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When Is It Safe to Complete an Overtaking
Maneuver? Modeling Drivers’ Decision to

Return After Passing a Cyclist
Alexander Rasch , Carol Flannagan , and Marco Dozza

Abstract— For cyclists, being overtaken represents a safety risk
of possibly being side-swiped or cut in by overtaking drivers.
For drivers, such maneuvers are challenging–not only do they
need to decide when to initiate the maneuver, but they also
need to time their return well to complete the maneuver. In the
presence of oncoming traffic, the problem of completing an
overtaking maneuver extends to balancing head-on with side-
swipe collision risks. Active safety systems such as blind-spot or
forward-collision warning systems, or, more recently, automated
driving features, may assist drivers in avoiding such collisions
and completing the maneuver successfully. However, such systems
must interact carefully with the driver and prevent false-positive
alerts that reduce the driver’s trust in the system. In this study,
we developed a driver-behavior model of the drivers’ return
onset in cyclist-overtaking maneuvers that could improve such
a safety system. To provide cumulative evidence about driver
behavior, we used data from two different sources: test track
and naturalistic driving. We developed Bayesian survival models
for the two datasets that can predict the probability of a driver
returning, given time-varying inputs about the current situation.
We evaluated the models in an in-sample and out-of-sample
evaluation. Both models showed that drivers use the displacement
of the cyclist to time their return decision, which is accelerated
if an oncoming vehicle is present and close. We discuss how
the models could be integrated into an active-safety system to
improve driver acceptance.

Index Terms— Cyclist safety, overtaking, ADAS, driver model,
Bayesian model, survival model.
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I. INTRODUCTION

A. Car-Cyclist Overtaking Maneuvers

CYCLING continuously increases on a global scale due
to its benefits in terms of health, environment, com-

muting, and leisure activities [1]. The COVID-19 pandemic
accelerated this increase as social distancing and lockdowns
promoted choosing cycling over public transport [2], [3].
However, as the number of cyclists increases, so does the
number of interactions and possible conflicts with motorized
vehicles [4]. Such interactions are most critical in locations
without an infrastructure that separates cyclists from motorized
vehicles [5], [6], which is the case for up to 86% of all cyclist
travel globally [7]. The absence of proper cyclist infrastructure
is particularly evident on rural roads where cyclist travel may
be less frequent than in urban areas, however, does occur for
commute, leisure, or exercise purposes [8], [9], [10].

Cyclist-overtaking scenarios represent a particularly com-
plex form of interaction between drivers, cyclists, and possibly
oncoming traffic. Such maneuvers are generally divided into
four phases [11]: 1) approaching phase, in which the driver
has to decide on whether to overtake the cyclist (referred to as
a flying maneuver if done without significant speed decrease,
and possibly despite the presence of an oncoming vehicle,
making it the more risky strategy [12]) or not (referred to
as accelerative if the driver decreases speed to let oncoming
traffic pass first, and then re-accelerates to pass the cyclist),
2) steering-away phase, in which the driver maneuvers the
vehicle towards the adjacent lane to achieve enough lateral
clearance to the cyclist, 3) passing phase, in which the vehicle
passes the cyclist, and 4) returning phase, in which the driver
steers the vehicle back into the original lane position. Each of
these phases comes with different crash risks [13]. The passing
and returning phases are particularly challenging as the risk of
a head-on collision with oncoming traffic (highest at the start
of the returning phase) needs to be balanced with the risk of
side-swiping the cyclist.

B. Side-Swipe Versus Head-On: the Risks After Committing
to the Maneuver

To successfully overtake a cyclist, a driver must make not
only a safe and timely decision about whether to overtake the
cyclist or not, but also time well the moment of return back
to the original lane, after having passed the cyclist. Rear-end
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crashes during the approaching phase, for instance, due to the
driver failing to recognize the cyclist, account for the most
severe injuries and fatalities due to high impact speeds, which
is of particular concern on rural roads [8], [14]. However,
recent studies have pointed out that the later phases of the
maneuver frequently account for side-swipe crashes with the
cyclist [15], [16]. Gildea et al. [16] also pointed out that
many such collisions, especially with lower-severity injury
outcomes, are underreported in crash statistics.

Much research has been done on analyzing close passes
by drivers and their contributing factors [17], such as the
presence and timing of oncoming vehicles [11], [13], as well
as infrastructural elements such as parked cars and on-road
painted cycling lanes [18]. However, previous work has not
investigated when early returns happen and threaten the
cyclist’s safety.

In the passing and returning phase, the driver must balance
the two collision threats arising from side-swiping the cyclist
and heading on the possibly present oncoming traffic. A too-
close passing or a too-early return may, even without direct
contact, destabilize the cyclist and cause it to fall [19]. On the
other hand, a too-late return may result in a head-on collision
with an oncoming vehicle. Monitoring both collision threats
with the cyclist and the oncoming vehicle at the same time is
challenging, as the cyclist may be hard to locate accurately for
the driver after the passing moment, and the time-to-collision
of the oncoming vehicle may be hard to judge [20].

C. Active-Safety Systems for Cyclist-Collision Avoidance

Vehicular active-safety systems, such as collision-warning
systems, can assist drivers in preventing collisions in over-
taking maneuvers [21]. During the passing phase, a blind-spot
detection (BSD) system, for instance, can warn the driver, and
potentially even the cyclist [16], [22], of an impending side-
swipe collision by monitoring the blind spots at the sides of
the vehicle [23]. At the same time, a forward collision warning
(FCW) system may help the driver avoid a head-on collision
with the oncoming traffic [24].

However, these systems need to be carefully tuned not
to become a nuisance to the driver [25], [26], [27]. Such
nuisance can arise from technical and perceived false-positive
activations. While sensor errors can cause technical false-
positive activations, perceived ones are caused whenever the
driver feels that the activation was unnecessary [28]. Trigger-
ing perceived false-positive activations may put the driver’s
acceptance of the system at risk and may result in reduced
trust in the system or even its deactivation [29], [30], which
in turn eliminates its safety benefit [26].

D. Driver Models to Improve Active-Safety Systems

Models of driver behavior may help reduce perceived false-
positive activations by active-safety systems. By allowing to
predict the driver’s behavior, the system can recognize early
if the driver does not behave according to the prediction and
warn or intervene accordingly [31], [32]. By doing so, warn-
ings and interventions may be triggered before the kinematic
threat of a collision becomes high, resulting in increased safety

while still being accepted. In other words, driver models may
serve as a reference [33] for the machine to factor in the usual
driver behavior in the threat assessment.

Ljung Aust and Dombrovski [27] suggested that warnings
and interventions that happen outside of a driver’s comfort
zone, i.e., the region of all possible states in which the
driver does not feel any discomfort, may be more acceptable
than those that happen inside of it. This, in return, results
in an increased safety benefit, as more collisions can be
avoided while ensuring the driver’s acceptance of the system
activation [32]. Therefore, modeling the driver’s comfort-zone
behavior can be understood as a key enabler for effective active
safety.

Previous research has made use of different types of
driver models for different driver tasks, from cognitive mod-
els, e.g., for driver reactions to warnings [34] or take-over
requests [35], to machine-learning-based models for car-
following scenarios [36]. Other machine-learning-based work
has aimed at modeling interactions with vulnerable road users,
e.g., using recurrent neural networks for pedestrian-trajectory
estimation [37], [38], or, more recently, transformer-based
architectures applied to pedestrian-crossing scenarios [39].

Probabilistic driver models in particular have gained atten-
tion, as they not only allow for predicting the driver’s decision,
but also its uncertainty [25]. A probabilistic model can predict
the probability of a driver’s action, allowing system designers
to choose activation-threshold probabilities that optimize the
system’s true or false positive rate [32].

Just like in the earlier phases of overtaking maneuvers,
a probabilistic driver model may enhance an active-safety
system by allowing better-timed and yet acceptable activations,
even in the later phases of an overtaking maneuver [16], [32].
However, such work has been missing to date, and this study
aims at filling this gap. At the same time, automated-driving
systems may benefit from such a model by predicting how
a human driver would behave in the scenario and steer the
vehicle accordingly since human-like driving may be preferred
by passengers [12], [40].

E. Contribution

This study developed a computational, probabilistic model
of driver behavior that can help understand and predict how
drivers time their return onset after having passed a cyclist.
We fitted Bayesian discrete-time survival models to relate a set
of relevant factors for drivers’ behavior to their return onset.
We used two different datasets that complement each other
and discuss their differences. Furthermore, we discuss how
the model can support active-safety systems and automated
vehicles in making well-timed decisions on when to alert
drivers to best compromise the risk of a side-swipe collision
with the cyclist and a head-on collision with the oncoming
traffic.

II. METHODS

A. Datasets

We obtained two datasets collected in two different envi-
ronments: 1) data from a test-track (TT) experiment (Fig. 1 a)
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Fig. 1. Photos of the data-collection environments used in this study.
Panel a shows the setup of the test-track experiment (for a video, see
https://youtu.be/AixQ189hMi4). Panels b and c show the naturalistic-driv-
ing study and the locations of the four traffic sensors (for a video, see
https://youtu.be/uLjw1yHNjwQ).

and 2) data from a naturalistic-driving (ND) study conducted
on a rural road (Fig. 1 b, c). The two datasets capture the
same scenario in different environments. By fitting the same
model structure on both datasets and comparing the results,
we leveraged the datasets to achieve cumulative evidence to
support our results.

1) Test-Track Data: The TT data were collected in March,
2018, on V årg årda airfield, V årg årda, Sweden [13]. The
data used for analyses include 18 drivers who participated in
the experiment, out of which five were female. All participants
were employees of Autoliv or Veoneer; however, they were not
themselves involved in the development or design of safety
systems. The participants were, on average, 42.9 (SD = 8.9)
years old, possessed a driver’s license for 24.7 (SD = 9.1)
years, drove 12 (SD = 6) times per week, and 14 944 (SD =

10 205) km per year.
In the experiment, participants were instructed to keep a

speed of 70 km/h and could overtake a robot cyclist traveling
at 20 km/h (Fig. 1 a). The lateral position of the cyclist was
controlled to be in one of two conditions: 1) cycling close to
the lane edge with no overlap between ego vehicle and cyclist,
2) cycling in the center of the lane with full overlap. At the
same time, an oncoming balloon vehicle was driving in the

opposite direction at 40 km/h (its technical limit), and timed to
meet the driver at a short and a long time gap, corresponding
to 7 s and 10 s time-to-collision (TTC; measured when the
ego vehicle reached 2 s TTC behind the cyclist). In the case
of no oncoming traffic, the vehicle was standing still in the
opposite lane (due to technical constraints), but far enough
away to minimize its effect on the driver’s behavior. The cyclist
and the oncoming vehicle were controlled via a CHRONOS
server [41]. The lane width of the recreated two-lane road
was 3.75 m. The dimensions of the road users (length x
width, assuming rectangular bounding boxes) were 4.63 ×

2.10 m for the ego vehicle, 1.87 × 0.50 m for the cyclist, and
3.60 × 1.80 m for the oncoming vehicle. The experiment was
approved by the local ethical review authority in Gothenburg,
Sweden (Dn:600-17). Further details of the experiment can be
found in the descriptive study reported by Rasch et al. [13].

High-precision differential GPS sensors installed on the road
users recorded their position, speed, and heading. In post-
processing, all signals were synchronized at a 100 Hz sampling
rate to the GPS reference time. In total, 104 overtaking
maneuvers were recorded.

2) Naturalistic-Driving Data: The ND data were collected
on seven consecutive days in August and September 2021,
on the two-lane rural road Spårhagavägen, Mölndal, Sweden.
The considered road stretch was straight and about 150 m long
with a lane width of about 3.60 m and a speed limit of 70 km/h
(Fig. 1 b). Towards the western end of the stretch, a solid
line disallowed crossing into the opposite lane for vehicles
traveling in the western direction (Fig. 1 c).

Four stereovision-based smart traffic sensors OTUS3D, pro-
vided and set up by Viscando AB, Sweden,1 installed on two
light poles, continuously detected, classified and tracked road-
user objects passing the road stretch (Fig. 1 b, c), delivering
time-series data at a sampling rate of 25 Hz for road user type,
position, speed, heading angle, and the dimensions (assuming
rectangular bounding boxes) of all road users. Further details
of the experiment can be found in the descriptive study
reported by Rasch et al. [42].

A search algorithm detected overtaking maneuvers when
1) a passenger car and a cyclist were detected in the same
time span, 2) traveling in the same direction, and 3) the car
passed the cyclist.

The event selection included the following conditions:
• The overtaking vehicle was a passenger car.
• Only one cyclist was overtaken.
• The oncoming vehicle was correctly captured.
• The complete passing phase of the driver was captured.
• The overtaking driver did not “squeeze” between the

cyclist and the oncoming vehicle.
Since overtaking maneuvers could occur at any location

during the observed road stretch, inherently, not all phases of
the overtaking maneuvers were captured. To identify whether
an oncoming vehicle was present during the passing phase,
we compared the extrapolated distance of the oncoming
vehicle (by assuming a constant speed at the speed limit)
from the ego vehicle to the sight distance available to the

1https://viscando.com/
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Fig. 2. Scenario of a flying overtaking maneuver with the explanatory variables for the model marked. In the figure, d long
cyc denotes the longitudinal displacement

between the rear-end of the ego vehicle and the front end of the cyclist, d lat
cyc the lateral distance, TTConc the TTC of the oncoming vehicle, and Vego and

Vcyc are the speeds of ego vehicle and cyclist, respectively.

driver. The classification and identification of the involved
road users were manually verified from the anonymized videos
recorded along with the trajectory data. Four false-positive
events were found after manual review, a rate of 6.2%. These
events were excluded from the analysis. Another seven events
(10.9%) were excluded because the overtaking vehicle was
not a passenger car but a transporter. These steps resulted in
a dataset consisting of 127 events.

Because one goal of the analysis was to compare return
onset in ND and TT data for the same type of maneuver,
we made an effort to select cases from the ND sample that
were comparable to those from the test track. First, only
maneuvers with complete data from the passing phase (as
defined in II-B.1), in which a passenger car overtook a single
cyclist were included, resulting in 82 events. These events
were initially divided into flying and accelerative maneuvers
(as in [12]), as well as piggybacking maneuvers where the
driver simply followed a lead vehicle, copying its behavior
(as in [11]). However, we noted that there were five flying
maneuvers in which the overtaking vehicle passed both an
oncoming vehicle and the cyclist during the same passing
phase. These “squeezing” events, which do not clearly fall
into either the flying or accelerative categories have previously
been identified by [43], [44], [45].

B. Model Variables

Fig. 2 illustrates a flying overtaking scenario of a cyclist in
the presence of an oncoming vehicle. The depicted scenario
shows the passing and returning phase of the maneuver [11],
which follow after the driver has steered away from the
collision path with the cyclist. Variables that were extracted
for analysis are labeled in the figure and described in more
detail in the next two subsections.

1) Response Variable (Return Onset): For each dataset,
we defined the start of the passing phase at the moment in
time when the ego vehicle reached 0.20 m before its lateral
distance from the cyclist reached its maximum. The start of the
returning phase, i.e., the return onset, was accordingly defined
as the moment in time when the lateral distance from the
cyclist fell back by 0.20 m from the maximum. This definition
is in accordance with Rasch et al. [13]. It should be noted that
this definition allowed for the passing phase to end before
the driver reached the cyclist, which in turn allowed us to

TABLE I
OVERVIEW OF THE EXPLANATORY VARIABLES USED IN THE MODELS

understand if and why such behavior happens. This definition
is different from other definitions of the passing phase in
previous research (e.g., Dozza et al. [11], and Kovaceva et al.
[46]) that defined the passing phase with a static, spatial zone
around the cyclist.

2) Explanatory Variables: We included a set of explanatory
variables in the models that relate to certain perceptual inputs
that we hypothesized to influence the driver’s decision to
initiate the returning phase (Fig. 2). These variables were
inspired by previous studies on overtaking duration [10],
[47] and other safety metrics during overtaking [13]. The
four variables, which are summarized in Table I, include:
1) longitudinal displacement to the cyclist, related to the risk
of side-swiping in a too-early return; 2) lateral distance to the
cyclist, which contributes to the risk of side-swiping due to
too narrow passing [48]; 3) presence of an oncoming vehicle,
which represents a head-on collision risk to a vehicle that has
not returned yet; and 4) relative speed between vehicle and
cyclist at the start of the maneuver.

We extracted these variables from both datasets according
to the same definition. For the TT data, we used the GPS
data to estimate the variables, while for the ND data, we used
the filtered data estimated from the traffic sensors’ cameras.
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We extracted the longitudinal displacement from the ego
vehicle’s rear end to the cyclist’s front end (d long

cyc ) (see Fig. 2
for illustration). The displacement is negative as long as the
ego vehicle’s rear end is behind the cyclist’s front end and
positive after that. The lateral distance to the cyclist was
measured between the right side of the ego vehicle and the
left side of the cyclist’s bounding box (d lat

cyc). Relative speed
between the ego vehicle and the cyclist was measured at the
onset of the passing phase (V rel

ego,cyc = Vego−Vcyc; Fig. 2). The
oncoming vehicle was marked as present or absent (OP = 0 if
absent, OP = 1 if present). For those cases in which it was
present, TTConc measures the TTC between the front end of
the ego vehicle and the front end of the oncoming vehicle,
calculated as the ratio between the front-to-front distance and
relative speed.

C. Bayesian Discrete-Time Survival Models

From both datasets, we selected only flying maneuvers for
modeling, in which the driver overtook the cyclist without
a significant decrease in speed [12], [28]. This was done to
achieve comparable results between TT and ND data and to
limit the scope of the models to the most critical situations
in which an oncoming vehicle may have been present when
passing the cyclist.

For both datasets, we fitted survival models to relate the
explanatory variables to the response variable. Survival models
are a common type of time-to-event model, more commonly
used in medical applications to understand and predict how
long an individual survives under different, possibly time-
dependent, conditions and treatments. Survival models enable
the prediction of events in a probabilistic manner while
allowing the inclusion of time-dependent variables [49]. In the
transportation field, survival models have been applied to
problems concerning the duration of, for instance, overtaking
maneuvers [47], [50].

The fundamental elements of a survival model are the
hazard h(t) and the survival function S(t). While the hazard
function expresses the instantaneous rate of event occurrences
at a given time t , the survival function expresses the prob-
ability that the event of interest has not occurred yet before
time t [49].

Discrete-time survival models represent an easy-to-use
framework for modeling problems that concern the occurrence
of an event, as in our case. In contrast to continuous-time sur-
vival models, their discrete-time counterparts treat the hazard
as constant in each time interval. The hazard at the time ti is
defined as the conditional probability of the event at the time
ti , given no event occurred beforehand:

h(ti ) = Pr(T = ti |T ≥ ti ). (1)

The survival function is defined as:

S(ti ) = Pr(T ≥ ti )

= (1 − h(t1)) · (1 − h(t2)) · · · (1 − h(ti−1))

=

i−1∏
j=1

(1 − h(t j )). (2)

As expressed in Eq. 2, the survival function expresses the
probability of survival up to time ti , which requires survival in
all previous time intervals. Discretizing time in this way avoids
increased model complexity that arises from fitting baseline
hazards to the underlying time itself or assumptions about
the proportionality of hazards [51]. By treating hazard as a
probability, a discrete-time survival model can be fitted as a
simple logistic regression where the outcome is the occurrence
of an event: zero if the event did not occur within a time
interval, and one if it did [52], [53].

In a Bayesian setting, a discrete-time survival model can
be expressed as a mixed-effects model through a Bernoulli
regression with a logit link function [53]:

eventi ∼ Bernoulli(pi )

logit pi = log
pi

1 − pi
= logit h(ti ) = Xiβ + Zi u,

u ∼ N(0, 6).

(3)

In Eq. 3, the population-level effects (also often referred
to as fixed effects) are represented by Xi with corresponding
parameter vector β, and the group-level effects (often referred
to as random effects) are represented by Zi with the group-
specific parameters included in the vector u. Zi is composed of
zeros and ones to map the i-th observation to the correspond-
ing group. The group-level parameters are usually modeled as
samples from a zero-centered multivariate normal distribution
with unknown covariance 6 [54]. The response variable eventi
denotes whether the return onset happened (eventi = 1) during
the i-th time period, or not (eventi = 0). pi denotes the
probability of the event happening during the i-th period,
which is equal to the hazard hi .

In this work, we used Bayesian discrete-time survival mod-
els to understand and predict the decision of a driver to return
after having initiated the passing phase. This problem maps
well to survival analysis since there is one event of interest (the
return onset), and its onset can be predicted as a probability.
For the reporting of the Bayesian models, we follow the
guidelines by Kruschke [55].

eventi ∼ Bernoulli(pi )

logit pi = β0 + β1d long
cyc,i + β2d lat

cyc,i + β3V rel
ego,cyc,i

+ β4OPi + β5OPi TTConc,i + Zi uID,

uID ∼ N(0, σIDI), (4)

where the subscript i denotes the time period (0.01 and 0.04 s
long intervals for the TT and ND data, respectively).

The fitted parameters for the variables are β0 for the
intercept and β1, β2, β3, β4 and β5 for the other population-
level variables (Eq. 4). The group-level effect uID,i was
only included in the TT model due to the repetitions by
each participant and represents the influence of an individual
participant with identifier ID in sample i on the intercept of the
model. In the end, the effect of the driver on the intercept is
characterized by the standard deviation σID of a zero-centered
normal distribution. For the ND model, we did not include this
effect since we assumed that all overtaking maneuvers were
performed by different drivers.
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In this work, we investigated the full posterior distribution
of the fitted parameters for inference purposes [55]. Inference
on which parameters have a clear effect may help guide future
modeling efforts and set requirements for active-safety systems
as to which signals are necessary for the model to function.
We identified parameters with a clear influence where the
95% highest density interval (HDI) did not include zero [56].
Furthermore, we quantified the probability of direction of the
parameters’ posterior distributions, defined as the proportion
of the distribution that has the same sign as the distribution’s
median. This index quantifies the probability of a parameter
being either positive or negative, yielding a value between 50%
and 100% [56].

To assess whether the addition of the group-level effect
for individual drivers (Eq. 4) improved the model, we used
approximate leave-one-out cross-validation (LOOCV) [57],
to compare the model with vs without the group-level effect.
We identified the better model from a clear increase in
expected log predictive density (ELPD), greater than the
estimated standard error of the increase, implying a greater
predictive accuracy. To understand how much individual
drivers differ in their behavior, we assessed the proportion of
variance explained by the group-level effect driver ID through
the intraclass-correlation coefficient (ICC) for the TT model
using the following equation [58]:

ICCTT =
σ 2

ID

σ 2
ID + π2/3

. (5)

The models were fitted in R version 4.3.2 (2023-10-31)
with the brms package, version 2.20.4 [54]. We used weakly-
informative prior distributions for all parameters in both
models [54]. For both models, we ran the No-U-Turn (NUTS)
Markov chain Monte-Carlo (MCMC) sampling algorithm to
fit the parameters, with four chains, each of which ran for
2000 iterations and included a warmup period of 1000 iter-
ations that were discarded afterward. From observing Rhat
values close to 1.00 and visual inspections of the trace plots,
we ensured that the MCMC chains had converged.

D. Model Assumptions

Singer and Willett [52] mention three assumptions that
discrete-time survival models rely on: 1) the linear additivity
assumption, 2) the proportionality assumption, and 3) the no
unobserved heterogeneity assumption. We actively checked the
first assumption by splitting it into a linearity and an additivity
assumption. For testing linearity, we tried whether replac-
ing continuous, linear explanatory variables with categorical,
non-linear variables improved the model through LOOCV.
To achieve convergence, we were only able to split contin-
uous variables into binary categories, but this should capture
notable non-linearity for assumption-checking purposes. Those
models, however, did not appear to be an improvement over
the reported models (the 1ELPD magnitude was within its
standard error). We tested the additivity assumption by check-
ing different interaction terms between pairs of explanatory
variables in both models (one for TT and one for ND data).
We verified through LOOCV that none of the alternative

models with interactions clearly outperformed the presented
model under the constraint of having the same model structure
for both TT and ND data.

The second, proportionality assumption, is that the effect of
covariates on the hazard is constant over time. We tested this
assumption by including interactions of the model’s variables
with the time indicator [52]; none of such model variants could
converge with the MCMC algorithm.

Finally, the third assumption of no unobserved heterogeneity
(or missing covariates) is very challenging to test in this
context (see, e.g., an extensive discussion in [59]). In this
case, we do not have additional covariates measured; therefore,
we can only declare this as an assumption and rely on the
robustness of Bayesian (mixed-effects) models.

E. Model Evaluation

Survival models are usually evaluated based on 1) dis-
crimination, i.e., their ability to distinguish individuals with
low and high risk of experiencing the event of interest, and
2) calibration, which assesses how well its predictions agree
with the observations in the data [60]. We used the receiver
operating characteristic (ROC) curve and the accompanying
area under the ROC curve (AUC) to quantify the discriminative
performance of our models. We used Hosmer-Lemeshow-style
plots to assess the calibration of the models [61], [62]. This
method sorts the predicted hazard from each time step into
deciles and plots the mean of each decile against the mean of
the corresponding observed hazards. We used the root mean
square error (RMSE) between predicted and observed hazards
over all deciles to quantify the calibration performance of the
models.

For both discrimination and calibration of the models,
we employed an in-sample evaluation and an out-of-sample
evaluation. We consider the full-sample model to be the model
of interest and the model from which we make predictions
and inferences (based on the coefficients, for example). In-
sample statistics apply to that model and are typical of
performance metrics for modeling in inferential contexts.
To ensure that the model performance does not result from
overfitting, we also conducted out-of-sample validations using
10-fold cross-validation, while splitting the data according
to the individual overtaking events. The similarity between
these two metrics indicates that overfitting is not substantial.
If in-sample performance is much better than out-of-sample
performance, overfitting is suspected.

III. RESULTS

A. Data Summary

The TT and ND data consisted of 104 (77 flying and
27 accelerative) and 82 (48 flying, three accelerative, 26 pig-
gybacking, and five squeezing) maneuvers, respectively. For
modeling, we only used the flying maneuvers from each
dataset. Table II shows an overview of the values of the
variables at the return onset in the datasets used for modeling,
and Fig. 3 the corresponding distributions. Both datasets
contained similar passing-phase durations (Fig. 3 a), however,
the durations in the TT data were, on average, slightly shorter
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TABLE II
SUMMARY OF THE DATA CONTAINED IN THE TWO DATASETS, INCLUDING

THE EXPLANATORY VARIABLES USED FOR MODELING. ALL DATA
ARE MEASURED AT THE RETURN ONSET. ALL CONTINUOUS VARI-

ABLES ARE SUMMARIZED AS MEAN (STANDARD DEVIATION);
ALL CATEGORICAL VARIABLES AS NUMBER OF SAMPLES

PER LEVEL (PERCENTAGE). SQUARE BRACKETS INDI-
CATE THE RANGE OF VALUES ([MIN, MAX])

than in the ND data (Table II). In both TT and ND data,
some drivers started to return before having passed the cyclist,
indicated by the negative tails of the distributions of the
longitudinal displacement of the cyclist (Fig. 3 b). The lateral
distances recorded in the TT data were, on average, slightly
shorter than those recorded in the ND data (Fig. 3 c, Table II).
The TT data contained more events without an oncoming
vehicle (Tab. II). Both datasets had similar values of the
relative speed between ego vehicle and cyclist (Fig. 3 d).

B. Model Parameters

Fig. 4 shows the posterior distributions of the model coeffi-
cients. For both models, the longitudinal displacement of the
cyclist had a clear positive effect on the hazard (Fig. 4 a),
i.e., with an increased displacement, the probability of the
return event increases. For the TT model, the magnitude of
the parameter was clearly larger than that of the ND model.
The lateral distance did not have a clear effect in the ND
model (Fig. 4 b); however, for the TT model, the probability of
the parameter being negative was 92.6%. None of the models
revealed a clear effect of the relative speed between ego
vehicle and cyclist at the start of the passing phase (Fig. 4 c).
However, for both models, the presence of the oncoming
vehicle had a positive effect on the hazard (Fig. 4 d; 88.6%
for the TT model and 100.0% for the ND model), resulting in
earlier returns when an oncoming vehicle is present. The TTC
of the oncoming vehicle did not have a clear effect for the TT
model (57.8%), but it did for the ND model (99.7%), resulting
in earlier returns for shorter TTCs (Fig. 4 e). The LOOCV
revealed that the TT model with the group-level effect for
individual drivers was clearly better than the model without it.
The ELPD increased by 22.1 with a standard error of 7.9. The
calculated ICC coefficient showed that 45.1% of the variance
could be explained by the effect of individual drivers on the

Fig. 3. Distributions of the passing-phase duration and the continuous,
explanatory variables. All data are measured at the return onset.

model’s intercept. Table III summarizes the numerical values
of the coefficient distributions.

C. Model Evaluation

Fig. 5 b shows the ROC curves for the in-sample evaluation
of the discriminative ability of the models. The in-sample
AUC of the TT and ND models were 0.872 and 0.837,
respectively. For the out-of-sample evaluation, the 10-fold
cross-validation of the TT model resulted in an average AUC
of 0.887 [min 0.838, max 0.985], and for the ND model in
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Fig. 4. Model coefficients with full posterior distribution and median (black
dot) with 95% highest density interval (HDI, black horizontal bar) marked.
To highlight the probability of direction, the positive part of the distributions
has an increased opacity.

0.841 [min 0.729, max 0.913]. Fig. 5 b shows the Hosmer-
Lemeshow calibration plots for the in-sample evaluation of the
models. Both models predict similar hazards to the observed
ones, particularly for lower deciles, while the higher deciles
of the predictions differed the most from the observations.
The TT model calibration resulted in an RMSE of 0.009,
while the ND model’s RMSE was 0.014. The 10-fold cross-
validation for the TT model resulted in an average RMSE of

Fig. 5. Evaluation of the return-onset models fitted on test-track (TT)
and naturalistic driving (ND) data. Panel a shows the receiver operating
characteristic (ROC) curves for assessing the discriminative performance of
the model. Panel b shows the Hosmer-Lemeshow calibration plots, i.e., the
ten deciles of the hazards predicted by the models and the corresponding
observed hazards.

0.018 [min 0.005, max 0.055], and for the ND model in 0.035
[min 0.009, max 0.148].

IV. DISCUSSION

A. Modeling Approach

This work presents a novel application of Bayesian discrete-
time survival analysis to return-onset modeling for drivers
passing cyclists. Survival analysis maps well to the prediction
of outcome onset time, but treating it as a discrete-time model
simplifies the modeling process and simplifies the use of
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TABLE III
MODEL PARAMETERS SUMMARIZED BY MEDIAN AND LOWER AND UPPER 95% HIGHEST DENSITY INTERVAL (HDI). PD DENOTES THE PROBABILITY

OF DIRECTION, DEFINED AS THE PROPORTION OF THE PARAMETER POSTERIOR DISTRIBUTION THAT HAS THE
SAME SIGN AS THE DISTRIBUTION MEDIAN

time-dependent covariates, which are critical in a changing
traffic scenario. Further, Bayesian models have a number
of advantages over maximum-likelihood models. First, they
characterize all of the uncertainty in the model, rather than
focusing only on the maximum likelihood model itself. In this
case, we emphasize inferences about the predictive value of
our parameters; such inferences are made on the basis of
the full posterior distribution. Second, they can fit complex
models with many parameters and are relatively unaffected
by “nuisance parameters” [63]. This is useful because we are
interested in inferences about the parameters but can eliminate
reliance on p-values associated with predictors [64]. Finally,
Bayesian models incorporate priors, which in this case were
weakly informative, introducing enough shrinkage to prevent
spuriously large coefficients. Future implementations of this
model could explore the use of stronger priors and/or the use
of these results to build priors for other datasets.

B. Driver Behavior in the Passing Phase

Our results suggest that drivers consider the longitudinal
displacement of the cyclist to time their return after having
passed the cyclist. If the driver is behind the cyclist, i.e.,
when the displacement is negative, the probability of returning
decreases, while it increases once the driver has passed the
cyclist. Both the ND and the TT model revealed that the
presence of an oncoming vehicle increases the likelihood of
returning. The ND model further showed that drivers returned
earlier when the oncoming vehicle was closer. This indicates
that drivers compensate for the risk of a head-on collision
with the oncoming vehicle by increasing the risk of a side-
swipe collision with the cyclist, which is in line with previous
research on the effect of oncoming traffic [13], [65].

The fact that the TT model hinted at a possible negative
effect of lateral distance on the hazard to return may have been
due to the two distinct scenarios tested in the TT experiment
(cycling in the middle of the lane vs. at the side of the lane).
In the ND data, where the effect was not clear at all, cyclists
were observed to usually cycle near the lane edge or even
outside of the lane, confirming previous research [32]. Future
work should try to investigate whether and how this factor
may influence driver behavior.

Additionally, the relative speed of the cyclist appeared to
have no influence on drivers in either dataset. This finding
suggests that drivers may focus merely on the displacement of
the cyclist irrespective of speed. From the cyclist’s perspective,
we hypothesize the absence of clear longitudinal interaction
with the overtaking driver, as the cyclist cannot properly
estimate its distance when the vehicle is approaching from
behind and may not have enough time to react and regulate
its speed once the vehicle has passed. Contrary to crossing
scenarios, where cyclists may regulate their speed depending
on the dynamics of the approaching vehicles, in our overtaking
scenario, we assume the rider to be only concerned about
controlling the speed to keep the bicycle stable [66]. In other
words, we assume the driver was the main actor controlling
the interaction between the vehicle and the cyclist. Although
intuitively, one may think that the cyclist would adjust speed
and lateral displacement depending on the proximity of the
overtaking vehicle, we could not verify this observation in
our ND data [46].

Both models performed well in the in-sample and out-of-
sample evaluation, predicting hazards that were similar to
the observed ones. The ICC from the TT data indicated that
almost half (45.1%) of the variance is attributed to individual
differences in timing. In spite of this challenge and the fact
that the two datasets were collected in fundamentally different
environments, they yielded similar results in terms of effect
existence and direction. This similarity supports the cumulative
evidence of this study, which one dataset alone could not have
provided. The TT model complements the results from the ND
model by showing the importance of accounting for individual
drivers. Moreover, the TT approach allowed exploration of
more variation in lateral distance to the cyclist, indicating that
if ND data with more variation were collected, they would
likely show a stronger effect of lateral distance.

C. Application in Active Safety and Automated Driving

The models could be used in an active-safety system, such
as a warning system for overtaking maneuvers. Specifically,
in the later phases of flying overtaking maneuvers, which are
the more critical maneuvers since the driver has committed to
complete the maneuver, safety systems may assist the driver.
By providing a means to predict the timing of the driver’s
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decision to return, our models can inform the system of
the probability of a driver’s reaction, based on the predicted
survival function. At the same time, the model can inform
about the uncertainty of this probability.

For instance, a BSD system may consult the model to
understand when the driver would return to decide on when
to stop warning the driver of the cyclist being in the blind
spot [23]. This might result in a possibly later return and
increased safety for the cyclist, while taking into account the
driver’s preference (possibly in the presence of an oncoming
vehicle). At the same time, an FCW system may warn to return
if the driver has not yet reacted by knowing that the driver-
model output has reached a high probability of returning.
If the driver does not react to the warning, an automated
steering system might help the driver maneuver the vehicle
back into the original lane to evade a head-on collision with
the oncoming vehicle.

Automated driving may also benefit from the driver model,
allowing the system to behave similarly to manual driving in
overtaking maneuvers. By predicting the reaction of different
percentiles of drivers, the model may, therefore, increase
drivers’ trust in the system [40]. Not only the driver/passenger
might benefit from a human-like behavior of the system, but
also the overtaken cyclist or the oncoming vehicle may be
more comfortable. Furthermore, models like the one presented
in this study, may support the virtual assessment of auto-
mated driving by providing a human-reference model that
the automated system’s safety performance can be compared
against [67].

Thanks to the chosen Bayesian approach, the model includes
the full distribution of the fitted parameters and can predict a
full distribution of the probability to return. This leaves system
designers the choice of selecting the appropriate percentile
of the predicted probability at which the system can assume
the driver to have reacted. A Bayesian approach may also
favor the personalization of safety systems [68], [69], by online
learning: the model parameters could be updated with new data
after each overtaking maneuver by the driver.

D. Limitations

Our results for the TT model are based on a limited set of
the world’s driving population. This may explain some of the
differences between the TT and the ND model; for instance,
the difference in magnitude of the parameter related to the
longitudinal displacement of the cyclist, or the influence of
the lateral distance. At the same time, these discrepancies may
be due to the differences between the environments, where
the TT airfield might have given drivers a more comfortable,
open space for maneuvering, while the ND environment was
constrained by clear road edges and connecting curves at the
ends of the straight segment.

The ND data are naturally confounded with other factors
[70] that were not accounted for in this study. For instance,
the sight distance and solid line on the ground may have played
an important role in influencing the driver’s decision to return
after having passed the cyclist. Furthermore, the positioning
of the cyclist with respect to the lane edge (cycling within vs.

outside of the lane) might have influenced driver behavior but
was not investigated in this work. A more comprehensive study
of the causal effects behind earlier returns may be done in
future work.

E. Future Work

In this work, we focused on rural roads, which have higher
speeds and higher impact consequences for crashes. However,
future work should investigate whether and how the models
developed in this work extrapolate to urban roads which may
account for additional variables such as the presence of parked
cars, different types of road markings, and a different speed
level [18].

Furthermore, we excluded events from the ND data in which
drivers passed both the cyclist and the oncoming vehicle
during the passing phase, i.e., “squeezed” through the gap
between the oncoming vehicle and the cyclist. The squeez-
ing behavior is in line with what was reported in previous
work [43], [44], [45]. Future work should understand when
this behavior occurs and what the implications on cyclist safety
are.

The survival models used in this work are based on a
standard logistic regression which could be fitted to the
limited amount of data available and allowed accounting for
repeated trials by participants. Once more data from overtaking
maneuvers become available, future work should investigate
the advantages of using deep-learning-based survival models
for possibly more accurate event prediction [60], [71]. Future
work may also include additional explanatory variables, such
as driver-control related signals (e.g., steering-wheel angle),
which may be obtained from ND studies with instrumented
vehicles [46].

Future studies should also develop and evaluate a safety
system based on the driver model presented in this study. For
this purpose, this study’s method of recognizing the onset
of the passing phase and returning phase using the lateral
positioning of the ego vehicle may need to be evaluated. For
instance, the steering-wheel angle or heading angle may be
considered alternative signals to detect the onset. Furthermore,
the Bayesian model may need to be assessed in terms of
calculation speed, since using all MCMC samples will increase
the complexity of calculating predictions. Using the median
or mode of the posterior distributions may be a first step
to avoiding heavy calculations involving all MCMC samples.
Variational inference may be another promising approach to
reduce the computational demand, especially if more data need
to be fitted [72].

The current work only addresses one particular phase of the
overtaking maneuver, the passing phase, arguably the most
important phase in flying maneuvers due to the high risk
of side-swiping the cyclist. However, since overtaking is a
complex process that not only concerns the passing phase,
it is important to consider all overtaking phases. Future work
may investigate the feasibility of developing predictive models
that combine all phases. The complete overtaking maneuver
is a long process that requires a notable amount of distance
traveled. Since the ND data in this study rarely captured all
phases due to the limited length of the observed road stretch,
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future studies may need to obtain data from a more extended
stretch or instrumented vehicles [46], [73].

Finally, while the reference model presented in this paper
may create a valuable anchor for a machine to estimate the
extent to which a driver usually behaves, it is open to discus-
sion whether the model predictions are optimal or even enough
to warrant safety. Moreover, in some unusual situations (e.g.,
the cyclist suddenly changing trajectory), the reference model
presented in this paper may not predict a safe maneuver and
potentially mislead active safety and automation. Future work
should therefore address how threat assessment should weigh
the inputs from reference models with other more traditional
threat assessment estimations [74] to maximize safety.

V. CONCLUSION

In this work, we presented a probabilistic driver model that
provides insights into how drivers time their returning after
having passed a cyclist. The model can predict the probability
of the driver returning using Bayesian survival regression with
time-dependent inputs that reflect the driver’s perception of
the scenario. The model performed well on two different
datasets (test track and naturalistic driving) in both in-sample
and out-of-sample evaluations, despite the limited data size.
From the parameters of the models based on both datasets,
we could infer that drivers use the longitudinal displacement
of the cyclist to decide when to return, and an oncoming
vehicle accelerates this timing. Such models could run in real-
time on vehicles and serve as a reference to compare the
driver’s actual behavior with the driver’s usual behavior and
include this information in the threat assessment for active
safety. Collision-warning systems could integrate the model to
improve their acceptance and assist the driver in maneuvering
the vehicle back to the original lane to ensure the safety of
the driver, the cyclist, and the oncoming traffic. In addition,
automated-driving systems could leverage the driver model
to behave more human-like to increase passengers’ trust and
cyclists’ comfort.
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APPENDIX
MODEL SUMMARIES

Table III summarizes the numerical values of the distribu-
tions of the model coefficients.
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