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1 Supplemental Note 1: Labeling data of battery aging modes

It has been experimentally validated that the three aging modes, i.e., LLI, LAMPE, and LAMNE, can be identified
and quantified from pseudo-OCV measurements of a battery cell [1]. For the training of Model 2, we employ the
diagnostic algorithm from [1] to label all aging mode data over the battery’s lifespan, using the cell’s pseudo-OCV
obtained during the RPT test (specified in Section 5.1.3 of the main text) and the OCV-related parameters and
functions in the SPMe battery model. The details are introduced in the remainder of this section.

The cell OCV, Uocv(SoC), is defined as the difference between the positive electrode OCP curve (UP ) and the
negative electrode OCP curve (UN ), i.e.,

UOCV(SoC) = UP (θ
+)− UN (θ−), (1)

where θ+ and θ− are stoichiometric variables, indicating the lithiation level of the positive and negative electrodes,
respectively. Usually, the cell is operated between the predefined cut-off voltage levels Uh and Ul, which are defined
as

Uh = UP (θ
+
EOC)− UN (θ−EOC), (2)

Ul = UP (θ
+
EOD)− UN (θ−EOD). (3)

By consolidating (1)–(3), the cell OCV at time t can be represented as a static function of SoC(t), θ+EOC, and θ−EOD,
as given by

UOCV(t) = fOCV

(
SoC(t), θ+EOC, θ

−
EOD

)
, (4)

where θ+EOC and θ−EOD are aging-related parameters and considered constants within the period of a charge. The
analytical form of fOCV() can be derived from (1)–(3).

Once UOCV is measured and SoC is estimated, e.g., using the method developed in [2], then θ+EOC and θ−EOD

can be identified by solving the following optimization problem that minimizes the difference between the measured
OCV, ŪOCV, and the estimated OCV

[θ+,∗
EOC, θ

−,∗
EOD] = arg min

θ+
EOC,θ−

EOD

∫ tend

t0

[
ŪOCV(t)− fOCV

(
SoC(t), θ+EOC, θ

−
EOD

)]2
dt, (5)

where t0 and tend are the starting and end time for slow charging events, respectively. Solving such an optimization
problem periodically as the battery is gradually aging, the stoichiometric parameters of the positive and negative
electrodes can be acquired and used to quantify the battery degradation modes through the following two-step
scheme:

Firstly, the lithium inventory (LI) of the battery at the current cycle number l can be calculated as the sum of
the usable lithium inventory in the positive and negative electrodes, i.e.,

LIl = LI+l + LI−l , (6)

LI+l =
Cl

θ+EOD,l − θ+EOC,l

θ+, (7)

LI−l =
Cl

θ−EOC,l − θ−EOD,l

θ−, (8)
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where LI+l and LI−l are the lithium inventory in the positive and negative electrode, respectively, and Cl is the battery
cell capacity. Then, the LLI can be calculated as

LLI = 1− LIl
LI0

, (9)

where LI0 is the lithium inventory when the battery is new.
Secondly, the LAM will theoretically lead to a shrinking of the OCP [1] and, correspondingly, a reduction of the

usable capacity in the electrode that can be represented as

LAMPE = 1−
C+

l

C+
0

, (10)

C+
l =

Cl

θ+EOD, l − θ+EOC,l

, (11)

LAMNE = 1−
C−

l

C−
0

, (12)

C−
l =

Cl

θ−EOC,l − θ−EOD,l

, (13)

where C+
0 and C−

0 represent the initial capacity of the positive and negative electrodes, respectively.
Noteworthy, the scheme above for quantifying battery degradation modes requires solving the nonlinear opti-

mization problem formulated in (1)–(5) in real-time. This process is not only computationally expensive but also
requires the battery to operate in its full SoC window jointly defined by θ+EOC, θ

−
EOC, θ

+
EOD, and θ−EOD, which is not

practically viable for real-world vehicle applications. Consequently, we only use this scheme to label data samples in
the training set and propose an ML-based method, i.e., Model 2, to estimate these aging modes for real-world usage.

2 Supplemental Note 2: Implementation and comparative analysis for
SoH indicator estimation

2.1 Implementation of Model 1

Features. The methodology employed for estimating battery capacity in this study aligns closely with the machine
learning (ML) framework delineated in [3]. The comprehensive feature pool used in this work is presented below.
First, the total charging time between the designated SoC window is selected, as it will gradually change as the
battery degrades. Secondly, the energy value of the current and voltage are also selected and are calculated using
the following equation

E =

∫ ∞

0

s(t)2 dt, (14)

where s(t) is the signal, manifesting as the current and voltage in this context. Thirdly, the integrals of the current
and voltage curves are deemed to be reflective of the battery’s aging process and, hence, are selected for inclusion in
the feature set. Fourthly, the evolving steepness of the voltage curve, which becomes more pronounced with aging,
is also considered a vital feature. Finally, the temperature is acknowledged as a significant factor influencing overall
battery behavior and is therefore incorporated into the feature array. For the histogram-usage-related features,
accumulated energy throughput is calculated between each RPT cycle to form the input for the one-step-ahead
prediction model.

ML algorithms. In total, four distinct ML algorithms are included in the pipeline. Two of them are probabilistic-
based, namely Gaussian process regression (GPR) and Bayesian regression (BR), and the other two are frequentist-
based, which are random forest regression (RFR) and artificial neural network (ANN).

2.2 Benchmarks for SoH indicators

The first type of benchmark is to a single LSTM model whose outputs are the four SoH indicators, and the inputs
are the same as those of Model 2. The hyperparameters used for the LSTM are listed in Table S1. The second
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type of benchmark includes linear regression (LR), Elastic net (EN), GPR, BR, RFR, and ANN. For each of these
point-to-point estimation models, the features constructed from time-series data in Section 2.1 are used as inputs,
and the four SoH indicators are outputs.

Table S1: Hyperparameters of the LSTM in Model 2.

Parameter name Parameter value range
First LSTM layer cell number 16
Output LSTM layer cell number 1
Learning rate 0.001
Batch size 256
Early stopping 25
Epochs 100

2.3 Comparative analysis

Capacity estimation. The results of battery capacity estimation utilizing Model 1 and its two types of benchmarks
are presented in Table S2. The Kalman filter (KF)-based model fusion algorithm performs equally well as the best-
performed ML algorithm, i.e., GPR, and surpasses all the other individual ML algorithms in battery capacity
estimation. This demonstrates the improved estimation accuracy and robustness of our developed Model 1.

Table S2: Comparison of the proposed algorithm with two benchmarks for battery state of health (SoH) capacity
estimation.

Metrics
The proposed Benchmarks of type 1 Benchmarks of type 2
Model fusion LR EN GPR BR RFR ANN LSTM

MAE (%) 0.077 0.228 0.273 0.077 0.346 0.298 3.751 0.918
RMSE (%) 0.131 0.295 0.374 0.131 0.445 0.451 4.616 0.978

Aging mode quantification. The comparative results of Model 2 against its benchmarks (i.e., the type 1
benchmarks introduced in Section 2.2) for quantifying the three aging modes are presented in Table S3. The data
reveals that the LSTM model exhibits superior accuracy in estimating LAMNE and LAMPE. In the case of LLI, the
LSTM model’s performance is marginally outpaced by the best-performing RFR model, with a difference of 0.091%
in MAE. Based on such results, we, therefore, select LSTM in Model 2 for battery aging mode quantification.

Table S3: Comparison of different ML algorithms on battery aging modes estimation results

Evaluation metrics Degradation mode LR EN GPR BR RFR ANN LSTM

MAE
(%)

LAMNE 1.888 3.308 0.958 1.888 0.876 2.912 0.375
LAMPE 0.693 2.245 0.289 0.693 0.366 1.371 0.269
LLI 0.349 1.069 0.139 0.348 0.109 0.581 0.200

RMSE
(%)

LAMNE 2.973 5.151 1.436 2.973 2.201 4.886 0.546
LAMPE 1.038 3.892 0.513 1.038 0.804 2.312 0.439
LLI 0.349 1.069 0.245 0.520 0.238 0.971 0.289

3 Supplemental Note 3: Model 3 versus benchmarks for plating poten-
tial estimation

In addition to Model 3, which incorporates our proposed underestimate-enhanced long short-term memory (UE-
LSTM) network, this study also implements three other ML-based models for comparative analysis, i.e., a gated
recurrent unit (GRU) neural network, an ANN and a transformer. The hyperparameters used for each algorithm are
detailed in Table S4.
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Table S4: Hyperparameters of the models for plating potential estimation

Model Parameter name Parameter value range

UE-LSTM

First LSTM layer cell number 16
Output LSTM layer cell number 1

Learning rate 0.005
Batch size 256

Early stopping 25
Epochs 200

GRU

First GRU layer cell number 16
Output GRU layer cell number 1

Learning rate 0.005
Batch size 256

Early stopping 25
Epochs 200

ANN

First dense layer neuron number 4096
Second dense layer neuron number 1024
Third dense layer neuron number 128
Fourth dense layer neuron number 32

Learning rate 0.005
Batch size 100000

Early stopping 25
Epochs 200

Transformer

Number of heads 4
Model dimension 32

Feedforward dimension 64
Number of layers 2
Dropout rate 0.01
Learning rate 0.002
Batch size 256

Early stopping 25
Epochs 200

Table S5 delineates the comparative results of these three ML models for plating potential estimation over the
same test set. Our proposed UE-LSTM model stands out by achieving the lowest errors and the highest compu-
tational efficiency. The GRU model, while slightly inferior to UE-LSTM, still maintains a commendable level of
accuracy and efficiency. This distinction in performance is attributable to the fact that both UE-LSTM and GRU,
as recurrent neural networks, process the entire time series data in a unified manner, thus efficiently managing
long-term dependencies, retaining state information across sequences, and offering enhanced comprehension of the
temporal context in the data. Conversely, the ANN model, constrained by its inability to process the entire time
series data simultaneously, resorts to analyzing individual time points independently for estimations. This approach
not only diminishes the accuracy of the results but also necessitates extended durations for training and testing. The
Transformer model, while slightly closer in accuracy than GRU, still trails the LSTM with an MAE of 4.01 mV and
an RMSE of 5.91 mV. This suggests that although the Transformer performs better than ANN, it does not surpass
LSTM or GRU in this estimation task. Regarding the Transformer model, we recognize that with more extensive
tuning, there is a possibility that its performance could match or even surpass that of the LSTM. However, given the
complexity and large number of hyperparameters in the Transformer architecture, we adopted a random search ap-
proach for hyperparameter tuning, testing 100 different configurations. The values reported represent the best results
from this search. Despite this effort, the Transformer did not achieve the same level of accuracy as the LSTM, and
it also required more computational resources. This highlights the balance between model complexity and practical
performance in this context, reinforcing the value of using LSTM for estimating battery plating potential.
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Table S5: Comparison of LSTM and its three benchmarks in the estimation of battery plating potential.

Evaluation metrics GRU ANN Transformer UE-LSTM
MAE (mV) 3.40 10.43 4.01 3.37
RMSE(mV) 4.82 16.36 5.91 4.77
Training time (s) 856 1128 1898 680
Testing time (s) 3.13 69.71 83 2.87

4 Supplemental Note 4: Electrode materials information

The electrode materials used in the three-electrode experiments are bought from CUSTOMCELLS Holding GmbH.
The cathode is composed of lithium nickel manganese cobalt (NMC) oxide, and the anode is composed of artificial
graphite. The detailed information is summarized in Table S6.

Table S6: Specifications for battery active materials.

Cathode Anode
Material NMC811 Artificial Graphite
Active material content (%) 96 95
Specific capacity (mAh/g) 175 355
Collector foil type Aluminum Copper
Collector foil thickness (µm) 20 14
Nominal Voltage (V) 3.7 0.1
Area capacity (mAh/cm2) 2 2.5
Density (g/cm3) 2.9 1.7
Porosity (%) 38 25

5 Supplemental Note 5: Parameters of the employed SPMe-aging bat-
tery model

The parameter values for the physics-based are taken from [4], and the battery specification is presented in Table S7.
Table S8 lists temperature and aging-related parameters that are altered to generate different aging trajectories.
The visualization of the simulation results are shown in Fig. S1. It can be seen that many cells demonstrate
distinct patterns of capacity degradation, with clear non-linear characteristics. Similarly, the SoH indicators exhibit
pronounced non-linearity over the cycle life, as visualized in Supplemental Information Fig. S2.

Table S7: Technical specifications of LG M50T battery cell.

Cathode NMC811
Anode Graphite with 10% SiOx

Nominal capacity 5 Ah
Voltage range 2.5–4.2 V
Operating temperature -20–50 ◦C

6 Supplemental Note 6: Additional estimation results from Models 1
and 2

Figs. S3–S8 present additional estimation results for the four targeted SoH indicators using Models 1 and 2, in which
different partial SoC operating windows have been used.
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Table S8: EM parameter values used for synthetic data generation.

Parameter name Parameter value range
SEI exchange current density i0,sei [0, 1e-15, 1e-14, 1e-13, 1e-12]
LAMPE constant parameter β [0, 1e-5, 5e-5, 1e-4, 5e-4]
LAMNE constant parameter β [0, 1e-5, 5e-5, 1e-4, 5e-4]
Temperature (K) [273.15, 288.15, 298.15, 308.15, 318.15]
Charge and discharge C rates [0.1, 0.5, 1, 1.5, 2]

Figure S1: The overall simulation profiles generate synthetic data for plating potential estimation. (a) is the aging
curves of all simulated cells; the cells with short lifetimes are shown in red, whereas the cells with long lifetimes are
shown in blue. (b)-(d) shows a random cell current, voltage, and temperature profile used during cycling; the light
blue represents the new cell state, and the darker blue represents the aged state.
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Figure S2: Nonlinear behavior of SoH indicators over the battery cycle life. Each color represents a different randomly
selected cell.

Figure S3: Estimation results of the four SoH indicators for batteries operated under 20%–50% SoC window.
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Figure S4: Estimation results of the four SoH indicators for batteries operated under 30%–60% SoC window.

Figure S5: Estimation results of the four SoH indicators for batteries operated under 40%–70% SoC window.
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Figure S6: Estimation results of the four SoH indicators for batteries operated under 50%–80% SoC window.

Figure S7: Estimation results of the four SoH indicators for batteries operated under 60%–90% SoC window.
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Figure S8: Estimation results of the four SoH indicators for batteries operated under 70%–100% SoC window.
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7 Supplemental Note 7: Post-disassembly characterization studies of
the CC-CV and CC-Cη cells

The stress difference between the two cycling strategies on the negative electrode was evident during the process
of separating the separator from the negative electrode sheet. In the CC-CV cycling group, the separator and the
graphite material were firmly attached, whereas in the CC-Cη group, the separation was relatively easy. We attribute
this to a significant amount of lithium plating in the CC-CV group, where metallic lithium adhered firmly to the
separator. The post-mortem images of the negative electrode material cycled with CC-CV and CC-Cη clearly exhibit
different morphologies, as shown in Fig. S9. The rough surface and grey metallic color of the CC-CV cycled negative
electrode strongly suggest the onset of lithium plating.

(a) CC-CV cycled cell (b) CC-Cη cycled cell

Figure S9: Post-mortem images of the negative electrode material

8 Supplemental Note 8: Performance comparison of the cells with and
without reference electrode.

The introduction of reference electrodes to measure the individual electrode potential is promising. However, the
negative effect of the introduced reference electrode on the battery needs to be understood as well. Here, we conduct
a series of performance comparison tests on the cells with or without reference electrodes to evaluate the difference
between these two different cases.

Fig. S10 presents the C-rate performance tests of four cells: two equipped with reference electrodes and two
without. As seen in the figure, the cells with reference electrodes exhibit marginally lower available capacity under
different C-rates compared to those without reference electrodes. We attribute this slight reduction in capacity to the
possibility that the reference electrode may block certain active material areas, resulting in a minor loss of available
capacity.

Additionally, we performed AC impedance tests using Electrochemical Impedance Spectroscopy (EIS) with si-
nusoidal signals of 1 mA amplitude across frequencies ranging from 0.01 Hz to 10,000 Hz at four different states of
charge. The comparison results are shown in Fig. S11. It is evident that the cell with a reference electrode exhibits
slightly higher resistance than the cell without a reference electrode, the difference is minor and the impedance
characteristics follow a similar behavior.

It is also important to note that the reference electrode we used is a ring reference electrode placed at the boundary
of the separator, which differs from setups in some other studies that use only a metal line. This setup provides a
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Figure S10: C-rate performance comparison of the cells equipped with and without reference electrode. Cells 3 and
4 are equipped with reference electrodes and Cells 1 and 2 are without reference electrodes.

more accurate and reliable measurement of the individual electrode potential. The layout of the three-electrode cell
used in our experiments is provided in Fig. S12.

However, it is important to emphasize that this minor difference does not detract from our motivation to pursue
the lithium plating potential-controlled charging strategy. The results indicate that the presence of a reference
electrode does not significantly affect the key finding of our study: the ability to achieve faster charging without
lithium plating, ultimately extending battery lifetime.
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Figure S11: Comparison of the EIS curve for cells with and without reference electrode. Cell 4 is equipped with a
reference electrode and Cell 1 is without a reference electrode.

Figure S12: The layout of the used three-electrode cell setup [5].
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