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A B S T R A C T

A large enough sample size of patients is required to statistically show that one treatment is better than another.
However, too large a sample size is expensive and can also result in findings that are statistically significant, but
not clinically relevant. How sample sizes should be chosen is a well-studied problem in classical statistics and
analytical expressions can be derived from the appropriate test statistic. However, these expressions require
information regarding the efficacy of the treatment, which may not be available, particularly for newly devel-
oped drugs. Tumor growth inhibition (TGI) models are frequently used to quantify the efficacy of newly
developed anticancer drugs. In these models, the tumor growth dynamics are commonly described by a set of
ordinary differential equations containing parameters that must be estimated using experimental data.

One widely used endpoint in clinical trials is the proportion of patients in different response categories
determined using the Response Evaluation Criteria In Solid Tumors (RECIST) framework. From the TGI model,
we derive analytical expressions for the probability of patient response to combination therapy. The probabilistic
expressions are used together with classical statistics to derive a parametric model for the sample size required to
achieve a certain significance level and test power when comparing two treatments.

Furthermore, the probabilistic expressions are used to generalize the Tumor Static Exposure concept to be
more suitable for predicting clinical response. The derivatives of the probabilistic expressions are used to derive
two additional expressions characterizing the exposure and its sensitivity. Finally, our results are illustrated using
parameters obtained from calibrating the model to preclinical data.

1. Introduction

Cancer is one of the leading causes of death globally and the number
of cases is expected to increase due to the world’s aging population
(Sung et al., 2021). Fortunately, a lot of resources are being invested to
find new and improved treatments. This has not only resulted in the
prolongation of lives but has also enabled curative treatment for certain
types of cancer that used to be incurable (Jacobs, 1997; Broxmeyer,
2020). These improvements are partially due to the usage of combina-
tion therapies, which is defined as the concomitant administration of
two or more drugs or treatment modalities (Hemminki et al., 2023).

All individuals do not respond the same way to treatment and it is
thought that this between-subject variability (BSV) in response is one of
the reasons for the benefit of combination therapies over monotherapies
(Palmer and Sorger, 2017). Moreover, when combining drugs there is
also the possibility of synergistic drug effects (Al-Lazikani et al., 2012).

However, identifying drug combinations with sufficient clinical efficacy
early in the drug development process is still a challenging task (Park
et al., 2004). Mathematical modeling can provide insights into what
drug has the highest potential for clinical success by, e.g., quantifying
BSV and other types of variability (Yin et al., 2019; Koga and Ochiai,
2019), which is often done in pharmacometrics using tumor growth
inhibition (TGI) models and the nonlinear mixed effects (NLME)
framework (Ribba et al., 2012; Leander et al., 2021).

An important objective of mathematical modeling is finding
threshold values, or target exposures, that when exceeded, are predicted
to lead to a specific treatment outcome (Koch et al., 2009; Goteti et al.,
2010; Miao et al., 2016). One commonly used target exposure is the so-
called Tumor Static Exposure (TSE) (Jumbe et al., 2010; Gabrielsson
et al., 2016; Cardilin et al., 2017). TSE is defined as all exposure that
results in tumor stasis and therefore separates the space of all exposures
into a region of tumor growth and a region of tumor shrinkage.
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However, because of this separation into two regions, TSE does not fully
correspond to the well-established Response Evaluation Criteria In Solid
Tumors (RECIST) classification, where patients’ response is measured
using four categories; progressive disease (PD), stable disease (SD),
partial response (PR), and complete response (CR) (Eisenhauer et al.,
2009).

In this paper, we aim to find analytical expressions that describe the
probability of RECIST classification, i.e., the proportion of patients in
each RECIST category, using a TGI model based on ordinary differential
equations (ODEs). Since the model does not explicitly predict tumor
eradication we combine CR and PR into a single category. This com-
bined category is commonly referred to as objective response rate
(Zettler et al., 2021). To adequately deal with BSV we use the NLME
framework and focus on the often used log-normal distribution
(Ouerdani et al., 2015). We combine the results from this analysis with
classical statistics to predict the necessary sample size required to ach-
ieve a certain significance level and test power when comparing two
treatments.

Moreover, we extend the TSE concept to better correspond to the
RECIST classification and allow for more informative clinical pre-
dictions. Sensitivity equations along with two other potentially inter-
esting exposures are also derived. The first of these describes the
exposure combinations that maximize the number of individuals cate-
gorized as SD and the other those combinations for which the number of
individuals in the CR&PR category is increased the most. Finally, to
illustrate our results, we calibrate the model to preclinical xenograft
data.

1.1. Tumor growth inhibition model

The exponential tumor growth model is often used to describe the
dynamics of tumor cells when an individual is given a combination of
different drugs (Yin et al., 2019; Choo et al., 2013; Ribba et al., 2014). If
we assume that M drugs are given simultaneously and the monotherapy
efficacy of the drugs is described by linear functions and the drug in-
teractions by quadratic terms, the turnover of tumor cells is given by,

dTS(t)
dt

=
(
kg − ΣM

i=1aiCi(t) − ΣM
i=1ΣM

j=1γijCi(t)Cj(t)
)
TS(t),TS(0) = TS0,

(1)

where TS is the tumor size, TS0 the initial tumor size, kg ≥ 0 the tumor
growth rate before start of treatment, and ai ≥ 0 and Ci ≥ 0 the potency
and concentration of drug i at time t, respectively. The parameters γij
describe the type and strength of the interaction effects between drugs i
and j, with γij = 0, γij > 0 and γij < 0 indicating an additive, synergic,
and antagonistic combination, respectively. For i = j we always have
γij = 0.

The analytical solution to Eq. (1) is,

TS(t) = TS0e
∫ t

0
kg,nt (τ) dτ

, (2)

where,

kg,nt(t) = kg − ΣM
i=1aiCi(t) − ΣM

i=1ΣM
j=1γijCi(t)Cj(t).

The time dependence of kg,nt is due to the drug dynamics’ and the
treatment schedule. If we assume no interaction effects, then the expo-
nent in Eq. (2) is,
∫ t

0
kg,nt(τ) dτ = kgt − ΣM

i=1ai
∫ t

0
Ci(τ)dτ

For any concentration profile, the integral of Ci is commonly referred to
as the area under the curve (AUCi,0− t) of drug i, hence the entire integral
can be written as,

∫ t

0
kg,nt(τ)dτ = kgt − ΣM

i=1
aiAUCi,0− t t

t
= (kg − ΣM

i=1aiCi)t

where Ci is the average concentration of drug i. If we consider the case
with interaction effects we will get terms on the following form,
∫ t
0 γij Ci(τ)Cj(τ)dτ. Here, pharmacokinetic models of both drugs and the
treatment schedule must be considered to solve to the integral. How-
ever, the general form it will take is,
∫ t

0
γijCi(τ)Cj(τ)dτ = γijAUCij(t).

Thus, as we saw before, the potency terms will always consist of average
concentrations, whereas the interaction terms have more complicated
expressions. We compute the integrals for specific choices of pharma-
cokinetic models in the Appendix. The upcoming analysis can be per-
formed in keeping with the exact expressions, however, in practice,
letting the average concentration drive the pharmacodynamic response
is often a reasonable modeling choice. Furthermore, given two con-
centration models, AUCij(t)will simply be a single scalar value, since we
later fix the time. Due to both of these reasons, we let Ci(t) = Ci. Under
this assumption, the interaction term integral becomes γijCiCjt. For
simplicity’s sake, we henceforward denote Ci with Ci. The system we
analyze thus becomes,

dTS(t)
dt

=
(
kg − S

)
TS(t),TS(0) = TS0, (3)

S = ΣM
i=1aiCi − ΣM

i=1ΣM
j=1γijCiCj

with the analytical solution,

TS(t) = TS0e(kg − S)t (4)

To account for BSV we use the NLME framework, where some of the
model parameters are assumed to follow a distribution across the pop-
ulation. In this paper, we focus on parameters that are log-normally (LN)
distributed as this often is the first choice in pharmacometrics. However,
the result from many mathematical operations between log-normally
distributed variables, e.g., addition or subtraction, have intractable Cu-
mulative Distribution Functions (CDFs) (Ben Hcine, 2014). This means
that for the analytical analysis, we can only consider the case with a
single log-normally distributed parameter in the ODE part of Eq. (3). To
be able to capture the dynamics of both untreated and treated in-
dividuals we choose this parameter to be kg.

In general, any log-normally distribution parameter, θ, can be rep-
resented in the following manner,

θ = θmeη

where θm is the median population value and η ∼ N(0,ω2).

1.2. Modeling of preclinical data

Gao et al. have published a large dataset where different drug com-
binations were tested in patient-derived xenograft (PDX) mice (Gao
et al., 2015). From this publication, we used tumor volume time series
data from the trial where PDXs, established from patients with colorectal
cancer (CRC), were either untreated (N = 45) or given BYL719 and
binimetinib as either mono (N = 44 in both arms) or combination
therapy (N = 43). 10 mg/kg doses of binimetinib were administered
orally twice daily for both treatment arms. This treatment schedule has
been tested in rats previously and it was found that the average con-
centration was approximately 12 μg/mL (Center for Drug Evaluation
and Research. Multi-Disciplinary Review and Evaluation NDA, 2015).
BYL719 was also given orally, but with daily doses of 50 mg/kg and 25
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mg/kg for the monotherapy and combination therapy treatment arms,
respectively. We perform a linear extrapolation of the average concen-
tration based on previous findings in both humans and rats and found
that these treatment schedules give approximately an average concen-
tration of 5.6 μg/mL and 2.8 μg/mL, respectively. (Center for Drug
Evaluation and Research. Pharmacology Review of Alpelisib., 2018).

The standard dosing time was 21 days and, therefore, we only use
data up to this day. All data is shown in Fig. 1 and to analyze the data we
use the model presented in Eq. (3) with C1 and C2 being the average
concentration of binimetinib and BYL719, respectively.

Using Monolix, a maximum likelihood approach utilizing the Sto-
chastic Approximation Expectation Maximization algorithm (SAEM) is
used to obtain the parameter estimates (Delyon et al., 1999; Monolix,
2021). kg and TS0 are assumed to be uncorrelated and log-normally
distributed with medians given by kmg and TSm0 and standard deviations
by ωkg and ωTS0 . A proportional zero-mean normally distributed error
term, with standard deviations s is used to describe the difference be-
tween the model predictions and the data. The model fit is validated
based on the precision of parameter estimates, individual fits, likelihood
values, and residual plots.

1.3. Clinical RECIST Categorization

In clinical oncology studies, patients’ response is categorized using
RECIST (Eisenhauer et al., 2009). The tumor size, in terms of the sum of
the longest diameters (SLD) for all target lesions, is measured at the start
of treatment (baseline) and at subsequent checkups, typically every 6 or
8 weeks. How much the tumor has grown or shrunk at time T from the
baseline is calculated according to,

ρ = 100%
TS(T) − TSbaseline

TSbaseline
. (5)

During check-ups, patients are classified as CR&PR if ρ ≤ − 30%, as PD if
ρ ≥ 20%, and as SD otherwise. Since TS is influenced by the parameters’
distributions it is a random variable. Consequently, ρ is also a random
variable and by considering its CDF at t = T, the probability of classi-
fication at a chosen time point, denoted as PCR&PR, PPD and PSD, can be
obtained.

It should be noted that this is only based on the criteria for the target
lesion progression and for PD it is the nadir measurement that is used
instead of the baseline. However, in the model, the nadir and baseline
values are the same for an individual with disease progression.

1.4. Sample size predictions

Denote the proportion of patients classified as CR&PR in two inde-
pendent studies (same sample size) by p1 and p2. The sample size
required to show an ∊ difference between p1 and p2 is given by,

n =

(
zα
2
+ zβ

)2

∊2
(p1(1 − p1) + p2(1 − p2) ), (6)

where z is the standard score, α the confidence level, and 1 − β the power
of the test (Sakpal, 2010; Wang and China, 2007).

1.5. Target exposure

To illustrate the classical TSE concept, we consider Eq. (3) with two
drugs (M = 2). We solved the ODEwith the right-hand side equal to zero

Fig. 1. Tumor volume time series of PDX mice.
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to find the median TSE equation for this model. From this, we solve for
one of the concentrations, e.g., C2, and arrive at the following expression
describing the necessary C2 to induce tumor stasis as a function of C1 and
the model parameters,

C2 =

(
kg − a1C1

)

γ12C1 + a2
. (7)

An example of a TSE curve is shown on the left side of Fig. 4. However,
this equation is not affected by the treatment period, and can thus be
problematic to use for predicting clinical efficacy.

2. Results

In this section, the parameter estimates from the modeling are first
shown. Next a lemma that gives analytical expressions for the proba-
bility of classification to each RECIST category is presented and a proof
of it can be found in the Appendix. This lemma is then used to state and
prove a theorem detailing how one can predict the necessary sample size
of a study to show a difference between two treatments with a specific
significance level and test power. Following this, an extended version of
the classical TSE concept, that incorporates the treatment period, is
derived. Finally, we also present two target exposure equations for
guiding study design along with sensitivity equations.

2.1. Modeling

The model was able to describe the data well and individual fits (A.1-
A.4), observation versus predictions plot (A.5), and residual plots (A.6)
are found in the Appendix. Furthermore, all parameters were estimated
with good precision, in terms of relative standard errors (RSE), and are
shown in Table 1.

2.2. RECIST probability

The probability of satisfying the criteria for each RECIST category
can be found by first combining Eqs. (4) and (5), which leads to,

ρ = 100%
(
TS0e(kg − S)t − TS0

TS0

)

= 100%
(
e(kg − S)t − 1

)
. (8)

Next, we need to evaluate the CDF of ρ. Note that since the initial tumor
size cancels out in Eq. (8), the upcoming result is applicable for any
reasonable assumption of its distribution. For simplicity’s sake, we will
assume that it is constant. Hence, we also drop the index from ωkg and let
ω be the standard deviation of kg in the analytical analysis. Throughout
the paper we let Φ denote the CDF of the standard normal distribution, i.
e.,N(0, 1).

Lemma 1. Assume a TGI model with tumor dynamics given by Eq. (3),
where kg∼ LN(log(kmg ),ω). Then the probability of being classified to each of
the three response categories at time t = T can be expressed as,

PCR&PR = χlog(0.7)
T +S>0

ϕ

⎛

⎜
⎝log

⎛

⎜
⎝

log(0.7)
T + S
kmg

⎞

⎟
⎠/ω

⎞

⎟
⎠,

PPD = 1 − Φ

⎛

⎜
⎝log

⎛

⎜
⎝

log(1.2)
T

+ S

kmg

⎞

⎟
⎠

/

ω

⎞

⎟
⎠, (9)

PSD = Φ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log

⎛

⎜
⎝

log(1.2)
T +S
kmg

⎞

⎟
⎠

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− χlog(0.7)
T +S>0

Φ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log

⎛

⎜
⎝

log(0.7)
T +S
kmg

⎞

⎟
⎠

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A proof of the lemma can be found in the Appendix. The three proba-
bilities in Lemma 1 are shown in Fig. 2, as functions of the average
concentration, for the binimetinib monotherapy group with t = 21 days
along with the parameters from Table 1. We can see that PCR&PR and PPD
are both monotone functions. However, this is not the case for PSD with
these parameter values.

Theorem 1. Assume that the efficacy of M drugs is being compared with
the efficacy of the same M drugs minus one of the drugs, that the tumor
dynamics be provided by Eq. (3), where kg ∼ LN(log(kmg ),ω) and
log(0.7)

T +S > 0. Then the predicted sample size required, n, to show an
∊ = Φ(z2) − Φ(z1) difference in objective response rate between the two
treatments at the end of the trial, with a significance level of α and power
1 − β, is given by,

n =

(
zα
2
+ zβ

)2
(Φ(z1)(1 − Φ(z1) ) + Φ(z2)(1 − Φ(z2) ) )

(Φ(z2) − Φ(z1) )2
,

or

n =

(
zα
2
+ zβ

)2
(

π
2
−
( ∫ z1̅̅

2
√

0 e− t2dt
)2

−
( ∫ z2̅̅

2
√

0 e− t2dt
)2
)

(∫
z2̅̅
2

√

0 e− t2dt −
∫

z1̅̅
2

√

0 e− t2dt
)2

, (10)

where z1 = log

⎛

⎜
⎝

log(0.7)
T +ΣM− 1

i=1 aiCi+ΣM− 1
i=1 ΣM− 1

j=1 γijCiCj

kmg

⎞

⎟
⎠/ω and z2 =

log

⎛

⎜
⎝

log(0.7)
T +ΣM

i=1aiCi+ΣM
i=1ΣM

j=1γijCiCj

kmg

⎞

⎟
⎠/ω.

Proof. An application of Lemma 1 in combination with Eq. (6) and the
CDF of the standard normal distribution yields the result.∎

Fig. 3 shows an application of the theorem for testing the efficacy of
binimetinib given as monotherapy versus it in combination with
2.6 μg/mL BYL719. The significance level and test power are 95 % and
80 %, respectively. The model parameters are taken from Table 1 with
t = 21 days and the concentration used in the trial is marked in red.

2.3. Target exposure

Proposition 1. Assume a drug combination of two drugs, tumor dynamics
given by Eq. (3), where kg ∼ LN(log(kmg ),ω), and
log(0.7)

T +a1C1 +a2C2 +γ12C1C2 > 0. Then the relationship between drug ex-
posures and a specific probability of CR&PR and PD classification, Px, are

Table 1
Estimated parameters.

Parameter Units Estimate
(RSE)

Description

a1 mLμg− 1days− 1 4 ⋅ 10-3 (12) Potency of binimetinib
a2 mLμg− 1days− 1 6 ⋅ 10-3 (12) Potency of BYL719
γ12

(
mLμg− 1days− 1)2 5 ⋅ 10-4 (17) Interaction effect

TSm0 mm3 225 (1) Median initial tumor volume
kmg days− 1 0.05 (5) Median growth rate
ωTS0 − 0.18 (6) Standard deviation of initial

tumor volume
ωkg − 0.57 (7) Standard deviation of growth

rate
s − 0.12 (6) Standard deviation of error term
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given by,

C2 =
kmg eωZPx −

log(0.7)
T

− a1C1

a2 + γ12C1
,

(11)

C2 =
kmg eωZPx −

log(1.2)
T

− a1C1

a2 + γ12C1
,

(12)

respectively. Here ZPx is the inverse CDF of N(0, 1) evaluated at Px.

Proof. For log(0.7)
T + a1C1 + a2C2 + γ12C1C2 > 0,we have from Lemma 1

that,

PCR&PR = Φ

⎛

⎜
⎝log

⎛

⎜
⎝

log(0.7)
T + a1C1 + a2C2 + γ12C1C2

kmg

⎞

⎟
⎠/ω

⎞

⎟
⎠

Putting the probability equal to a specific value, Px, we have,

PCR&PR = Φ

⎛

⎜
⎝log

⎛

⎜
⎝

log(0.7)
T + a1C1 + a2C2 + γ12C1C2

kmg

⎞

⎟
⎠/ω

⎞

⎟
⎠ = Px,

log

⎛

⎜
⎝

log(0.7)
T + a1C1 + a2C2 + γ12C1C2

kmg

⎞

⎟
⎠/ω = Φ− 1(Px) = ZPx .

Now solving for C2 yields the exposure for CR&PR and exchanging
log(0.7) for log(1.2) gives the equation for PD.∎

Eqs. (11) and (12) are plotted together on the right side of Fig. 4,
using the parameters from Table 1 and t = 21 days, for the median in-
dividual, i.e., Px = 0.5. Together they separate all possible exposure
combinations of drugs 1 and 2 into three areas, each representing one of
the RECIST categories. Eq. (11) is also shown as a heatmap in Fig. 5, with
each axis representing one drug and the intensity representing the
proportion classified as CR&PR.

Having equations for PCR&PR also allows for its derivative to be found,
which in turn permits further analysis. One might e.g., be interested in
knowing when it is maximized, i.e., at what exposure level is an increase
in drug exposure most beneficial to the patient. Conversely, it might also
be of interest to knowwhen an increase in drug exposure leads to little or
no benefit to the patient. The following proposition answers the first of
these questions.

Proposition 2. Assume a drug combination of two drugs, tumor dynamics
given by Eq. (3) where kg ∼ LN(log(kmg ),ω), and
log(0.7)

T +a1C1 +a2C2 +γ12C1C2 > 0. Then the exposure pairs that maximize
dPCR&PR

dCi
, i = 1,2, are given by,

C2 =
kmg e− ω2

−
log(0.7)

T
− a1C1

a2 + γ12C1
.

(13)

Proof. From Lemma 1 we have that the probability of CR&PR classifica-
tion is,

Fig. 2. RECIST Predictions. The proportion of patients classified as CR&PR, PD, and SD at t = 21days given binimetinib as monotherapy, plotted as functions of the
average concentration.

Fig. 3. Predictions of Two Treatments. (Left) The required sample size prediction for testing binimetinib given as a monotherapy against it given in combination
with 2.6μg/mL BYL719. The average concentration of binimetinib used in the trial is marked with red. (Right) The predicted efficacy, in terms of the proportion of
patients with CR&PR for the monotherapy (blue) and the combination therapy (yellow). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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PCR&PR = Φ

⎛

⎜
⎝log

⎛

⎜
⎝

log(0.7)
T + a1C1 + a2C2 + γ12C1C2

kmg

⎞

⎟
⎠/ω

⎞

⎟
⎠.

Differentiating once, using that the derivative of a CDF is the corre-
sponding PDF and the chain rule, yields.

dPCR&PR

dC1
=

(a1 + γ12C2)e

− log2

⎛

⎜
⎝

a1C1+a2C2+γ12C1C2+
log(0.7)

T
kmg

⎞

⎟
⎠

/

ω2

̅̅̅̅̅̅
2π

√
ω
(
log(0.7)

T
+ a1C1 + a2C2+γ12C1C2

) .

(14)

Now, to find what exposure combinations maximize Eq. (14), we
differentiate again and solve it equal to zero.

d2PCR&PR

dC1
2 = −

(a1 + γ12C2)
2e− log2

⎛

⎜
⎝

a1C1+a2C2+γ12C1C2+
log(0.7)

T
kmg

⎞

⎟
⎠

2ω2

ω
̅̅̅̅̅̅
2π

√
(

a1C1 + a2C2 + γ12C1C2 +
log(0.7)

T

)2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

+

log

⎛

⎜
⎝

a1C1+a2C2+γ12C1C2+
log(0.7)

T
kmg

⎞

⎟
⎠

ω2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0

1+

log

⎛

⎜
⎝

a1C1+a2C2+γ12C1C2+
log(0.7)

T
kmg

⎞

⎟
⎠

ω2 = 0

Solving for C2 gives,

C2 =
kmg e− ω2

−
log(0.7)

T
− a1C1

a2 + γ12C1
.

(15)

Because of the symmetry between C1 and C2, the same equation is found
if one instead solves d2PCR&PR

dC2
2

= 0. ∎

Comparing Eqs. (11) and (15) we can see that they only equal each
other when ZPx = − ω, meaning that the combination of C1 and C2 that
result in dPCR&PR

dCi
being maximized is the same as those resulting in

Px= Φ( − ω). In other words, let say C1 is fixed to some value, then the C2

that results in PCR&PR = Φ( − ω) also results in dPCR&PR
dC2

being maximized.
Since Φ is the CDF of a standard normal distribution and ω > 0, we must
have that this is 0 ≤ Px ≤ 0.5. This implies that the probability of
CR&PR classification cannot be above 50 % at this target concentration.

As seen in Fig. 2 a drug exposure can exist that maximizes the
probability that a patient is classified as SD. The following proposition
provides an analytical equation for this concentration and conditions for
its existence.

Proposition 3. There exists a unique Ci > 0, i = 1,⋯,M, that maximizes
the probability of SD classification (third expression in Eq. (9) if and only if

ai > 0, and Qi <
− (log(0.7)+log(1.2))+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2)− log(0.7))2+(2Tkmg e− ω2 )
2

√

2RiT , where

Qi =
∑

j∕=iajCj +
∑

j,k∕=iγjkCjCk and Ri = (ai +
∑M

j=1γijCj).

Fig. 4. Tumor Static Exposure. (Left) Illustration of the classical TSE concept. Exposure combinations on the green lead to tumor shrinkage, whilst pairs on the red
lead to tumor growth. (Right) Illustration of RECIST predictions according to Proposition 1. Exposure pairs on the different colored areas are predicted to lead to the
corresponding RECIST classification. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. CR&PR Heatmap. The proportion of patients classified as CR&PR as a
heat map of the average concentration of drugs 1 and 2. Higher color intensity
indicates a higher proportion of CR&PR.
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Moreover, this maximum point is given by,

The proof of the proposition can be found in the Appendix.
Applying Proposition 3 with M = 2 gives the following relationship

between the average concentrations of the two drugs that maximize the
probability of SD,

There are some similarities between this expression and the one from
Proposition 2. (Eq. (15). However it is not immediately clear how these
relate to each other but the following corollary elucidates this.

Corollary 1. Call the target concentrations in Propositions 2 and 3 for CT2
2

and CT3
2 , respectively. By using the standard and reverse triangle inequality

we can place an upper and lower bound on CT2
2 , which involves CT3

2 , for a
fixed C1.

Writing X2 = (log(1.2) − log(0.7))2 and Y2 =
(
2Tkmg e− ω2

)2
, we have

that,

CT3
2 =

− (2Ta1C1+log(0.7)+ log(1.2))+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
X2+Y2

√

2(a1+γ12C2)T
≤

− (2Ta1C1+ log(0.7)+log(1.2))+X+Y
2(a1+γ12C2)T

=

=
− (2Ta1C1+log(0.7)+ log(1.2))+(log(1.2)− log(0.7))+2Tkmg e− ω2

2(a1+γ12C2)T
=

=
− (2Ta1C1+2log(0.7))+

(
2Tkmg e− ω2

)

2(a1+γ12C2)T
=
kmg e− ω2

−
log(0.7)

T
− a1C1

(a1+γ12C2)
=CT2

2

(18)

A similar calculation using the reverse triangle inequality shows that

CT3
2 ≤ CT4

2 +
log(1.2) − log(0.7)

T(a1 + γ12C2)
. (19)

Thus, we have that

CT4
2 ≤ CT3

2 ≤ CT4
2 +

log(1.2) − log(0.7)
T(a1 + γ12C2)

,

or

0 ≤ CT3
2 − CT4

2 ≤
log(1.2) − log(0.7)

T(a1 + γ12C2)
.

2.4. Sensitivity analysis

To gain further insight into the mathematical model we perform the
first step in a sensitivity analysis by differentiating the probability
functions presented in Lemma 1 with respect to kg and ai. The derivative

of PCR&PR with respect to ai is given by,

∂(PCR&PR(ai) )
∂ai

=

∂Φ

⎛

⎜
⎝log

⎛

⎜
⎝

log(0.7)
T

+ S

kmg

⎞

⎟
⎠

/

ω

⎞

⎟
⎠

∂ai
=

Cie− log2

⎛

⎜
⎝

log(0.7)
T +S
kmg

⎞

⎟
⎠

2ω2

̅̅̅̅̅̅
2π

√
ω
(
log(0.7)

T
+ S
).

(20)

To find the derivative with respect to kmg we utilize the chain rule and
end up with,

∂
(
PCR&PR

(
kmg
))

∂kmg
=

∂Φ

⎛

⎜
⎝log

⎛

⎜
⎝

log(0.7)
T

+ S

kmg

⎞

⎟
⎠

/

ω

⎞

⎟
⎠

∂kmg
= −

e− log2

⎛

⎜
⎝

log(0.7)
T +S
kmg

⎞

⎟
⎠

2ω2

̅̅̅̅̅̅
2π

√
ωkmg

.

(21)

The derivatives of the other categories are found through similar
calculations.

3. Discussion

The first step in our analytical analysis consists of deriving pre-
dictions of RECIST response (Eq. (9) for a commonly used TGI model
assuming that the average drug concentrations drive the model and that
the growth rate is log-normally distributed. A similar derivation is
possible for a large number of other models as long as they have an
analytical solution and the chosen parameter distributions result in
tractable CDF. The log-normal distribution is often a good choice for
these types of growth parameters when analyzing data in oncology.
However, often when a log-normally distributed random variable is
transformed, e.g., by addition to another log-normally distributed
random variable, the resulting CDF does not have an analytical solution
(Ben Hcine, 2014). Using a normal distribution instead would lead to
simpler expressions and allow for more parameters in the model to be
distributed. Hence, this could be interesting to investigate as well.

Ci =

− (2TQi + log(0.7) + log(1.2)) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2) − log(0.7))2 +
(
2Tkmg e− ω2

)2
√

2RiT
,

(16)

C2 =

− (2Ta1C1 + log(0.7) + log(1.2)) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2) − log(0.7))2 +
(
2Tkmg e− ω2

)2
√

2(a1 + γ12C2)T
.

(17)
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In the case of additive log-normal variables, the resulting CDF can be
approximated with, e.g., the Fenton-Wilkinsson approximation (Cobb
et al., 2012). Thus, in this case, approximate analytical expressions can
still be derived. However, more importantly, even though we cannot
derive exact analytical expressions for models with more than one log-
normally distributed parameter, approximations can still be found
through Monte Carlo simulations.

All our predictions are based on the criteria for target progression,
however, in a clinical trial, a patient can also be assigned as PD due to
non-target progression, e.g., due to the appearance of new tumor lesions.
Previous research has established a correlation between these two types
of progression, using either a sequential or joint modeling approach
(Claret et al., 2009; Yu et al., 2020). In the joint modeling approach, the
predictions from the TGI model correlate with the probability of non-
target progression. Thus, it is possible to continue the analysis pre-
sented in this paper by incorporating predictions of non-target
progression.

In dynamical system modeling of combination therapies, it is com-
mon that the efficacy of the combination of drugs A and B is the sum-
mation of the efficacy of the two respective drugs given as
monotherapies and a potential interaction term (Cardilin et al., 2017;
Gabrielsson et al., 2016; Koch et al., 2009; Pierrillas et al., 2018; Vakil
and Trappe, 2019). This naturally leads to the idea of equivalent expo-
sures, e.g., TSE, where the exposure reduction of one drug can be
compensated by an increase in exposure of the other drug, while still
achieving the desired treatment outcome. However, a popular

hypothesis for explaining the benefit seen in progression-free survival
(the time PD occurs) and response rates (PCR&PR) of combination ther-
apies is that of independent drug action (Palmer and Sorger, 2017; Plana
et al., 2022; Sun et al., 2021). The idea is that the response for a specific
individual given both drugs A and B is the best/maximum of the
respective monotherapies, where the correlation between them is also
considered.

Both of these approaches have been shown to fit data and have
predictive capabilities but are fundamentally different. The probabilistic
expression we present directly connects the dynamical model to the two
clinical endpoints and could thus be used to better understand these
findings. This is, however, outside the scope of this paper but is a highly
interesting topic for future work. The first step in this would be to
perform the derivations again but this time assuming that the drug
sensitivity is patient-specific.

3.1. Sample size

With Theorem 1 we establish a method for predicting the necessary
sample size for comparing two treatments given a specific significance
level and test power. The strength of this method is that it links the
sample size with model parameters, such as the drug exposure, and can
thus answer questions such as: If we change the treatment schedule how
manymore/fewer subjects do we need to recruit? Another example of its
use could be to determine what drug dose, within the therapeutic range
(Cooney et al., 2017), two treatments should be tested against each

Fig. A1. Individuals fits for the untreated group. Red dots are the experimental data and black lines the model predictions.
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other at to most likely find a significant difference or to minimize the
number of patients.

3.2. Target exposure

Treatment time is an important parameter in RECIST classification,
but it does not affect the TSE predictions. Moreover, as TSE only predicts
tumor growth or shrinkage, it is not possible to use this tool to predict
the clinically relevant SD category. Thus, we believe that TSE is not
entirely appropriate as a target exposure for clinical studies.

To remedy these shortcomings of TSE, we derived a similar target
exposure that can be viewed as an extension of the classical TSE concept.
The target exposure is derived in Proposition 1 and is more suited for
clinical predictions since it is both affected by the treatment time, T, and
allows for predictions of all RECIST categories. A further benefit is that it
is affected when model parameters are scaled, which gives this new tool
more translational relevance than TSE. Moreover, as the treatment time
approaches infinity the predictions converge to the TSE predictions, i.e.,
TSE can be seen as the steady-state solution to this new prediction tool.

We also derived two other potentially interesting exposure expres-
sions. The first maximizes the derivative of PCR&PR, i.e., at what exposure
does an increase in drug exposure have the highest benefit for the pa-
tient. As we previously mentioned, the PCR&PR where this has to occur
cannot be above 0.5. Therefore, drug combinations that are not tolerable

at these exposure levels are predicted to not reach clinical efficacy above
this. Depending on the severity of the disease, this may give an indica-
tion of what drugs to disregard for future study.

The second exposure expression maximizes the probability that a
patient is classified as SD and is similar to TSE in that both, in a sense,
aim for tumor homeostasis. Even though SD is not the best patient
response, it has been shown to correlate with improvements in disease-
related symptoms and quality of life (Kelly, 2003). Aiming for SD could
thus strike a balance between efficacious treatment and toxicological
effects and could potentially be used to give an idea of an appropriate
starting exposure for dose-escalation phase I studies.

3.3. Sensitivity analysis

The sensitivity expressions with respect to the two types of model
rate parameters, kg and ai, are shown in Eqs. (20) and (21). Since these
parameters are candidates for inter-species translational scaling or
replacement, these expressions could potentially be used to better un-
derstand how the scaling/replacement affects the model dynamics. This
could facilitate the search for a better way of scaling these types of semi-
mechanistic tumor models that better capture the inter-species differ-
ences. If successful, this would make sure that fewer clinically ineffica-
cious drugs enter the clinical development stage.

Fig. A2. Individuals fits for the binimetinib group. Red dots are the experimental data and black lines the model predictions.
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Fig. A3. Individuals fits for the BYL719 group. Red dots are the experimental data and black lines the model predictions.
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4. Conclusions

We derived probabilistic expressions from a commonly used TGI
model describing the proportion of patients categorized in each RECIST
category. The expressions were used to predict the necessary sample size
required to achieve a certain significance level and test power. The

expressions were also used to derive equations for the necessary expo-
sure combinations of two drugs that result in a certain proportion of
patients being categorized in each RECIST category. This can be seen as
an extension of the classical TSE concept.

Furthermore, two other exposure equations were derived using the
same probabilistic expression. The first describes when an increased
drug concentration is predicted to be most beneficial to the patients and
the second at what concentration level a patient is most likely classified
as SD. Preclinical data was also analyzed using the presented model and
the parameter estimates were used to illustrate the analytical results.
Finally, to facilitate translational research we also present the sensitivity
of the RECIST predictions with respect to the model parameters.
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Appendix

Concentration Dynamics Analysis.
In the main analysis, we let the average drug concentration drive the pharmacodynamic response. Here we show that the analysis can also be

performed using both a dynamical concentration model and a repeated dosing schedule.
Assume that drugs are given with a repeated dosing schedule where s = (s1, s2,⋯, sN) are the days the drugs are given to patients, and that the

concentration dynamics are given by, See Figs. A1-A6

Ci(t) =
∑N

j=1
C0,ie− ke,i tH(t − sj),

where H is the Heaviside function and C0,i and ke,i are the initial concentration and elimination rate of drug i, respectively.
The integral of the monotherapy terms in Eq. (2), then becomes

∫ t

0
aiCi(t)dτ = aiC0,i

∫ t

0

∑N

j=1
e− kei (τ− sj)H(τ − sj)dτ,

= aiC0,i

∑N

j=1
eke,i sj

∫ t

sj
e− ke,iτdτH(t − sj),

=
aiC0,i

ke,i

∑N

j=1
eke,i sj (1 − e− ke,i t)H(t − sj).

For the interaction terms we have,
∫ t

0
γikCi(t)Ck(t)dτ =

∫ t

0

∑N

j=1
γike

− ke,i(τ− sj)e− ke,k(τ− sj)H(τ − sj)H(τ − sj)dτ

Fig. A6. Individual weighted residual (IWRES) plotted against time (left) and tumor volume (right).

M. Baaz et al. Journal of Theoretical Biology 595 (2024) 111969 

12 



= γikC0,iC0,k

∑N

j=1
e(ke,i+ke,k)sj

∫ t

sj
e− (ke,i+ke,k)τdτH(t − sj),

=
γikC0,iC0,k

ke,i + ke,k

∑N

j=1
e(ke,i+ke,k)sj (1 − e− (ke,i+ke,k)t)H(t − sj).

Thus, we can see that given a treatment schedule and knowledge of the drug dynamics, in this case ke,i and C0,i, all these integrals will reduce to scalar
values multiplied by the potency/interaction parameter.

Model Validation plots.
Proof of Lemma 1.
We introduce the assumption that kg is log-normally distributed to Eq. (8) and find the sought probabilities by considering the distribution of η.

Using Eq. (8), the probability for CR&PR classification can be written as,

PCR&PR = P
(
100%

(
e(k

m
g eη − S)T − 1

)
≤ − 30%

)
= P

(
(kmg e

η − S)T ≤ log(0.7)
)
= P

⎛

⎜
⎝η ≤ χlog(0.7)

T +S)>0
log

⎛

⎜
⎝

log(0.7)
T + S
kmg

⎞

⎟
⎠

⎞

⎟
⎠

= χlog(0.7)
T +S>0

ϕ

⎛

⎜
⎝log

⎛

⎜
⎝

log(0.7)
T + S
kmg

⎞

⎟
⎠

/

ω

⎞

⎟
⎠, (A1)

where χ is an indicator function. A similar calculation shows that the probability for PD classification is given by,

PPD = P
(
100e(k

m
g eη − S)T − 100 ≥ 20

)
= 1 − ϕ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log

⎛

⎜
⎝

log(1.2)
T

+ S

kmg

⎞

⎟
⎠

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A2)

Since SD occurs if neither CR&PR nor PD has been achieved, we have that,

PSD = 1 − PCR&PR − PPD = Φ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log

⎛

⎜
⎝

log(1.2)
T

+ S

kmg

⎞

⎟
⎠

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− χlog(0.7)
T +S>0

Φ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log

⎛

⎜
⎝

log(0.7)
T

+ S

kmg

⎞

⎟
⎠

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A3)

Proof of Proposition 3
Assume that ai > 0 and Qi is sufficiently small for there to exist Ci ∈ R + such that PCR&PR(Ci) ∕= 1. Then there exists Ci ∈ R + such that PSD(Ci) > 0.

Moreover, using the CDF of the normal distribution and Eq. (9) (third expression), we have that,

lim
Ci→∞

PSD(Ci) = 0,

and PSD ≤ 1 ∀Ci ∈R +. Therefore, there has to exist at least one maximum point of PSD on R +. The maximum point has to be either Ci = 0 or one of the
extreme points. We find all extreme points by solving ∂(PSD(Ci))

∂Ci
= 0.

We assume that log(0.7)
T + S > 0. Using the chain rule and the fact that the derivative of a CDF is the PDF we have that,

∂(PCR&PR(Ci) )

∂Ci
=

∂Φ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log

⎛

⎜
⎝

log(0.7)
T

+ S

kmg

⎞

⎟
⎠

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∂Ci
=

(
ai +

∑M
j=1γijCj

)
e− log2

⎛

⎜
⎝

log(0.7)
T +S
kmg

⎞

⎟
⎠

2ω2

̅̅̅̅̅̅
2π

√
ω
(
log(0.7)

T
+ S

) .

(A4)

Similarly, we have,
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∂(PPD(Ci) )

∂Ci
= −

∂Φ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log

⎛

⎜
⎝

log(1.2)
T

+ S

kmg

⎞

⎟
⎠

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∂Ci
=

Rie− log2

⎛

⎜
⎝

log(1.2)
T +S
kmg

⎞

⎟
⎠

2ω2

̅̅̅̅̅̅
2π

√
ω
(
log(1.2)

T
+ S

),

(A5)

and thus,

∂(PSD(Ci) )

∂Ci
=

Ri
̅̅̅̅̅̅
2π

√
ω

⎛

⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎞
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T
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) −
e− log2

⎛

⎜
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T +S
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T
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. (A6)

To find the extreme points, we put the right-hand side of Eq. A(6) equal to zero. Since 1
x = e− log(x), we have,

e
− log2

⎛

⎜
⎝

log(1.2)
T +S
kmg

⎞

⎟
⎠

2ω2 − log

(
log(1.2)

T +S

)

= e
− log2

⎛

⎜
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log(0.7)
T +S
kmg

⎞

⎟
⎠

2ω2 − log

(
log(0.7)

T +S

)

.

(A7)

Taking the logarithm of both sides yields,

log2

⎛

⎜
⎝

log(0.7)
T

+ S

kmg

⎞

⎟
⎠

2ω2 + log
(
log(0.7)

T
+ S

)

=

log2

⎛

⎜
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log(1.2)
T

+ S

kmg

⎞
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2ω2 + log
(
log(1.2)

T
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)
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(A8)

Writing X = log

⎛

⎜
⎝

log(0.7)
T +S
kmg

⎞

⎟
⎠ and Y = log

⎛

⎜
⎝

log(1.2)
T +S
kmg

⎞

⎟
⎠, we have that,

X2

2ω2 + X =
Y2

2ω2 + Y. (A9)

Solving Eq. A(9) for X we have that,

X = − ω2 ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ω4 + Y2 + 2Yω2

√
. (A10)

Since ω4 + Y2 + 2Yω2 = (ω2 + Y)2, we have that,

X1 = Y,

X2 = − 2ω2 − Y.

However, since log(0.7) ∕= log(1.2), X ∕= Y, thus, X2 is the only valid root. Reinserting the definitions of X and Y into the second root, we have that,

log

⎛

⎜
⎝

log(0.7)
T + S
kmg

⎞

⎟
⎠ = − 2ω2 − log

⎛

⎜
⎝

log(1.2)
T + S
kmg

⎞

⎟
⎠,

log

⎛

⎜
⎜
⎝

(
log(0.7)

T + S
)(

log(1.2)
T + S

)

(kmg )
2

⎞

⎟
⎟
⎠ = − 2ω2,
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(
log(0.7)

T + S
)(

log(1.2)
T + S

)

(kmg )
2 − e− 2ω2

= 0.

Reinserting the definition of S and solving this equation for Ci yields,

Ci =

− (2T Qi + log(0.7) + log(1.2) ) ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2) − log(0.7) )2 +
(
2Tkmg e− ω2

)2
√

2Ri T
.

(A11)

Since log(0.7) + log(1.2) < 0, we have,

Ci =

− (2T Qi + log(0.7) + log(1.2) ) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2) − log(0.7) )2 +
(
2Tkmg e− ω2

)2
√

2Ri T
< 0,

(A12)

and therefore this solution is not a valid concentration. The other root,

Ci =

− (2T Qi + log(0.7) + log(1.2) ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2) − log(0.7) )2 +
(
2Tkmg e− ω2

)2
√

2Ri T
,

(A13)

can be both negative and positive depending onQi. Therefore, there exists at most one extreme point on R
+. Thus, for certain Qi Eq. A13 is positive

and the first part of the proof is complete. The next step in the proof is to determine what restriction has to be put on Qi for Eq. A13 to be positive.
There exist no extreme points on R + if and only if ∂(PSD(0))

∂Ci
< 0, since limCi→∞PSD(Ci) = 0, PSD(0) > 0, and there exists at most one extreme point on

R +. Conversely, if and only if ∂(PSD(0))
∂Ci

> 0 an extreme point exists on R +. Therefore, we can find a criterion on Qi such that ∂(PSD(0))
∂Ci

> 0.
From Eq. A13, we have that,

Ci +
Qi

Ri
=

− (log(0.7) + log(1.2) ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2) − log(0.7) )2 +
(
2T kmg e− ω2

)2
√

2Ri T
(A14)

Putting Ci = 0, we then have an equation for ∂(PSD(0))
∂Ci

= 0,

Qi =

− (log(0.7) + log(1.2) ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2) − log(0.7) )2 +
(
2T kmg e− ω2

)2
√

2T
,

15)

and thus, if Qi <
− (log(0.7)+log(1.2))+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(log(1.2)− log(0.7))2+(2kmg e− ω2 )
2

√

2T , then ∂(PSD(0))
∂Ci

> 0 and the extreme point given by Eq. A13 has to be the unique con-
centration that maximizes PSD.∎
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