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Pedestrian movement has always been one of the main concerns for urban
planning and design, but it has become more important within the sustainable
development agenda, as walking is crucial to reducing urban emissions and
fostering liveable cities. Therefore, urban planners need to take pedestrian
movement into consideration as part of the workflow of planning and
designing cities. This study outlines a comprehensive workflow tailored for
urban planners. It proposes a hybrid model that integrates an agent-based
model, which simulates the micro-scale movement of pedestrians in outdoor
urban environments, with a network model, which predicts the aggregated
pedestrian flows on a macro-scale. The hybrid model is applied to a
pedestrian precinct in the city centre of Gothenburg, Sweden, and is
compared to real-world measurements. The reasonable agreement between
the simulation results and the real-world data supports the reliability of the
proposed workflow, underscoring the model’s ability to statistically predict
pedestrian movement on a large scale and individually on a local scale.
Furthermore, the model enables the analysis of flow distributions and
movement restrictions and facilitates the analysis of different design scenarios
and specific pedestrian behaviour. This functionality is valuable for urban design
and planning practice, contributing to the optimisation of pedestrian flow
dynamics.
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1 Introduction

Rapid urbanisation and climate change pose critical challenges
for urban planners and architects who, using elaborated
measurement techniques, high-fidelity simulation models, and
artificial intelligence, aim for deep insights and understanding of
the built environment and urban processes. In the light of climate
change, walking has a crucial role in emission-free travelling and
fostering liveable cities (Stratford et al., 2020; Litman, 2020).
Furthermore, walking contributes to health and wellbeing (e.g.,
Roe et al., 2020; Bird et al., 2018), social co-presence, inclusion
and cohesion (e.g., Legeby et al., 2015; Legeby, 2013), and the
resilience of cities due to a reduced dependency on energy
sources (Berghauser Pont et al., 2021). Moreover, pedestrian
flows are recognised as an important driver of local markets and
economies (e.g., Hillier et al., 1993; Hillier, 1996). It is thus clear that
pedestrian movement is an urban process that must be understood
in order to plan and design more sustainable and safer development
paths for cities.

Pedestrian movement has been studied using different
approaches and on different scales for many decades. As well as
controlled experiments, where general behaviour can be studied in
specific circumstances, field observation using pedestrian-sensing
technology is widely used to collect real-world data. Video recording
techniques with image recognition enable a well-resolved study of
local phenomena. In addition, the availability of mobile phone signal
data can be used to analyse pedestrian movement in large areas.
Nevertheless, signal post-processing in conjunction with data
anonymisation due to the general data protection regulation
(GDPR) can lead to a coarse time resolution. The interested
reader is referred to an exhaustive review by Dong et al. (2020).

However, these measurement techniques cannot be used to
forecast pedestrian movement in planned or newly designed
places. The same applies to geographical contexts where
collecting data on pedestrians is prohibited due to local
restrictions. Therefore, various models have been developed to
simulate pedestrian movement, which are summarised as follows.

Various macroscopic modelling methods have been developed
to simulate pedestrian flows on street networks. On the one hand,
route-choice models based on a discrete-choice framework adapt
traffic-modelling methodologies to simulate pedestrian trajectories
from origin to destination on a street network (e.g., Basu and
Sevtsuk, 2022; Sevtsuk et al., 2021; Bongiorno et al. 2021; Prato
2009). On the other hand, statistical models based on street network
modelling predict aggregated pedestrian flows on a street level
(i.e., number of pedestrians on each street segment for a given
time-frame) (e.g., Bolin et al., 2021; Stavroulaki et al., 2019;
Berghauser Pont et al., 2019a; Özbil et al., 2011; Dhanani and
Vaughan, 2016; Özbil et al., 2015; Berghauser Pont and Marcus,
2015; Netto et al., 2012; Peponis et al., 2008; Hillier and Iida, 2005;
Penn et al., 1998; Peponis et al., 1997; Hillier et al., 1993). Such
models have mainly been developed within the field of urban
morphology and Space Syntax (Stavroulaki, 2022; Sharmin and
Kamruzzaman, 2018). While route-choice models have high
accuracy, they are very data-demanding and rely on many
predictors that cannot be estimated in the design phase of urban
development planning (e.g., specific attractions, sidewalk width,
street lighting, and exact land-use mix), or they include

socioeconomic predictors that are not predefined in development
plans (e.g., income and age). Statistical network-based models are
more parsimonious. Although they have moderate accuracy, they
can be applied more directly in scenario analysis and assessment to
guide the early design and planning stages since they only rely on
spatial predictors that can be affected by design, such as street
centrality and urban density (Stavroulaki, 2022; Sharmin and
Kamruzzaman, 2018). The macroscopic network model (NM)
applied in this study is such a parsimonious statistical model, as
will be described in detail in the methodology section.

Common microscopic modelling methods identified by Duives
et al. (2013) for crowd and pedestrian movement are the cellular
automata model studied by Blue et al. (1997), the social force model
introduced by Helbing et al. (2000), the activity–choice model
(Hoogendoorn and Bovy, 2004), and velocity-based models (Paris
et al., 2007). Cellular automata models divide the walking space for
pedestrians into a discrete grid. Pedestrians move through this grid
based on constraints defined in the model. In contrast, the social
force model represents pedestrians in a continuous space with force-
based interactions and movements. The activity-choice model is a
continuation of the social force model, adding an active route choice
for pedestrians, whereas, in the velocity-based model, pedestrians
choose their path based on a knowledge of surrounding obstacles to
reach their destination as directly as possible. During the last decade,
crowd movement simulations based on neuro-evolution have been
studied by Song et al. (2018) andWang et al. (2015). In this study, an
agent-based model (ABM) based on the social force model is applied
for the micro-scale simulations.

While pedestrian modelling is typically conducted at the micro-
or macroscale, intermediate approaches also exist. Examples include
the continuum model presented by Hoogendoorn et al. (2014), the
mesoscopic model for pedestrian dynamics in two dimensions by
Tordeux et al. (2018), and the mesoscopic queue models used by
Crociani et al. (2016) and Lämmel et al. (2014).

Several attempts have been made to develop hybrid models. For
example, Xiong et al. (2009) created a multi-resolution model that
couples an ABM with a flow-based model. The flow-based model
uses pedestrian velocities and densities from the ABM to efficiently
simulate stabilised flow, while the ABM is guided by flow rates to
simulate unstabilised flow. Kneidl et al. (2013) combined a graph-
based macroscopic model with a cellular automata microscopic
model, enhanced by a dynamic navigation field to control
pedestrian movement. Crociani et al. (2016) developed a multi-
scale model that integrates a cellular automata model with a
mesoscopic queue model, where pedestrian movement is steered
via a queueing process, improving performance in low-density areas.
Likewise, Lämmel et al. (2014) introduced a hybrid model linking a
queue model with an optimal reciprocal collision avoidance model.
Other examples of hybrid models are ABMs developed within the
field of space syntax where agents’ random walks depend on both
visual parameters (i.e., angle and field of view) and the macroscopic
configurational properties of the urban layout (Turner and Penn,
2002; Penn and Turner, 2002; Hanna, 2021). A similarly motivated
approach was presented byMa et al. (2023), where an ABM based on
an origin–destination matrix included the visit frequencies of
attractions and added walkability affordances of land cover in the
model parameters (i.e., angle and depth of vision), resulting in a
simulated pedestrian path system emerging from the collective
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interactions between the agents and environment in a bottom–up
manner. While numerous hybrid models have been developed
over past decades, macro-scale flow patterns in most models
emerge bottom–up from the micro-scale movement; to our
knowledge, none of the existing models incorporate the
prediction of pedestrian volume. Therefore, this study
proposes a workflow where the aggregated macro-scale
pedestrian flow informs the micro-scale agents’ movement in a
top–down manner, coupling a statistically based NM with a
social-force ABM. This workflow aims to provide a
comprehensive and self-contained tool that can be used in
urban design and planning to estimate pedestrian movement
flows in the streets and public spaces of planned areas to assist in
scenario analysis and support decision-making.

Human behaviour is very complex, and factors that influence it
include ethnic origin, age, events, social relations, fitness, and weather
(Dridi, 2015; Kaup et al., 2008; Hansen, 2018). Thorough model
validation is thus not straightforward. For agent-based pedestrian
simulations, only a few attempts have been made to develop
procedures on sensitivity analyses, calibration, validation, and
comparison to real-world data, such as Davidich and Köster (2012),
Zhou et al. (2015), and Sparnaaij et al. (2019). The reasons for the
relatively small number of studies presenting comparisons to real-world
data are mainly attributed to the need for more data and the complexity
of pedestrian movement itself. However, several studies aim to establish
an awareness of the importance of these steps, such as Duives et al.
(2013), who derive a strategy to assess the model’s capability. As the
models generally cannot capture all the different behaviours with
one set of parameters, calibration can be performed with a single
or several test cases relating to the scenario to be investigated.
Examples are by performing manual calibration (Porter et al.,
2018; Rudloff et al., 2013) or utilising a genetic algorithm and a
threshold accepting algorithm (Voloshin et al., 2015; Davidich
and Köster, 2012). Recently, a multi-objective calibration was
suggested by Campanella et al. (2011) and applied by Sparnaaij
et al. (2019) and Liberto et al. (2020). The studies cited in this
paragraph mostly focus on crowd and emergency evacuations,
and comparisons of the models were done with experimental
settings. In the present study, however, we apply the same type of
ABM as discussed in the literature above to daily movement in
larger open spaces. Before doing so, the ABM applied in this
study has been validated and calibrated as per Berghauser Pont
et al. (2023).

ABMs typically rely on real-world statistical data for the initial
agent distribution and their destinations; this is not available when
designing new areas. These limitations hinder ABM’s usability for
urban design and planning practice. In such cases, the necessary
input to ABM could be retrieved from a macroscopic NM, resulting
in a hybrid model.

The objective of this study is to use an NM and an ABM to
provide a hybrid workflow (Figure 1) for predicting pedestrian
movement seamlessly on large and small scales, specifically for
urban designers and planners. This workflow is only based on
spatial parameters that can be defined in the early design phases,
such as building geometries, street networks, and metadata like retail
and transit locations. In our proposed workflow, these data feed into
an NM, which statistically predicts macro-scale aggregated pedestrian
flows. These flow predictions, alongside architectural data, initialise an

ABM for micro-scale simulations of pedestrian movement so that
urban planners can leverage existing data in their planning process
without further real-world data. Through the hybrid workflow
presented here, the combined insights from both models can
inform planners about daily patterns of pedestrian flows,
crowdedness, pedestrian conflicts (e.g., violation of personal space),
and movement restrictions, aiding design evaluation without
additional data collection.

Finally, the reliability of the proposed workflow is evaluated in
this study by comparison with real-world data of pedestrian
movement in a pedestrian precinct via a case study.

2 Materials and methods

To exemplify the proposed workflow, two specific
implementations of the NM and ABM are applied; these are
variations of established models known from literature, the
modelling details of which are described in Berghauser Pont
et al. (2023). In the following section, we summarise the models
and emphasise how they are connected to enable a seamless study of
pedestrian movement on different scales.

Thereafter, the material for a case study of a real-world
pedestrian precinct is presented, followed by the specific model
setup for the hybrid workflow for the simulation of pedestrian
movement in this precinct.

2.1 Numerical method

2.1.1 Network model
The NM used in the hybrid model presented in this paper was

developed during the CrowdMovement research project and is fully
presented in Berghauser Pont et al. (2023).

It is based on a machine learning model in Python1 using least
absolute shrinkage and selection operator (LASSO)2 regression that
predicts pedestrian flows (i.e., numbers of pedestrians in a day) on the
streets of urban areas, both existing and planned. LASSO was selected
because it is a regression analysis method that performs both variable
selection and regularisation in order to enhance the prediction accuracy
and interpretability of the resulting statistical model (Stavroulaki et al.,
2024). Compared to other methods (e.g., ridge regression, elastic net,
and stepwise regression), LASSO is typically preferred when the aim is,

1 Code available on GitHub: https://github.com/SMoG-Chalmers/

crowd-movement

2 LASSO is a regularised regression method that constrains the sum of the

absolute values of themodel coefficients (i.e., penalisation of coefficients).

This results in a sparse model where some coefficients are exactly 0,

indicating that they do not contribute to predicting the response variable,

avoiding overfitting and handling redundant information and

multicollinearity. So while many coefficients were initially tested in the

model building (Berghauser Pont et al., 2023), the final predictors were

only four. For the complete list of tested coefficients, please refer to the

original publication, Stavroulaki et al. (2024).
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first, to arrive at a simple, parsimonious, and easily interpretable model
with a few sets of predictors, and second, to avoid overfitting to the
training data so that it will better generalise to new unobserved data of
new areas and scenarios (e.g. Zhou et al. (2024)), both of which are aims
of the proposed model.

As described in Stavroulaki et al. (2024), the NM was fitted on
data collected from 121 street segments in six central
neighbourhoods in Stockholm, Sweden, in October 2017 and
which were tested in Gothenburg, Sweden by predicting full-day
pedestrian counts in 75 street segments in the city centre. It was
tested against real-world observations collected by capturing
anonymised wi-fi signals from mobile phones in October 2018 by
the traffic planning office of Gothenburg municipality
(Trafikkontoret, 2019). The results showed that 52% of the

pedestrian variation (i.e., coefficient of determination R2 � 0.52)
could be predicted with the model when tested in an entirely new
city, which is sufficiently accurate to guide the early stages of urban
design projects in new areas where training a new model with
empirical data is not possible. The model is parsimonious and was
hence considered appropriate for the hybrid model, aiming to be
easily applicable in urban design and planning projects.

2.1.1.1 Measure equation
The LASSO regression model is stated in Equation 1.

ln FullDayCount( ) � β0 + β1“Plot500”+ β2“LMarkets500” + β3“SegLength”+ β4“SpeedLim” + β5 ln “Bet2000”( ) + ϵ,
(1)

FIGURE 1
Proposed workflow based on a hybrid model connecting an NM and an ABM.
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with β0 � 4.712, β1 � −0.002, β2 � 0.007, β3 � −0.010, β4 � 0.026,
β5 � 0.108.

All the spatial predictors can be easily calculated in the early
stages of an urban design project, making it directly applicable to
practitioners. Below is the detailed explanation of each predictor.

The angular betweenness centrality Bet2000 is a street network
centrality measure introduced in Space Syntax (Hillier and Iida, 2005)
and tailored to the particularities of pedestrian movement, such as using
angular distance to calculate the shortest path between street segments
which correlates well to how pedestrians navigate and choose their
paths, and using street-based representations of the network for
calculation (e.g., Stavroulaki et al., 2017; Stavroulaki, 2022).
Bet2000 is angular betweenness calculated in a radius of 2000 m to
indicate local street centrality. High angular betweenness centrality at the
local scale means that a street mediates the shortest paths connecting all
possible origins and destinations within the local context of each street.

The formula of angular betweenness centrality is given in
Equation 2 as follows:

B x( ) � ∑
s≠x≠t

σst x( )
σst

, (2)

where s and t are all nodes (i.e., street segments) in the network
different from x, σst is the number of shortest paths from s to t,
and σst(x) is the number of shortest paths from s to t that pass
through x.

The predictor LMarkets500 is the number of local markets (e.g.,
daily services, retail, cafes, and restaurants) that are reached within a
walking distance of 500 m, and Plot500 is the number of plots that are
reached within the same walking distance from each street segment.
Both variables are based on the Place Syntax methodology that
combines accessibility measures to the pedestrian-oriented Space
Syntax representations of the street network (Ståhle et al., 2005;
Berghauser Pont et al., 2023).

To calculate the number of local markets and plots within 500 m
walking distance from each street segment, the equation used is
stated in Equation 3:

AR0 � ∑
a∈A

f a( )ωD o, a( )( ), (3)

where A is the set of reachable attractions (i.e., local markets,
plots) within a given radius, f(a) is the attractions value
associated with attraction a, or 1 if no attraction value is used
as in this case, D(o, a) is the shortest distance from origin o to
attraction a, and ω(x) is the attenuation function (no attenuation
function is used in this case).

Furthermore, SegLength denotes the street segment length, and
SpeedLim the speed limit for this street. All the spatial predictors can
be easily calculated in the early stages of an urban design project,
making it directly applicable to practitioners.

Since the response variable is strictly positive and its distribution
right skewed, a log transformation is applied to the predictor
variables before fitting the model. In addition, an inverse
transform is performed afterwards to avoid negative predictions.

2.1.2 Agent-based model
An ABM based on the social force model was implemented for

this study to simulate micro-scale pedestrian movement. Each

pedestrian is modelled as an agent; the ABM thus resolves the
micro-scale movement of the individual pedestrians.

The ABM has been implemented as an extension to the particle
solver Demify® (Quist et al., 2021) to efficiently handle the agents and
their interaction partners. Pedestrians are represented by a particle
model consisting of three spheres: body, head, and nose, where the latter
indicates their orientation. The simulations require an
origin–destination matrix (ODM) as input for a specified time
interval; it indicates the distribution of pedestrians that move from
one section of the domain to another. For the interaction with the three-
dimensional environment, geometries in the form of triangulated
meshes are required to represent the buildings and ground.

The implementation of the model allows for an extension with
more complex behavioural rules and tactical planning when, for
example, empirical rules are present.

2.1.2.1 Governing equations
A social force (Equation 4) is implemented according to Helbing

et al. (2000) to act between the centres of two pedestrians. Let rij be the
sum of the body radii given for agent i and agent j and let dij be the
distance between their centres. Then, the social force is defined as

FPSY � k1 exp ri − dij( )/k2( ), (4)

where k1, k2 are empirical constants.
Like the social force, a wall social force (Equation 5) between

pedestrians and the building geometries is included for obstacle
avoidance. Let ri be the radius given for pedestrian i and diW the
distance of pedestrian i and wall W. Then, the wall social force is
defined as

FW � kW1 exp ri − diW( )/kW2( ), (5)
where kW1, kW2 are empirical constants. The pedestrian can see
buildings and obstacles in their field of view, which is determined by
a ray tracer. The ray tracer is based on nr rays with a length of dr
which detect obstacles in the field of view of α degrees.

To drive the pedestrians towards their assigned destination with their
desired speed, a motive force (Equation 6) as per Langston et al. (2006) is
included, additionally allowing path planning by assigning several ordered
destinations to a pedestrian. When pedestrians reach their final
destination, they are removed from the simulation. Let VD denote the
desired and Vi the actual velocity of pedestrian i,mi the mass, and τi the
characteristic time of pedestrian i; the motive force is then defined as

FM � mi VD − Vi( )/τ i. (6)

Finally, a model to adapt pedestrian speed for tilting floors
(Equation 7) is implemented as per Wang et al. (2013). Let the
horizontal velocity without the adaptation for tilting floors be v0.
The adapted horizontal velocity is then given by

vh � v0 1 − c tan θ( )),( (7)
with θ the slope gradient and c a constant.

2.1.2.2 Agent-based model parameters
The presented ABM has been verified and validated for outdoor

scenarios; the interested reader is referred to Berghauser Pont et al.
(2023). The parameter set deduced for outdoor environments is
given in Table 1 and applied in this study.
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The parameters c and τ are universal and result from
calibrating the motive force and the tilting floor adaptation,
respectively. The simulation timestep Δt is chosen to ensure a
stable simulation result. The mass mi, body diameter 2ri, and the
desired velocity ‖VD‖ are chosen to represent a general
distribution of pedestrians, while the social and wall social
force parameters are calibrated against measurements
(Berghauser Pont et al., 2019a) to model pedestrian movement
in outdoor environments. The variation of the latter set of
parameters enables studies of specific groups of pedestrians
(e.g., elderly people with a slower desired walking velocity) or
certain scenarios (e.g., varying social force parameters to enforce
a larger distance between pedestrians, as in pandemics).

2.1.3 Connection of network model and agent-
based model

TheNM andABM are utilised together to achieve a comprehensive
workflow that gives information on the expected flow of pedestrians
and their resolved micro-scale movement for new district designs
(Figure 1). The NM predicts the full-day pedestrian counts on each
street segment, which can be directly used by urban planners for design
evaluation. However, this path is outside of the hybrid model
framework and is thus shown in pale colours.

Since an ABM typically simulates pedestrian movement in a
more limited time frame, a context-specific factor must first be used
to calculate the expected number of pedestrians in specific time
frames. With this factor, the full-day pedestrian counts predicted by
the NM are converted to the accumulated flows for the time frame to
be considered.

The connection of the two models follows three steps.

1. The NM predicts the pedestrian counts for the line segments Si at
the domain boundary. These counts are undirected and represent
the total number of pedestrians passing in both directions on the
corresponding line segment during the chosen timeframe.

2. The origin–destinationmatrixODM is assembled based on the
NM predictions where the entries ODMij give the percentage
of the total pedestrians in this domain with origin i and
destination j, given in Equation 8 as

ODMij �
0 if i � j,

wij

1
2
∑
i

Si

if i ≠ j,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(8)

with wij being the total weighted number of pedestrians
travelling from i to j, given in Equation 9 as

wij � 1
2

Sj
∑
k≠i

Sk
Si, (9)

where the factor 1
2 models that half of the pedestrians have the

line segment Si as their origin and the other half as their
destination.

3. The ODM initialises the ABM simulations. Intermediate
targets are added to smoothly guide the pedestrians through
the domain between the origin and destination line segments,
such as at sharp corners or crosswalks.

A detailed example of the connection between the two models is
given in Section 1 in the supplement.

Note that this approach simplifies the actual pedestrian movement
since dominant directions on street segments can exist—for example,
pedestrians will only move away from a mall in the evening at closing
time and none will go towards it. The NM predicts the total presence of
pedestrians in both directions, and to this day there has not been
generalisable empirical evidence to suggest methods to weigh the two
directions differently. Case-specific calibrations could be made, but the
hybrid model aims to offer a generalisable methodology that does not
require the collection of real-world data. Therefore, half of the predicted
pedestrians for a line segment are assumed to enter the domain from
that segment, and the other half are assumed to exit through the same
segment. Furthermore, the segments must be chosen carefully since
paths in open spaces or crossings are modelled as individual street
segments in the NM, following the standard Space Syntax methodology
of street network modelling.

This workflow allows urban planners to investigate different
scenarios or designs based on the inputs that the models receive. As
illustrated in Figure 1, the NM receives information on spatial
parameters at the street level (street network centrality,
accessibility to local markets and plots, speed limit, and segment
length), and the ABM receives input in form of building and terrain
geometries as well as the specified model parameters to control the
force equations. Based on the outcomes of the hybrid model, urban
planners can then decide whether their design is of sufficient quality
considering pedestrian movement. If not, altered or new design
ideas can be evaluated with the hybrid model, which allows the
testing of different design and planning scenarios in different scales.
If there is a change in the street network, for instance, by blocking
one street due to construction, then the NMwill change to represent
the scenario with the removed street and estimate the effects of this
contextual change in the inflows and outflows of the domain, which
will in turn affect the ABM. If, on the other hand, changes only
appear on a local scale not affecting the street network, such as new

TABLE 1 Choice of ABM parameters for outdoor environments.

Parameter Unit Value

mi kg Uniformly distributed between 63.0 and 77.0

ri m Uniformly distributed between 0.18 and 0.22

‖VD‖ m/s Uniformly distributed between 1.0 and 2.0

c - 1.6336

Δt s 10−4 (timestep)

τ - 0.1

k1 N 600.0

k2 m 0.3

kW1 N 600.0

kW2 m 0.053

nr - 15

α deg 120

dr m 20
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public art or seating, the ABM environment will change to represent
the new scenario to include the added obstacles to estimate the
change in the movement patterns. In this case, the NM part of the
hybrid model does not need to change. The hybrid model aims to
enable the study of a certain state rather than dynamic changes since
the NM does not predict the pedestrian flow for specific events (e.g. a
football match) as the input data for the NM contain everyday
pedestrian flow. If an urban planner is interested in a specific state,
the ABM and NM can be adapted as elaborated above. Dynamic
changes can be principally included in the ABM—for example, by a
dynamic change of model parameters and boundary
conditions—but are not considered in the present study.

2.1.4 Real-world data collection for comparison
with the proposed model

To evaluate the reliability of the proposed workflow, an
assessment of the ability to predict and simulate the daily
movement of pedestrians is required. Thus, a comparison
between real-world measurements of pedestrian movement and
the hybrid model is performed in this study.

2.2 Case study: real-world
pedestrian precinct

To evaluate the proposedworkflow, the case of a pedestrian precinct
in the centre of the Swedish city of Gothenburg is considered, including a
tram stop, a large pedestrian crossing, a square, and the entrance to a
pedestrian area being a space shared by cars, cyclists, and pedestrians,
although dominated by the latter (Figure 2). Note that the domain
sections in this example have been chosen subjectively from studying
real-world data as areas where pedestrians enter and leave the
simulation domain.

2.2.1 Real-world measurements
Measurements were performed with grids of smart stationary

sensors from Viscando AB3. These sensors, based on 3D vision
and artificial intelligence, detect, classify, and track all types of
road users 20 times per second. Track data from several sensors
are fused for large area measurements, as in this case. These
sensors process images in embedded computational units and
permanently delete the images within 20 mins of acquisition.
Only road user trajectories are stored. Therefore, images are
neither recorded nor transmitted, ensuring full GDPR
compliance. These traffic measurement techniques with smart
sensors provide individual, time-resolved trajectories that are
directly comparable with simulation results from the ABM.
Beyond that, post-processed and integrated data of the
measurements also allow comparison with the simulation
results of the NM.

The experimental recordings were taken from 26 June to 1 July
2018. The measurements were made for the Swedish National Road
and Transport Research Institute within the EU’s CoExist project.
The goal was to obtain the basis for simulations of interactions
between future autonomous vehicles and pedestrians (Olstam et al.,
2020; Johansson et al., 2020).

2.2.2 Case-specific model setup
For the comparison, an ordinary weekday in the early

afternoon—27 June 2018, 2:00–3:00 pm—was chosen. Note that
the recorded hourly number of pedestrians in the real-world
measurements was approximately 3,000, while in the morning
hours, approximately 1,000 were measured; a maximum was
reached at 6:00 pm with approximately 5,000. The chosen period
represents an average occupation, while more densely populated
scenarios could also be studied using the evening hours instead.

2.2.2.1 Network model
Following the original NMmethodology (Berghauser Pont et al.,

2023; Stavroulaki et al., 2024), the predictors for the case study were
calculated using the place syntax tool for spatial analyses (PST)4.
Bet2000 and SegLength were calculated for the non-motorised street
network of Gothenburg (Stavroulaki et al., 2020), the predictor
SpeedLim was retrieved from the NVDB road network5

(Nationell Vagdatabas, Sweden), and LMarkets500 and
Plot500 were calculated for the non-motorised street network
using two additional datasets: a point dataset of local market
uses6 (i.e., retail services, food, and drinks) and a polygonal
dataset including the plots7 (i.e., properties). The NM predictions

FIGURE 2
Identification of main directions: West, North, Crosswalk, Tram,
South, andMall. Visualisation of choice of origin (red), destination (dark
blue), and intermediate destination points (light blue), underlaid with a
sensor recording of the area. White domains are obstacles
received from the building geometry.

3 www.viscando.com

4 PST is an open-source plugin for QGIS. Download from: https://www.

smog.chalmers.se/projects/pst-plugin-for-qgis

5 https://lastkajen.trafikverket.se, date of download 2022–04–23.

6 Created based on Open Street Maps, Points of Interest (POI) Codes: 25XX:

retail and services, 23XX: food and drinks (https://download.geofabrik.de).

7 Data retrieved from Spatial Morphology Group, SMoG, Chalmers

University of Technology. See Bobkova (2019).
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with values for each predictor variable and response variable for each
street segment are listed in Table 2.

Based on this configuration, the NM predicted full-day
pedestrian flows for each street segment, IDs of which are shown
in Figure 3A. A factor of 0.075 was then used to obtain the hourly
count for the time interval 2:00–3:00 pm to convert the data into an
ODM for the ABM. The retrieved hourly predictions are shown in
Figure 3B. The factor was based on a consistent trend in real-world
observations in central Gothenburg (Trafikkontoret, 2019).
Measured on 75 street segments, the fraction “count
2.00–3.00 pm/total-day count” had a median of 0.0751 and a
mean of 0.0757.

2.2.2.2 Agent-based model
For the ABM, information about the built environment (building

footprints, LiDaR point clouds of the terrain) was provided by the
Swedish National Land Survey (Lantmäteriet). The raw data were then
processed by theDTCCBuilder (Logg et al., 2022; Naserentin and Logg,
2022) to generate building and terrain triangle meshes without detailed
information about entrances, building types, or roads. Small objects
such as benches or greenery were not included and must be
modelled manually.

Six main directions of movement were identified in this precinct,
which define the origin and destination areas (Figure 2). To guide
pedestrians, intermediate destinations in the sense of route planning
are included (light blue in Figure 2).

The ABM simulation was performed over a 15-min interval,
scaled to the complete hour, since the statistical variation in the
simulation is small.

3 Results

The hybrid model was applied for the simulation of the case
of a pedestrian precinct (Section 2.2), and the results are
presented in this section together with a comparison to the
real-world data (RWD) available for the pedestrian movement
in this precinct.

From the NM, accumulated pedestrian flows can be derived at
the chosen locations, and their agreement to the RWD is pre-
evaluated in Section 3.1 to assess the quality of the input
to the ABM.

Note that, as reported in the original studies (Berghauser Pont
et al., 2023; Stavroulaki et al., 2024), the NM has a general model
performance of R2 � 0.52. Section 2.2.1 reports the specific precinct
and time frame by comparing the NM predictions to the available
RWD in this study. Since the purpose of this study was to evaluate
the hybrid simulation, the comparison of the NM results to the
RWD was kept brief.

Finally, in Section 3.2, the results from the hybrid simulation are
presented and compared to the available RWD.

3.1 Comparison of pedestrian counts

The ODM of the RWD (Table 3) shows that the number of
pedestrians who move from and towards an area are similar,
which justifies the assumption of splitting the accumulated
pedestrian flow in half for each direction for the input into
the ABM (see the hybrid model description in Section 2.1.3).

TABLE 2 NM predictors and response variables per segment ID for the pedestrian precinct. Based on the full day predictions, the predictions for the time-
frame 2:00–3:00 p.m. are estimated.

Segment ID Predictor variables Response
variable

Bet2000 Plot500 SegLength LMarkets500 SpeedLim Prediction
Full Day

Prediction
14.00–15.00

171421 191,095.47 163 41.533 418 6 4,364 327.300

459503 61,854.44 159 37.274 413 50 12,836 927.700

625885 565,486.87 177 87.830 427 50 10,356 776.700

625886 565,823.25 174 37.567 428 5 5,372 402.900

625887 27,112.63 167 42.523 425 50 13,101 982.575

625888 35,831.94 176 26.719 440 50 16,400 1,230.000

549663 36,565.56 172 71.066 435 5 2,988 224.100

549664 1,164.56 174 23.329 439 5 3,440 258.000

625665 12,042.13 166 49.792 420 50 9,804 735.300

587008 35,032.25 173 35.112 440 5 4,446 333.450

625911 1,548,162.50 178 16.244 447 50 27,678 2,075.850

625910 1,545,686.75 177 74.010 451 50 15,775 1,183.125

591845 1,609,524.87 176 72.380 421 50 13,049 978.675

587009 199,253.90 172 60.320 431 50 12,741 955.575
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Similarly, the ODM derived from the NM predictions is
summarised in Table 4. The total number of pedestrians
predicted in the NM is 2,543, while 3,130 were measured for
the timeframe 2:00–3:00 pm, resulting in reasonable agreement.

To facilitate a direct comparison, the ODM predictions from
the NM and the ODM from the RWD are given in Figure 4,

which visualises the share of pedestrians having each direction
as either origin (orange) or destination (blue). The RWD bars
are given with a dashed contour line, and all bars are
transparent, allowing the overlap to be seen clearly. While
the NM notably overpredicts the pedestrians at “South” and
underpredicts the pedestrians at “Tram”, the overall

TABLE 3Distribution of pedestrians in % fromorigins to destination points derived fromRWD. The bold values indicate the accumulated column and/or row
values.

From \ To South Mall West North Crosswalk Tram Total

South 0.6 2.9 0.6 2.4 0.9 1.3 8.7

Mall 5.1 0.1 0.9 3.7 1.4 2.1 13.4

West 1.1 1.2 0.4 3.1 3.0 2.2 11.0

North 2.7 3.0 4.1 0.2 0.8 6.4 17.1

Crosswalk 1.5 1.7 2.5 1.6 0.7 14.9 22.9

Tram 1.4 1.6 2.2 8.4 13.1 0.2 26.8

Total 12.4 10.5 10.7 19.4 19.9 27.1 100

FIGURE 3
Details of the NM prediction for the pedestrian precinct with street segment IDs in (A) and the predicted distribution of the number of pedestrians
in (B).

TABLE 4 Origin–destination matrix of pedestrians in % derived from the NM given as input boundary conditions to the ABM. The bold values indicate the
accumulated column and/or row values.

From \ To South Mall West North Crosswalk Tram Total

South 0 3.6 1.0 5.4 4.4 4.5 18.9

Mall 3.4 0 0.8 4.2 3.4 3.5 15.3

West 0.9 0.7 0 1.1 0.9 0.9 4.4

North 5.7 4.6 1.3 0 5.7 5.8 23.2

Crosswalk 4.4 3.6 1.0 5.4 0 4.5 18.9

Tram 4.5 3.7 1.1 5.6 4.5 0 19.3

Total 18.9 16.1 5.2 21.6 18.9 19.2 100
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distribution is captured with most pedestrians at “North”,
“Crosswalk”, and “Tram”, and fewer pedestrians at the
remaining directions, with fewest at “West”. Note that it is
only at “West” that halving the number of pedestrians is not a
suitable assumption, which is visible by the deviation of the NM
prediction from the RWD. Nevertheless, the NM predicts a
somewhat more even distribution than seen in the RWD.

Deviations are to be expected, given that the NM has a
general regression coefficient of 0.52 when predicting full-day
counts in central Gothenburg (as described in the respective
section). However, a reasonable quantitative and qualitative
agreement of the pedestrian distribution is obtained which
justifies the reliability of the proposed modelling procedure for
the urban planning and design of new urban districts. Given
the small sample of the measurements, conducting more
rigorous statistical correlations for the specific case study is
not feasible.

Based on the NM results from Table 4, the ODM for the ABM is
derived as described in the case-specific model setup.

3.2 Comparison of hybrid model results

Comparing the hybrid model’s simulation results with the
measurements is performed using heat maps and trajectory plots
in Figures 5A, B.

In the trajectory plot and heat map, real-world pedestrians
have more chaotic behaviour than modelled in simulations owing
to the force-driven nature of the ABM, causing pedestrians to
take direct routes when possible. Nevertheless, important
characteristics are preserved, such as a wide sidewalk area
occupied by pedestrians near “Crosswalk” and towards
“North”, sparse occupation on the central square, and a strong
concentration of pedestrians in the central street of the domain

and towards “Crosswalk”. An overall reasonable agreement
between the simulation results and the RWD is obtained.

The ABM now enables analysis of the local pedestrian flow and
the identification of pedestrian conflicts, such as violations of
personal space or the inability to move at their desired
speed. Here, we computed the distance between the pedestrians
as well as the deviation from the desired speed and the mean
strength of this deviation. The former represent a violation of
space while the latter allow evaluation when pedestrians were
forced to slow down or even accelerate to avoid physical
collision. These quantities can be used to identify critical
situations in highly crowded events or indicate that the design of
places requires alteration to allow for a mostly undisturbed
pedestrian flow. Figure 6A illustrates the share of pedestrians
who have a distance to another pedestrian of less than 1.5 m
(marked black) or even less than 1.0 m (marked red). It can be
seen that approximately 15% of all pedestrians frequently have a
distance of less than 1.5 m to another pedestrian, but only
approximately 5% have a distance of less than 1.0 m. Note,
however, that this result is not only a result of the urban
environment in which the pedestrians move but is also caused by
the parameter set for the social force. Modifying this enables the
study of very specific situations which cannot be easily realised with
measurement data in real-world situations, such as enforcing that
pedestrians keep a greater distance than usual.

The pedestrians are modelled so that each has a desired
velocity which they desire to maintain. Thus, analysing the
need to deviate from this desired velocity also sheds light on
the pedestrian flow. Figure 6C shows the share of pedestrians who
needed to change their velocity on the left, and the mean
deviation from the desired speed is visualised in Figure 6B. It
is apparent that, most of the time, approximately 10%–30% of the
pedestrians have to adapt their velocity due to other pedestrians
or obstacles. The plot on the right shows that the deviations
mostly slow down to 50–80% of the desired speed while in only a
few events do single pedestrians also accelerate to avoid physical
contact. This combined analysis shows that a relevant share of the
pedestrians are in some interaction with others but few really
exhibit a violation of personal space, which most often occurs
when they round a corner.

4 Discussion

This study describes a hybrid model that couples an NM and an
ABM—two existing well-used methodologies of pedestrian
modelling operating separately in different scales—to provide a
holistic workflow for predicting pedestrian movement specifically
for urban designers and planners based on spatial parameters that
can be defined in the early design phases. The comparison with real-
world data in a pedestrian precinct in the city centre of Gothenburg,
Sweden, has shown reasonable agreement, supporting the reliability
of the proposed hybrid model.

Currently, ABM has limited use in urban design and planning
practice since it relies on real-world data to define the number of

FIGURE 4
Comparison of the total share of pedestrians with each section as
origin (From) and destination (To) point from the NM predictions
to RWD.
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pedestrians in the considered area and their ODM.Gathering these data is
not feasible in planned, yet-to-exist areas. Coupling the ABMwith anNM
solves this problem and thus improves the usability of ABMs for urban
designers and planners.

In relation to previous approaches of combining macro- and
micro-scale simulations, this study makes the following
contributions.

The proposed hybrid approach has affinities with the hybrid
models presented by Hanna (2021) and Turner and Penn (2002)
since it combines the space syntax measure of centrality
(i.e., angular betweenness) as the main predictor of the NM
with the visual parameters (i.e., angle and depth of vision) as the
main parameters of the ABM. However, our approach is a step
forward because it includes more spatial predictors (e.g.,
accessibility to local markets and speed limit) for the macro-

simulation. In relation to the method proposed by Ma et al.
(2023), where aggregate flow patterns emerge bottom-up from
the agents’ movements (from micro to macro), our method
builds in an opposite direction where the aggregate flow
patterns inform the micro-scale agent’s movement. This is in
line with the purpose of the method, which is to inform
top–down urban design and planning in both scales and assist
in design scenario analysis. The referenced hybrid models
(Turner and Penn, 2002; Hanna, 2021) are evaluated using
statistical measures, similar to the calculation of the
coefficient of determination (R2) for the pure macro-scale
model (i.e., NM). Since the suggested workflow includes a
flow of information from the NM to the ABM, the hybrid
model also inherits the coefficient of determination of the NM
(i.e. 0.52). The proposed hybrid model thus performs similarly to

FIGURE 5
Pedestrian trajectory (A) and heatmap (B) comparison for simulation results (left) andmeasurements (right). (A) Pedestrian trajectory comparison. (B)
Comparison of heat maps of pedestrian occupancy.
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the hybrid models in8 Turner and Penn (2002) and Hanna (2021)
but with qualitative advantages that concern the applicability,
flexibility, and increased potential use within urban design and
planning practice in different scales. Our approach is a coupling
of two separate models that follow well-established
methodologies within the respective disciplines: rather than
one new standalone model, we add flexibility and allow the
possibility of continuously adjusting and improving the hybrid

model when the separate methodologies of the NM and ABM are
improved. An example of a hybrid model with a refined ABM
including the curiosity of pedestrians is given in Berghauser Pont
et al. (2023), p. 23.

The proposed workflow enables a seamless study of
pedestrian movement by predicting aggregated pedestrian
flows on a large scale and individual pedestrian movement on
a small scale. The NM forecast of the aggregated flow gives a first
estimate of an average occupancy and can also provide
information about the average variation during the day. This
enables the identification of critical areas (e.g., with a high
pedestrian density) that can be analysed in more detail with
the accompanied ABM based on the average occupation given by
the NM, thus enhancing computational efficiency by focusing
detailed study only on areas of interest. The ABM individually
tracks pedestrians during the simulation, allowing for the
detailed and statistical analysis of instances such as potential
collisions of pedestrians and the need to change direction or
deviate from their desired speed. Furthermore, micro-scale

FIGURE 6
Evaluation of speed deviation during and share of pedestrians who encounter conflicts with other pedestrians. (A) Share of pedestrians in close
proximity to other pedestrians. (B) Mean deviation from the desired speed of pedestrians in close proximity to other pedestrians. (C) The share of
pedestians that deviate from their desired speed.

8 Turner and Penn (2002) report a coefficient of determination R2 � 0.53 to

pedestrian flows (aggregated for all directions) on the streets of five study areas

in central London. The same model reaches R2 � 0.58 when tested at a

smaller scale at a London department store. Hanna (2021) reports amaximum

Pearson correlation of R � 0.74 (approximately R2 � 0.54). Note that their aim

was to primarily model movement on a city-wide scale, and the model was

tested for three neighbourhoods in London. It was not tested for micro-scale

simulations of movement trajectories on a more local scale.
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information can be accounted for in the ABM, such as benches,
cycle racks, or statues that potentially divert pedestrian flow, or
the ability to traverse squares, as exemplified in the case study.
As the ABM presented here is granular, it can be refined with
more available information, and behavioural rules of thumb can
be implemented when applicable. Furthermore, the simulation
is roughly real-time, which facilitates the integration of the
simulation in a planning process.

Moreover, the hybrid model allows various scenarios to be
tested, as elaborated in Section 2.1.3. These can be changes within
the micro-scale domain (e.g., new benches), changes in the
macro-scale context that affect inflows and outflows to the
domain (e.g., street network and infrastructure), changes of
the agents’ behaviour to represent different groups of
pedestrians (e.g., age, disability, and social distancing), or
environmental changes (e.g., day, time, weather, and season).
An example of a micro-scale scenario is provided in Section 2 of
the Supplement, where an additional obstacle was introduced
that affects only the ABM simulation. This example illustrates
how the hybrid model can be utilised to investigate
various scenarios.

Thus, the hybrid model can be applied to understand
pedestrian behaviour at various times and for different
demographic groups, direct pedestrian flows, evaluate
bottleneck situations and traffic safety, assess the dimension of
a public space, and evaluate the perception of a place.
Additionally, visualising and demonstrating pedestrians
moving in the considered area enhance the planning process
as well as comprehensive communication.

While these advantages justify the application of such tools in
the planning process, some drawbacks of the current
implementation, hybrid models in general, and potential
improvements need to be noted. The NM and the ABM have
individual shortcomings and model-specific assumptions which
can be improved separately. This is, however, not the topic of this
discussion since we focus on the proposed workflow of
combining these two models, whereas the individual models
can be substituted by other or improved implementations of
similar types of models.

Only scenarios corresponding to the input data used for
training the NM (which corresponds to everyday scenarios)
can be analysed with the proposed hybrid model. Moreover,
different sorts of input data are required: large-scale official
network data of the pedestrian infrastructure for the NM and
resolved geometry data for the ABM, which must be consistent.
Moreover, to connect the two models, we derive the distribution
of the ODM based on half of the accumulated flow. This
assumption has been shown to be suitable for the studied area
(Section 3.1). More studies in setups with different complexity
and characteristics supported by measurements are required to
refine this approach.

Finally, in this study, the focus has been on how the ABM
obtains input from an NM. However, further research could
explore the benefits of a two-way coupling between an ABM and
an NM and how the results of the microscopic simulation
improve the macroscopic modelling regarding spatial
representations, spatial measures, and predictors on a
large scale.

Data availability statement

Network model

The network model was built using the “Non-motorised
street network of Gothenburg” geodata which is available upon
request via the Swedish National Database9. The link to
download the geodataset including documentation is https://
doi.org/10.5878/x49h-pv07. The dataset is published under the
Creative Commons license [CC BY-NC-SA 4.0]. For the full
reference, see Stavroulaki et al. (2023).

The software used for spatial analysis and for the calculation
of predictors Bet 2000, SegLength, LMarkets500, and
Plot500 for the case study was the open-source software PST
(Place Syntax Tool) available via GitHub10. PST is an open-
source plugin for the open-source GIS software QGIS11. For the
calculations, PST version 3.2.4 and QGIS version
3.16 were used.

The geodatasets used to calculate the predictors
LMarkets500 and Plot500, apart from the non-motorised street
network of Gothenburg mentioned previously (Stavroulaki et al.,
2020), were:

1. A point dataset of local market uses (i.e., retail, services, food,
and drinks) for the city of Gothenburg, made available upon
request by the Spatial Morphology Group12 at Chalmers
University. The dataset was created by SMoG in 2017 using
the Open Street Maps dataset: Points of Interest (POI)
(accessible via https://download.geofabrik.de) and selecting only
the features with Codes 25XX (retail and services) and 23XX (food
and drinks).

2. A polygonal dataset including the plots (i.e., properties),
also made available upon request by the Spatial
Morphology Group (SMoG). The dataset was created by
Bobkova (2019) based on the official property geodataset
included in “Översiktskartan” (i.e., general map) accessible
via the Swedish Land Survey Authority.13 The dataset
cannot be published since this is not permitted by
Lantmateriet’s terms of use (https://www.lantmateriet.se/
vartsamordningsansvar). For more information about the
processing of the property dataset, please see
Bobkova (2019).

Finally, the predictor “SpeedLimit” was retrieved directly from
the NVDB road network dataset (Nationell Vägdatabas, Sweden)
accessible via https://lastkajen.trafikverket.se [Public Domain CC0].
The dataset was downloaded on 23-04-2022.

9 SND, https://snd.gu.se

10 https://github.com/SMoG-Chalmers/PST or https://www.smog.

chalmers.se/pst

11 https://qgis.org

12 SMoG, https://www.smog.chalmers.se

13 Lantmateriet, https://zeus.slu.se/get/
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The Python code of the machine learning model that was
used for the macro-simulation of the full-day pedestrian counts
is published at GitHub by the Spatial Morphology Group (SMoG)14.
There, the two real-world datasets on pedestrian counts used to fit and
evaluate the macro-simulation model are referenced. The validating
data were collected in Gothenburg in 2018 by the Traffic Planning
Office in Gothenburg municipality Trafikkontoret (2019) and were
processed by the SMoG. The training data were collected in
Stockholm in 2017 by the SMoG in collaboration with the private
company Bumbee labs (https://bumbeelabs.com) (Stavroulaki and
Berghauser Pont, 2018).

The real-world data collected in Gothenburg were also
provided to the authors by Gothenburg municipality and were
further used to estimate the hourly count for the time slot 14:
00–15:00 used in the case study. The dataset cannot be published
but can be requested from the Traffic Planning Office at
Gothenburg municipality.

Agent-based model

The agent-based model was implemented as a Python
extension by the Fraunhofer-Chalmers Centre15 to the
Demify® solver for the Discrete Element Method developed by
the Fraunhofer-Chalmers Centre and IPS Particle Technology16.
Both the extension and the code base for Demify® cannot be
published due to licensing agreements. Micro-scale information
about the built environment (building footprints, LiDaR point
clouds of the terrain) was provided by the Swedish National Land
Survey, Lantmäteriet17. The raw data were then processed by the
DTCC Builder to generate two separate building and terrain
triangle meshes (Logg et al., 2022; Naserentin and Logg 2022).
Making this dataset publicly available is prohibited by
Lantmäteriet’s terms of use (https://www.lantmateriet.se/
vartsamordningsansvar).

Real-world measurement data

The measurement data of the two real-world cases were
retrieved and gathered by Viscando AB18. The data were analysed
and the origin–destination matrices were manually extracted and
are stated in the manuscript for the case study. The figures based on
the measurements were created by Viscando AB. The data cannot be
published due to a confidentiality agreement. In particular, the
measurements for the real-world pedestrian precinct were made
for the Swedish National Road and Transport Research Institute

within the EU’s CoExist project. The goal was to obtain a basis for
simulations of interactions between future autonomous vehicles and
pedestrians (Olstam et al., 2020; Johansson et al., 2020).
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