et al.
2017)

ES :“ ´
ÿ

c,w

ppcqSpw|cqLpc|wq.

Another approach measures the expected KL-divergence between the speakers uncer-
tainty about the concept, Spcq, and the listener distribution (Kemp, Xu, et al. 2018;
Xu, Liu, et al. 2020)

EKL :“
ÿ

c,w

ppcqSpw|cqKLpSpcq||Lpc|wqq.

Recall that the KL-divergence is defined as KLpSpcq||Lpc|wqq “
ř

c Spcq log Spcq

Lpc|wq
.

The complexity of a language can for example be measured by number of words used
by the speaker (Regier, Kay, et al. 2007) or by the number of rules needed to define
the naming system of the speaker (Kemp and Regier 2012; Xu, Liu, et al. 2020).

Another approach for measuring complexity and informativeness is given by
Zaslavsky et al. (2018) who recently gave the efficiency hypothesis a firm theoretical
foundation by grounding it in the independent Information-Bottleneck (IB) princi-
ple (Tishby et al. 1999). In short, the IB framework suggests that the complexity of
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Figure 3.3: (left) The Munsell chart used to collect the WCS data. (right) Color
chips from the Munsell chart represented in 3 dimensional CIELAB space.

a language should be measured by the mutual information between the speaker’s
mental representation of a concept and words, ISpM ; W q. The accuracy is measured
as the mutual information between actual concepts and words ISpC; W q and this
can be shown to measure the similarity between the speaker’s and listener’s mental
representations. The framework of Zaslavsky et al. (2018) is further summarized in
the Appendix of Paper 4.

In Paper 1 and Paper 2, we use number of words as the complexity measure,
and the relevant measures of informativeness are ES and EKL. The IB framework of
Zaslavsky et al. (2018) is relevant for Paper 3 and Paper 4.

Efficient color naming systems

In Paper 1, Paper 3, and Paper 4 we study how efficient communication emerges in
the domain of colors and compare to how human languages partition the color space.
These papers rely on the data from the World Color Survey (WCS) (Cook et al.
2005) which contains color naming data from 110 non-industrial languages, with
approximately 25 speakers of each language participating in the survey. The speakers
were asked to name each of the 330 color chips presented in the Munsell chart in
Figure 3.3. The resulting data shows a large variation in color naming between
languages, see Figure 3.4, but patterns between languages are also observed (Berlin
and Kay 1969). As mentioned earlier, recent work suggests that the languages in
the WCS support efficient communication (Regier, Kay, et al. 2007; Zaslavsky et al.
2018).

Efficient numeral systems

Numeral systems vary between languages, both in terms of structure and number
of terms, (Hurford 1987; Hammarström 2010; Comrie 2013). Some languages, like
Swedish or English, have recursive numeral systems and thus an infinite set of numeral
terms generated from a finite set of rules. However, there are languages without
any recursive numeral systems, where precise description of a numeral can only be
done in an restricted range, referred to as exact restricted numeral systems, or where
numeral terms only have an approximate meaning, referred to as approximate numeral
systems. In an exact restricted system, each term refers to a precise interval of the
numberline, with one such example being t’one,’ ’two’, ’three’, ’larger than three’ u,
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BerikWobe Culina

Figure 3.4: Wobe (Ivory Coast), Culina (South America), and Berik (Indonesia)
are languages in the WCS data with different numbers of color terms. The top
row illustrate the mode map of each language relative to the Munsell chart. That
is, each color chip in the Munsell chart is assigned the word most frequently used
by speakers of that language and colorized by its average color in the CIELAB
space. Thus, each colorized region corresponds to a color term and indicates
the region of the color space covered by that particular term. Since speakers of
the same languages are inconsistent with each other, the color terms can also be
viewed as soft clusters or distributions. This is illustrated in the bottom row where
we instead highlight level sets of the color terms. Here, unfaded area indicates
the level sets between 0.75 ´ 1.0 while the faded area indicates the sets between
0.3 ´ 0.75.

while the terms in an approximate system have a fuzzy meaning, e.g., ’a few’ or
’many’. Xu, Liu, et al. (2020) recently argued that numeral systems support efficient
communication and these results are relevant for Paper 2.

3.2 Simulating language evolution
If we accept the hypothesis that language is, at least partially, shaped by efficiency,
a natural question is:

How does language become efficient?

In Paper 1, Paper 2, Paper 3 and Paper 4 we explore this question by simulating
language evolution using reinforcement learning.

The idea of simulating language evolution with artificial agents was pioneered
by Steels (1995) which sparked interest in studying how language can emerge in
artificial systems (e.g. , Shennan (2001), Kirby (2002b), Wagner et al. (2003), Smith
and Hurford (2003), Steels and Belpaeme (2005), Griffiths and Kalish (2007), Skyrms
(2010), Jäger et al. (2011), and Dale and Lupyan (2012)). Recent developments in deep
learning have rekindled this interest in the emergence of language in artificial systems
(e.g. , Foerster et al. (2016), Lazaridou, Peysakhovich, et al. (2017), and Havrylov
and Titov (2017)) since it is now feasible to conduct more complex experiments,
compared to what was previously possible. These recent works often study the
emergence of language in a communicative dyad consisting of deep reinforcement
learning agents. In these works, agents often start as tabula rasa and develop a
grounded language solely from maximizing a joint reward, see Section 3.2.1 below
for a detailed description.
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3.2.1 Reinforcement learning and the signaling game

There is a growing body of work that explore the emergence of communication in
collaborative multi-agent reinforcement learning (Jorge et al. 2016; Foerster et al.
2016; Lazaridou, Peysakhovich, et al. 2017; Havrylov and Titov 2017; Mordatch and
Abbeel 2018; Chaabouni et al. 2021; Downey et al. 2022; Lian et al. 2023; Thomas,
Santos-Rodriguez, et al. 2022; Guo, Hao, et al. 2024). A central concept in this line
of work, as well as in this thesis, is the Lewis signaling game (Lewis 1969), which is
shown in Algorithm 6 and resembles the communicative setup in Figure 3.1.

Algorithm 6 Lewis signaling game.
for t=1,..., T do

Speaker observes ct „ ppcq and samples a signal wt from the policy Spw|ctq.
Listener observes wt and samples a state c1

t from the policy Lpc1|wtq.
Both speaker and listener observes the reward rpct, c1

tq and update their policies
using some reinforcement learning algorithm.
end for

This game proceeds as follows: The speaker observes a concept c drawn from a
set of possible concepts C according to the probability distribution p. After observing
c, the speaker samples a word w from a set of words W according to its distribution
Spw|cq. The word is observed by a listener who must infer the concept c based on
the word w. This is done by sampling from the distribution Lpc1|wq. A joint reward,
rpc, c1q, is given to both agents based on how well the listener’s reconstruction of the
concept, c1, matches the original concept c. The core idea is that the agents will
start as tabula rasa, the words in W carry no meaning and the agents will converge
to a joint language by maximizing the reward. Hence, they develop a language that
is grounded in the current environment and the reward function.

Note that the speaker and listener are solving contextual bandit problems. The
speaker is solving a contextual bandit task where concept c is the context and the
action is uttering a word w. The listener is solving a contextual bandit where the
context is the word w and the action is choosing a concept c1. In Paper 1, Paper 3 and
Paper 4 we apply the REINFORCE algorithm (Williams 1992) to these contextual
bandit problems while we in Paper 2 apply a randomized approach that mimics
Thompson sampling (Gal and Ghahramani 2016).

There is also recent work exploring emergent communication using the evolution-
ary model replicator dynamics (Imel, Futrell, et al. 2023; Imel 2023). This model
is tightly connected to reinforcement learning, see Börgers and Sarin (1997). In
fact, a particular version of the bandit algorithm follow-the-regularized-leader (Cesa-
Bianchi and Lugosi 2006) is equivalent to a finite-time version of the replicator
dynamics (Mertikopoulos and Sandholm 2016; Hennes et al. 2020).

A reader interested in knowing more of about the current state of emergent
communication in reinforcement learning might find the following two surveys useful,
Lazaridou and Baroni (2020) and Boldt and Mortensen (2024).
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3.2.2 Why reinforcement learning?

The fact that the reinforcement agents develop their language from scratch makes
the setup described in the earlier section a powerful tool for simulating language
evolution and exploring the question of what mechanisms lead to the emergence of
efficient communication.

We can further motivate the use of reinforcement learning for simulating lan-
guage evolution by viewing it through the lens of Marr’s famous three levels of
analysis (Marr 1982), a decomposition that offers both functional and mechanistic
views on information processing systems. Marr proposed that any such system
can be understood by studying it on three different levels, the computational, the
algorithmic, and the implementation level. At the computational level, the goal of
the system, or agent, is defined, i.e., what type of computational problem is the
agent trying to solve. At the algorithmic level, we ask what algorithm the agent is
deploying to solve the computational problem. At the implementation, or hardware,
level, the focus is on how the algorithm is realised, or implemented.

Further, as argued by Niv and Langdon (2016), reinforcement learning spans all
three of Marr’s levels. At the computational level, the problems a reinforcement
learning agent usually tries to solve consist of maximizing and/or predicting future
rewards. To connect this to the functional view on language offered by Kemp,
Xu, et al. (2018) and Gibson, Futrell, Piantadosi, et al. (2019), we note that in a
collaborative setting where agents have to coordinate, being informative is often be a
prerequisite for reward maximization. The more informative a message is, the better
the agents can coordinate, which in the end yields higher rewards for the agents. In
this way, we can view informativeness as a sub-goal the agents need to achieve to solve
the problem of maximizing rewards. This is in line with the goal-driven paradigm
for language learning in neural models explored by e.g., Lazaridou, Peysakhovich,
et al. (2017), Havrylov and Titov (2017), and Mordatch and Abbeel (2018).

At Marr’s algorithmic level, reinforcement learning offers several algorithmic
solutions to the problem of maximizing reward, e.g., policy optimization, temporal-
difference learning, Thompson sampling, and optimistic principles. Some of these
algorithmic solutions have been used in neuroscience and psychology to model
learning in both single-agent tasks (Niv 2009; Ludvig et al. 2011; Tomov et al. 2021)
as well as social tasks (Jones et al. 2014). It is also worth mentioning that there
are intriguing connections between classical reinforcement learning techniques for
handling the exploration-exploitation trade-off, like Thompson sampling, and how
humans seem to approach this trade-off (Gershman 2018; Schulz and Gershman 2019).
Going back to language evolution and the emergence of efficient communication, we
argue that reinforcement learning introduces a natural bias towards simplicity at
the algorithmic level. This is because multiple agents need to converge to a joint
language by interacting with each other, which results in a bias towards solutions
that are easily accessible for their learning algorithms, and simple languages should
be easier to learn than complex ones (Kirby, Cornish, et al. 2008; Kirby, Tamariz,
et al. 2015; Carr et al. 2020). One could potentially challenge the various notions of
complexity in the efficient communication literature and simply ask whether or not
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learnability itself serves as a sufficient measure of simplicity (Steinert-Threlkeld and
Szymanik 2019; Steinert-Threlkeld and Szymanik 2020).

Furthermore, there are connections between certain neurons in the brain and
reward predictions (Schultz et al. 1997; Niv 2009; Dabney et al. 2020) which suggest
that reinforcement learning might also be present at the hardware level in the brain.
However, we want to highlight that these results from neuroscience, regarding the
hardware level, are not relevant to this thesis. The papers summarized later in this
chapter all consider agents with simple neural networks, updated using gradient
descent, as “hardware”, and it is unclear whether this mimics the architecture of the
brain in any sensible way.

Hence, in the context of this thesis, reinforcement learning is primarily relevant
at Marr’s computational and algorithmic levels.

3.2.3 Iterated learning

A very influential model for cultural evolution is iterated learning (Kirby 2001; Smith,
Kirby, et al. 2003). Iterated learning models how language evolves over generations
of agents, see Figure 3.5, and has similarities to the children’s game telephone where
a message is whispered from person to person. In iterated learning, a generation of
agents will learn their language from data generated from the previous generation
and then generate data that the next generation will learn from2. This model has
been implemented in the lab, with real humans, to show how various language
structures emerge (e.g., Kirby, Cornish, et al. (2008), Smith and Wonnacott (2010),
Xu, Dowman, et al. (2013), and Verhoef et al. (2014)), as well as with artificial agents
(e.g., Thompson et al. (2016), Carcassi et al. (2021), and Kirby and Tamariz (2022)).

Dataset 𝐷! Dataset 𝐷"

Generation 1 Generation 2 Generation 3

…

Figure 3.5: In iterated learning, one generation of agents learn their language
from a finite dataset generated from the previous generation. This generation
then produces a new dataset that is passed to the next generation.

2Note that the iterated learning process can be applied to any scenario where one agent learns
its behavior from other agents, not just language. However, we are only interested in the application
to language evolution in this thesis.
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𝑆!"#
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…
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…

Figure 3.6: Illustration of the NIL algorithm (Ren et al. 2020). The algorithm
alternates between communication within a generation, and learning across gener-
ations.

The transmission between generations forms a Markov chain, and it has been
shown that iterated learning with Bayesian agents, that use the language with
the highest posterior probability, converges to a stationary distribution that is an
exaggeration of the agents’ prior distribution (Griffiths and Kalish 2007). This
suggests that cultural evolution, over generations, amplifies learning biases and
results in languages that are easy to learn for the agents. This is not hard to imagine,
even outside the Bayesian framework, since learning language from a finite set of
samples creates a bottleneck (Zuidema 2002; Kirby 2002a; Kirby, Tamariz, et al. 2015)
that restricts what type of languages can emerge and induces a bias towards languages
that are simple and easy to learn from a small set of samples. This simplicity bias
has been observed in iterated learning experiments with humans (Kirby, Cornish,
et al. 2008) and a possible explanation is that learners apply Occam’s razor and,
given several possible languages that fits the data, choose the simplest one. To
connect to Marr’s levels of analysis, iterated learning tends to amplify the biases in
the algorithmic level of the agent, i.e., the biases in the specific learning algorithm
used by the agent.

The fact that iterated learning has a clear bias towards simplicity suggests that
it plays a part in the emergence of efficient communication. Interestingly, Carstensen
et al. (2015) showed, in a series of human simulations, that iterated learning not
only leads to simpler systems but also gravitates towards more informative ones.
One way these findings can be interpreted is that iterated learning provides a bias
towards both simplicity and informativeness and thus provides an account for the
emergence of efficient communication. This is also in line with previous findings
that language learners are biased towards efficient languages (Fedzechkina et al.
2012). However, as noted by Carr et al. (2020), these results are in contrast with
other works which suggest that (iterated) learners have a bias towards simple and
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uninformative languages and that an informativeness bias only arises in the presence
of a communicative task (Kirby, Tamariz, et al. 2015; Motamedi et al. 2019; Kirby
and Tamariz 2022). See also Rafferty et al. (2011) for evidence that learnability does
not fully account for the presence of linguistic universals.

The argument that learning needs to be coupled with communicative tasks for
efficient communication to arise suggests that one could combine iterated learning
with goal-driven learning approaches, such as reinforcement learning, to simulate
language evolution. Such a model has been proposed by Kirby, Tamariz, et al.
(2015) and recently explored in the context of deep learning by Ren et al. (2020)
who introduced the neural iterated learning (NIL) algorithm, see Figure 3.6. Ren
et al. (2020) showed that this algorithm leads to the emergence of compositional
language in deep learning models (see also Guo, Ren, et al. (2020)). The NIL model
alternates between cultural evolution over generations of artificial agents, using
iterated learning, and intra-generational communication using reinforcement learning.
This type of model is interesting since it models language evolution on two different
time scales, the slow cultural evolution over generations and the fast, goal-driven,
learning within a generation, as well as having very clear biases at every stage of the
model. In Paper 4, we use NIL to argue that iterated learning and communication
together account for efficient and human-like color naming systems, see the summary
in Section 4.4.



Chapter 4

Summary of included papers

This chapter provides brief summaries of the appended papers.

4.1 Paper 1: A reinforcement-learning approach
to efficient communication

In Paper 1 we present a multi-agent computational approach to partitioning semantic
spaces using reinforcement learning. Two agents communicate about colors in a noisy
environment using a finite vocabulary, see Figure 4.1. Our two-agent paradigm closely
mirrors the information-theoretic frameworks of Regier, Kemp, et al. (2015) and
Gibson, Futrell, Jara-Ettinger, et al. (2017) and our main contribution is the insight
that an, independently motivated, computational learning mechanism accounts for
the emergence of efficient color naming systems.

Figure 4.1: The communication setup considered in Kågebäck et al. (2020).

25
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In our model, a speaker observes a color, represented in CIELAB space, and
has to communicate this color to a listener. A joint reward, that measures the
similarity between the color the speaker intended to communicate and the listener’s
reconstruction, is given to both agents. The agents are implemented as neural
networks with one hidden layer and are updated using REINFORCE over a sequence
of rounds of the signaling game. We consider two different versions of this game: one
variant where the communication channel between agents is continuous, and thus
differentiable, and where the presence of channel noise makes the agents gravitate
towards discrete communication, as well as a variant where the communication
channel is discrete and non-differentiable. In the continuous setting, we only compute
the listener’s loss and backpropagate this information through the communication
channel to the speaker, while in the discrete setting, we update both the speaker
and listener separately.

Figure 4.2: Trade-off between communication loss and vocabulary size. The
Pareto frontier is estimated using correlation clustering in CIELAB space. We
observe that our agents (the line corresponding to reinforcement learning) are able
to develop a color naming system, from just maximizing reward, that matches the
efficiency of human color naming systems (the line corresponding to WCS). The
Pareto frontier is estimated using correlation clustering. Note, the WCS language
data points is a reproduction from Regier, Kemp, et al. (2015). The error bars
around the red line corresponds to a 95% confidence interval.

In Figure 4.2 we show the efficiency, measured as expected communication loss
vs vocabulary size, of our artificial agents, human systems in the WCS data, and
random agents. The communication loss is measured as the KL-divergence between
the speaker and listener, as by Regier, Kemp, et al. (2015). We observe that
reinforcement learning can replicate the efficiency of human color naming systems
solely by maximizing reward. We also observe that both the artificial agents and
human systems are close to the Pareto frontier and much more efficient compared to
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Figure 4.3: The top grid is the Munsell chart used to collect the WCS data. The
left column corresponds to human languages with different number of color words
while the right column corresponds to artificial naming systems produced by our
reinforcement learning agents. Each colored line in a grid corresponds to a color
word in the language and the region encapsulated by a word corresponds to the
colors for which this word is used.

a random baseline.
Some of the color maps produced by reinforcement learning are presented in

Figure 4.3 along with human color maps derived from the WCS data. We observe
that reinforcement learning produces color maps that have a fair amount of similarity
to human ones, without ever being exposed to human systems. This result is further
examined in the paper using quantitative approaches.

Beyond the aforementioned results showing that reinforcement learning leads
to efficient color naming systems with some similarities to human systems, we also
explore how the amount of noise in the environment affects the resulting color
language. Our results indicate that there is a strong negative correlation between
environmental noise and the resulting complexity of the produced color naming
system. This can potentially be explained by the fact that there is an implicit
pressure towards simple solutions in our reinforcement learning model. The higher
the noise is, the harder it is for the agents to learn a joint language, and they are
thus more likely to converge to simple solutions where very few color words are used.
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4.2. Paper 2: Learning approximate and exact numeral systems via reinforcement

learning
4.2 Paper 2: Learning approximate and exact nu-

meral systems via reinforcement learning
Xu, Liu, et al. (2020) recently suggested that numeral systems found in human
languages are optimized for efficient communication. In Paper 2 we study how efficient
approximate and exact numeral systems emerge in a signaling game played by two
reinforcement learning agents. Our main contribution is showing that reinforcement
learning leads to efficient numeral systems that are similar to those found in human
language. A motivation for using reinforcement learning in the context of numeral
systems is the work of O’Shaughnessy et al. (2021) which highlights the influence
that social and economic factors have on the emergent numeral system.

3   4   5 6   73   4   5 6   7

“A few”

Figure 4.4: The communication model considered here and also by Xu, Liu, et al.
(2020). The sender wants to convey the numeral concept 4 and utters “a few”.
The listener is unsure of which numeral the sender is referring to and produces a
probability distribution over possible numerals.

In contrast to Kågebäck et al. (2020), we instead consider a bandit approach
with an implicit Thompson sampling scheme (Gal and Ghahramani 2016). Each
agent keeps a neural network that models the expected reward for each number-word
pair pn, wq. At each round of the game, the agents sample a smaller network from
the larger one using dropout (Srivastava et al. 2014). This smaller network is later
used during the next round of the signaling game. Gal and Ghahramani (2016)
showed that this scheme can be viewed as approximate Bayesian inference and we
can thus think of the larger networks as belief distributions that we sample from
using dropout. Figure 4.5 offers a schematic view of our signaling game with this
approach.

In this work, we consider three need distributions inferred from human data and
three different reward functions

rlinearpn, n̂q “ 1 ´
|n ´ n̂|

|N |
,

rinversepn, n̂q “ p1 ` |n ´ n̂|q
´1,

rexppn, n̂q “ e´|n´n̂|.
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Figure 4.5: At each round of the game, the agents sample smaller networks, fS and
fL, and using dropout, i.e. some neurons in the larger networks are ignored with a
certain probability. This can be viewed as sampling from a belief distribution (Gal
and Ghahramani 2016). After this , The speaker is given a number n, drawn form
a need distribution n, and conveys the word with the highest expected reward
according to fs. The listener proceeds in similar fashion, given w it produces the
guess, n̂, that has the highest expected reward according to fL. A shared reward
is given to both agent based on how close n̂ is to n, Th networks are updated by
minimizing the MSE between predicted reward and observed reward.

We do not suggest that humans explicitly optimize any of these reward functions, the
reward functions should merely be thought of as a way to model different amounts
of pressure toward informativeness. That is, the quicker the reward decays in terms
of |n ´ n1|, the more precise must the listener’s reconstruction be to achieve high
reward. This results in a higher bias towards informativeness.

After training the reinforcement learning agents, we estimated whether their
produced numeral system was exact or approximate by estimating the speaker’s
distribution over 1000 rounds of the signaling game. If the speaker, for each n,
assigned more than 0.90 probability mass to a single word w, we interpreted that as
being an exact numeral system, otherwise, we took it to be approximate. Figure 4.6
shows the efficiency of these agents under one of the need distributions considered.
Here, both the convex hulls and efficiency were computed as in Xu, Liu, et al. (2020).
Further, Xu, Liu, et al. (2020) modeled the human approximate systems as Gaussians
while our agents are not restricted to this assumption. This explains why they are
below the Pareto frontier for 2-term approximate systems. We observe that the
reinforcement learning agents have numeral systems close to the Pareto frontier and
populate the same part of the region as the human systems studied by Xu, Liu,
et al. (2020). We further observed that these systems are similar to their human
counterparts, see Figure 4.7.

An important question that is left open in our work is how these approximate
and exact systems evolve into (efficient) recursive numeral systems, like the ones in
English or Swedish. Answering this question would probably require a combination
of neuro-symbolic methods and reinforcement learning.
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(b) Reward: Inverse

Figure 4.6: Term usage vs communication cost. This plot shows the result when
numbers are drawn according to the need distribution derived by Xu, Liu, et al.
(2020). Note that our agents are not restricted to model the words as Gaussian
distributions and can create other probability distributions. This explains why
the line goes below the convex hull, for 2 terms, which was computed assuming
Gaussian distributions for tractability reasons. Our results for human systems
matches the ones originally reported by Xu, Liu, et al. (2020).
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Figure 4.7: Comparison between the optimal numeral systems w.r.t. communica-
tion cost, human systems and the artificial systems produced by our agents. Each
color represents a numeral word and the corresponding interval on the number
line that the word represents.

4.3 Paper 3: Pragmatic reasoning in structured
signaling games

In Paper 3 we extend our two-agent framework to include agents able to do pragmatic
reasoning (Grice 1975). Here, both the speaker and listener observe a set of meanings,
also known as a context, and the speaker chooses one of these meanings as the target
to communicate to the listener. The language of the agents does not need to be
precise in scenarios where the contextual information helps the listener to decode the
utterance from the speaker. We introduce the notion of a structured signaling game,
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where there is a similarity measure between meanings, and explore how efficient
communication emerges between pragmatic agents in this game in the domain of
colors. We also introduce a version of the Rational Speech Act (RSA) (Frank and
Goodman 2012), tailored for our structured signaling game, that we call structured-
RSA (sRSA). In RSA the speaker and listener reason about each others behavior
using the following recursion

L0pm|wq9Lpm, wq

Stpw|m, Cq9eαUtpm,w,Cq

Ltpm|w, Cq9Stpw|m, Cqppm|Cq

where Utpw, m, Cq is the expected utility, of conveying message w given the meaning
m in the context C, and ppm|Cq is the prior probability of m given C. Here,
Lpm, wq P r0, 1s is a meaning function, or semantic representation, that states to
what extent the meaning m can be described by the utterance w. We can think if
this function as the lexicon of the agents. In our sRSA, the utility function is defined

Meaning Function: Culina (Peru)

𝑅𝑆𝐴(∞, 5) 𝑠𝑅𝑆𝐴(∞, 5)

a)

c) d)

b)
Similarity Matrix

Speaker Listener

Figure 4.8: An example of a structured signaling game in the color domain. a)
Shows the meaning function of the agents derived from the language Culina found
in the WCS. b) The similarity matrix between the colors. c) The limit point of
RSA as t Ñ 8 d) The limit point of sRSA, as t Ñ 8. Since RSA minimizes only
the surprisal of the listener and does not account for the similarity structure we
observe that the lighter blue color and green color are mapped to the same word.
Unlike RSA, the sRSA takes the similarity matrix into account and converges to
a solution where the first 3 colors can be uniquely determined, while the last 3,
all variants of blue, are mapped to the same word.

as the similarity-sensitive surprisal (Leinster 2021) of the listener, L,

Utpw, m, Cq “ ´ log
ÿ

m1

Zmm1Lt´1pm1
|w, Cq

where Zmm1 is a similarity measure between the target meaning and some other
meaning m1 in the context. This measure captures the desirable property that a
listener shouldn’t be as surprised if a speaker uses the same word for two similar
meanings compared to if the speaker used the same word for two very different
meanings. Recall that the standard RSA uses the classical surprisal Utpw, m, Cq “
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log Lt´1pm|w, Cq which doesn’t explicitly account for the structure in the context.
Figure 4.8 shows how RSA and sRSA produces different behavior in the case of
colors.
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Figure 4.9: The complexity and accuracy of the sRSA agents increase with
recursion depth, while the complexity and accuracy of the corresponding meaning
functions decrease. Hence, as the reasoning depth increases, the ambiguity of the
learned meaning function increases. Depth indicates the level of the final listener
in the recursion, and the error bars correspond to the width of the 95% confidence
interval.

In the paper, we show that pragmatic agents with semantic representations
derived from the WCS data attain efficiency close to the information-theoretic limit
after only 1 or 2 levels of recursion. We also show that reinforcement learning agents
equipped with sRSA develop highly efficient representations. Especially, our results
indicate that as the reasoning power of the agents increases i.e., the number of
recursions in sRSA increases, the emergent semantic representation becomes more
ambiguous, see Figure 4.9. Hence, our pragmatic agents seem to obey principles of
least effort (Zipf 1949). If the agents can perform deep and contextual reasoning
there is no need to develop a very precise lexicon. On the other hand, if the agents
cannot reason about how the context influences the meaning of an utterance, the
resulting lexicon has the be very precise to support efficient communication. These
results suggest that there might be an additional trade-off, than the one between
informativeness and complexity, between different notions of complexity. Namely,
a trade-off between semantic complexity (the complexity of the meaning function)
and reasoning complexity (recursion depth) which might be interesting to explore in
future work.
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4.4 Paper 4: Cultural evolution via iterated learn-
ing and communication explains efficient color
naming systems

In Paper 4 we consider efficiency using the Information Bottleneck (IB) princi-
ple (Tishby et al. 1999; Zaslavsky et al. 2018), and a model of cultural evolution
that combines iterated learning and communication (Kirby, Tamariz, et al. 2015).
We show that this model converges to color naming systems that are efficient in the
IB sense and similar to human systems. We show that some other proposals, such
as iterated learning alone, communication alone (like the model in Paper 1), or the
greater learnability of convex categories, do not yield the same outcome as clearly.
We also highlight the importance of an evolutionary process that leads to human-like
and efficient systems, since there exists a large set of color naming systems that are
highly efficient in the IB sense but not similar to any human systems, see Figure 4.10.

(a)

WCS RM (similar) RM (dissimilar)

(b)

Figure 4.10: a) Efficiency of color naming, following Zaslavsky et al., 2018. The
color naming systems of the WCS are shown in blue, replicating the findings of
Zaslavsky et al., 2018. We introduce a simple Gaussian random model, shown in
orange, that generates highly efficient color naming systems. It can be seen that
the RM systems are often closer to the IB curve than the WCS systems are. The
inset shows the 9 color systems in b), with the dissimilar random systems shown
as + . b) The left column contains color naming systems from 3 languages in the
WCS. Colored regions indicate category extensions, and the color code used for
each category is the mean of that category in CIELAB color space. The named
color categories are distributions, and for each category we highlight the level
sets between 0.75 ´ 1.0 (unfaded area) and 0.3 ´ 0.75 (faded area). The middle
and right columns contain randomly-generated systems of complexity comparable
to that of the WCS system in the same row. The middle column shows random
systems that are similar to the WCS system in the same row while the right
column shows random systems that are dissimilar to any WCS system.

Our evolutionary model is based on the NIL algorithm (Ren et al. 2020) which
alternates between a communicative phase, where agents within a generation interact
with each other, and a learning phase, where a new generation learns from the
previous generation. Here the learning phase is done by training, using supervised
learning, the new generation on data generated from the previous generation. The
communication is the same signaling game as Kågebäck et al. (2020) and the agents
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efficient color naming systems
are updated using reinforcement learning. For more details about the algorithm and
various hyperparameters, see the full paper.

In Figure 4.11 we show the efficiency of the color naming systems that emerge
during learning and communication (IL+C), as well as the efficiency of the systems
that emerge under learning only (L) and communication1 only (C). We observe that
IL+C produces efficient systems that all end up in the same region as the WCS, even
though the agents could in principle produce more complex systems. We also observe
that just learning is skewed towards less complex systems than observed in human
languages, which is in line with the claims of Carr et al. (2020) that iterated learning
induces a bias towards simplicity. On the other end, we see that just communication
results in naming systems more complex than what is observed in human systems. To
conclude, iterated learning with intra generation communication provides a balance
between these forces that corresponds well with what is observed in human color
naming systems.

Figure 4.11: Efficiency of the (top) IL+C, (bottom left) IL, and (bottom right)
C evolved color naming systems (orange dots), in each case compared with the
natural systems of the WCS (blue dots). The black triangle indicates the end
state of one run, shown in the inset color map. The histograms above each figure
indicate the proportion of systems at the corresponding complexity level.

1Note that this is exactly the model in Paper 1, evaluated in the IB framework.
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However, as highlighted in Figure 4.10, efficiency does not equal human-like
systems. In the paper, we both qualitatively and quantitatively show that IL+C
leads to both human-like and efficient systems. For example, Figure 4.12 shows an
experiment where we initialized the first generation with a color naming language,
generated by our random model, that was efficient but dissimilar to any human
systems. We observe that IL+C transforms already efficient systems to become
more similar to human systems. In the paper, we further explore what types of

Before NIL After NIL WCS

Figure 4.12: IL+C transforms efficient color naming systems to become more
similar to the WCS. In each row, the left column shows a randomly generated
efficient system that was used to initialize the first generation, the middle column
shows the result of running NIL from that initialization state, and the right column
shows a WCS system.

systems are produced by the model and connect our results to ideas regarding
learnability (Steinert-Threlkeld and Szymanik 2020) and convexity of semantic
categories (Gärdenfors 2000).
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4.5 Paper 5: Thompson sampling in bandits with
clustered arms

In Paper 5, we study a version of the multi-armed bandit problems where the learner
has been given a pre-defined clustering of the arms. This could either be a disjoint
clustering or a hierarchical clustering of the arms. One motivating example for this
model is recommender systems where a user may have strong preferences for certain
categories. Our main contribution is proposing a multi-level Thompson sampling
algorithm (TSC) for the stochastic multi-armed bandit with clustered arms (MABC),
see Algorithm 7, and for a contextual version of the problem, where the expected
reward of each arm is linear in the context vector.

Algorithm 7 TSC
Require: A, K

Set S1 “ F1 “ 1 for all a and C.
for t “ 1..., T do

For each cluster C sample θC „ BetapStpCq, FtpCqq and pick Ct “ arg maxCPK θC

For each a P Ct sample θa „ BetapStpaq, Ftpaqq.
Play arm at “ arg maxaPCt

θa and collect reward rt.
Update St`1patq “ Stpatq ` rt , Ft`1patq “ Ftpatq ` p1 ´ rtq.
Update St`1pCtq “ StpCtq ` rt and Ft`1pCtq “ FtpCtq ` p1 ´ rtq.

end for

For the MABC, we provide a regret bound for our algorithm under the assumption
that the clusters are well-separated in terms of reward. We show an instance-
dependent regret bound, that scales with the gap between sub-optimal clusters and
the cluster containing the optimal arm, as well as the gaps between arms in the
optimal cluster, informally stated below

ErRegretT s ď

˜

ÿ

C‰C˚

∆C

KLpµC ||µ
C˚q

`
ÿ

aPC˚

∆a

KLpµa||µ˚q

¸

log T ` oplog T q.

Here, µC is the largest achievable expected reward in cluster C, C˚ denotes the
cluster containing the optimal arm, µ

C˚ the smallest expected reward for any arm in
the optimal cluster, and µ˚ the optimal reward. ∆a is the regret suffered by playing
arm a and ∆C is the regret suffered from playing the arm with the highest reward in
cluster C.

We do also prove an instance-independent regret bound on the form

Õ
´

a

A˚ ` Kp1 ` γqT
¯

(4.5.1)

where A˚ is the number of arms in the same cluster as the optimal arm, K is the
number of clusters, and γ a parameter that measures the quality of the clustering
(lower is better), see the paper for more details. Here Õp.q hides logarithmic factors.
Recall that standard bandit algorithms have a regret scaling as Õ

`?
NT

˘

where
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Figure 4.13: An instance with 1000 arms, 32 clusters and 32 arms in each
cluster. TSC is our approach. TS (Thompson sampling) and UCB (upper
confidence bounds) are algorithms suited for the standard multi-armed bandit.
UCBC (Pandey et al. 2007; Bouneffouf et al. 2019) and TSMax (Zhao et al.
2019) are previously suggested algorithms for the MABC. We observe that TSC
outperforms all algorithms. The cumulative regret is averaged over 50 random
seeds and the error bars corresponds to ˘ the standard deviation.

N is the total number of arms. Thus, our bounds suggest that our TSC algorithm
should improve over classical approaches when either there are few clusters, small
K, or when the optimal arm belongs to a cluster containing few arms (small A˚).
Since A˚ is not a priori known, the bound in (4.5.1) suggests that our algorithm
reaps the most benefit over standard approaches when K “

?
N and each cluster

contains
?

N arms. In addition, our empirical evaluation shows that our approach
has an advantage over both classical approaches and other algorithms introduced for
the MABC, see Figure 4.13. or more empirical results see the paper. In the paper
we also provide regret bounds for hierarchical clusterings as well as an extensive
empirical evaluation of the contextual version of TSC.
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4.6 Paper 6: Pure exploration in bandits with
linear constraints

The best-arm identification (BAI) in the bandit framework has many applications
such as hyper-parameter tuning (Li, Jamieson, et al. 2017) and clinical trials (Aziz
et al. 2021). However, in practice, many decision-making problems involve constraints
on the available actions that need to be satisfied. For clinical trials, this could be
certain safety constraints w.r.t. toxicity or in a recommender system one might have
constraints that require a certain level of diversity in the recommendations. As a
result, standard BAI algorithms are not perfectly appropriate for these settings since
the constraints might force the learner to output a stochastic policy instead of one
best arm, see the example in Figure 4.14.

Person B

Calories 600 400 200 ≥ 400

Protein 30 0 10 ≥ 20

Person A

Calories 600 400 200 ≥ 400

(1, 0, 0)
Simplex

(0, 1, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0) (1/2, 0, 1/2)

(2/3, 1/3, 0)

(1, 0, 0) (1/2, 0, 1/2)

Expected Reward 𝝁 = [3, 2, 4] Preference Direction:

𝜋∗ 𝜋∗ 𝜋∗

Person A Person B

𝑏"

𝑏#
𝑏$

Figure 4.14: Two people, A and B, are searching for a meal plan π that maximizes
taste, i.e., expected reward µJπ, while satisfying some nutrition constraints.
Without any constraints this setting reduces to BAI and can be viewed as searching
for the optimal policy over the probability simplex. However, the nutrition
constraints alter the set of feasible sets and a person might have to mix between
several dishes to satisfy the constraints while maximizing the reward. The red
arrow indicates the preference direction and the red dot corresponds to the
optimal policy for each case. The dotted arrows, bi, corresponds to the normal
of that boundary, i.e. the constraint causing the boundary, and as we will see
later, in Figure 4.15, the distance between µ and bi controls the hardness of the
problem. For person A, the distance between b2 and µ decreases compared to
the unconstrained case, while it increases for person B. Thus, the problem of
finding the optimal pure exploration policy gets easier for person B while harder
for person A. This is quantified by the minimum number of samples required to
identify the optimal policies for person A, B, and the unconstrained case, see
Figure 4.15.

In Paper 6 we study the problem of finding the best option when arms are subject
to a set of linear constraints. We consider this problem in the fixed confidence regime
where the goal is, with as few collected samples as possible, to output the optimal
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solution π˚ to the following problem

arg max
πPF

πJµ (4.6.1)

with probability at least 1 ´ δ for some given δ P p0, 1q. Here, µ P RK is the unknown
reward vector where an entry µi corresponds to the expected reward of arm i P rKs

and F is the set of policies that satisfy our constraints. Thus, our goal is to query
entries of µ until we can output the optimal solution to (4.6.1) with probability 1 ´ δ.
We further assume that the noise in the observations follows some sub-Gaussian
distribution.

𝜆∗ = arg min
"∈$(&)

∑𝑤(𝑑(𝜇(, 𝜆()

𝜇 𝜆)∗ 𝜆*∗
𝜆+∗

A B𝑏!𝑏"𝑏#

Figure 4.15: Computing the λ satisfying Equation 4.6.3, i.e. the most confusing
instance, can be viewed as an information-theoretic projection onto the boundary
of the normal cone spanned by the active constraints at πµ. In A) we see the
different normal cones for the three different examples in Figure 4.14. In B) we
have fixed µ1 and µ3, as in Figure 4.14, and plot the lower bound, assuming
Np0, 1q noise and with δ “ 0.1, for increasing µ2 which mean that we are moving
µ closer to the boundaries in A). We observe an inverse relationship between the
distance to the boundary and the lower bound, properly characterized in Paper 6.

Recall, from Section 2.4, that lower bounds in multi-armed bandits can be written
on the form

Eµ,ϕ rτδs ě TFpµq log 1
2.4δ

where TF is the solution to a zero-sum game between a learner, that samples arms
according to w, and an adversary that outputs a confusing instance λ where the
optimal policy is different form the one under µ 2

T ´1
F pµq “ sup

w
inf

λPΛF pµq

K
ÿ

a“1
waKLpµa, λaq (4.6.2)

here ΛFpµq is the set of alternative instances

ΛFpµq “ tλ P RK : max
πPF

λJπ ą λJπ˚
u.

2Here, KLpµa, λaq “ KLpµa, ||λaq and the different notation, compared to Chapter 2, is due to
the notion KLp., .q being used in Paper 6.
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One of our contributions is to show that the lower bound in the constraint setting
depends on a non-convex projection onto the boundary normal cone spanned by
the active constraints at the optimal policy, see Figure 4.15. Especially, given an
allocation w, the adversary will output a problem instance that satisfies

min
λ:λPBN pπ˚q

K
ÿ

a“1
waKLpµa, λaq. (4.6.3)

Here, BN pπ˚q denotes the boundary of the normal cone spanned by the active
constraints at the optimal policy. A formal version of this result, with an explicit
expression of the boundary of the cone, is given in Lemma 3.1 in the main paper. We
also leverage properties of set-valued functions to show that this projection satisfies
certain continuity properties in w and µ, which in turn enables us to compute it with
standard optimization techniques.

The lower bound in (4.6.2) is implicit and doesn’t reveal how the hardness of the
problem depends on the constraints and the reward vector µ. We address this in the
paper by deriving more explicit lower bounds for Gaussian reward distributions.
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Figure 4.16: Y-axis corresponds to the time (number of samples) until an algorithm
stops and outputs the best policy with confidence 1 ´ δ. The figure illustrates
the sample complexity of our algorithms (CTnS and CGE) against baselines
on a problem where to goal is to find the optimal allocation of movies, w.r.t.
genre constraints, in the IMDB dataset. For each algorithm, we performed the
experiments over 1000 different random seeds.

On the algorithmic side, we introduce two algorithms, CTnS and CGE, which
are adaptations of standard BAI algorithms, to the constraint setting. We prove
that both these algorithms are asymptotically optimal in δ. That is, their expected
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sample complexity τ satisfy

lim sup
δÑ0

Erτ s{ log 1
δ

ď TF .

Our empirical evaluation shows that our algorithms have an advantage over
baselines. In Figure 4.16 we show the performance of our algorithms against three
baselines: optimal, uniform, and a version of TnS (Kaufmann et al. 2016) that
projects the exploration policy onto the feasible set. Note that the optimal baseline
is not possible in practice since it samples from the w given by (4.6.2) which requires
knowledge of the true rewards µ. We observe that our algorithms operate close
to the lower bound even for moderately large δ and their performance is on par
with the optimal sampling policy. Since publishing this paper, other works have
extended this setting to the fixed-budget regime (Tang et al. 2024) and unknown
constraints (Gangrade et al. 2024; Das and Basu 2024).
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4.7 Paper 7: Active preference learning for order-
ing items

In Paper 7, we study the problem of ordering a set of items, I, using active preference
learning. In our model, each item, i P I, is associated with a known feature vector
xi P Rd and an unknown score yi P R. Our goal is to order the items based on their
score.

We assume that we can request a comparison of any two items, i, j P I, and
receive a noisy binary preference c „ ppCijq. We further assume that the unknown
scores satisfy a linear model,

yi “ θJ
˚ xi,

for some unknown θ˚ P Rd, and that the noisy preference feedback follows a logistic
model

ppCijq “ σ pyi ´ yjq ,

where σp.q is the sigmoid function. Hence, to order the items in I we need to estimate
θ˚ sufficiently well in the direction of the feature vectors txiuiPI . This type of model
has applications in medical imaging (Phelps et al. 2015; Jang et al. 2022; Lidén et al.
2024) as well as in reinforcement learning with human feedback (RLHF) (Ouyang
et al. 2022; Das, Chakraborty, et al. 2024).

Our main contributions consist of deriving a data-dependent upper bound for
the ordering error after T noisy comparisons, followed by two sampling strategies
that, greedily, try to minimize this upper bound.

Let the ordering error of an estimate θT be defined as

RpθT q :“ 2
npn ´ 1q

ÿ

i‰jPI
1rsgn

`

θJ
T zij

˘

‰ sgn
`

θJ
˚ zij

˘

s

where zij :“ xi ´ xj. Our data-dependent bound suggests that the probability that
the ordering error exceeds some ϵ ą 0 after collecting a dataset, DT , of T comparisons
is upper bounded as 3

P pRpθT q ě ϵq Æ
4dT

ϵ
exp

„

´∆2T {pmax
i,j

9σpzJ
ijθT q

2
}zij}

2
H̃´1

T pθT q
q

ȷ

. (4.7.1)

Here, ∆ “ mini‰j ∆ij{|i ´ j| where ∆ij is difference in score between any i, j, HT pθT q

is the Hessian of the negative log-likelihood around our estimated parameter θT

HT pθT q :“
T
ÿ

t“1
9σpzJ

it,jt
θqzit,jtz

J
it,jt

,

3To ease the presentation, we have ignored second-order terms here. See Theorem 4.2 in the
paper for a precise upper bound.
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Figure 4.17: X-RayAge. Performance of active sampling strategies when com-
parisons are simulated using a logistic model. In-sample Kendall’s Tau distance
(ordering error) RID

on 200 images (left) and generalization error RIE
´ RID

for models trained on 150 images and evaluated on 150 images from a different
distribution (right). All results are averaged over 100 different random seeds.

and }zij}H̃´1
T pθT q “

b

zJ
ijHT pθT q´1zij. The bound in (4.7.1) holds true for any sam-

pling strategy and depends on the collected data through the estimated parameter θT

as well as the Hessian HT pθT q, which is also known as the observed Fisher informa-
tion. In short, the bound suggest that a good active learning strategy should collect
data such that the quantity maxi,j 9σpzJ

ijθT q}zij}H̃´1
T pθT q is minimized, as this would

minimize our upper bound on the probability of error. Note that the variance in a
noisy comparison between two items, i, j, under the predicted model θT , is equal to
the derivative 9σpzJ

ijθT q2 while }zij}2
H̃´1

T pθT q
is a measure of model uncertainty. Thus,

(4.7.1) suggests that high model certainty is needed in directions with high variance.
In the paper, we leverage these theoretical insights and introduce the active

learning algorithm GURO, short for Greedy Uncertainty Reduction for Ordering,
which at every time t query a pair of items that satisfy

max
i,j

9σpzJ
ijθtq}zij}H̃´1

T pθtq.

Here θt is the maximum-likelihood estimate given the samples seen so far. In the
paper, we also present a Bayesian version of GURO, named BayesGURO, that can
incorporate prior beliefs about the underlying environment.

In Section 6 of Paper 7, we compare our proposed algorithms against various
baselines in both synthetic experiments as well as experiments that build on real
preference feedback from human annotators. Our results indicate that our algorithms
have an advantage over baselines. In Figure 4.17 we present one of our experiments
where the goal is to order a set of X-ray images according to patient age. Here,
the feature vectors txiuiPI were extracted by passing the X-ray images through a
pre-trained CNN, and the unknown scores are the age of the patients. We observe
that our algorithms outperform both uniform sampling as well as two other active
learning algorithms, BALD (Houlsby et al. 2011) and CoLSTIM (Bengs et al. 2022).





Chapter 5

Concluding remarks and future
directions

In this thesis, we have used reinforcement learning and multi-armed bandits to
explore several aspects of sequential decision-making under uncertainty and how
these decisions might gradually shape the behavior of the agents. We have shown
that reinforcement learning agents, communicating with each other in a collaborative
setting, eventually develop a shared language. The resulting artificial languages are
efficient in an information-theoretic sense, an important property of human languages.
Recent works have argued that a combination of a pressure for informativeness, coming
from the need to solve communicative tasks, and a pressure for simplicity, stemming
from learning, accounts for the efficiency found in human languages (Kirby, Tamariz,
et al. 2015; Carr et al. 2020) and our results support these arguments. This is
because our reinforcement learning agents have a clear bias towards informativeness,
induced by their goal to maximize the joint reward, while they also have a bias
towards simplicity due to the fact that they need to learn and converge on a joint
language. In addition, one of our key results in this line of work was showing that
a combination of reinforcement learning and iterated learning accounts for efficient
color naming systems found in human languages. In this model, iterated learning
reinforces the simplicity bias and our results suggest that this model account better
for the data, compared to either reinforcement learning alone or iterated learning
alone.

We have also explored how theoretical insights can be used to derive more sample
efficient algorithms for multi-armed bandit problems. This has resulted in sample
efficient algorithms for the multi-armed bandit problem with clustered arms, as well
as provably optimal algorithms for the problem of identifying an optimal policy that
is subject to pre-defined constraints. In Paper 7, we used theoretical results from
multi-armed bandits to derive algorithms for active preference learning and showed
that these outperform baselines.

45
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5.1 Future directions
An interesting future direction is to explore whether the combination of reinforcement
learning and iterated learning, used in Paper 4 , can account for efficient communica-
tion in other domains where human languages have been shown to support efficient
communication. This is important because the notion of efficiency is not always
sufficient to account for naming systems found in human languages and additional
constraints might be induced by an evolutionary process.

Recent works have explored the learnability of various semantic universals by
applying off-the-shelf machine learning methods and studying how rapidly these
learn certain properties (Steinert-Threlkeld and Szymanik 2020; Douven 2023). A
key finding is that many of the universals found in human languages, such like color
words being convex regions in the color space (Gärdenfors 2000; Jäger 2010), are
easier to learn for machine learning models. A limitation of these works is that
they study learnability trough the lens of just one particular learning algorithm.
Here, we think an interesting direction would be to borrow from the vast amount
of theoretical results regarding sample complexity that is found in the multi-armed
bandit literature. These results can potentially be used to study learnability for a
whole class of learning algorithms simultaneously. To give an example, an interesting
future direction is to use tools from the bandit literature, like the lower bound
result described in Section 2.4, to compute lower bounds on the sample complexity
of certain semantic universals. These lower bounds might give an indication for
how hard certain properties are to learn for a whole family of algorithms and thus
complement the already existing works on semantic universals and learnability.

Another important direction is to extend the work in Paper 2 to recursive numeral
systems. Some work has already been done in this direction using either a single
agent setup (Thomas, Silvi, et al. 2024) or iterated learning (Guo, Ren, et al. 2020).
What is currently unknown is whether efficient recursive systems can emerge in a
cooperative multi-agent setting, like the ones considered in this thesis, and whether a
single model can learn approximate, exact restricted, and recursive numeral systems.
The latter is interesting because such a model would account for how a numeral
system evolves from one type of system to another. A potential approach is to
combine iterated learning with some (neuro) symbolic mechanism. In such a model,
one would expect that the presence of a communicative task dictates what type of
system emerges. If the task requires a very precise communication of numbers over
a large range, a recursive system should emerges, while a lower pressure towards
informativeness might lead to approximate or exact restricted systems.

A limitation of our work is the one-way communication between the speaker and
listener. In practice, agents are able to communicate back and forth with each other,
and exploring how this impacts the efficiency of the communication is an important
future direction.

When it comes to sample efficient algorithms in multi-armed bandits, an important
direction is to extend the work done in Paper 6 to the case with a priori unknown
constraints. Another interesting direction is extending the algorithms introduced in
Paper 7 to be able to handle preferences along several dimensions at the same time.



Bibliography

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári (2011). “Improved Al-
gorithms for Linear Stochastic Bandits”. In: Advances in Neural Information
Processing Systems. Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K.Q. Weinberger. Vol. 24. Curran Associates, Inc. (cit. on p. 12).

Agrawal, Shipra and Navin Goyal (17–19 Jun 2013). “Thompson Sampling for
Contextual Bandits with Linear Payoffs”. In: Proceedings of the 30th International
Conference on Machine Learning. Ed. by Sanjoy Dasgupta and David McAllester.
Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, Georgia, USA:
PMLR, pp. 127–135 (cit. on p. 11).

Åkerblom, Niklas, Yuxin Chen, and Morteza Haghir Chehreghani (2023). “Online
learning of energy consumption for navigation of electric vehicles”. In: Artificial
Intelligence 317, p. 103879 (cit. on p. 3).

Audibert, Jean-Yves and Sébastien Bubeck (2010). “Best arm identification in multi-
armed bandits”. In: COLT-23th Conference on learning theory-2010, 13–p (cit. on
p. 9).

Auer, Peter, Nicolò Cesa-Bianchi, and Paul Fischer (2002). “Finite-time Analysis
of the Multiarmed Bandit Problem”. In: Machine Learning 47.2, pp. 235–256
(cit. on p. 12).

Aziz, Maryam, Emilie Kaufmann, and Marie-Karelle Riviere (2021). “On multi-
armed bandit designs for dose-finding clinical trials”. In: The Journal of Machine
Learning Research 22.1, pp. 686–723 (cit. on p. 38).

Balcıoğlu, Ahmet Zahid, Emil Carlsson, and Fredrik D. Johansson (2024). “Identifi-
able latent bandits: Combining observational data and exploration for personalized
healthcare”. In: ICML 2024 Workshop: Foundations of Reinforcement Learning
and Control – Connections and Perspectives (cit. on p. 6).

Bellman, Richard (1957). “A Markovian Decision Process”. In: Journal of Mathe-
matics and Mechanics 6.5, pp. 679–684. issn: 00959057, 19435274. (Visited on
05/09/2024) (cit. on p. 7).

Bengs, Viktor, Aadirupa Saha, and Eyke Hüllermeier (2022). “Stochastic Contextual
Dueling Bandits under Linear Stochastic Transitivity Models”. In: International
Conference on Machine Learning. PMLR, pp. 1764–1786 (cit. on p. 43).

Bergström, Herman, Emil Carlsson, Devdatt Dubhashi, and Fredrik D. Johansson
(2024). “Active Preference Learning for Ordering Items In- and Out-of-sample”. In:
The Thirty-eighth Annual Conference on Neural Information Processing Systems.
Forthcoming (cit. on p. 6).

47



48 Bibliography

Berlin, Brent and Paul Kay (1969). Basic Color term. Their Universality and
Evolution. 2010. Berlin, Boston: De Gruyter Mouton (cit. on pp. 15, 18).

Boldt, Brendon and David R Mortensen (2024). “A Review of the Applications of
Deep Learning-Based Emergent Communication”. In: Transactions on Machine
Learning Research. issn: 2835-8856 (cit. on p. 20).

Börgers, Tilman and Rajiv Sarin (1997). “Learning through reinforcement and
replicator dynamics”. In: Journal of economic theory 77.1, pp. 1–14 (cit. on
p. 20).

Bouneffouf, Djallel, Srinivasan Parthasarathy, Horst Samulowitz, and Martin Wistuba
(July 2019). “Optimal Exploitation of Clustering and History Information in
Multi-armed Bandit”. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pp. 2016–2022 (cit. on p. 37).

Bubeck, Sébastien, Rémi Munos, and Gilles Stoltz (2009). “Pure exploration in
multi-armed bandits problems”. In: Algorithmic Learning Theory: 20th Interna-
tional Conference, ALT 2009, Porto, Portugal, October 3-5, 2009. Proceedings
20. Springer, pp. 23–37 (cit. on p. 9).

Carcassi, Fausto, Shane Steinert-Threlkeld, and Jakub Szymanik (2021). “Monotone
Quantifiers Emerge via Iterated Learning”. In: Cognitive Science 45.8, e13027
(cit. on p. 22).

Carlsson, Emil, Debabrota Basu, Fredrik Johansson, and Devdatt Dubhashi (Feb.
2024). “Pure Exploration in Bandits with Linear Constraints”. In: Proceedings of
The 27th International Conference on Artificial Intelligence and Statistics. Ed. by
Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li. Vol. 238. Proceedings of
Machine Learning Research. PMLR, pp. 334–342 (cit. on p. 6).

Carlsson, Emil and Devdatt Dubhashi (2022). “Pragmatic Reasoning in Strcutured
Signalling Games”. In: Proceedings of the Annual Meeting of the Cognitive Science
Society 44 (cit. on p. 5).

Carlsson, Emil, Devdatt Dubhashi, and Fredrik D. Johansson (2021a). “Learning
Approximate and Exact Numeral Systems via Reinforcement Learning”. In:
Proceedings of the Annual Meeting of the Cognitive Science Society 43 (cit. on
p. 5).

Carlsson, Emil, Devdatt Dubhashi, and Fredrik D. Johansson (Aug. 2021b). “Thomp-
son Sampling for Bandits with Clustered Arms”. In: Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21. Ed. by Zhi-
Hua Zhou. Main Track. International Joint Conferences on Artificial Intelligence
Organization, pp. 2212–2218. doi: 10.24963/ijcai.2021/305 (cit. on p. 6).

Carlsson, Emil, Devdatt Dubhashi, and Terry Regier (2023). “Iterated learning and
communication jointly explain efficient color naming systems”. In: Proceedings of
the annual meeting of the cognitive science society. Vol. 45. 45 (cit. on p. 5).

Carlsson, Emil, Devdatt Dubhashi, and Terry Regier (2024). “Cultural evolution via
iterated learning and communication explains efficient color naming systems”.
In: Journal of Language Evolution. doi: 10.1093/jole/lzae010. Forthcoming
(cit. on p. 5).

https://doi.org/10.24963/ijcai.2021/305
https://doi.org/10.1093/jole/lzae010


Bibliography 49

Carr, Jon W., Kenny Smith, Jennifer Culbertson, and Simon Kirby (2020). “Simplicity
and informativeness in semantic category systems”. In: Cognition 202, p. 104289
(cit. on pp. 21, 23, 34, 45).

Carstensen, Alexandra, Jing Xu, Cameron T. Smith, and Terry Regier (2015).
“Language evolution in the lab tends toward informative communication.” In:
Proceedings of the 37th Annual Meeting of the Cognitive Science Society (cit. on
p. 23).

Cesa-Bianchi, Nicolo and Gábor Lugosi (2006). Prediction, learning, and games.
Cambridge university press (cit. on p. 20).

Chaabouni, Rahma, Eugene Kharitonov, Emmanuel Dupoux, and Marco Baroni (Mar.
2021). “Communicating artificial neural networks develop efficient color-naming
systems”. In: Proceedings of the National Academy of Sciences 118, e2016569118.
doi: 10.1073/pnas.2016569118 (cit. on p. 20).

Chapelle, Olivier and Lihong Li (2011). “An Empirical Evaluation of Thompson
Sampling”. In: Advances in Neural Information Processing Systems. Ed. by J.
Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger. Vol. 24.
Curran Associates, Inc. (cit. on p. 12).

Chen, Sihan, Richard Futrell, and Kyle Mahowald (2023). “An information-theoretic
approach to the typology of spatial demonstratives”. In: Cognition 240 (cit. on
p. 16).

Chernoff, Herman (1959). “Sequential Design of Experiments”. In: The Annals of
Mathematical Statistics 30.3, pp. 755–770. issn: 00034851 (cit. on p. 9).

Chomsky, Noam (1986). Knowledge of language: Its nature, origin, and use. New
York (cit. on p. 15).

Comrie, Bernard (2013). “Numeral Bases”. In: The World Atlas of Language Struc-
tures Online. Ed. by Matthew S. Dryer and Martin Haspelmath. Leipzig: Max
Planck Institute for Evolutionary Anthropology (cit. on p. 18).

Cook, Richard S., Paul Kay, and Terry Regier (2005). “The World Color Survey
Database: History and use”. In: Handbook of Categorization in Cognitive Science.
Ed. by Henri Cohen and Claire Lefebvre. Amsterdam: Elsevier, pp. 223–241
(cit. on p. 18).

Dabney, Will, Zeb Kurth-Nelson, Naoshige Uchida, Clara Starkweather, Demis
Hassabis, Remi Munos, and Matthew Botvinick (Jan. 2020). “A distributional
code for value in dopamine-based reinforcement learning”. In: Nature 577, pp. 1–5
(cit. on p. 22).

Dale, Rick and Gary Lupyan (2012). “Understanding the Origins of Morphological
Diversity: the Linguistic Niche Hypothesis”. In: Adv. Complex Syst. 15 (cit. on
p. 19).

Das, Nirjhar, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury
(2024). “Provably Sample Efficient RLHF via Active Preference Optimization”.
In: arXiv preprint arXiv:2402.10500 (cit. on p. 42).

Das, Udvas and Debabrota Basu (2024). “Learning to Explore with Lagrangians for
Bandits under Unknown Constraints”. In: ICML 2024 Workshop: Foundations
of Reinforcement Learning and Control–Connections and Perspectives (cit. on
p. 41).

https://doi.org/10.1073/pnas.2016569118


50 Bibliography

Degenne, Rémy, Wouter M Koolen, and Pierre Ménard (2019). “Non-Asymptotic Pure
Exploration by Solving Games”. In: Advances in Neural Information Processing
Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett. Vol. 32 (cit. on p. 13).

Douven, Igor (2023). “The role of naturalness in concept learning: A computational
study”. In: Minds and Machines 33.4, pp. 695–714 (cit. on p. 46).

Downey, CM, Leo Z Liu, Xuhui Zhou, and Shane Steinert-Threlkeld (2022). “Learning
to translate by learning to communicate”. In: arXiv preprint arXiv:2207.07025
(cit. on p. 20).

Dryer, Matthew S (1998). “Why statistical universals are better than absolute
universals”. In: Papers from the 33rd Regional Meeting of the Chicago Linguistic
Society, pp. 1–23 (cit. on p. 15).

Evans, Nicholas and Stephen C Levinson (2009). “The myth of language universals:
Language diversity and its importance for cognitive science”. In: Behavioral and
brain sciences 32.5, pp. 429–448 (cit. on p. 15).

Fedzechkina, Maryia, T Florian Jaeger, and Elissa L Newport (2012). “Language
learners restructure their input to facilitate efficient communication”. In: Pro-
ceedings of the National Academy of Sciences 109.44, pp. 17897–17902 (cit. on
p. 23).

Foerster, Jakob, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson
(2016). “Learning to communicate with deep multi-agent reinforcement learning”.
In: Advances in neural information processing systems 29 (cit. on pp. 19, 20).

Frank, Michael C. and Noah D. Goodman (2012). “Predicting Pragmatic Reasoning
in Language Games”. In: Science 336.6084, pp. 998–998. doi: 10.1126/science.
1218633 (cit. on p. 31).

Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning”. In: international conference
on machine learning. PMLR, pp. 1050–1059 (cit. on pp. 12, 20, 28, 29).

Gangrade, Aditya, Tianrui Chen, and Venkatesh Saligrama (2024). “Safe Linear
Bandits over Unknown Polytopes”. In: The Thirty Seventh Annual Conference
on Learning Theory. PMLR, pp. 1755–1795 (cit. on p. 41).

Gärdenfors, Peter (2000). “Conceptual spaces: The geometry of thought”. In: MIT
Press 3, p. 16 (cit. on pp. 35, 46).

Gärdenfors, Peter (2014). The geometry of meaning: Semantics based on conceptual
spaces. MIT press (cit. on p. 15).

Garivier, Aurélien and Emilie Kaufmann (2016). “Optimal best arm identification
with fixed confidence”. In: Conference on Learning Theory. PMLR, pp. 998–1027
(cit. on p. 13).

Gershman, Samuel J (2018). “Deconstructing the human algorithms for exploration”.
In: Cognition 173, pp. 34–42 (cit. on p. 21).

Gershman, Samuel J and Nathaniel D Daw (2017). “Reinforcement learning and
episodic memory in humans and animals: an integrative framework”. In: Annual
review of psychology 68, pp. 101–128 (cit. on p. 3).

Gibson, Edward, Richard Futrell, Julian Jara-Ettinger, Kyle Mahowald, Leon Bergen,
Sivalogeswaran Ratnasingam, Mitchell Gibson, Steven T. Piantadosi, and Bevil R.

https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633


Bibliography 51

Conway (2017). “Color naming across languages reflects color use”. In: Proceedings
of the National Academy of Sciences. issn: 0027-8424 (cit. on pp. 17, 25).

Gibson, Edward, Richard Futrell, Steven P. Piantadosi, Isabelle Dautriche, Kyle
Mahowald, Leon Bergen, and Roger Levy (2019). “How Efficiency Shapes Human
Language”. In: Trends in Cognitive Sciences 23.5, pp. 389–407 (cit. on pp. 3, 15,
21).

Grice, H. Paul (1975). “Logic and Conversation”. In: The Semantics-Pragmatics
Boundary in Philosophy. Ed. by Maite Ezcurdia and Robert J. Stainton. Broadview
Press, p. 47 (cit. on p. 30).

Griffiths, T.L. and M.L. Kalish (May 2007). “Language evolution by iterated learning
with Bayesian agents”. In: Cognitive Science 31, pp. 441–480 (cit. on pp. 19, 23).

Guo, Shangmin, Yi Ren, Serhii Havrylov, Stella Frank, Ivan Titov, and Kenny Smith
(2020). “The emergence of compositional languages for numeric concepts through
iterated learning in neural agents”. In: Evolution of Language International
Conferences (cit. on pp. 24, 46).

Guo, Yuxuan, Yifan Hao, Rui Zhang, Enshuai Zhou, Zidong Du, Xinkai Song, Yuanbo
Wen, Yongwei Zhao, Xuehai Zhou, Jiaming Guo, et al. (2024). “Emergent Com-
munication for Rules Reasoning”. In: Advances in Neural Information Processing
Systems 36 (cit. on p. 20).

Hammarström, H. (Jan. 2010). “Rarities in Numeral Systems”. In: Business Com-
munication Quarterly - Bus Comm Q (cit. on p. 18).

Havrylov, Serhii and Ivan Titov (2017). “Emergence of language with multi-agent
games: Learning to communicate with sequences of symbols”. In: Advances
in Neural Information Processing Systems 2017-Decem, pp. 2150–2160. issn:
10495258. arXiv: 1705.11192 (cit. on pp. 19–21).

Hennes, Daniel, Dustin Morrill, Shayegan Omidshafiei, Rémi Munos, Julien Perolat,
Marc Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar
Duéñez-Guzmán, et al. (2020). “Neural replicator dynamics: Multiagent learning
via hedging policy gradients”. In: Proceedings of the 19th international conference
on autonomous agents and multiagent systems, pp. 492–501 (cit. on p. 20).

Houlsby, Neil, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel (Dec. 2011).
Bayesian Active Learning for Classification and Preference Learning. arXiv:1112.5745
[cs, stat]. doi: 10.48550/arXiv.1112.5745. (Visited on 10/20/2023) (cit. on
p. 43).

Hurford, James R (1987). Language and number: The emergence of a cognitive system
(cit. on p. 18).

Imel, Nathaniel (2023). “The evolution of efficient compression in signaling games”.
In: Proceedings of the Annual Meeting of the Cognitive Science Society. Vol. 45.
45 (cit. on p. 20).

Imel, Nathaniel, Richard Futrell, Michael Franke, and Noga Zaslavsky (2023). “Noisy
Population Dynamics Lead to Efficiently Compressed Semantic Systems”. In:
NeurIPS 2023 workshop: Information-Theoretic Principles in Cognitive Systems
(cit. on p. 20).

https://arxiv.org/abs/1705.11192
https://doi.org/10.48550/arXiv.1112.5745


52 Bibliography

Imel, Nathaniel and Shane Steinert-Threlkeld (2022). “Modal semantic universals
optimize the simplicity/informativeness trade-off”. In: Proceedings of SALT 32
(Semantics and Linguistic Theory), pp. 227–248 (cit. on p. 16).

Jäger, Gerhard (2010). “Natural Color Categories Are Convex Sets”. In: Logic,
Language and Meaning. Ed. by Maria Aloni, Harald Bastiaanse, Tikitu de Jager,
and Katrin Schulz. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 11–20
(cit. on p. 46).

Jäger, Gerhard, Lars P Metzger, and Frank Riedel (2011). “Voronoi languages:
Equilibria in cheap-talk games with high-dimensional types and few signals”. In:
Games and economic behavior 73.2, pp. 517–537 (cit. on p. 19).

Jang, Ikbeom, Garrison Danley, Ken Chang, and Jayashree Kalpathy-Cramer (2022).
“Decreasing annotation burden of pairwise comparisons with human-in-the-loop
sorting: Application in medical image artifact rating”. In: arXiv preprint arXiv:2202.04823
(cit. on p. 42).

Jergéus, Erik, Leo Karlsson Oinonen, Emil Carlsson, and Moa Johansson (2022).
“Towards Learning Abstractions via Reinforcement Learning”. In: AIC 2022, 8th
International Workshop on Artificial Intelligence and Cognition (cit. on p. 6).

Jones, Rebecca M, Leah H Somerville, Jian Li, Erika J Ruberry, Alisa Powers,
Natasha Mehta, Jonathan Dyke, and BJ Casey (2014). “Adolescent-specific
patterns of behavior and neural activity during social reinforcement learning”. In:
Cognitive, Affective, & Behavioral Neuroscience 14, pp. 683–697 (cit. on p. 21).

Jorge, Emilio, Mikael Kågebäck, Fredrik D. Johansson, and Emil Gustavsson (2016).
“Learning to Play Guess Who? and Inventing a Grounded Language as a Conse-
quence”. In: arXiv: 1611.03218 (cit. on p. 20).

Kågebäck, Mikael, Emil Carlsson, Devdatt Dubhashi, and Asad Sayeed (2020). “A
reinforcement-learning approach to efficient communication”. In: PLoS ONE 15.7,
pp. 1–26 (cit. on pp. 5, 25, 28, 33).

Kato, Masahiro and Kaito Ariu (2024). The Role of Contextual Information in Best
Arm Identification. arXiv: 2106.14077 (cit. on p. 10).

Kaufmann, Emilie, Olivier Cappé, and Aurélien Garivier (Jan. 2016). “On the
Complexity of Best-Arm Identification in Multi-Armed Bandit Models”. In: J.
Mach. Learn. Res. 17.1, pp. 1–42. issn: 1532-4435 (cit. on pp. 10, 41).

Kemp, Charles, Alice Gaby, and Terry Regier (2019). “Season naming and the local
environment”. In: Proceedings of the 41st Annual Meeting of the Cognitive Science
Society (cit. on p. 16).

Kemp, Charles and Terry Regier (May 2012). “Kinship Categories Across Languages
Reflect General Communicative Principles”. In: Science (New York, N.Y.) 336,
pp. 1049–54 (cit. on pp. 16, 17).

Kemp, Charles, Yang Xu, and Terry Regier (Jan. 2018). “Semantic Typology and
Efficient Communication”. In: Annual Review of Linguistics 4, pp. 109–128 (cit.
on pp. 3, 15, 17, 21).

Khetarpal, Naveen, Lev Michael, Terry Regier, and Grace Neveu (Jan. 2013). “Spatial
terms across languages support near-optimal communication: Evidence from
Peruvian Amazonia, and computational analyses”. In: (cit. on p. 16).

https://arxiv.org/abs/1611.03218
https://arxiv.org/abs/2106.14077


Bibliography 53

Kinyanjui, Newton Mwai, Emil Carlsson, and Fredrik D. Johansson (2023). “Fast
Treatment Personalization with Latent Bandits in Fixed-Confidence Pure Explo-
ration”. In: Transactions on Machine Learning Research. issn: 2835-8856 (cit. on
p. 6).

Kirby, Simon (2001). “Spontaneous evolution of linguistic structure-an iterated learn-
ing model of the emergence of regularity and irregularity”. In: IEEE Transactions
on Evolutionary Computation 5.2, pp. 102–110 (cit. on p. 22).

Kirby, Simon (2002a). “Learning, bottlenecks and the evolution of recursive syntax”.
In: (cit. on p. 23).

Kirby, Simon (2002b). “Natural Language From Artificial Life”. In: Artificial Life
8.2, pp. 185–215. doi: 10.1162/106454602320184248 (cit. on p. 19).

Kirby, Simon, Hannah Cornish, and Kenny Smith (2008). “Cumulative cultural
evolution in the laboratory: An experimental approach to the origins of structure
in human language”. In: Proceedings of the National Academy of Sciences 105.31,
pp. 10681–10686 (cit. on pp. 21–23).

Kirby, Simon and Monica Tamariz (2022). “Cumulative cultural evolution, population
structure and the origin of combinatoriality in human language”. In: Philosophical
Transactions of the Royal Society B 377.1843, p. 20200319 (cit. on pp. 22, 24).

Kirby, Simon, Monica Tamariz, Hannah Cornish, and Kenny Smith (2015). “Com-
pression and communication in the cultural evolution of linguistic structure”. In:
Cognition 141, pp. 87–102 (cit. on pp. 21, 23, 24, 33, 45).

Kober, Jens, J Andrew Bagnell, and Jan Peters (2013). “Reinforcement learning in
robotics: A survey”. In: The International Journal of Robotics Research 32.11,
pp. 1238–1274 (cit. on p. 3).

Lai, T.L and H Robbins (1985). “Asymptotically efficient adaptive allocation rules”.
In: Advances in Applied Mathematics 6, pp. 4–22 (cit. on p. 8).

Lattimore, Tor and Csaba Szepesvári (2020). Bandit Algorithms. Cambridge Univer-
sity Press. doi: 10.1017/9781108571401 (cit. on pp. 4, 7).

Lazaridou, Angeliki and Marco Baroni (2020). Emergent Multi-Agent Communication
in the Deep Learning Era. arXiv: 2006.02419 [cs.CL] (cit. on p. 20).

Lazaridou, Angeliki, Alexander Peysakhovich, and Marco Baroni (2017). “Multi-agent
cooperation and the emergence of (natural) language”. In: 5th International Con-
ference on Learning Representations, ICLR 2017 - Conference Track Proceedings,
pp. 1–11. arXiv: 1612.07182 (cit. on pp. 19–21).

Leinster, Tom (2021). Entropy and Diversity The Axiomatic Approach. Cambridge
University Press (cit. on p. 31).

Levinson, Stephen, Sérgio Meira, The Language, and Cognition Group (2003). “’Nat-
ural concepts’ in the spatial topological domain-Adpositional meanings in crosslin-
guistic perspective: An exercise in semantic typology”. In: Language, pp. 485–516
(cit. on p. 15).

Lewis, David K. (1969). Convention: A Philosophical Study. Wiley-Blackwell (cit. on
pp. 4, 20).

Li, Lihong, Wei Chu, John Langford, and Robert E Schapire (2010). “A contextual-
bandit approach to personalized news article recommendation”. In: Proceedings
of the 19th international conference on World wide web, pp. 661–670 (cit. on p. 3).

https://doi.org/10.1162/106454602320184248
https://doi.org/10.1017/9781108571401
https://arxiv.org/abs/2006.02419
https://arxiv.org/abs/1612.07182


54 Bibliography

Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar (2017). “Hyperband: A novel bandit-based approach to hyperparameter
optimization”. In: The Journal of Machine Learning Research 18.1, pp. 6765–6816
(cit. on p. 38).

Lian, Yuchen, Arianna Bisazza, and Tessa Verhoef (2023). “Communication Drives
the Emergence of Language Universals in Neural Agents: Evidence from the
Word-order/Case-marking Trade-off”. In: Transactions of the Association for
Computational Linguistics 11, pp. 1033–1047 (cit. on p. 20).

Lidén, Mats, Antoine Spahr, Ola Hjelmgren, Simone Bendazzoli, Josefin Sundh,
Magnus Sköld, Göran Bergström, Chunliang Wang, and Per Thunberg (Jan.
2024). “Machine learning slice-wise whole-lung CT emphysema score correlates
with airway obstruction”. en. In: European Radiology 34.1, pp. 39–49. issn: 1432-
1084. doi: 10.1007/s00330-023-09985-3. (Visited on 01/26/2024) (cit. on
p. 42).

Ludvig, Elliot A, Marc G Bellemare, and Keir G Pearson (2011). “A primer on
reinforcement learning in the brain: Psychological, computational, and neural
perspectives”. In: Computational neuroscience for advancing artificial intelligence:
Models, methods and applications. IGI Global, pp. 111–144 (cit. on p. 21).

Magureanu, Stefan, Richard Combes, and Alexandre Proutiere (2014). “Lipschitz
bandits: Regret lower bound and optimal algorithms”. In: Conference on Learning
Theory. PMLR, pp. 975–999 (cit. on p. 10).

Majid, Asifa, Melissa Bowerman, Sotaro Kita, Daniel BM Haun, and Stephen C
Levinson (2004). “Can language restructure cognition? The case for space”. In:
Trends in cognitive sciences 8.3, pp. 108–114 (cit. on p. 15).

Marr, D. (1982). Vision: A Computational Approach. San Francisco, Freeman & Co.
(cit. on p. 21).

Mertikopoulos, Panayotis and William H Sandholm (2016). “Learning in games via
reinforcement and regularization”. In: Mathematics of Operations Research 41.4,
pp. 1297–1324 (cit. on p. 20).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. (2015). “Human-level control through deep reinforcement learn-
ing”. In: nature 518.7540, pp. 529–533 (cit. on p. 3).

Mordatch, Igor and Pieter Abbeel (2018). “Emergence of grounded compositional
language in multi-agent populations”. In: Proceedings of the AAAI conference on
artificial intelligence. Vol. 32. 1 (cit. on pp. 20, 21).

Motamedi, Yasamin, Marieke Schouwstra, Kenny Smith, Jennifer Culbertson, and
Simon Kirby (2019). “Evolving artificial sign languages in the lab: From improvised
gesture to systematic sign”. In: Cognition 192, p. 103964 (cit. on p. 24).

Niv, Y. (2009). “Reinforcement learning in the brain”. In: The Journal of Mathemat-
ical Psychology 53.3, pp. 139–154 (cit. on pp. 3, 21, 22).

Niv, Y. and A. Langdon (2016). “Reinforcement Learning with Marr”. In: Current
Opinion in Behavioral Sciences 11.3 (cit. on p. 21).

O’Shaughnessy, David, Edward Gibson, and Steven T. Piantadosi (2021). “The
Cultural Origins of Symbolic Number”. In: Psychological Review (cit. on p. 28).

https://doi.org/10.1007/s00330-023-09985-3


Bibliography 55

O’Doherty, John P, Sang Wan Lee, and Daniel McNamee (2015). “The structure of
reinforcement-learning mechanisms in the human brain”. In: Current Opinion in
Behavioral Sciences 1, pp. 94–100 (cit. on p. 3).

Ouyang, Long et al. (2022). Training language models to follow instructions with
human feedback. arXiv: 2203.02155 [cs.CL] (cit. on p. 42).

Pandey, Sandeep, Deepayan Chakrabarti, and Deepak Agarwal (2007). “Multi-armed
bandit problems with dependent arms”. In: ICML, pp. 721–728 (cit. on p. 37).

Phelps, Andrew S., David M. Naeger, Jesse L. Courtier, Jack W. Lambert, Peter A.
Marcovici, Javier E. Villanueva-Meyer, and John D. MacKenzie (2015). “Pairwise
comparison versus Likert scale for biomedical image assessment.” en. In: AJR.
American journal of roentgenology 204.1, pp. 8–14. issn: 0361-803X. doi: 10.
2214/ajr.14.13022. (Visited on 01/26/2024) (cit. on p. 42).

Piaget, Jean (2013). The construction of reality in the child. Routledge (cit. on p. 3).
Pica, Pierre, Cathy Lemer, Véronique Izard, and Stanislas Dehaene (2004). “Exact and

approximate arithmetic in an Amazonian indigene group”. In: Science 306.5695,
pp. 499–503 (cit. on p. 15).

Pinker, Steven and Paul Bloom (1990). “Natural language and natural selection”. In:
Behavioral and brain sciences 13.4, pp. 707–727 (cit. on p. 15).

Qin, Chao (Feb. 2022). “Open Problem: Optimal Best Arm Identification with Fixed-
Budget”. In: Proceedings of Thirty Fifth Conference on Learning Theory. Ed. by
Po-Ling Loh and Maxim Raginsky. Vol. 178. Proceedings of Machine Learning
Research. PMLR, pp. 5650–5654 (cit. on p. 9).

Rafferty, Anna N, Thomas L Griffiths, and Marc Ettlinger (2011). “Exploring the
relationship between learnability and linguistic universals”. In: Proceedings of the
2nd Workshop on Cognitive Modeling and Computational Linguistics, pp. 49–57
(cit. on p. 24).

Regier, T., C. Kemp, and P. Kay (2015). “Word meanings across languages support
efficient communication”. In: The handbook of language emergence. Ed. by B.
MacWhinney and W. O’Grady. Hoboken NJ: Wiley-Blackwell., pp. 237–263
(cit. on pp. 25, 26).

Regier, Terry, Paul Kay, and Naveen Khetarpal (2007). “Color naming reflects
optimal partitions of color space”. In: Proceedings of the National Academy of
Sciences of the United States of America 104.4, pp. 1436–1441 (cit. on pp. 15, 17,
18).

Ren, Yi, Shangmin Guo, Matthieu Labeau, Shay B. Cohen, and Simon Kirby
(2020). “Compositional languages emerge in a neural iterated learning model”. In:
International Conference on Learning Representations (cit. on pp. 23, 24, 33).

Riquelme, Carlos, George Tucker, and Jasper Snoek (2018). Deep Bayesian Bandits
Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson
Sampling. arXiv: 1802.09127 [stat.ML] (cit. on pp. 11, 12).

Rosch, Eleanor (1978). “Principles of categorization”. In: Cognition and categorization.
Routledge, pp. 27–48 (cit. on p. 15).

Rovee, Carolyn Kent and David T Rovee (1969). “Conjugate reinforcement of infant
exploratory behavior”. In: Journal of experimental child psychology 8.1, pp. 33–39
(cit. on p. 3).

https://arxiv.org/abs/2203.02155
https://doi.org/10.2214/ajr.14.13022
https://doi.org/10.2214/ajr.14.13022
https://arxiv.org/abs/1802.09127


56 Bibliography

Russo, Daniel (2016). “Simple bayesian algorithms for best arm identification”. In:
Conference on Learning Theory. PMLR, pp. 1417–1418 (cit. on p. 9).

Schultz, Wolfram, Peter Dayan, and P Read Montague (1997). “A neural substrate
of prediction and reward”. In: Science 275.5306, pp. 1593–1599 (cit. on p. 22).

Schulz, Eric and Samuel J. Gershman (2019). “The algorithmic architecture of
exploration in the human brain”. In: Current Opinion in Neurobiology 55. Machine
Learning, Big Data, and Neuroscience, pp. 7–14 (cit. on p. 21).

Shannon, Claude Elwood (1948). “A Mathematical Theory of Communication”. In:
The Bell System Technical Journal 27, pp. 379–423 (cit. on p. 16).

Shennan, Stephen (2001). “Demography and cultural innovation: a model and its
implications for the emergence of modern human culture”. In: Cambridge archae-
ological journal 11.1, pp. 5–16 (cit. on p. 19).

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. (2016). “Mastering the game of Go with deep neural networks
and tree search”. In: nature 529.7587, pp. 484–489 (cit. on p. 3).

Skyrms, Brian (2010). Signals: Evolution, learning, and information. OUP Oxford
(cit. on p. 19).

Slivkins, Aleksandrs (2019). “Introduction to Multi-Armed Bandits”. In: Foundations
and Trends® in Machine Learning 12.1-2, pp. 1–286. issn: 1935-8237 (cit. on
p. 7).

Smith, Kenny and James R Hurford (2003). “Language evolution in populations:
Extending the iterated learning model”. In: Advances in Artificial Life: 7th
European Conference, ECAL 2003, Dortmund, Germany, September 14-17, 2003.
Proceedings 7. Springer, pp. 507–516 (cit. on p. 19).

Smith, Kenny, Simon Kirby, and Henry Brighton (2003). “Iterated learning: A
framework for the emergence of language”. In: Artificial life 9.4, pp. 371–386
(cit. on p. 22).

Smith, Kenny and Elizabeth Wonnacott (2010). “Eliminating unpredictable variation
through iterated learning”. In: Cognition 116.3, pp. 444–449 (cit. on p. 22).

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov (2014). “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56, pp. 1929–1958
(cit. on p. 28).

Steels, Luc (1995). “A self-organizing spatial vocabulary”. In: Artificial life 2.3,
pp. 319–332 (cit. on p. 19).

Steels, Luc and Tony Belpaeme (2005). “Coordinating perceptually grounded cat-
egories through language: A case study for colour”. In: Behavioral and brain
sciences 28.4, pp. 469–488 (cit. on p. 19).

Steinert-Threlkeld, Shane and Jakub Szymanik (2019). “Learnability and semantic
universals”. In: Semantics and Pragmatics 12, pp. 4–1 (cit. on p. 22).

Steinert-Threlkeld, Shane and Jakub Szymanik (2020). “Ease of learning explains
semantic universals”. In: Cognition 195, p. 104076 (cit. on pp. 22, 35, 46).

Strens, Malcolm (2000). “A Bayesian framework for reinforcement learning”. In:
ICML. Vol. 2000, pp. 943–950 (cit. on p. 12).



Bibliography 57

Sumers, Theodore R, Mark K Ho, Thomas L Griffiths, and Robert D Hawkins (2023).
“Reconciling truthfulness and relevance as epistemic and decision-theoretic utility.”
In: Psychological Review (cit. on p. 4).

Sutton, Richard S. and Andrew G. Barto (1998). Reinforcement Learning: An
Introduction. Second. The MIT Press (cit. on pp. 3, 7, 11).

Tang, Dengwang, Rahul Jain, Ashutosh Nayyar, and Pierluigi Nuzzo (2024). “Pure
Exploration for Constrained Best Mixed Arm Identification with a Fixed Budget”.
In: arXiv preprint arXiv:2405.15090 (cit. on p. 41).

Thomas, Jonathan David, Raul Santos-Rodriguez, and Robert Piechocki (2022).
“Understanding Redundancy in Discrete Multi-Agent Communication”. In: Second
Workshop on Language and Reinforcement Learning (cit. on p. 20).

Thomas, Jonathan David, Andrea Silvi, Devdatt Dubhashi, Emil Carlsson, and
Moa Johansson (2024). “Learning Efficient Recursive Numeral Systems via Re-
inforcement Learning”. In: AI for Math Workshop @ ICML 2024 (cit. on pp. 6,
46).

Thompson, Bill, Simon Kirby, and Kenny Smith (2016). “Culture shapes the evolu-
tion of cognition”. In: Proceedings of the National Academy of Sciences 113.16,
pp. 4530–4535 (cit. on p. 22).

Thompson, William R. (1933). “On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples”. In: Biometrika 25.3/4,
pp. 285–294 (cit. on p. 11).

Thorndike, Edward L (1898). “Animal intelligence: An experimental study of the
associative processes in animals.” In: The Psychological Review: Monograph
Supplements 2.4, p. i (cit. on p. 3).

Tishby, Naftali, Fernando C. Pereira, and William Bialek (1999). “The Informa-
tion Bottleneck Method”. In: Proceedings of the 37th Allerton Conference on
Communication, Control and Computation, pp. 368–377 (cit. on pp. 17, 33).

Tomov, Momchil S, Eric Schulz, and Samuel J Gershman (2021). “Multi-task rein-
forcement learning in humans”. In: Nature Human Behaviour 5.6, pp. 764–773
(cit. on p. 21).

Verhoef, Tessa, Simon Kirby, and Bart De Boer (2014). “Emergence of combinatorial
structure and economy through iterated learning with continuous acoustic signals”.
In: Journal of Phonetics 43, pp. 57–68 (cit. on p. 22).

Von Fintel, Kai and Lisa Matthewson (2008). “Universals in semantics”. In: (cit. on
p. 15).

Wagner, Kyle, James A. Reggia, Juan Uriagereka, and Gerald S. Wilkinson (2003).
“Progress in the Simulation of Emergent Communication and Language”. In:
Adaptive Behavior 11.1, pp. 37–69 (cit. on p. 19).

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Reinforcement Learning. Springer,
pp. 5–32 (cit. on pp. 11, 20).

Xu, Jing, Mike Dowman, and Thomas L. Griffiths (2013). “Cultural transmission
results in convergence towards colour term universals”. In: Proceedings of the
Royal Society B: Biological Sciences 280.1758, p. 20123073 (cit. on p. 22).



58 Bibliography

Xu, Yang, Emmy Liu, and Terry Regier (2020). “Numeral Systems Across Languages
Support Efficient Communication: From Approximate Numerosity to Recursion”.
In: Open Mind 4, pp. 57–70 (cit. on pp. 16, 17, 19, 28–30).

Yu, Chao, Jiming Liu, Shamim Nemati, and Guosheng Yin (2021). “Reinforcement
learning in healthcare: A survey”. In: ACM Computing Surveys (CSUR) 55.1,
pp. 1–36 (cit. on p. 3).

Zaslavsky, Noga, Charles Kemp, Terry Regier, and Naftali Tishby (2018). “Efficient
compression in color naming and its evolution”. In: Proceedings of the National
Academy of Sciences of the United States of America 115.31, pp. 7937–7942
(cit. on pp. 16–18, 33).

Zhao, T., M. Li, and M. Poloczek (2019). “Fast Reconfigurable Antenna State
Selection with Hierarchical Thompson Sampling”. In: ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), pp. 1–6 (cit. on p. 37).

Zipf, George K. (1949). Human Behaviour and the Principle of Least Effort. Addison-
Wesley (cit. on pp. 15, 32).

Zuidema, Willem (2002). “How the poverty of the stimulus solves the poverty of
the stimulus”. In: Advances in neural information processing systems 15 (cit. on
p. 23).


