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ABSTRACT
AI and Machine Learning (ML) models are increasingly used as
(critical) components in software systems, even safety-critical ones.
This puts new demands on the degree to which we need to test them
and requires new and expanded testing methods. Recent boundary-
value identification methods have been developed and shown to
automatically find boundary candidates for traditional, non-ML
software: pairs of nearby inputs that result in (highly) differing
outputs. These can be shown to developers and testers, who can
judge if the boundary is where it is supposed to be.

Here, we explore how this method can identify decision bound-
aries of ML classification models. The resulting ML Boundary Span-
ning Algorithm (ML-BSA) is a search-based method extending
previous work in two main ways.We empirically evaluate ML-BSA
on seven ML datasets and show that it better spans and thus bet-
ter identifies the entire classification boundary(ies). The diversity
objective helps spread out the boundary pairs more broadly and
evenly. This, we argue, can help testers and developers better judge
where a classification boundary actually is, compare to expecta-
tions, and then focus further testing, validation, and even further
training and model refinement on parts of the boundary where
behaviour is not ideal.
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1 INTRODUCTION
Artificial Intelligence (AI) and Machine Learning (ML) models are
increasingly used both during software development but also inte-
grated into software systems themselves [1, 7]. While the use cases
and goals of such models vary widely, models that do some form
of classification into a small set of finite classes are commonplace.
Well-known examples from the literature are loan approvals, in-
surance coverage, drug prescription, or user verification [18]. In
many cases, the form of the ML model doesn’t lend itself to hu-
man understanding, i.e., the models are opaque, and it is hard to
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Figure 1: The plot illustrates the decision tree boundaries and
two sets of boundary candidates over the simple non-linear
synthetic binary classifier (synth) that separates all inputs
(x and y coordinates) into valid and invalid. We argue for
the need to identify boundaries as well-diversified boundary
candidate sets.

understand and explain why the model predicts one class over an-
other. This raises issues of fairness, justice, and ethics, and there
are several known cases where biases in the training data lead to
classification models favouring one group over another [17, 18].
Some researchers even argue that opaque ML models (black boxes)
should not be used in safety-critical scenarios at all [18].

Regardless of the ML model form and the level to which it can be
inspected, software developers that now also develop and integrate
ML models in their systems need methods and testing tools to
describe model behaviour. Even if a model can be studied in its
static form, it is not clear that all of its dynamic behaviours, when
executed on inputs, can be clearly understood. From a software
testing viewpoint, static or formal analysis of ML models is not
enough to test models only close to where they have been trained.
In particular, for ML classification models, testing methods that can
identify the decision boundaries between the classes could help
developers judge if the current model is good enough or if further
refinement and testing are needed.

In the current ML research literature, there has been some focus
on the boundaries, mainly when it comes to identifying counter-
factual explanations (CFE) and in so-called adversarial example
generation [10, 19, 20]. While these methods differ in purpose, they
both try to find small changes to existing inputs that change the
model output. However, since they focus on specific starting inputs,
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they are not focused on identifying decision boundaries that are
further away from the training data. From a testing perspective,
this is not ideal and would, metaphorically, correspond to only test-
ing a piece of software close to the normal, already-known inputs.
We need methods to systematically explore and span the decision
boundaries of ML classification models around the training data
and in less explored areas of the input space.

Recently, progress has been made to identify boundaries for tra-
ditional software automatically, i.e. automating the classical testing
technique of boundary value analysis/testing [4, 6, 8, 14]. In this
paper, we explore how these techniques can be used to address the
ML testing challenges outlined above, focusing on the commonali-
ties, i.e. any ML model is also a piece of software and thus can be
tested as such, rather than the differences [5]. We, therefore, extend
the concept of boundary squeezing, which has been previously
proposed for traditional software testing [14], with new methods
for automated boundary testing [4, 6] into a method to span the
boundaries of ML classification models more systematically. The
key underlying idea is the program derivative [8], which helps
circumvent the oracle problem by offering a way to zoom in on or
squeeze two points on different sides of a boundary. Two points
are a good boundary candidate pair if they are close together in the
input space while having as different outputs as possible. However,
from a testing perspective, it is not sufficient to find any bound-
ary candidates. We want candidates that reflect different parts of
the input space. They can then help point engineers and testers
to interesting areas in the input space, preferably with guidance
and tooling that removes complexity and limits the selection of
escalated boundary candidates or situations to the bare minimum
to reduce overwhelm. Thus, these cases should ideally be well sep-
arated and spread along the decision boundary. Thus, we try to
answer the question:

RQ How can we detect decision boundaries for ML classification
models?

As part of the question, we want to understand whether we can
obtain a set of well-diversified candidates using recent automated
testing method achievements for traditional software. We exemplify
the problem with a synthetic binary classifier synth and evaluate
it on seven datasets. synth has two inputs, x and y, as well as a
single output for the separation into valid and invalid outputs or
classes, resulting in a binary classification problem. The function
is 𝑠𝑦𝑛𝑡ℎ(𝑥) = (𝑥 + 2) (𝑥2 − 4), and the respective ground truth
classifier that defines the boundary is shown in Figure 1 together
with a selection of sampled points, implementing:

𝑐𝑙𝑠𝑦𝑛𝑡ℎ (𝑥,𝑦) =
{
1 𝑠𝑦𝑛𝑡ℎ(𝑥) < 𝑦

0 else.
(1)

The figure further includes a decision tree (black) and two alterna-
tive boundary candidate sets (red and green) of differing quality
that result from the experiments from this study and which we will
discuss in more detail below.

The remainder of the paper is structured as follows. Section 2
overviews related traditional testing literature and ML problems.
We propose ML-BSA and the experimental design in section 3,
Method. Section 4 presents the results, and section 5 discusses

implications and avenues for future work. Section 6 summarizes
the main findings and concludes the paper.

2 RELATEDWORK
Two areas of Machine Learning related to our work are counter-
factual explanations [10, 19] (CFE) and adversarial example genera-
tion [20]. They both create new data points similar to an original
point but lead to different predictions. In adversarial machine learn-
ing, the predictions in these new points are considered erroneous
or even dangerous. Techniques have been proposed to “defend”
models from being “attacked” by such adversarial methods [2]. On
the other hand, in counterfactual explanations, the predictions in
the newly generated points are viewed as correct. They are rather
used to illustrate to users what needs to change in the data or their
situation for the prediction to differ. This can be seen as a type of
human-understandable explanation of why the prediction is what
it is.

Our work differs from both methods in that we focus on the
whole decision boundary and not only aim to find specific exam-
ples close to already known inputs. Our approach is agnostic to
whether the predictions are actually correct or not. By pinpointing
the boundary areas, i.e., where predictions change the most for
small changes in inputs, they can be checked and their correct-
ness judged compared to expectations. An important aspect is that
knowing where the decision boundary lies might be more impor-
tant far away from training data points than close to them since
the uncertainty of the model can be expected to be higher there.

The CFE technique of Mothilal et al. generates a whole set of
counterfactual points but also ensures that they are diverse, i.e.,
change different features of the original inputs and/or change them
in different ways [16]. They thus include a measure of diversity
when searching for the counterfactual points. Brughmans et al. [3]
proposed a CFE generation method that can optimize for multiple
counterfactual properties, e.g., few inputs changed (short counter-
factuals), small overall change (near counterfactuals), or realistic
changes (similar to other input differences among the training data).
A recent review of the literature [12] showed that many different
diversity measures have been used in CFE generation. Like these
approaches, our approach also returns a set of diverse points. How-
ever, staying close to the original points is unimportant in our
approach; our goal is to characterize the decision boundary.

Joshi et al. [11] also postulate that examples are useful for under-
standing classifier decision boundaries. However, they need to train
a generative model to ensure that such examples are realistic, which
limits applicability, increases computational costs, and assumes that
the training data represents all of the actual future inputs.

Our work also connects to methods that focus on the uncertainty
of machine learning models. For example, Ma et al. [13] introduce
model uncertainty metrics for deep neural nets and evaluate how
well they can be used to prioritize test cases. They find that a simple
metric like the probability of the selected, highest probability, class
can indicate uncertainty as well as correlate with mis-classification,
i.e. where the decision boundary is misplaced. They show how this
can be used to prioritise existing test data and generate adversarial
inputs.
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In contrast to the existing approaches described above, we build
on our work on automating boundary value testing of traditional
software [6]. Our approach is not tied to being close to existing or
available input points but rather finds pairs of inputs that show
where the decision boundary lies. The approach is black-box and
model-agnostic and builds on the idea of program derivatives [8],
i.e. pairs of inputs that are very close/similar but whose outputs
differ as much as possible. We extend this method to testing ML
models and try to ensure coverage of the decision boundary by
optimizing to find a diverse set of such boundary pairs.

3 METHOD
We here first introduce the search-based algorithm in Section 3.1
to then explain the boundary diversification approach in Section
3.2. Section 3.3 presents the datasets and preprocessing procedures
followed by the experimental design in Section 3.4.

3.1 ML Boundary Spanning
The ML Boundary Spanning algorithm (ML-BSA) is described

in Algorithm 1. ML-BSA aims to detect a set of boundary candi-
dates that capture a wide range of the actual decision boundary
(or boundaries for multi-class problems) of a classification model.
It takes in a trained classifier 𝑐𝑙 and the data it was trained on
𝑇𝐷 consisting of tuples (𝑖, 𝑜) with input vector 𝑖 ∈ 𝐼 and out-
put classes 𝑜 ∈ 𝑂 to return the set of boundary candidate pairs,
𝑏𝑐 = ((𝑖1, 𝑜1), (𝑖2, 𝑜2)) ∈ 𝐵𝐶 ⊂ (𝐼 × 𝑂)2, for which 𝑜1 ≠ 𝑜2 and
the following holds for an input space specific threshold 𝛿 , and
specified distance function 𝑑𝑖𝑛 : 𝑑𝑖𝑛 (𝑖1, 𝑖2) < 𝛿 . Initially (line 2)
all possible outputs or classes are extracted (for binary classifier
synth, 𝑂={0, 1}). Until a stop criterion holds, ML-BSA samples new
boundary candidates by randomly selecting two distinct outputs,
o1 and o2 (line 4, for synth only one possible combination), and
then drawing a respective data point from TD each (lines 5 and 6).
The data points are then passed along as a candidate pair 𝑐 (line 7)
to inform the search (line 8). During a search, candidate fitness is
measured as the program derivative (maximization) between the
candidate points1 as introduced in [8] and slightly adjusted with

𝑝𝑑𝑐𝑙 (𝑏𝑐1, 𝑏𝑐2) =
𝑑𝑜𝑢𝑡 (𝑐𝑙 (𝑐1), 𝑐𝑙 (𝑐2))

𝑑𝑖𝑛 (𝑐1, 𝑐2) + 𝛿
, (2)

where 𝛿 is a distance vector containing a defined minimum/atomic
distance for each dimension to avoid division by zero and help
signalling convergence to a boundary candidate. 𝑑𝑖𝑛 is the metric
measuring the multidimensional distance between the candidate in-
puts, and𝑑𝑜𝑢𝑡 is the distancemetricmeasuring the distance between
the outputs produced by the classifier cl. In our ML classification,
𝑑𝑜𝑢𝑡 is defined as 0 if the outputs are equal and 1 otherwise. Once
a candidate pair obtains input distances 𝑑𝑖𝑛 (𝑐1𝑗 , 𝑐2𝑗 ) < 𝛿 𝑗 for all
dimensions, the search returns that boundary candidate bc. The
boundary candidates 𝐵𝐶 get updated with the new candidate 𝑏𝑐
(line 9). This can be done in various ways, such as naively adding
them or by considering the set diversity as captured, for instance,
by 𝑑𝑖𝑛 , as explained in the following section.

1for as long as 𝑐𝑙 (𝑖1 ) ≠ 𝑐𝑙 (𝑖2 ) , i.e. they are on different sides of the boundary.

Table 1: The datasets with their respective number of dimen-
sions and number of output categories.

Dataset Inputs Included Inputs Outputs
synth 2 all binary
titanic 11 6 binary
adult 14 7 binary
heart 13 all binary
iris 4 all 3
wine 13 all 3
car evaluation 6 all 4

3.2 Boundary Diversification
To obtain a wide and evenly spread-out boundary in the ML-BSA
updateBC step, we applied a diversification strategy based on max-
imizing the distances of each boundary candidate 𝑏𝑐 to its two
nearest neighbours 𝑏𝑐𝑛𝑛1, 𝑏𝑐𝑛𝑛2 in 𝐵𝐶 . Before each round, we mark
the candidate 𝑏𝑐𝑖 with the overall shortest distance sum to its two
neighbours, i.e. the one candidate contributing the least diversity
to 𝐵𝐶𝑖 . We then substitute that candidate by the newly retrieved
boundary candidate 𝑏𝑐 in round 𝑖 + 1 and compare the diversity for
both boundary sets in 𝐵𝐶𝑖 and 𝐵𝐶𝑖+1 as in

𝑑𝑖𝑣 (𝐵𝐶) =
∑𝐵𝐶
𝑏𝑐

𝑑𝑖𝑛 (𝑏𝑐, 𝑏𝑐𝑛𝑛1) + 𝑑𝑖𝑛 (𝑏𝑐, 𝑏𝑐𝑛𝑛2)
|𝐵𝐶 | , (3)

to keep the set with the candidate, leading to a greater 𝑑𝑖𝑣 value.
The same 𝑑𝑖𝑛 as for the program derivative can be used here. The
version we applied in this study has a fixed size for BC, but one
could create more adaptive ways of extending or shrinking the
boundary depending on the observed characteristics of the model
or data.

3.3 Datasets and preprocessing
The seven datasets used in the study can be found with their total
number of inputs, the number of inputs used in this study, and the
total number of outputs in Table 1. Apart from the example synth
dataset, we included six openly accessible datasets commonly used
in the machine learning literature.

The search-based approachwe used is based on traditional heuris-
tic search. Since search-based heuristics, such as evolutionary al-
gorithms for continuous optimization, require floating point input
spaces, some preprocessing was needed. Ordinal values were first
converted into integers and then into floating-point equivalents.
For instance, the category doors for car in the car evaluation dataset
was translated from {2, 4,𝑚𝑜𝑟𝑒} into {1.0, 2.0, 3.0}. For reasons of
simplicity, we excluded categorical inputs from this study, which
reduced two datasets from 11 to 6 (titanic) and 13 to 7 inputs or
attributes (adult). Since the study does not measure or compare
model quality (e.g. through accuracy, precision, recall), this choice
should not impact the validity of the results. After running ML-
BSA, the conversions were - after rounding to the nearest integer -
applied in the opposite direction to produce boundary candidates
with inputs on the correct scale.
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Algorithm 1 ML Boundary Spanning (ML-BSA) detects boundary candidates of a classification model using the training data and an
objective function - in this paper the program derivative. The program derivative is well suited as the objective function as it zooms-in on
the boundary.
Input: Classifier 𝑐𝑙 , Training Data 𝑇𝐷
Output: Boundary candidates 𝐵𝐶
1: 𝐵𝐶 = ∅
2: 𝑂 = 𝑢𝑛𝑖𝑞𝑢𝑒_𝑜𝑢𝑡𝑝𝑢𝑡𝑠 (𝑇𝐷)
3: while stop criterion not reached do
4: 𝑜1, 𝑜2 = 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑂,𝑛𝑢𝑚 = 2, 𝑟𝑒𝑝𝑒𝑎𝑡 = 𝑓 𝑎𝑙𝑠𝑒) # 𝑜1 ≠ 𝑜2
5: 𝑖1 = 𝑟𝑎𝑛𝑑 (𝑇𝐷, 𝑜1)
6: 𝑖2 = 𝑟𝑎𝑛𝑑 (𝑇𝐷, 𝑜2)
7: 𝑐 = (𝑖1, 𝑖2) # candidate pair
8: 𝑏𝑐 = 𝑜𝑝𝑡_𝑎𝑙𝑔(𝑐𝑙, 𝑠𝑒𝑒𝑑 = 𝑐) # boundary squeeze applying program derivative
9: 𝑢𝑝𝑑𝑎𝑡𝑒 (𝐵𝐶,𝑏𝑐) # react to new boundary candidate 𝑏𝑐
10: end while
11: return 𝐵𝐶

3.4 Experiments
We empirically evaluated ML-BSA under the following conditions.
As an ML model, we trained a regular decision tree of depth 7 for
each dataset, including all data points in TD, for applied ML-BSA in
two settings (with and without diversity in search) and measured
boundary coverage using nearest neighbour distances in the input
space. A decision tree is a traditional machine learning model that
decides a class based on traversing the tree from a root to a leaf
associated with a class. Its depth defines the longest path from
the root to a leaf. We ran ML-BSA ten times on each dataset to
receive robust mean and variance statistics representing spread
and coverage. As 𝑑𝑖𝑛 , we used Euclidean distance, which is suitable
since all inputs are floating points.

We applied differential evolution (DE), a popular evolutionary
search strategy [9], to implement the boundary squeeze (line 9 in
Algorithm 1). An additional stop criterion for unsuccessful squeezes
of 3 seconds per iteration was used to ensure that the program does
not proceed indefinitely in some edge cases.

DEwas instantiatedwith a candidate pair 𝑐=(𝑖1, 𝑖2), with 𝑐𝑙 (𝑖1)=𝑜1 ≠
𝑐𝑙 (𝑖2)=𝑜2, which serves as a genome. Adding uniformly distributed
random variance to 𝑐 in support of 𝛿 in all dimensions, an initial
population of size ten was created, including 𝑐 . The phenome for 𝑐
is ((𝑖1, 𝑜1), (𝑖2, 𝑜2)), for which the program derivative fitness from
Formula (2) is calculated. The atomic distance 𝛿𝑖 for each input
dimension 𝑗 in𝑇𝐷 is set to 𝛿 𝑗 = 1𝑒-3 × |𝑚𝑎𝑥 (𝑇𝐷 𝑗 ) −𝑚𝑖𝑛(𝑇𝐷 𝑗 ) | to
adapt to different ranges.

ML-BSA was compared in four configurations - the diversity
strategy presence in 3.2 for updateBC and with two size limits (10
and 20) on the resulting boundary candidate set. Without diver-
sity inclusion, all detected boundary candidates were added to the
boundary up to this boundary size limit, while ML-BSA was run
for 2.000 iterations using the diversity strategy. All experimental
code and result data are openly available2.

4 RESULTS
For all seven datasets, boundary candidates could successfully be
identified using ML-BSA. Runtimes for the searches were in the

2

seconds range per run - classification is almost instant, and searches
converged to boundary candidates within milliseconds. Table 2
shows for each dataset the four configurations and the aggregated
respective distances to the two nearest neighbours in terms of mean
and standard deviation over the input space. We see that for each
dataset, the 2-NN distances are larger for ML-BSAwith the diversity
strategy over the board. This suggests that the strategy covers a
broader range of the boundary. At the same time, the variance is
smaller when applying the diversity strategy, which suggests that
candidates are more evenly distributed over the boundary, better
representing the different areas. Figure 2 offers a [0, 1] normalized
view on the distributions of the 2-NN distances per dataset for the
|𝐵𝐶 | = 20 runs to confirm these findings visually.

The fact that the number of desired boundary candidates can be
controlled for using ML-BSA, both initially but even dynamically,
allows for a tailoring of the search to both search space and clas-
sifier. Figures 1 and 3 exemplify how ML-BSA covers the decision
boundary (or boundaries) for the synthetic example with varying
granularity. While we in this study set static boundary set sizes
to make the results comparable, dynamic adjustment of the num-
ber and distribution of the candidates to capture interesting areas
where the potential of failure is larger is one development area for
ML-BSA.

With access to a boundary candidate set, we can further calculate
its distance to the training data and, by that, potentially use it to in-
form confidence or uncertainty of each candidate. This information
may even be aggregated as a measure of confidence in the entire
boundary. Here, for each candidate, two directions can be consid-
ered, materialized through the distance of its input/output pairs
to the nearest points on its respective side - with potentially great
variation for the two directions. Figure 4 exemplifies this for the
synth dataset, where each dot represents the distance to the closest
training data point on the respective side (red for class invalid, green
for valid) and its size showing the distance as normalized overall
candidate distances to their nearest neighbour over the boundary
on a log-scale. This highlights that, for instance, some candidates
have a clearly further distance to one side of the boundary in direct
comparison. Still, even certain areas of the boundary seem less
confident overall. When prepared and presented in an appropriate

4
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Figure 2: 2-NN distances for the 20 candidate ML-BSA runs
comparing optimization with and without diversity. For the
latter, points are further apart and more evenly distributed
across the boundary, which suggests that it better approxi-
mates it.

Figure 3: The boundary detection is exemplified for 20 points
(as opposed to the 10 points in Figure 1) and presented with
and without diversity optimization in search represented
by the red and green boundary candidates spread over the
boundary. The decision boundary is more evenly covered
when diversity is used in the search (green) compared to its
approximation through red boundary candidates, for which
there are larger gaps that a tester would lack information
about when confronted appropriately.

format, this information can be used to steer testers’ attention to
regions where the boundary lies farthest from the training data.

5 DISCUSSION
Our findings demonstrate that integrating boundary and diversity
quantification metrics with search-based optimization enables the
identification of varied boundary candidate pairs. This method can
delineate the decision boundary of machine learning classifiers,

Table 2: The distances between the two nearest neighbour
boundary candidates over ten independent runs. Larger dis-
tances indicate a greater space covered, while a smaller vari-
ance indicates a more equal distribution among the candi-
dates over the input space.

Dataset BC No Div Div
synth 10 4.31 ± 2.84 7.56 ± 1.3

20 2.54 ± 1.99 4.13 ± 0.68
iris 10 2.23 ± 0.79 5.22 ± 0.22

20 1.84 ± 0.78 3.91 ± 0.24
titanic 10 98.64 ± 125.92 186.88 ± 21.0

20 54.21 ± 71.16 112.02 ± 10.29
car 10 3.61 ± 0.93 6.08 ± 0.23

20 2.95 ± 0.83 4.76 ± 0.19
wine 10 229.37 ± 197.14 360.37 ± 66.29

20 113.24 ± 87.3 215.12 ± 36.06
heart 10 104.09 ± 56.93 246.51 ± 17.66

20 81.65 ± 50.36 175.48 ± 14.03
adult 10 216030 ± 272331 373263 ± 73218

20 118095 ± 152759 189092 ± 31943

facilitating developers and testers in evaluating the accuracy of the
boundary placement and, subsequently, transform selected pairs to
tangible test cases.

The use of search-based optimization is crucial as it broadens the
applicability of our method. This technique is particularly useful
for machine learning models lacking accessible internal derivatives,
such as black-box and commercial models, or for models where
such derivatives are unfeasible to compute, like decision trees and
random forests.

Moreover, our approach is versatile, and can support related use
cases. For instance, we’ve demonstrated how it can be leveraged
to pinpoint areas with low boundary confidence, requiring extra,
manual attention. Also, at least for low-dimensional spaces, the
technique supports visual representation to enhance comprehen-
sion of the boundary.

Counterfactual identification and research on adversarial attacks
also consider the boundary behavior of ML models but fall short
of fully elucidating larger parts of the boundary. They focus on
finding particular examples that cross the boundary while ML-
BSA (Machine Learning Boundary Spanning Algorithm) provides a
methodology and toolset for approximating and spanning larger
parts of the decision boundary.

Although visualizing the decision boundary is valuable, it poses
challenges in multi-dimensional input spaces or with numerous
output classes. Dimensionality reduction techniques may offer a
solution, but interpreting their output is often unclear due to the
loss of direct mapping to the original features.

As one example, Figure 5 illustrates a 2D dimensionality reduc-
tion using UMAP [15]3 of a decision tree model’s boundary for the
iris dataset, which has 4 dimensions and a ternary output here rep-
resented by color. This boundary was exhaustively sampled from
the iris training data through over 15,000 iterations of ML-BSA,
3Implemented with default UMAP parameters: neighbourhood set at 15 and minimum
distance at 0.1, using the Julia library https://github.com/dillondaudert/UMAP.jl.
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Figure 4: Since boundary candidates contain two input/
output pairs with nearby inputs, we can calculate distances
to training data points on both sides of the boundary and
thereby identify areas of greater confidence or connectedness
between the model and the data. Distances are here normal-
ized over the entire boundary set where larger points signal
greater distance to training data, and the colour signals dis-
tance into the respective direction. To graphically show both
distances to the closest candidates on each side in the same
position, the closer one is always plotted on top of the farther.
Thus, at times, green is on top of red and vice versa.

followed by filtering to ensure that boundary candidates were not
too closely spaced (𝑑𝑖𝑛 below 0.3). This process prevents UMAP
from overemphasizing areas of high density. The visual representa-
tion includes boundary candidates from ML-BSA with (green) and
without diversity (red), along with their nearest neighbours, and
lines indicating the proximity between nearest neighbours for each
boundary candidate.

Upon detailed examination, a greater variation is noticeable
among the diversity-optimized boundary candidates. However, the
interpretation of this visual representation is not straightforward.
For example, the figure seems to show two distinct boundary struc-
tures, forming three boundaries where two are adjacent (lower left
corner), and the third appears as a line, resembling a boundary
itself. Further investigation is required to determine if a wider area
covered by a boundary cluster indicates more accurate boundary
representation or how the two clusters of boundary candidates
correlate with the separation of the three classes.

In contrast, Figure 6 presents a more comprehensible scenario:
a decision tree trained on a two-dimensional reduction of the iris
dataset. In this figure, the varying quality (broader and more even,

Figure 5: UMAP (dimensionality reduced) visualization of
the iris dataset’s boundary candidate space. Using exhaustive
sampling, three boundaries are differentiated through colour
and symbol, seemingly clustered and rather well separated.
The larger circles and squares show the ML-BSA derived
boundaries. The lines between nearest neighbours show the
difference in the area that the solutions span. The plot graph-
ically captures the quantified results, i.e. that diversity-based
search has a more equidistant distribution of boundary can-
didates but is overall inconclusive.

for the diversity-based one, in red) of candidate spread is immedi-
ately apparent in the input space when comparing the two sets of
boundaries. Future research should focus on identifying effective
methods for qualitative evaluation of boundary coverage, poten-
tially employing visualization techniques and tools beyond UMAP
to facilitate this analysis.

Future research should also evaluate the usefulness of the iden-
tified boundary pairs directly with human developers and testers;
while a broader and more evenly spread set of boundary pairs
has the potential to better inform engineers this needs empirical
investigation. Similarly, the type of tabular datasets that we have
investigated here might not be typical for the type of machine learn-
ing models that are commonly integrated into software systems.
Future work should thus investigate also how the boundaries of
machine learning models taking more complex inputs, like images
and audio, can be addressed with the type of boundary spanning
approaches proposed here.

5.1 Limitations
The method is applicable for both traditional and ML software, as
it is black-box, not assuming anything from the software under
test except for a set of input/output pairs, i.e. labelled training data
points in the case of a classifier.

While the execution time of the squeezing (line 8, Algorithm 1)
may pose issues for traditional software because of the repeated
execution during the search, execution is usually fast for ML, such
as deep neural nets, even for complex instances.
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Figure 6: A two-boundary example (PetalWidth, SepalWidth) separating the three species for a decision tree over the iris
dataset points, when limiting to two dimensions, is shown in two constellations with and without a diversified boundary. The
training data points for actual classes are highlighted in light colors (blue, green, and orange). The boundary candidate set
on the left side overall follows a serendipitous distribution. The two decision-tree boundaries are covered evenly in the right
version (ML-BSA div), which is a requirement for obtaining representative boundaries. For higher dimensional spaces, the
visual analysis is not as clear-cut (see Figure 5).

This study did not include the handling of categorical inputs.
However, such support can easily be added, for instance, by em-
ploying one-hot encoding.

For multi-class classifications, boundaries tend to be more com-
plex, likely requiring more boundary candidates. How many and
whether this could be dynamically identified in response to the
different

(𝑛
2
)
potential boundaries that an n-class problem theoret-

ically has (e.g. between class 1 and 2, as well as class 2 and 3 or
1 and 3 for n=3) has to be empirically evaluated. As identified in
previous work for traditional programs, such as Body Mass Index
calculation [6], even for ordinal ranges, there is a possibility that
the number of actual boundaries found is closer to the theoretical
maximum than the intended number of boundaries between ordinal
neighbouring classes or categories. As such, a potential use case
for ML-BSA would be identifying unintended boundaries.

The idea of a two-edged uncertainty based on boundary candi-
date distance to either side of the boundary, as discussed in Figure 4,
has only been exemplified and not investigated compared to other
confidence measures.

6 CONCLUSIONS
In this paper, we automatically identified boundaries for ML clas-
sification models, enabled by using the program derivative as the
objective function to find boundary candidates. By applying di-
versity to the search, we successfully covered broader areas with
more equidistant coverage of the boundary space. While we suc-
cessfully quantified this, it was harder to visualize and understand
boundaries in higher dimensional spaces - a task for future work.

In contrast to traditional software systems where code responsi-
ble for faulty behaviour can usually (easily) be found once revealed,
for ML, this is not as straightforward. The creation of the models is
not a direct consequence of code but of the learning process that
results from a combination of data and code in an opaque way. Help-
ing reveal the boundaries and understanding model weaknesses is

thus only a first but necessary step towards fixing faulty behaviour
in ML.
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