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Machine learning-based lifelong estimation of lithium plating potential: A path
to health-aware fastest battery charging

Abstract

To enable a shift from fossil fuels to renewable and sustainable transport, batteries must allow fast charging and
exhibit extended lifetimes—objectives that traditionally conflict. Current charging technologies often compromise one
attribute for the other, leading to either inconvenience or diminished resource efficiency in battery-powered vehicles.
For lithium-ion batteries, the way to meet both objectives is for the lithium plating potential at the anode surface
to remain positive. In this study, we address this challenge by introducing a novel method that involves real-time
monitoring and control of the plating potential in lithium-ion battery cells throughout their lifespan. Our experimental
results on three-electrode cells reveal that our approach can enable batteries to charge at least 30% faster while almost
doubling their lifetime. To facilitate the adoption of these findings in commercial applications, we propose a machine
learning-based framework for lifelong plating potential estimation, utilizing readily available battery data from electric
vehicles. The resulting model demonstrates high fidelity and robustness under diverse operating conditions, achieving
a mean absolute error of merely 3.37 mV. This research outlines a practical methodology to prevent lithium plating
and enable the fastest health-conscious battery charging.

Keywords: Lithium-ion battery, lithium plating potential estimation, fast charging, data-driven models, machine

learning.

1. Introduction

At the forefront of a transition to sustainable mobility are lithium-ion (Li-ion) batteries, because of their high
energy density, cost-effectiveness, and durability, establishing themselves as the primary power source for electric
vehicles (EVs) [} 2 3L 14]]. Yet, as the industry strives to match the convenience of traditional fueling methods, it
encounters significant hurdles in fast-charging technology that do not compromise battery lifespan [J5].

Rapid charging introduces a dilemma; on the one hand, it necessitates high current levels, leading to excessive
heat generation that, if not adequately dissipated through advanced thermal management systems, can significantly
accelerate several battery aging mechanisms, such as solid electrolyte interface (SEI) growth [6, [7]. On the other,
even when thermal issues are addressed, the escalated current can trigger intricate mechanical and electrochemical
reactions within the battery, further exacerbating its degradation [8]. These challenges have catalyzed a plethora of
research aimed at developing fast-charging strategies while protecting the health of the battery [9}10].

Among the myriad of factors influencing battery degradation during fast charging, lithium plating emerges as a
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critical concern [10} [11} [12]. This phenomenon—characterized by the deposition of metallic lithium on the anode’s
surface—directly undermines the battery’s capacity and efficiency by reducing the cyclable lithium and impeding
the normal intercalation process. The consensus among researchers is that lithium plating needs to be prevented
for prolonged battery life and maintained performance during rapid charging [13} [14} 15 [16]. Recent studies have
demonstrated that the microstructural inhomogeneities in graphite electrodes significantly influence the onset and
severity of lithium plating, necessitating the refinement of both electrode design and charging protocols [[17]. Despite
a well-established theoretical foundation for regulating the plating potential to mitigate this issue [5, 13} [18]], empirical
validation and practical application of such strategies, especially over the battery’s lifespan, remain limited.

Methods to extract the information of plating potential can be categorized into three groups, including direct/indirect
measurements, model-based methods, and data-driven methods [S} [8l]. The most straightforward approach involves
inserting a lithium metal reference electrode between the negative electrode and separator of a battery cell to enable
the measurement of the anode voltage during battery operation [18| [19]. However, the insertion of such reference
electrodes can be practically challenging due to the incurred additional costs and space requirements, making it un-
feasible for any cost- and energy-density-sensitive applications. Moreover, the normal electrochemical reaction may
be affected by the inserted reference electrode, for example, by blocking certain areas for Li-ion intercalation and dein-
tercalation [20} 21]]. Last but not least, if lithium metal was used as the reference electrode, the extra lithium added
to the cell may participate in the charge and discharge reactions, potentially altering the cell’s behavior compared to a
normal cell without reference electrodes.

Using a high-fidelity model to estimate the detailed internal battery states is another way to capture the plating
potential information during battery usage. Lu et al. [22] constructed an equivalent circuit model (ECM) and used an
extended Kalman filter to estimate the plating potential. However, due to the coupled effect of the cathode and anode,
the plating potential may become unidentifiable. Another commonly employed class of model for such an estimation
task is physics-based models, such as the pseudo-two-dimensional (P2D) model [23]]. In contrast to the ECM, which
only captures the battery’s lumped electric behavior, the P2D model uses the porous electrode and concentrated
solution theory to simulate the internal electrochemical reactions, which can predict the plating potential’s evaluation
in response to external operating conditions. Based on the P2D model coupled with thermal dynamics, Ringback et
al. [24]] designed an observer to estimate the plating potential together with its lower bound in the presence of model
uncertainties. Compared to employing the full-order electrochemical model, which requires an excessive amount
of computational power and a complex solver to solve the partial differential-algebraic equations (PDAE), control-
oriented models that require light computation while capturing key battery dynamics are desired. Following this
trend, Li et al. [25] designed an observer for the plating potential based on the single particle model (SPM). The SPM
can achieve reasonable accuracy at low to moderate current rates but lose fidelity at high currents. Additionally, to
successfully use physics-based models, it is essential to have accurate parameters. However, identifying a large set
of parameters over various battery operation conditions, e.g., different state of charge (SoC) levels, current profiles,
temperatures, and different health levels, remains an open research question [26, |27]. Moreover, even with a reliable
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and simplified electrochemical model, running it for every battery cell is still computationally challenging, considering
the targeted applications often contain hundreds or even thousands of cells.

Due to the ever-increasing awareness of collecting battery operation data and employing the concept of cloud
battery management systems (BMS) to access much higher computational power, data-driven methods have gained
popularity in dealing with battery diagnosis and prognosis. With sufficiently large and high-quality datasets, data-
driven methods often demonstrate excellent performance in estimating or predicting battery SoC, state of health (SoH),
and remaining useful life (RUL) [28] [29] [30, 31]]. In this regard, data-driven methods can be a good candidate,
whereas there are very limited attempts to estimate battery plating potential and avoid the onset of lithium plating
during charging. Lin [32] adopted a long short-term memory neural network (LSTM) to estimate the plating potential
using synthetic data generated from a physics-based battery model. However, only limited operating conditions were
considered, e.g., the constant current charging, standard driving profiles, and short time horizon, which may hinder the
model’s applicability. Hamar et al. [33] further extended the work to incorporate more realistic operating conditions
with different cycling temperatures, various initial SoC levels, and multi-step constant charging. Nonetheless, under
the same charging conditions repeated over different cycles, the plating potential can be significantly affected by how
the battery has aged [14} [18]. In fact, old batteries are more prone to trigger lithium plating. Therefore, it is crucial
to consider the impact of battery aging on the plating potential. To the best of our knowledge, there is no established
work capable of accurately and online estimating the plating potential over the battery’s entire life.

Our study aims to combine theoretical insights with practical applications in the fast charging of batteries, driven
by two principal innovations. First, we validate the effectiveness of a plating potential controlled charging method
using three-electrode battery cells, demonstrating marked improvements in both battery lifetime and charging rate
over conventional methods. Building upon this foundation, we then develop an innovative ML-based framework for
the lifelong estimation of battery plating potential, thus avoiding the three-electrode setup. This framework utilizes
real-time measurements to learn electrochemical behaviors on a fast timescale alongside online estimated SoH indica-
tors for which the effect of aging on plating potential has been learned. Comprehensive validation of this framework
through extensive battery cycling data under diverse operating conditions and aging levels demonstrates its robust-
ness and accuracy. These innovations collectively represent a significant stride towards health-aware, fast-charging

solutions for EV batteries.

2. Results and discussion

2.1. Three-electrode cell experiments

In the experimental setup, the EL-CELL PAT-Cell was used for testing three-electrode cells, as illustrated in Fig.[Th
and b. For the three-electrode cells, Nickle Manganese Cobalt (NMC) oxides of type 811 were used as the positive
electrode, and artificial graphite was used as the negative electrode, both supplied by Customcells Itzehoe GmbH.

Detailed specifications of the electrode materials are available in the Supplemental Information (i.e., Note 4). All the
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cell assembling operations were carried out in an argon-filled glove box. First, the electrode sheets were die-cut to

a coin size with a diameter of 18 mm. Then, the positive electrode, the negative electrode, and the separator were

assembled into the PAT-Cell stack. Borosilicate glass fiber separators (260 um, Whatman FG/A) were used, in which

a lithium metal ring served as a reference electrode to measure the electrode potential during battery operation. The

electrolyte used was a 90 uL lithium hexafluorophosphate solution in a mixture of ethylene carbonate and dimethyl

carbonate (LiPF6 LP50). The nominal capacity of the assembled three-electrode cells is 5 mAh, which is used as the

basis when defining C-rates in subsequent test instructions.
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Figure 1: The three-electrode cell test setup used for experiments. (a) shows the EL-cell three-electrode cell holder. (b) illustrates the internal

structure of the cell and the measured signals, including the cell voltage Uy and the anode voltage Ung. (c) illustrates the current and anode

potential profiles of a studied cell at different aging levels and under CC-Cn charging. (d) illustrates the current and anode potential profiles of

another studied cell under CC-CV charging. (e) presents the aging curves of four cells experiencing the two different charging strategies.



The experimental procedures were carried out in a controlled temperature chamber (ESPEC LHU-124), utilizing
the PAT-Stand-1 cell holder, and subjected to cycling using a NEWARE coin cell cycler. The temperature chamber
was maintained at a constant temperature of 25°C. After the assembly of the cells, a formation cycle was executed
following the guidelines provided by Customcells. The formation cycle profile was first, according to Profile 1,
repeated twice as listed in Table|l| then following Profile 2, repeated twice. To assess the aging status of the battery
cells, reference performance tests (RPTs) were scheduled every 25 normal cycles. During these tests, Profile 3 was

executed twice, and the average value of the two discharge capacities was defined as the cell’s reference capacity.

Table 1: CC-CV charging and CC discharging profiles for the designed three-electrode cell experiment.

Charge phase Discharge phase
Current | Voltage limit | Cut-off condition | Current | Voltage limit

Profile 1 0.1C 4.2V 1/25C 0.1C 3V

Profile2 | 0.2C 4.2V 1/25C 0.2C A%
CC-CvV

Profile 3 1C 4.2V 1/10C 1C 3V

Profile 4 1.5C 4.2V 1/10C or 4 mAh 1C 3V
CC-Cn | Profile 5 2C 4.5V 4 mAh 1C 3V

In this study, a total of four cells were assembled and used in the experimental campaign. Two of the cells
served as a reference group, undergoing constant current-constant voltage (CC-CV) charging according to Profile 4 in
Table[T] The charging process for these cells was terminated when the current met 0.1C or the accumulated charged
capacity reached 4 mAh, which is equivalent to 80% of the nominal capacity (see Fig. [Id). The remaining two cells
were operated under a lithium-plating-free charging strategy, wherein the charging current was controlled to maintain
non-negativity of the plating potential (1), i.e. ensuring 7 > 0. A safety margin of 1 mV is applied to account for the
potential variability of the plating potential measurement. Designated as Profile 5 and referred to as CC-Cn charging,
this approach constituted the experimental group for advanced comparative analysis (depicted in Fig. [Ic). Here, a
higher current value was adopted in the CC stage for CC-Cn charging compared to CC-CV, ensuring that the two
strategies have comparable charging durations. This arrangement facilitates a direct comparison of their effects on
battery degradation. For all the defined tests, we measured and collected data on current, voltage, temperature, and
plating potential at a sampling frequency of 1 Hz.

The rationale for maintaining a positive plating potential (7 > 0) to prevent the initiation of lithium plating
is grounded in equilibrium thermodynamics principles [15} [34] 135, 36], which are used to explain when lithium
plating begins. According to this theoretical framework, lithium plating becomes thermodynamically favorable when
the potential of the graphite electrode falls below 0 V versus Li/Li*. This situation may arise if the intercalation
reaction experiences significant kinetic limitations, leading to a large overpotential. This overpotential can surpass

the equilibrium potential of the lithium-graphite phase diagram, consequently causing the graphite potential to drop



below 0 V versus Li/Li*. While this voltage criterion alone is not sufficient to guarantee lithium plating, it is a
necessary condition for its occurrence [37,38]]. Thus, from a practical application perspective, using this criterion is

both feasible and advantageous for mitigating lithium plating.

2.2. Synthetic data generation

To cover wide operating conditions and diverse aging trajectories that batteries may encounter in real-world appli-
cations, synthetic data was generated by simulating a single particle model, including electrolyte dynamics (SPMe),
and coupled with several aging mechanisms. The modeling of battery aging is an active research area. So far, there is
no universally accepted model that covers all aging mechanisms possibly triggered in typical Li-ion batteries. In this
regard, three major aging mechanisms are considered in the simulations, including SEI layer growth in the anode and
loss of active materials in the anode and cathode [39]]. For a more detailed introduction to the employed SPMe-aging
model, readers are referred to the literature works [40l 41} [39]. It is worth mentioning that apart from these three aging
mechanisms, lithium plating is also known as one of the major aging mechanisms during the usage of Li-ion batter-
ies, particularly at high charging currents, low temperatures, high SoC levels, and in aged cells [42] 43]. However,
since this study eventually aims to develop a fast-charging strategy capable of keeping the plating potential positive
to prevent lithium plating, we do not consider it in the simulation model.

By varying aging-related parameters sequentially, the above battery model was simulated extensively on the plat-
form PyBaMM [44]] under a wide range of operating conditions (as detailed in Section #.1.3). The simulations that
were conducted resulted in a large synthetic dataset consisting of two parts. One part of the dataset includes time-
series data of current, voltage, temperature, and plating potential recorded at a sampling rate of 1 Hz. The other
part contains four SoH indicators, i.e., the battery capacity, lithium inventory loss (LLI), loss of active materials in
the negative electrode (LAMng), and loss of active material in the positive electrode (LAMpg), recorded at the end
of each RPT cycle. To partially visualize the dataset, the generated 1,392 aging trajectories are depicted in Fig. S1
(see Supplemental Information). With the end of life defined at 80% of the nominal capacity, it can be seen that the
battery lifetimes corresponding to the different parameter settings span from 20 to 2000 cycles. Further details for the

employed battery model and its implementation are introduced in Section 4.1}

2.3. Lifelong estimation framework for plating potential

In this study, we introduce an innovative framework designed for the lifelong estimation of plating potential, as
illustrated in Fig. 2] Central to our approach are two pivotal tasks executed through the integration of three ML
models. Specifically, the framework employs two slow timescale models (Model 1 and Model 2) for estimating the
battery’s capacity and the three aging modes both on a slow timescale and Model 3 for estimating the plating potential
on a fast timescale. This structured framework leverages the strengths of each model to deliver an accurate, robust,

and real-time estimation of the plating potential over the battery’s lifespan.



For Model 1, the inputs, also called features, are manually constructed from time-series and histogram-based
raw data, e.g., the slope of the voltage curves and the accumulated energy throughput. The output of this model
is battery capacity. For Model 2, the inputs include time-series current, voltage, and temperature measurements,
while the outputs are the three aging modes (namely LLI, LAMpg, and LAMyg). Considering the nature of slow
aging dynamics, we develop Model 1 and Model 2 from the data collected during RPT tests, which, as specified in
Section|2.1] were conducted every 25 normal cycles. For real-world vehicle applications, the data samples for training
these two ML models can be collected during destination charging, in which the charging current is low (often lower
than 1/8C). This provides beneficial conditions, such as wide SoC ranges, relatively stable temperatures, and mild
lithium diffusion processes, for extracting high-quality data samples. To label the four SoH indicators as the model
output, the battery capacity can be calibrated according to Profile 3 of Section 2.1} and the three aging modes are
calculated from the open-circuit voltage (OCV), as introduced in Note 1 of the Supplemental Information.

With the plating potential as the unique output, Model 3 has two types of inputs. The first type of input comprises
time-series current, voltage, and temperature measurements, from which we aim to learn the fast battery dynamics.
As the ultimate target is to optimize battery charging performance in real-time, the input data could be extracted from
the corresponding fast charging profile. The second type is the four outputs from Model 1 and Model 2, by which
we inform Model 3 of the battery health characteristics. Essentially, Model 3 combines time-series and non-temporal
features to adaptively estimate the plating potential over the battery’s entire lifetime. To pave the way for later
conservative fast-charging control implementation, an underestimated plating potential result is preferred compared
to an overestimate. We therefore propose an underestimate-enhanced long short-term memory (UE-LSTM) to refine
the precision of plating potential estimations while inherently biasing towards underestimations. The idea is to ensure
prediction accuracies but with a preference for conservative estimates.

In the proposed framework, the three ML models operate in parallel. At low current rates, such as those en-
countered during destination charging, the risk of lithium plating diminishes, reducing the necessity for real-time
plating potential estimation. In such circumstances, it may be unnecessary to activate Model 3. Conversely, during
fast charging, precise estimation of the plating potential becomes critical to prevent lithium plating, highlighting the
critical role of Model 3. It is worth mentioning that this framework can be seamlessly integrated with existing vehicle
BMS, utilizing readily available measurements to enable onsite quantification of all the SoH indicators and real-time

estimation of the plating potential.

2.4. Results of the three-electrode cell test

By implementing the experiments designed in Section[2.1] the aging trajectories of all the studied battery cells can
be obtained, as depicted in Fig.[Tg. To the best of our knowledge, these are the first published experimental results
that directly measure the plating potential and use it to dynamically control the charging current in a closed-loop
fashion during the battery’s lifelong operation. It can be seen that at the end of the test, corresponding to 325 normal

cycles, both cells in the CC-CV group had passed their end of life, with a SoH below 80%. Specifically, these cells
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Figure 2: The proposed framework for lifelong estimation of battery plating potential.

suffered from a sharp capacity loss, i.e., 12% of the nominal capacity, within the first 50 cycles, attributed to the
onset of lithium plating, as evidenced by the negative plating potential shown in Fig. [Id. In contrast, the two cells
in the CC-Cn group were able to retain an SoH above 87% beyond the 325th cycle, suggesting a markedly extended
lifespan compared to their counterparts. This improvement is derived from the CC-Cn charging strategy continuously
monitoring the plating potential and ensuring its non-negativity.

Beyond extending battery lifetime, the CC-Cr charging strategy significantly surpassed CC-CV charging in terms

of efficiency. It also achieves a 30% initial reduction in charging time and a 40% reduction by the 200th cycle, as



illustrated in Fig. [Te—d.

The above experimental results demonstrate that real-time control of the charging profile based on the plating
potential (17) can significantly extend battery lifetime while enabling faster charging. These findings not only confirm
the viability of health-aware fastest charging but also point out how to achieve it. It strongly motivates the lifelong
estimation of 7 in Section given it is not economically feasible to incorporate reference electrodes into each
commercial battery.

Conventionally, the evaluation of a given charging strategy with respect to battery degradation and lifetime relies
heavily on extensive experiments over thousands of cycles, especially considering diverse operating conditions. As
per the results in Fig. |1} the long-term effects of different charging strategies on battery health can be largely revealed
by the profile of 7 in the early cycling stage, thus significantly mitigating the need for extremely time-consuming and
expensive experiments. This benefit will, in turn, accelerate the improvement and optimization process of existing

battery materials and design for faster charging and a longer lifetime.

2.5. Estimation results for SoH indicators

The results for the estimation of the four SoH indicators using Model 1 and Model 2 applied to the full SoC
operating window are presented in Fig. [3h and the two first rows of Table 2] The models exhibit high estimation
fidelity for all the SoH indicators, achieving a mean absolute error (MAE) below 0.4% and a root-mean-square error
(RMSE) below 0.55%. The estimation accuracy is slightly lower in LAMyg compared to LAMpg. However, although
the estimation of LAMg results in the highest average error among all the indicators, the absolute error remains
within 1.07% for 95% of the test dataset, underscoring the model’s high accuracy and robustness across a broad
spectrum of operating conditions. The relatively reduced accuracy in LAMyg estimations, as compared to LAMpg,
may be attributed to the more flat open-circuit potential (OCP) of the anode compared to that of the cathode, which
complicates the discernment of LAMyg variations via the cell’s current and voltage. This observation aligns well with
previous findings in [43].

For the training of our ML algorithms, we extensively varied aging-related parameters in the simulation to generate
a large and diverse synthetic dataset. For further examination, we randomly select a simulated battery cell from the
dataset. The estimation trajectories for each SoH indicator over the cell’s entire lifetime are shown in Fig. 3p. As
can be seen, the estimates closely follow the calibrated values, with maximum estimation errors staying well within
the +2.5% error bounds. This verifies the prediction capability of our developed Models 1 and 2. It is important to
note that the randomly selected simulated cell, exhibiting nearly linear SoH indicator trajectories, is a special case.
Among the 1,392 simulated aging trajectories, the aging behavior of other cells varies significantly. As illustrated
in Fig. S1 (see Supplemental Information), many cells demonstrate distinct patterns of capacity degradation, with
clear non-linear characteristics. Similarly, the SoH indicators exhibit pronounced non-linearity over the cycle life,
as visualized in Fig. S2. To underscore the necessity of employing the proposed non-linear model, we benchmark

it against two linear models for estimating the SoH indicators. The results from these comparisons strongly indicate
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that a non-linear approach is crucial for accurately capturing the complex aging behavior of batteries. A detailed

comparison of the results is provided in Tables S3 and S4 (see Supplemental Information).
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Figure 3: Estimation results of the four SoH indicators for batteries operated under the full SoC window. (a) displays the histogram results for all

data samples in the test set. For a randomly selected ‘cell’ from the simulation pool, (b) presents the estimated trajectories against their ground

truth along the equivalent full cycles.
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In real-world vehicular applications, battery discharge and charge cycles rarely span the full 0—-100% SoC window.
Instead, batteries typically undergo various partial charging cycles, including the aforementioned destination charging
for EVs. Such a context necessitates a comprehensive evaluation of the developed ML models for SoH indicator
quantification under realistic charging conditions. Accordingly, we assess the performance of Model 1 and Model 2
across six distinct usage scenarios, each characterized by a unique SoC window. Table [2| presents the estimation
errors for the four SoH indicators across these scenarios. Despite a slight reduction in accuracy relative to the full
SoC window scenario, the obtained estimates maintain high reliability, with average errors remaining below 1% for
all the scenarios and SoH indicators. These results point to the real-world applicability of Model 1 and Model 2 as
used in the proposed estimation framework. Note 6 of the Supplemental Information provides more results regarding

the overall estimation errors under different usage conditions.

Table 2: Estimation results for battery SoH indicators under different charging scenarios.

SoC window (%) SoH capacity (%) LAMNg (%) LAMpg (%) LLI (%)
0-100 MAE 0.077 0.375 0.269 0.200
- RMSE 0.131 0.546 0.439 0.289

MAE 0.335 0.458 0.268 0.232
20-50

RMSE 0.429 0.702 0.421 0.370

MAE 0.357 0.603 0.344 0.241
30-60

RMSE 0.554 0.777 0.887 0.872

MAE 0.431 0.470 0.451 0.312
40-70

RMSE 0.719 0.789 0.641 0.432

MAE 0.389 0.580 0.633 0.398
50-80

RMSE 0.610 0.880 0.982 0.586

MAE 0.335 0.557 0.393 0.255
60-90

RMSE 0.429 0.859 0.673 0.408

MAE 0.099 0.544 0.385 0.161
70-100

RMSE 0.165 0.956 0.578 0.245

2.6. Estimation results for lifelong plating potential

1) Noise specification for model training. In the development of Model 3, we have meticulously accounted for
uncertainties inherent to the estimation of SoH indicators and the measurement of current, voltage, and temperature
encountered in real-world applications. This is achieved by augmenting the training dataset with Gaussian white
noise, thereby simulating the influence of estimation and measurement inaccuracies on model training. For all four

SoH indicators, the noise is calibrated based on the most challenging real-world conditions, using the largest RMSE
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observed across the six partial charging scenarios (as highlighted in Table 2 to define the standard deviation of the
Gaussian noise. The choice of measurement noise for current, voltage, and temperature is based on the specifications
and experience of widely utilized battery sensor technologies. Specifically, we used the sensor noise with standard
deviations corresponding to Level 4 defined in Table[d]as the default.

2) The overall performance of Model 3. Our examination of the plating potential estimation, as delineated in
Fig. 4] reveals that Model 3 is capable of predicting the battery’s plating potential with a high degree of accuracy
over the entire lifespan, limiting the maximum error to less than 20 mV. This precision is further highlighted in the
zoomed-in section of Fig[h, where the cumulative error histogram demonstrates that 95% of the estimations maintain
an absolute error below 10 mV. Further quantitative analysis, represented in the last row of Table[3] showcases that the
model has an MAE of 3.37 mV and an RMSE of 4.77 mV. These values affirm the model’s high fidelity and robustness
in estimating the plating potential across diverse operating conditions.

A detailed case study, illustrated in Fig. [k, tracks the plating potential estimation for a randomly selected cell
throughout its lifespan. The performance in estimating plating potentials near 0 V, essential for optimizing battery
charging performance, is highlighted in the zoomed-in figure. This in-depth analysis reveals the model’s capacity to
not only closely follow the cell’s true trajectory of plating potential but also adapt dynamically to its aging status.

3) The effect of different SoH indicators. Four established SoH indicators have been integrated into the feature
set of Model 3. To study the importance of the individual SoH indicators for plating potential estimation. We change
the number of SoH indicators utilized inside the model, resulting in four alternative models characterized by their
inputs, where Model 3a utilizes only the directly measured current, voltage, and temperature (see Tabl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>