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Abstract: Vertical cavity surface-emitting laser (VCSEL)-based optical interconnects (OI) are crucial
for high-speed data transmission in data centers, supercomputers, and vehicles, yet their performance
is challenged by harsh and fluctuating thermal conditions. This paper addresses these challenges
by integrating an ordinary differential equation (ODE) solver within the VCSEL communication
chain, leveraging the adjoint method to enable effective gradient-based optimization of pre-equalizer
weights. We propose a machine learning (ML) approach to optimize feed-forward equalizer (FFE)
weights for VCSEL transceivers, which significantly enhances signal integrity by managing inter-
symbol interference (ISI) and reducing the symbol error rate (SER).

Keywords: machine learning; optical communications; VCSEL-based optical interconnects;
end-to-end learning

1. Introduction

Vertical cavity surface emitting laser (VCSEL)-based optical interconnects (OIs) serve
as the primary connectivity solution in data centers, supercomputers, and vehicles, offering
cost-effective and high-speed connections [1]. Given the harsh and dynamically changing
environments in which these systems operate, VCSELs demand adaptive and resilient
design strategies throughout the communication chain [2,3]. Among the many factors
that influence the performance and reliability of VCSELs, temperature poses a particular
challenge [4]. In short-range OIs, the optical links are positioned close to heat sources,
which are typically the processing units, leading to rapid and substantial temperature
variations. This scenario is common in data centers, where the compact and densely packed
nature of systems often results in significant heat buildup [1]. Such temperature changes
impact the operational characteristics of VCSELs in several ways, including increased
threshold current, shifts in the emission wavelength of the VCSEL due to changes in the
refractive index and the physical dimensions of the laser cavity, decreased output power
due to decreased carrier density, and increased non-radiative recombination within the
laser’s active region [5].

The inherent nonlinear transfer characteristics of VCSELs, especially under significant
temperature variations, necessitate sophisticated approaches to ensure optimal operation.
For example, maintaining robust 100 Gbps links in such fluctuating environments requires
implementing advanced equalization techniques [6]. Equalization can be implemented
in two forms: post-equalization at the receiver, and pre-equalization at the transmitter.
Pre-equalizers actively modify the signal before it encounters the distorting effects of the
transmission medium and VCSEL nonlinearities [7,8]. This proactive approach allows for
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the correction of impairments before they occur, making it more efficient than attempting
to reverse these effects at the receiver end. Moreover, pre-equalization helps to reduce the
complexity and computational load on the receiver, which is particularly advantageous in
high-speed applications where minimizing processing delays is crucial.

Equalizers have traditionally been designed based on mathematical models [9–11].
However, considerations of cost, energy efficiency, and temperature variations significantly
impact communication capacity. Modeling individual components is already highly chal-
lenging; even if a model is available, it tends to be complex, as these models often involve
the concatenation of numerous nonlinear, frequency-selective, and noisy submodels, which
in turn precludes the possibility of designing an optimal transmitter and the corresponding
optimal receiver.

Machine learning (ML) provides an attractive alternative to traditional model-based
approaches to overcome the three challenges of modeling, design, and adaptivity [12]. Clas-
sical models of components serve as a foundation for constructing neural network (NN)
equivalents. In the context of optical communications, receiver-side algorithms encompass-
ing equalization, synchronization, data detection, and decoding can be learned by mimick-
ing conventional algorithms or utilizing deep neural networks (DNNs) from scratch [13–17].
Digital pre-equalization techniques have also gained popularity for enhancing performance
the optical communication links [7,8,18,19]. The real-time deployment of NN-based digital
equalizers hinges on computational complexity comparable to or lower than conventional
digital signal processing (DSP) solutions. For instance, NN-based digital predistortion was
designed using three convolutional layers in [20]. In the realm of pre-equalization methods
with a view to reducing the complexity, the feed-forward equalizer (FFE) stands out as a
prominent analog filter structure employed in transmitters. Operating as a finite impulse
response (FIR) filter, the FFE optimally shapes the pulse response, aiming to eliminate
inter-symbol interference (ISI) and reduce the link’s symbol error rate (SER) performance.

Notably, no work has yet attempted to optimize FFE weights using ML in the context of
VCSEL transceivers. Transmitter-side techniques such as pre-equalization introduce signifi-
cant challenges due to the need for a corresponding adaptive receiver that must participate
in the learning process [21]. One of the primary issues is learning the architecture on the
transmit side, which often involves backpropagation through a mathematical model of the
VCSEL. While differentiable models of VCSELs do exist, such as NN equivalents [6,20,22],
the requirements for high-speed operation and precise control necessitate a more compre-
hensive modeling approach. Accurate modeling of VCSELs involves capturing both the
small-signal and large-signal response, including thermal effects across varying tempera-
tures and with limited training samples. However, these comprehensive models, which
need to incorporate temperature dynamics explicitly, often lose their differentiability [23].
This complicates the application of standard ML approaches that require gradient calcula-
tions. This limitation presents an opportunity to explore novel representations of VCSELs
that are both comprehensive and compatible with back-propagation.

Our work includes the integration of an ordinary differential equation (ODE) solver
within the VCSEL-based OI chain framework [24,25]. This integration allows for simulating
the dynamic behavior of VCSELs using the rate equations and ensures the availability of
gradients at each step of the ODE. This gradient availability is essential for updating
pre-equalizer weights in gradient-based learning methods.

The contributions of the paper are as follows:

1. Integration of ODE-based ML for VCSEL Modeling: We utilize the adjoint method [25,26]
within an ML framework for backpropagation through the ODE solver. This approach
directly integrates the VCSEL model and its dynamics, avoiding surrogate models
and enabling optimization of transmitter components.

2. Optimization of FFE Weights for VCSEL Transceivers: Building on the ODE-based inte-
gration, we introduce an ML approach to optimize FFE weights for VCSEL transceivers.
This method effectively manages ISI and SER, leading to improved overall performance.
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The rest of this paper is organized as follows: Section 2 introduces the rate equations
of VCSEL and discusses the intrinsic small-signal modulation response; Section 3 provides
an overview of FFE; Section 4 describes the ML-based pipeline for training an FFE within
an OI system; Section 5 discusses the numerical results; and Section 6 concludes the paper.

2. Rate Equations of VCSEL

The ability of VCSELs to effectively respond to current changes at the data rate is
essential for ensuring dependable data transmission. To achieve this, a comprehensive
understanding of the VCSEL’s dynamic response is necessary. This dynamic response
is governed by a set of rate equations that account for the intricate interactions between
injected free carriers and photons within the cavity [27].

2.1. Parasitic Elements

Parasitic elements in VCSELs arise from their physical structure and manufacturing
processes. These include imperfections at material interfaces such as the p–n junction and
metallic contacts, which can lead to unwanted resistance. Parasitic capacitance formed at the
interfaces between semiconductor layers and around the active region affects how quickly
a VCSEL can respond to input signal changes, limiting the modulation speed. To account
for these effects, a simple parallel RC circuit model with resistance (Rj) and capacitance (Cj)
components is used in simulations, as shown in Figure 1. Here, Iin represents the VCSEL
driving current, I is the injection current without any parasitic element, the transfer from
Iin to I is the parasitic response, and the transfer from I to the optical output is determined
by the rate equations of the VCSEL.

Figure 1. Schematic of the RC circuit model used to simulate the parasitic effects in VCSEL;
Iin represents the VCSEL driving current, I is the injection current, and U is the device voltage.

2.2. Rate Equations

The laser’s operation is modeled through the single-mode laser rate equations derived
from a simplified VCSEL model [28], which provide a mathematical framework for under-
standing the interactions between carrier and photon dynamics within the laser cavity.

2.2.1. Carrier Dynamics Equation

The rate of change of carrier density N [m−3] within the laser’s active region is
modeled by the following equation [27,28]:

dN
dt

=
I

qV
− c

ngeff
gS − N

τn
. (1)

The rate of carrier injection I
qV is driven by the injection current I [A], where q is the

elementary charge and V [m3] is the active volume. The term c
ngeff

gS represents the stim-
ulated emission rate, where c denotes the speed of light in vacuum, ngeff is the effective
modal refractive index, g is the optical gain per unit length, and S is the photon density;
lastly, N

τn
accounts for the carrier recombination losses, with τn [s] as the carrier lifetime,

encompassing both radiative and non-radiative decay processes.
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2.2.2. Photon Dynamics Equation

The photon density S [m−3] that captures the dynamics of photon population within
the laser cavity is provided by the following equation [27,28]:

dS
dt

= Γ
c

ngeff
gS + Γβ

N
τn

− S
τp

. (2)

The stimulated emission rate is reduced by the internal quantum efficiency Γ. The second
term Γβ N

τn
introduces the contribution of spontaneous emission to the overall photon

density, with β representing the spontaneous emission coupling factor. The photon losses
are modeled by the final term S

τp
, where τp [s] is the the photon lifetime. It is important to

note that we treat Γ, g, τn, and τp as temperature-dependent parameters.

2.2.3. Output Power Equation

The relationship between the output power Po [W] and photon density S is expressed
as [27,28]

Po = S · V · hν · ηout

τpΓ
. (3)

The output power Po of the VCSEL is directly proportional to the photon density S, and is
calculated considering the active volume V and the energy per photon (hν). The efficiency
of the laser output ηout expressed relative to the wavelength λcav [m] quantifies the energy
conversion efficiency of the VCSEL, illustrating how the VCSEL converts electrical power
into optical power at a specific wavelength.

2.3. Self-Heating

To analyze self-heating effects, an additional set of differential equations is used to
monitor the internal temperature (T) of the VCSEL [23]:

τth
rth

dT
dt

= ggen − gdiss (4)

where ggen [W] represents the rate of heat generation, calculated as

ggen = U · Iin − Po, (5)

where U [V] is the device voltage, Iin is the driving current (see Figure 1), and gdiss [W]
denotes the rate of heat dissipation, provided by

gdiss =
1

rth
(T − Tamb). (6)

where τth denotes the thermal time constant, rth [K/W] is the thermal impedance, and Tamb
is the ambient temperature.

2.4. Dynamic Response of VCSEL

In this way, the rate equations establish a direct relationship between the excess carrier
density in the active region and the photon density within the cavity when the current
passes through the VCSEL. By perturbing these rate equations around a bias current
Ib using first-order Taylor expansion and measuring the differential output power, we
obtain the intrinsic small-signal modulation response, for which the two-pole transfer
function is [27]

Hint( f ) = ηd
hc

λ0q
· f 2

r

f 2
r − f 2 + jγ

f
2π

, (7)

where ηd is the differential quantum efficiency, h is the Planck constant, c is the speed of
light, λ0 is the lasing wavelength in vacuum, q is the elementary charge, fr is the resonance
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frequency, and γ is the damping factor. The small-signal modulation response is measured
by S21

S21 = 20 log10
| Hint( f )
| Hint(0)

, (8)

and is plotted in Figure 2 for increasing bias current Ib1 < Ib2 < Ib3 and two temperatures,
27 ◦C and 70 ◦C, showing the movement of fr and that the VCSEL reaches a critically
damped (flat) response at some current. The plot reveals shifts in resonance frequency and
a nonlinear reduction in bandwidth, significantly influencing the frequency response and
impacting data transmission capabilities. Pre-equalization at the transmitter, either analog
or digital, is crucial to address impairments from the limited bandwidth of VCSELs.
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Figure 2. Simulated intrinsic VCSEL response (with parasitic effects neglected) for three representa-
tive bias currents (Ib1 < Ib2 < Ib3) and two temperatures (27 ◦C and 70 ◦C).

The rate equation is directly solved for the forward inference step using the ODE
solver torchdiffeq in PyTorch, generating the output power for input current sequences and
establishing the loss function [25]. This library not only facilitates the integration of rate
equations but also supplies gradients at each ODE solver step for the back-propagation step.
This capability is imperative for updating the transmitter FFE weights in the optimization
process described in the next section.

3. FFEs Overview

FFEs use an FIR filter to shape the pulse response and ideally eliminate all ISI. The
FFE consists of a series of weighted coefficients called taps. Each tap represents a particular
weight applied to a delayed version of the input signal. The number of taps determines
the complexity and effectiveness of the equalizer. The delay in an FFE refers to the time
difference between the input signal and its delayed versions that are fed into the taps. This
delay allows the FFE to capture and compensate for the effects of previous symbols on the
current symbol. The output of the FFE at time instant t is provided by

Ip(t) = Iin(t) +
K

∑
k=1

wk Iin(t − tk), (9)

where Iin(t) is the input current, wk are the tap weights determining the contribution of
each delayed input sample Iin(t − tk), and tk are the corresponding delays.

A model block diagram indicating the position of the FFE in a VCSEL-based OI is
shown in Figure 3. The FFE is placed after the digital-to-analog converter (DAC) but before
the VCSEL and its parasitic elements. The delay elements in FFEs can be implemented with
synchronously clocked flip-flops, transmission lines, or analog delay elements. Coefficient
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summing and scaling can be achieved with scaled switched current sources either before or
within the final driver stage.

PAM-4 
generation FFEDAC Driver

VCSEL

PD
TIAADCReceive 

DSP

Bits

Bits

Fiber

Figure 3. Model block diagram of a VCSEL-based OI system. DAC stands for digital-to-analog
converter, ADC stands for analog-to-digital converter, PD stands for photodetector, and TIA stands
for trans-impedance amplifier. The FFE weights are optimized in the paper.

However, FFEs have limitations, particularly in filtering out relaxation oscillations
under varying biasing and data conditions. Relaxation oscillations or rapid fluctuations in
laser output power, can degrade signal quality. Traditional FFE techniques may not fully
compensate for these effects due to fixed or inadequately adaptive filter settings [29,30]. To
overcome these limitations, we introduce an ML-based approach to dynamically optimize
the FFE coefficients wk. In this paper, we consider ideal driver/FFE electronics, as including
transmitter and receiver non-idealities is beyond the scope of the current paper. The
following section outlines the end-to-end pipeline for learning FFE weights within the
OI system.

4. Pipeline for Learning FFE Weights

The end-to-end ML-based pipeline of the OI system and transmission chain, including
the FFE, VCSEL, and the receiver, is shown in Figure 4. Detailed functionality from message
encoding to output estimation is provided in the subsequent subsections.

Figure 4. Model block diagram showing the placement of the FFE in the entire chain. Weights w1 to
wK are learned in the paper.

4.1. Encoding and Input Transformation

The process starts by encoding a message s ∈ {1, . . . , M} ≜ M, where M = 4. Each
message s is encoded into a one-hot vector x, where the s-th element is 1 and all other
elements are 0. The output of the one-hot layer, ranging from [0, 1], is scaled and shifted to
the dynamic input current range of [2, 12] mA. This ensures that the input remains above
the VCSEL threshold current across all ambient temperatures, preventing the AE from
arbitrarily increasing the bias current, which would lead to self-heating in a real system [28].
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4.2. Signal Conversion and Transmission

After it is prepared, the input is sent to a DAC, converting the digital input into
an analog signal for the FFE and VCSEL. The FFE adjusts the signal to compensate for
potential distortions before it reaches the VCSEL. The fiber is modeled as a additive white
Gaussian noise (AWGN) channel. The system can adapt to include additional features
such as low-pass filtering and dispersion as well as intricate circuitry such as output driver
circuits, which are beyond the current work’s scope.

4.3. Output Processing and Estimation

At the receiving end, the photodiode output is processed through a fully-connected
neural network layer with softmax activation. This converts the received signals into a
probability vector q = [q1, . . . , qM]⊤, where the estimated message ŝ is determined by
selecting the highest probability from the softmax output, expressed as

ŝ = arg max
i

qi. (10)

4.4. Optimization and Loss Minimization

The network optimization focuses on minimizing the categorical cross-entropy loss
function, provided by

L =
M

∑
i=1

xi log(qi), (11)

where qi for i ∈ {1, 2, . . . , M} is a predicted value and xi is 1 for true classes and 0 otherwise.
This measures the disparity between the predicted and true probability distributions,
guiding the model towards accurate predictions by penalizing deviations from the true
class probabilities. The loss L can be related to an achievable information rate using
arguments from mismatched decoding [31].

4.5. Training FFE Weights with the Adjoint Method

The goal of the training is to find FFE weights wk for k = 1, . . . , K that optimize
performance in terms of the categorical loss function. A learning-based model is trained
by adjusting its parameters to minimize the difference between its predictions and actual
outcomes. Traditional backpropagation involves a backward pass through the network
to update these parameters based on the gradient of the loss, leading to challenges with
VCSEL components governed by differential equations. To address this, we propose using
the adjoint method [26] for training the pipeline. Derived from the framework of neural
ordinary differential equations (NODE) [25], this technique integrates ODEs as dynamically
learnable components within the network. The adjoint method calculates the adjoint state
during the backward pass, representing the gradient of the loss concerning the network
state at any given time. By solving the reverse-time ODE for the adjoint state, it is possible
to directly compute the gradients with respect to the differential equations governing
the VCSEL.

To ensure robust learning, the training process utilized a dataset of 2.5 × 104 randomly
selected message symbols processed in batches of 50 symbols over 7500 epochs. Training
was conducted at an SNR of 18 dB and a temperature of 70 ◦C. Determining the number of
taps is a critical factor, and is contingent on the desired equalization performance. A greater
number of taps in the design enhances equalization performance, as it allows for fine-
tuning the FFE frequency response; in turn, this fine-tuning enables more precise shaping
of the system’s limited bandwidth, leading to significantly improved overall bandwidth
performance. The following section provides a detailed analysis of the numerical results
and examines potential future extensions.
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5. Numerical Results and Discussion

We performed different training for different FFE configurations ranging from two
taps to five taps. The delay was chosen in multiples of Ts, where Ts = 1/(15 ∗ Fs) and
Fs = 56 GBaud is the symbol rate, that is, n1 = 6Ts, n2 = 9Ts, n3 = 12Ts, n4 = 15Ts,
and n5 = 18Ts. During training, the FFE weights were optimized to minimize the error
between the transmitted and received symbols. The optimized weights for various tap
configurations are detailed in Table 1, reflecting the system’s adaptation to diverse signal
distortions encountered during the training phase.

The effectiveness of the optimized weights is demonstrated through eye diagrams in
Figures 5 and 6a–d. Each diagram represents a different tap setting on the FFE, demon-
strating how increasing the number of taps affects signal clarity. Figure 5 shows the eye
diagram without the FFE. A clear trend is observed in Figure 6a–d, where the signal clarity
improves as the number of taps increases. The average eye height increases from 0.6 mW
for two taps to about 1.2 mW for five taps. Similarly, the average eye width is about 8.33 ps
for two taps and 10.7 ps for five taps. The average jitter for two taps is 9.5 ps, while that
for five taps is 7.14 ps. The added taps enhance the complexity of the weights, allowing
for finer signal adjustments and reduced inter-symbol interference; however, as shown in
Figure 6d, the improvement with five taps is minimal compared to the FFE with four taps.

Table 1. Optimized weights w1 to w5 for different tap settings.

Taps w1 w2 w3 w4 w5
2 0 −0.3438 0 0.0285 0
3 0 −0.4329 −0.3564 0.4961 0
4 0 −0.3357 −0.1708 0.0421 0.1947
5 −0.0281 −0.2644 −0.1067 −0.0223 0.1516

Figure 5. Eye diagram illustrating the signal quality in the absence of FFE.

The improvement in clarity observed in the eye diagram is correlated with a reduction
in the SER. This relationship is illustrated in Figure 7, where higher SNRs lead to lower
SERs, highlighting the advantages of more advanced pre-equalization techniques. For
instance, using five learned taps provides a sensitivity gain of approximately 1 dB over
configurations with only two taps. This gain is notable at a low SER level of 10−4, indicating
a substantial enhancement in the system’s ability to accurately interpret the received
symbols. Increasing the number of taps enables more precise adjustments of the equalizer’s
response, translating to improved performance metrics, such as lower SER at higher SNRs.
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The proposed method trained at an SNR of 18 dB generalizes well across high SNR
conditions, but may require additional training at lower SNRs to combat increased noise.
To address SNR variability more robustly, a similar approach to the distance training
method discussed in [32] could be adopted; in this approach, during training the SNRs
are drawn from a Gaussian distribution with a mean of 18 dB and a certain standard
deviation. Similarly, VCSELs, being temperature-sensitive, demand adaptive models for
reliable performance across a wide operating range from −40 ◦C to +125 ◦C. Traditional
methods often involve retraining FFEs for different temperatures or fine-tuning via transfer
learning. Alternatively, a temperature-adaptive FFE that introduces temperature as an
input to the neural network could be explored in future to enable dynamic adaptation
without requiring retraining for each scenario. Similarly, to address nonlinearities such as
VCSEL relaxation oscillations and temperature-induced variations, nonlinear equalizers
based on other deep learning models could be trained to adapt to rapid shifts in operating
conditions. This approach would enhance the system’s robustness in extreme scenarios.
In future work, the benefits of this approach can be explored for different symbol rates
versus VCSEL bandwidths. Additionally, learning the delays along with the weights and
including transmitter and receiver non-idealities could further enhance the adaptability of
the system.

(a) With two taps: w2 and w4 (b) With three taps: w2, w3, and w4

(c) With four taps: w2, w3, w4, and w5 (d) With five taps: w2, w3, w4, w5, and w6

Figure 6. Eye diagrams for different optimized FFE tap configurations.
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Figure 7. SER vs. SNR for different numbers of FFE taps.

6. Conclusions

In conclusion, we have developed an end-to-end pipeline for optimizing FFE weights
within the OI system. By integrating the adjoint method with ODE solvers, we achieve
gradient-based optimization of the FFE weights. The results demonstrate significant im-
provements in signal clarity and performance. Specifically, configurations with more taps
enhance signal integrity, with the five-tap setup providing a 1 dB sensitivity gain over the
two-tap setup and an SER of 10−4. These findings validate the effectiveness of our approach
and highlight the importance of the tap number in optimizing equalization strategies.
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