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Abstract. Braking hard on a split friction road generates asymmetric
brake forces, creating a yaw moment disturbance. For most drivers, it
is challenging to counteract the disturbance using steering, which could
make the vehicle deviate from the lane and potentially into a danger-
ous situation. A straightforward way to keep a vehicle in its lane is to
apply equal brake force to all wheels based on the lowest level of road
friction. Unfortunately, this method has the downside of significantly re-
ducing the vehicle’s braking capacity, resulting in an increased stopping
distance. Hence, the braking capabilities can be noticeably improved by
incorporating automated steering compensation. This paper suggests a
solution for optimizing steering jointly with individual wheel braking.
The proposed approach determines the upper deceleration limit while
ensuring the vehicle stays on its intended path. The upper deceleration
limit depends on the friction asymmetry between the vehicle’s low and
high friction sides. In cases of small friction asymmetry, steering is an
effective means of maximizing braking at each wheel. However, at large
friction asymmetry, steering compensation saturates, rendering it impos-
sible to attain maximum braking at each wheel. Also, the vehicle must
drift to maintain a straight path during braking.
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1 Introduction

At least one-tenth of fatal crashes in the US involve skidding pre-impact [1].
Skidding happens when one or more tires exceed their friction limits and lose
grip, affecting the vehicle’s stability. This phenomenon typically appears when
braking hard on a slippery road. Split friction is a special case of a slippery
road when one side of the vehicle lies on a low friction patch, such as snow or
oil spillage, while the other is on the pavement. The Anti-lock Braking System
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(ABS) reduces the brake forces on the low-friction side to prevent wheel lock, but
this creates an asymmetry that generates a yaw moment disturbance [2]. Most
ABSs expect the driver to counter the disturbance by steering. Nonetheless,
only skilled drivers can stabilize the vehicle as the yaw moment disturbance
can be abrupt and unexpected [3]. Especially when an autonomous function
initiates braking, distracted drivers take extra time to reject the disturbance
and stabilize the vehicle [4]. In either case, automating yaw moment disturbance
rejection should improve braking performance.

Braking hard on split friction can be summed into three cases, illustrated in
Fig. 1. First, case A without any steering compensation is shown. The vehicle
departs from the lane, and the stopping distance might be the shortest possible,
provided the vehicle remains stable. The most straightforward approach to re-
maining in-lane is to make the brake forces equal to the low-friction side, which
increases the stopping distance (B in Fig. 1). Case C is the best-case scenario
where the stopping distance is the shortest while the vehicle stays in its lane.

Contributions in literature have primarily focused on designing a controller
for steering, assuming the ABS handles the brake control, as in [2, 3, 5]. In [2],
a sliding mode controller performs steering compensation control, focusing on
robustness to parameter uncertainty. In [3, 5], the predictive path is considered,
adapting the steering controller based on receding horizon LQR control. The
brakes and steering system can be electronically controlled and coordinated in
an autonomous vehicle for improved performance, as in [6].

There is a limit to the deceleration that can be achieved without deviating
from the lane leading to the shortest stopping distance (C in Fig. 1) and is
dependent on the friction coefficient of each vehicle side. There are two compli-
cations to reaching the shortest distance. First, the brake forces at each wheel
and steering must be optimized simultaneously to reach the shortest distance.
Optimizing braking through the ABS first and then the steering leads to a sub-
optimal stopping distance (between points B and C). Secondly, uncertainty in
friction estimation and simplifications in the tire limits also affect optimality.
An alternative to perfect knowledge of friction is to react proactively. Machine
learning algorithms in perception sensors have been used to predict the road
state ahead of the vehicle with adequate accuracy [7]. This knowledge can be
used to improve control on roads with varying friction.

This paper proposes a method for finding the upper limit of deceleration
for straight-line braking while staying in-lane by optimally controlling individ-
ual brake forces and steering. The underlying assumption is that the friction
coefficient and the tire’s force-slip characteristics are instantaneously known be-
fore or when the ABS activates. The upper deceleration limit is sought from a
nonlinear optimization problem based on a two-track vehicle dynamics model
with load transfer and a combined slip tire model with friction circle limitations.
The following constraints are added to ensure the vehicle maintains a straight
path during braking: 1) zero yaw rate, 2) zero yaw moment balance, and 3) zero
acceleration perpendicular to the path. Finally, friction’s effect on the upper de-
celeration limit is investigated using the friction asymmetry measure, defined as
the difference in friction between each vehicle side.
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Fig. 1: Paths of 3 vehicles (A,B,C) braking on split friction with different
brake/steering control. The stopping distance (sA, sB , sC) is indicated for each.

2 Nonlinear two-track vehicle model

The objective of the vehicle model is to describe the dynamics of a vehicle
braking hard on a straight-line without rotating. For this purpose, a two-track
vehicle model is introduced with nonlinear tires. Each tire’s friction limitations
are modelled along with load transfer and combined slip, which influence the
available capacity of the wheels during combined braking and steering.

2.1 Friction circle

The tire forces are typically modelled to be limited within a friction ellipse. As-
suming that the road friction coefficient is isotropic, i.e., the same longitudinally
and laterally (µxij = µyij = µij), the friction ellipse is simplified into a circle√

F 2
xij + F 2

yij ≤ Fmax,ij (1)

where Fxij is the longitudinal tire force, Fyij the lateral tire force, and Fmax,ij

each tire’s force limit defined as Fmax,ij = µijFzij . Also, i refers to the front
(i = 1) or rear (i = 2) axle, and j to the left (j = 1) or rear (j = 2) side.

The utilized force is derived from (1) as

fuij =

√
F 2
xij + F 2

yij

Fmax,ij
≤ 1 (2)

and shows how much of the force limit is utilized at each tire.

2.2 Equations of motion

A two-track vehicle model with front-wheel steering is shown in Fig. 2(a). The
same steering angle δ is assumed for the left and right wheels. As will be presented



4 Ektor Karyotakis et al.

Fx11

Fx12

vx
vy V

β

Fy11

Fy12

δ

δ
ωz

Fy21

Fy22

Fx21

Fx22

l1l2

w

X

Y

Z

V

vx

vy

ax

ay

aX

aY

β

β

(a) (b)

Fig. 2: (a) Two-track vehicle model; (b) Special case of body rotation with the
total velocity vector V parallel to the intended path and corresponding acceler-
ation vector transformation

in the results, countering the yaw moment disturbance requires that the body is
tilted by a side slip angle β, which is defined as

β = arctan

(
vy
vx

)
(3)

In this way, the velocity vector V is oriented along the path, see Fig. 2(b).
Due to β, a coordinate transformation of the acceleration vectors along V is
needed. Specifically, the acceleration vectors in the body-fixed system xyz are
transformed into the global system XY Z as(

aX
aY

)
=

(
cosβ sinβ
− sinβ cosβ

)(
ax
ay

)
(4)

The acceleration along the path aX is the optimization goal, while the accel-
eration perpendicular to the path aY is constrained to zero to ensure that the
vehicle does not move laterally. The motion of a vehicle needs then be described.
The equations of planar motion are given as follows

Fx = max = m(v̇x − ωzvy) (5)

Fy = may = m(v̇y + ωzvx) (6)

Mz = Izω̇z (7)

where the total forces and moments in the body-fixed system xyz are given by

Fx = (Fx11 + Fx12) cos δ − (Fy11 + Fy12) sin δ + Fx21 + Fx22 (8)

Fy = (Fx11 + Fx12) sin δ + (Fy11 + Fy12) cos δ + Fy21 + Fy22 (9)

Mz = ((Fx11 + Fx12) sin δ + (Fy11 + Fy12) cos δ) l1

− (Fy21 + Fy22) l2

+ ((−Fx11 + Fx12) cos δ + (Fy11 − Fy12) sin δ − Fx21 + Fx22)
w

2
(10)
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Note that motion resistances, such as the air drag and rolling resistance, are
ignored. Further, steady-state load transfer is included in the model changing
the force limit in (1), i.e., Fmax,ij(Fxij , Fyij , δ), as in [8].

2.3 Tire model with combined slip

When braking and cornering are pushed to the limits, the tire characteristics
like stiffness change nonlinearly with slip and vertical load. This phenomenon is
typically modelled through the combined slip [9], and is expressed as

σij =
√

σ2
xij + σ2

yij (11)

where σxij is the longitudinal and σyij the lateral slip of each tire, defined as

σyij =
tanαij

1 + σxij
≈ αij

1 + σxij
(12)

A small-angle approximation is made for the tire lateral slip angles αij , while
the σxij are unknown in the optimization and do not need to be defined. The
lateral slip angles αij are obtained by transforming the velocity vectors from the
wheels to the body-fixed system xyz [8], giving

αij ≈
[
δ − vy+l1ωz

vx−w
2 ωz

, δ − vy+l1ωz

vx+
w
2 ωz

, − vy−l2ωz

vx−w
2 ωz

, − vy−l2ωz

vx+
w
2 ωz

]⊺
(13)

The magnitude of the combined force of each tire is modelled with the hy-
perbolic tangent model (adapted from [8]) as

Fij = Fmax,ij tanh

(
Ciσij

Fmax,ij

)
(14)

where Ci is the tire stiffness. The longitudinal and lateral tire forces are then
split using the combined slip and the combined force as

Fxij =
σxij

σij
Fij (15)

Fyij =
σyij

σij
Fij (16)

2.4 Optimization problem: maximum deceleration

The shortest stopping distance is sought when braking on a split friction surface.
Another way to examine the problem is by maximizing the deceleration until the
vehicle reaches a complete stop. Under the assumption that the dynamics are
ignored, this would lead to the shortest stopping distance. A quasi-steady state
is reached as deceleration reaches a steady state after initial transients, while
speed reduces to zero. Specifically, the longitudinal acceleration in the global
system aX is the minimization variable, calculated from (4). The global lateral
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acceleration aY along with the derivatives of the lateral states, i.e., [v̇y, ω̇z], are
set to zero to avoid lateral translation of the body. The body’s rotation is also
unwanted; thus, the sum of moments Mz from (10) should be zero, along with
a zero yaw rate constraint for straight-line braking. Setting ωz = 0, the lateral
slip angles from (13) are reduced to

αij = [δ − β, δ − β, − β, − β]⊺ (17)

The tire forces are calculated from (15)-(16). The combined force from the hy-
perbolic tangent model (14) is bounded, as are the forces (15)-(16) and already
satisfy the friction circle limitations. However, adding the inequalities (1) helps
the optimization algorithm approach the equilibrium point from the correct side
and avoid numerical instabilities. In fact, Fmax,ij is multiplied by a scaling factor√

F 2
xij + F 2

yij ≤ k Fmax,ij (18)

with k < 1 to ensure the optimization finds a unique solution. That is because
the hyperbolic tangent exhibits a plateau at the peak of the tire force – slip curve,
and there are several slip values for the maximum tire force. Staying to the left
of the peak is desirable. The utilized force (2) is also adjusted accordingly.

The optimization problem is expressed in compact form as

min
σxij ,Fxij ,Fyij ,δ,β

aX(Fxij , Fyij , δ, β)

s.t. aY (Fxij , Fyij , δ, β) = 0

ω̇z(Fxij , Fyij , δ) = 0

ωz = 0

Fxij−
σxij

σij(σxij , δ, β)
Fij(σxij , Fxij , Fyij , δ, β) = 0

Fyij −
αij(δ, β)

1 + σxij

1

σij(σxij , δ, β)
Fij(σxij , Fxij , Fyij , δ, β) = 0√

F 2
xij + F 2

yij − k Fmax,ij(Fxij , Fyij , δ) ≤ 0

(19)

The unknown variables q = [σxij , Fxij , Fyij , δ, β]
⊺ are 14 in total. There are 11

equality and 4 inequality constraints. The optimization problem is solved using
Matlab’s nonlinear programming solver fmincon.

3 Effects of friction asymmetry

The friction coefficient on each vehicle side is set to the same value, i.e., µ1j =
µ2j = µj . The friction asymmetry between the left and right vehicle side is
defined as

∆µ = µ2 − µ1 (20)
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Fig. 3: Sketches of a vehicle under two brake/steering control strategies and
corresponding tire forces on a split friction road

The friction asymmetry measure is used to evaluate the effect of friction on the
optimization’s (19) outputs.

Fig. 3 presents two brake/steering control strategies. First is the equal brake
force (EBF) strategy, in which the low-friction side dictates the brake forces,
and there is no counter-steering required as no yaw moment disturbance is gen-
erated. Second, is the minimization (M) strategy, which comes by solving the
optimization problem (19). A constant side slip angle β is depicted for the M
strategy, which is observed in the optimization solutions, see Fig. 5.
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Fig. 4: Friction asymmetry effects on deceleration and force capacity of the tires.
The point of counter-steering saturation is indicated with ∆∗

µ.
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The friction asymmetry ∆µ is computed for a range of friction coefficient
values for the left side of the vehicle µ1, while the right side remains at dry
asphalt, i.e., µ2 = 1. In Fig. 4(a), the EBF strategy’s deceleration values and
the upper deceleration limit from M are depicted for increasing values of ∆µ.
At ∆µ = 0, both vehicle sides are on dry asphalt, increasing to ∆µ = 0.95
corresponding to black ice on the low-friction side. The average utilized force
of all wheels f̄u = 1

4

∑2
{i,j}=1 fuij is also plotted for M. The optimization curve

shows a local linear relation between deceleration and friction asymmetry, up to
a specific asymmetry value, ∆∗

µ = 0.45. From this value onwards, fully utilizing
the tires to brake while countering the yaw moment is no longer possible, verified
by observing the drop in f̄u. Consequently, braking needs to be reduced to the
level of feasible counter-steering.

The utilized force of each wheel is plotted against the friction asymmetry in
Fig. 4(b). The asymmetry value of discontinuity ∆∗

µ becomes evident, and it is
the rear high-friction (right) tire that loses first the ability to utilize its capacity
fully, followed by the front high-friction tire at about ∆µ = 0.15 after. From
the equation perspective, inequality (18) becomes inactive for the rear right tire
after ∆∗

µ, while all the other constraints are active. The reason that the rear
loses its utilization first should be connected to the load transfer towards the
front during braking.

(a) ∆µ = 0.2 (b) ∆µ = 0.8

Fig. 5: Vehicle sketch of the optimal solution M for two friction asymmetry ∆µ

values. The friction circles are scaled based on the available load and their utilized
force fuij is denoted by each circle side. The body is tilted by β.

In Fig. 5, the vehicle is illustrated with its tire friction limitations for two
friction asymmetry values. At small friction asymmetry (Fig. 5(a)), all tires are
saturated while the vehicle orientation is close to parallel. In contrast, at large
friction asymmetry (Fig. 5(b)), the forces at the high friction side are away from
the limit, while the tires at the low friction side are saturated. Notably, the rear
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left tire has quite a small capacity, used mainly by the required lateral forces to
maintain the yaw balance and no-rotation equality constraints.
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Fig. 6: Braking and steering connection to friction on a split friction road. The
point of counter-steering saturation is indicated with ∆∗

µ.

Further insights are presented in Fig. 6. In Fig. 6(a), the longitudinal tire
slip σxij and -forces Fxij are plotted against friction asymmetry. The low-friction
tires (11 & 21) show an almost linear relation with∆µ. The rear high-friction tire
displays an increasing slip σx22 up to ∆∗

µ, where it reaches a peak and decreases
with a different slope afterward. However, force Fx22 keeps increasing even after
∆∗

µ up to a point, which happens as the load transfer decreases due to the
decreasing braking intensity. Therefore, there is a tendency for larger capacity
at the rear. In Fig. 6(b), the effect of friction on the steering angle δ and the
body slip angle β is depicted. It can be seen that steering increases even after
∆∗

µ, up to approximately ∆µ = 0.7, and decreases afterward. The slip angle β
follows a similar tendency. It is important to note that a non-zero β is obtained,
indicating that the vehicle drifts along the path at a slight angle, see also the
sketch in Fig. 3(b) in which β is exaggerated. This drifting can be counter-
intuitive to a human driver, as typically, one expects braking in a straight line
with zero orientation angle. The zero β expectation also complicates geometric
path-following algorithms.

4 Conclusion

This article provides the shortest stopping distance without deviating from the
lane on a split friction surface. The shortest distance is obtained by simulta-
neously optimizing steering and individual wheel braking in a nonlinear opti-
mization based on a two-track vehicle model with friction circle limitations.
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The optimization calculates the upper limit of deceleration for staying in-lane,
assuming perfect knowledge of the road friction coefficient before or when ini-
tiating braking. The upper deceleration limit is then evaluated against friction
asymmetry to reveal its dependence.

The results show that significant gains in deceleration can be achieved com-
pared to a conservative equal-brake-forces strategy. Specifically, the key conclu-
sions from this work are the following:

– To reject the yaw moment disturbance, the vehicle requires a non-zero body
side slip angle during braking.

– At large friction asymmetry, it is impossible to counter the yaw moment
disturbance by steering; hence, the tires are not fully utilized.

With this knowledge, existing emergency brake functions can be improved. Cor-
respondingly, friction asymmetry can be used in motion planning algorithms
to adapt to road conditions in a better way. Future steps include establishing
an optimal control algorithm and its comparison in simulations to established
control algorithms that do not require any friction knowledge.
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