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Abstract

Noise-contrastive estimation (NCE) is a popu-
lar method for estimating unnormalised prob-
abilistic models, such as energy-based mod-
els, which are effective for modelling complex
data distributions. Unlike classical maximum
likelihood (ML) estimation that relies on im-
portance sampling (resulting in ML-IS) or
MCMC (resulting in contrastive divergence,
CD), NCE uses a proxy criterion to avoid
the need for evaluating an often intractable
normalisation constant. Despite apparent con-
ceptual differences, we show that two NCE
criteria, ranking NCE (RNCE) and condi-
tional NCE (CNCE), can be viewed as ML
estimation methods. Specifically, RNCE is
equivalent to ML estimation combined with
conditional importance sampling, and both
RNCE and CNCE are special cases of CD.
These findings bridge the gap between the
two method classes and allow us to apply
techniques from the ML-IS and CD litera-
ture to NCE, offering several advantageous
extensions.

1 INTRODUCTION

Unnormalised probabilistic models, such as energy-
based models (LeCun et al., 2006; Gustafsson et al.,
2020; Gao et al., 2020; Du et al., 2021; Florence et al.,
2022), products of experts (Hinton, 2002) and Markov
random fields (Köster et al., 2009), can be used for
modelling complex data distributions by trading exact
normalisation for flexibility. Estimating unnormalised
models is however not straightforward since maximum
likelihood (ML) estimation involves the typically in-
tractable normalisation constant.
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One way to handle this challenge is to estimate the
normalisation constant using importance sampling (IS),
resulting in a learning algorithm denoted ML-IS. In
gradient-based learning, an alternative to ML-IS is con-
trastive divergence (CD) (Hinton, 2002), where Markov
chain Monte Carlo (MCMC) sampling is used to approx-
imate the gradient of the log-normalisation constant.

A different solution to handling an intractable normali-
sation constant is to reformulate the model estimation
as a binary classification problem, as done in noise-
contrastive estimation (NCE) (Gutmann and Hyväri-
nen, 2012). In NCE, the model implicitly learns the
data distribution by learning to distinguish between
true samples and samples from a noise distribution.

Several extensions of NCE have been proposed: mainly
ranking NCE (RNCE), which is a multi-class version
of its predecessor (Jozefowicz et al., 2016), and condi-
tional NCE (CNCE), where the noise distribution is
conditioned on the data (Ceylan and Gutmann, 2018).
RNCE in turn, has been extended into new estima-
tion methods (Gustafsson et al., 2020; Ma and Collins,
2018). In Gao et al. (2020) a version of NCE is pro-
posed, where the data and noise distributions are jointly
learned.

Evidently, there is a plethora of methods for estimating
unnormalised models, some of which seem conceptually
different. We hence argue for a need to create a more
coherent framework. To contribute to this objective, we
provide a direct relationship between NCE and ML-IS
as well as CD. We believe that this link makes it easier
to understand and analyse the methods, and brings
additional theoretical insights apart from what has pre-
viously been established (Ma and Collins, 2018; Ceylan
and Gutmann, 2018). Specifically, we strengthen the
connection between NCE, ML-IS and CD by:

• clarifying the connection between RNCE and stan-
dard IS by showing that RNCE can be derived
through an extension of IS, referred to as condi-
tional IS (CIS) (Andrieu et al., 2010; Naesseth et al.,
2019);

• showing that both CNCE and RNCE are special
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cases of CD, with kernels based on CIS and a variant
of the Metropolis–Hastings algorithm, respectively.

Previous work has connected the original NCE criterion
to general (statistical) frameworks based on Bregman
divergences (Gutmann and Hirayama, 2011; Uehara
et al., 2020), but to the best of our knowledge, RNCE
and CNCE have not been connected to such frame-
works. RNCE has previously been linked to IS (Joze-
fowicz et al., 2016), but in an informal way and with-
out making the connection to CIS, which is necessary
for the equivalence to hold. Moreover, another com-
mon method for training unnormalised models, namely,
score matching, is a limiting case of CNCE (Ceylan
and Gutmann, 2018). This is especially interesting as
also CD has links to score matching (Hyvärinen, 2007).

Closest to our contribution is the work by Yair and
Michaeli (2021). They focus on CNCE and show that
CD is recovered by selecting the noise distribution
in CNCE as an MCMC kernel. We go in the other
direction and show that CNCE is in fact a special
case of CD for any noise distribution. Importantly,
this interpretation holds in the general case, without
the need of re-weighting the CD gradient, as done in
(Yair and Michaeli, 2021). Furthermore, for multi-step
sampling we can rely on standard MCMC theory and
do not need to introduce the "time-reversal adversarial
game" as proposed by Yair and Michaeli (2021). Finally,
we consider also RNCE, which they do not.

Based on the established connections, we use tech-
niques from existing literature on ML-IS and CD to (i)
theoretically justify why RNCE empirically performs
better than ML-IS (Gustafsson et al., 2020), (ii) moti-
vate why, for optimal learning, the noise distribution
should resemble the model distribution, and not the
data distribution as proposed previously (Gutmann
and Hyvärinen, 2012) and (iii) identify several exten-
sions to RNCE and CNCE and show empirically that
these improve performance, with little or no increase
in computational cost. We hope that these connections
can lead to more valuable insights, apart from those
identified in this paper.

2 BACKGROUND

Given i.i.d. training data {xi
0}Ni=1 from some unknown

data distribution pd(·), we seek to approximate pd(·)
with a parametric model

pθ(x) = p̃θ(x)/Zθ, Zθ =
∫
p̃θ(x

′)dx′, (1)

where p̃θ is the unnormalised model and Zθ is the nor-
malisation constant. We assume that pθ ≫ pd, meaning
that pθ covers the support of pd, such that pθ(x) > 0
whenever pd(x) > 0. The model is estimated by min-
imising some criterion L(θ) with respect to (w.r.t.) the

parameter vector θ. For the ML estimator, the criterion
is the negative log-likelihood (NLL) of the model

L(θ;x0) = − log pθ(x0) = − log p̃θ(x0) + logZθ. (2)

We use x0 to denote a sample from pd. In practice,
L(θ;x0) is computed as an average over N independent
samples xi

0 ∼ pd(·) but for brevity we perform all
derivations for a single data point x0.

The first term in Eq. (2) is normally easy to evaluate
but the second term involves the typically intractable
integral in Eq. (1). Below, we introduce common meth-
ods for handling this. Derivations and proofs that are
omitted from the main article can be found in the
supplementary material.

2.1 Importance sampling

Using an importance sampling (IS) estimate of Zθ in
Eq. (2) results in an approximate ML criterion abbre-
viated ML-IS. Assume that we have defined a proposal
distribution q, such that q ≫ pθ. In IS, we draw
J i.i.d. samples x1:J = [x1, . . . ,xJ ] from q; we use
q(x1:J) :=

∏J
j=1 q(xj) to denote their joint distribu-

tion. Given x1:J , we approximate the normalisation
as

Zθ ≈ ẐIS
θ :=

1

J

J∑
j=1

w̃θ(xj), with w̃θ(xj) :=
p̃θ(xj)

q(xj)
.

(3)

The estimate ẐIS
θ is unbiased, see e.g. (Naesseth et al.,

2019), but the gradient ∇θ log Ẑ
IS
θ is not (Robert et al.,

1999). Meanwhile, having an unbiased gradient esti-
mate is undoubtedly advantageous. It is, for example,
a standard condition for proving general convergence
of stochastic gradient descent (SGD) (Bottou et al.,
2018).

2.2 Contrastive divergence

Instead of approximating the NLL in Eq. (2), we can
estimate its gradients using the identity (LeCun et al.,
2006)

−∇θ log pθ(x0) =

−∇θ log p̃θ(x0) + Epθ(x′) [∇θ log p̃θ(x
′)] . (4)

Again, this gradient is intractable since it involves an
expected value w.r.t. pθ, but it can be approximated
with MCMC methods. Contrastive divergence (CD)
(Hinton, 2002), uses the approximation

−∇θ log pθ(x0) ≈
−∇θ log p̃θ(x0) + EKθ(x′|x0) [∇θ log p̃θ(x

′)] , (5)
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where Kθ(x
′ | x0) is a pθ-invariant MCMC-kernel ini-

tialised at a data sample x0.

For efficiency, CD runs the MCMC chain for only a few
steps or even a single step (CD-1). This is typically not
enough to obtain a sample from the target distribution
pθ. However, initialising the chain with a sample from
the data distribution is a means of initialising it close
to the modes of pθ, especially as pθ converges to pd.
Empirical evidence suggests that the bias of the CD
parameter estimate, in relation to the ML estimate, is
small (Carreira-Perpinan and Hinton, 2005).

CD was originally based on a different criterion than the
log-likelihood (Hinton, 2002). However, it is common
to derive CD as done here, see, e.g., (Welling et al.,
2003; Asuncion et al., 2010), and the resulting gradient
expression is the same.

2.3 Noise-contrastive estimation

Noise-contrastive estimation (NCE) avoids comput-
ing the NLL in Eq. (2) altogether, by transforming
the model estimation into a task of discriminating be-
tween true samples from pd and samples from a noise
distribution (Gutmann and Hyvärinen, 2012; Pihlaja
et al., 2010). For later comparison, we interpret the
noise distribution as a proposal and denote it with
q. We focus on two extensions of the original NCE
method: RNCE (Jozefowicz et al., 2016) and CNCE
(Ceylan and Gutmann, 2018). The first is consistent
under weaker assumptions than standard NCE (Ma
and Collins, 2018), while the other improves upon the
original formulation by conditioning the noise distri-
bution on the data. Furthermore, both eliminate the
need to include the normalisation constant as an extra
model parameter.

Ranking NCE (RNCE), extends the binary classifica-
tion problem of original NCE to a multi-class classifi-
cation problem (Jozefowicz et al., 2016). Consider a
scenario with one data sample x0 ∼ pd(·) and J i.i.d.
noisy samples x1:J ∼ q(·). As in ordinary NCE, we
train the model to classify x0 as the sample coming
from pd. Specifically, RNCE maximises the posterior
distribution p(z = 0 | x0:J), where z ∈ {0, 1, . . . , J} is
a latent categorical variable corresponding to the index,
or class, of the data point drawn from pd. When calcu-
lating the posterior, the unknown data distribution pd
is replaced with pθ, forcing pθ to approach pd. With
a uniform prior on z, the empirical loss for one data
point x0 ∼ pd(·) becomes

LR(θ;x0:J) = − log w̃θ(x0) + log

( J∑
j=0

w̃θ(xj)

)
, (6)

where we re-write the criterion with the weights from
Eq. (3); see Appendix A.2 for the derivation.

Another extension is Conditional NCE (CNCE) (Cey-
lan and Gutmann, 2018) which allows the noise distri-
bution to depend on the data sample, resulting in more
difficult discrimination and thereby better model esti-
mation. CNCE, like standard NCE, considers a binary
classification problem, where a data point x0 ∼ pd(·)
is discriminated from a sample x1 ∼ q(· | x0).

Following Ceylan and Gutmann (2018), we average
the posterior of the latent (Bernoulli) class variable
z ∈ {0, 1} over J i.i.d. samples xj ∼ q(· | x0), to reduce
the variance of the estimate, and minimise

LC(θ;x0:J) =
1

J

J∑
j=1

log

(
1 +

w̃θ(xj | x0)

w̃θ(x0 | xj)

)
. (7)

See Appendix A.6 for the derivation. The weights from
Eq. (3) are modified as

w̃θ(xℓ | xk) =
p̃θ(xℓ)

q(xℓ | xk)
, ℓ, k ∈ {0, . . . , J}. (8)

For brevity, we omit the dependency on x0,x1:J in the
criteria from here on.

3 IMPORTANCE SAMPLING AND
RNCE

In this section, we explore the connection between
RNCE and ML-IS. Conceptually, ML-IS and RNCE
are two distinct methods for estimating unnormalised
models, but their gradient updates are very similar.
Indeed, Jozefowicz et al. (2016) claim that with the
RNCE criterion they “derive a similar surrogate clas-
sification task akin to NCE which arrives at IS”. We
show here that this statement is not entirely accurate
as there is a slight, but important, difference.

The gradient of the RNCE criterion (Eq. (6)) is

∇θLR(θ) = −∇θ log p̃θ(x0) +

J∑
j=0

wj∇θ log p̃θ(xj),

wj =
w̃θ(xj)∑J
ℓ=0 w̃θ(xℓ)

, (9)

where wj is the weight of the jth sample, normalised
over all samples x0:J . There is a subtle difference
between this gradient and the ML-IS gradient. For
RNCE, the data sample x0 ∼ pd(·) is included in the
sum in the second term. However, for ML-IS, the
second term, corresponding to the estimate of ∇θ logZθ,
only includes samples from the proposal distribution q.

Instead, we show that RNCE corresponds to an ML
criterion based on conditional importance sampling
(CIS). CIS is a special case of Particle MCMC (Andrieu
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et al., 2010; Naesseth et al., 2019). It is almost identical
to standard IS, except that we condition on a sample
x0. For our task, the CIS estimator is defined as

Zθ ≈ ẐCIS
θ :=

1

J + 1

J∑
j=0

w̃θ(xj). (10)

where x1:J ∼ q(·) and x0 is the conditioned sample.

Assuming that x0 ∼ pd(·), we can derive the RNCE
criterion directly from CIS.

Proposition 3.1 (RNCE is ML-CIS). RNCE is equiv-
alent to ML estimation using CIS, conditioning on
x0 ∼ pd(·), for estimating the normalisation constant
in Eq. (2).

See Appendix A.3 for the proof.

This link between RNCE and ML-CIS unifies these
seemingly different methods of estimation, offering us
a deeper understanding of RNCE and allowing us to
reason about the (relative) empirical performance of
this method. Interestingly, in the special case where
pθ = pd, such that x0 is a sample from the model
distribution, the following holds:

Proposition 3.2 (Unbiased CIS estimate of ∇θ logZθ).
Assume x0 ∼ pθ(·), x1:J ∼ q(·) and that q is indepen-
dent of θ. Then, the CIS estimator gives an unbiased
estimate of the gradient of the log-normalisation con-
stant

Epθ(x0),q(x1:J )

[
∇θ log Ẑ

CIS
θ

]
= ∇θ logZθ. (11)

See Appendix A.4 for the proof.

Note that, in practice, the conditions of Proposition 3.2
are not strictly fulfilled for RNCE, since it uses the
“approximation” x0 ∼ pd(·). However, as pθ aims to
approximate pd, we hope that pθ ≈ pd, at least during
the later stages of training. If the data distribution is
a good substitute for the model distribution, we then
obtain “approximately unbiased” estimates of ∇θ logZθ.
By conditioning on the extra sample x0 we therefore
get an advantage over IS, which does not give unbiased
gradient estimates (Robert et al., 1999). We hypoth-
esise that this property of CIS can help explain why
RNCE appears to give better gradient estimates, com-
pared to ML-IS. This is further motivated by the fact
that the bias of RNCE will decrease as pθ converges to
pd while the bias of IS will not.

4 CONNECTING NCE WITH CD

In this section, we connect RNCE and CNCE to the
family of CD methods, and specifically CD-1, i.e., CD
where the expectation in Eq. (5) is approximated with

a single MCMC step. It has been shown that CD-1
is a special case of CNCE if q is an MCMC kernel
fulfilling detailed balance (Yair and Michaeli, 2021).
Here, we show the reverse: that not only CNCE but
also RNCE are special cases of CD-1. The idea is to
construct pθ-invariant kernels, such that the gradient
estimates of the resulting CD-1 variants are equivalent
to those of RNCE and CNCE respectively. We note
that the assumptions that we make are standard in
the NCE literature, and therefore that the equivalences
hold whenever the NCE methods are applicable.

4.1 RNCE criterion

To show that RNCE is a CD-1 method, we introduce
an MCMC kernel KR

θ (x′|x0) based on CIS. Algorithm 1
shows how to generate a sample from this kernel condi-
tioned on the state x0. We note that CIS was initially
introduced as an MCMC procedure and that the kernel
KR

θ (x
′|x0) is known to be pθ-invariant, see e.g. (An-

drieu et al., 2010; Naesseth et al., 2019). It thus fits
into the CD framework.

Using KR
θ (x

′|x0) in CD-1 to estimate the expectation
in Eq. (5), we can exactly recover the gradient of the
RNCE criterion in Eq. (9). This connection is for-
malised in Proposition 4.1.
Proposition 4.1 (RNCE = CD-1). Model estima-
tion with the RNCE criterion (Eq. (6)) is a special
case of CD-1, using the MCMC kernel KR

θ (x
′|x0) de-

fined in Algorithm 1 if, when evaluating the expected
value in Eq. (5), the variable z used in Algorithm 1 is
marginalised out.

See Appendix A.5 for the proof.

4.2 CNCE criterion

Next, we establish a connection between CNCE and
CD. First, the gradient of the CNCE criterion in Eq. (7)
can be written as (see Appendix A.7)

∇θLC(θ) = −∇θ log p̃θ(x0) +
1

J

J∑
j=1

(
(1− wj|0)

· ∇θ log p̃θ(x0) + wj|0∇θ log p̃θ(xj)
)
, (12)

wj|0 =
w̃θ(xj | x0)

w̃θ(xj | x0) + w̃θ(x0 | xj)
. (13)

With the CD framework, we can derive the CNCE cri-
terion by formulating a kernel KC

θ (x
′ | x0), conditioned

on x0, according to Algorithm 2. The kernel is simi-
lar to the Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970), but uses another accep-
tance probability, which was also considered by Hast-
ings (1970). For a symmetric proposal distribution,
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Algorithm 1 CIS kernel
Input: x0

1. Sample x1:J ∼ q(·)
2. Calculate weights wj , j = 0, . . . , J , using

Eqs. (3) and (9)

3. Sample z ∼ Categorical ([w0, . . . , wJ ])

4. Return x′ = xz

Algorithm 2 CNCE kernel
Input: x0

1. Sample x1 ∼ q(·|x0)

2. Calculate the weight w1|0, using Eqs. (8)
and (13)

3. Sample z ∼ Bernoulli
(
w1|0

)
4. Return x′ = xz

i.e. q(x1|x0) = q(x0|x1), it reduces to Barker’s method
(Barker, 1965). The kernel is pθ-invariant as it fulfils
the detailed balance condition, see (Hastings, 1970).

The main result concerning CNCE and its connection
to CD, is given by Proposition 4.2.

Proposition 4.2 (CNCE = CD-1). Model estimation
with the CNCE criterion (Eq. (6)) is a special case of
CD-1, using the MCMC kernel defined in Algorithm 2
if, when estimating the expected value in Eq. (5): (i)
an average is taken over J independent samples xj ∼
KC

θ (·|x0), and (ii) the variable z used in Algorithm 2
is marginalised out for each sample.

See Appendix A.8 for the proof.

In contrast to Yair and Michaeli (2021), where CD-1
is derived from CNCE using the specific choice of q as
the CD kernel, we derive CNCE from CD-1, for any
choice of q. While Yair and Michaeli (2021) do consider
general q, it is viewed as an extension of CD-1, where
the gradient is by design re-weighted to match that of
the CNCE criterion. In our derivation, this re-weighting
instead follows naturally from a Rao-Blackwellisation of
the MCMC kernel, i.e. a marginalisation of the latent
variable z, and no additional weighting is required to
recover the CNCE gradient.

In both Algorithms 1 and 2, a variable z is used to
select the next sample in the Markov chain. However,
if we only take a single step of the kernel, as in CD-1,
then we can marginalise over z when computing the
expected value in Eq. (5). Furthermore, for the CNCE
connection, we assume that we average over J indepen-
dent draws from the underlying MCMC kernel. These
measures, which are necessary for an exact equivalence
between the two NCE criteria and CD-1, are standard
variance reduction techniques for MC estimators.

5 INSIGHTS FROM THE CD
CONNECTION

With the connection between CD and NCE outlined
in Propositions 4.1 and 4.2, we can apply extensions of
CD to NCE to improve the performance of the latter.

Apart from the examples described in this section, an
obvious extension is that of taking multiple MCMC
steps in the kernel, which we leave to Appendix B.

5.1 Choice of proposal distribution q

For NCE, the proposal distribution q is an important
design choice. In the original interpretation as a proxy-
classification problem, an intuitive and common choice
is to construct a hard classification problem by choosing
q as similar to the data distribution pd as possible
(Ceylan and Gutmann, 2018; Xu, 2022; Gao et al.,
2020; Gustafsson et al., 2020). A choice that has also
been theoretically motivated (Gutmann and Hyvärinen,
2012).

Our interpretation of both RNCE and CNCE as special
cases of CD-1, instead suggests that we should choose q
as close as possible to pθ. Indeed, the proposal distribu-
tion is used to construct the kernel meant for estimating
∇θ logZθ in Eq. (4), and this kernel has pθ as its sta-
tionary distribution. Setting q as an approximation to
pθ has been proposed before (Goodfellow, 2015; Xu,
2022) and recent work has shown empirically and in
some limit cases that pd is not the optimal proposal dis-
tribution (Chehab et al., 2022). These results however,
apply only to standard NCE and the current literature
remains inconclusive, where setting q close to pd is
still a common choice (Gutmann and Hyvärinen, 2012;
Ceylan and Gutmann, 2018). With the connection
between NCE and CD we provide another motivation
in favour of the model distribution, by showing that
setting q = pθ gives unbiased estimates of the gradient
in Eq. (4), up to a constant scaling, for both RNCE
and CNCE:

Proposition 5.1 (Gradient estimate for RNCE with
q = pθ). If q = pθ, then the expected gradient of the
RNCE criterion ∇θLR(θ) in Eq. (9) is

Eq(x1:J ) [∇θLR(θ)] =
J

J + 1
∇θ(− log pθ(x0)). (14)

Proposition 5.2 (Gradient estimate for CNCE with
q = pθ). If q(· | x0) = pθ(·), independent of x0, then
the expected gradient of the CNCE criterion ∇θLC(θ)
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in Eq. (12) is:

Eq(x1:J |x0) [∇θLC(θ)] =
1

2
∇θ(− log pθ(x0)). (15)

See Appendix A.9 for the proofs.

For RNCE, while Proposition 3.2 holds for any q,
Lemma 5.1 is stronger in the sense that it indicates
that there is an idealised case, i.e., q = pθ, for which
RNCE gives unbiased gradient estimates also when
x0 ∼ pd(·). In contrast, q = pd is not guaranteed
to cover the support of pθ, in which case the require-
ments of Proposition 3.2 are not fulfilled. Of course,
neither the data nor model distribution is available for
us to evaluate in practice, but it nevertheless gives a
guideline for selecting q.

Here we consider a method akin to Markovian Score
Climbing (Naesseth et al., 2020) for learning a param-
eterised proposal qφ jointly with pθ. With the aim
to make qφ resemble pθ, we propose to minimise the
KL divergence between the two distributions, which is
equivalent to minimising the cross-entropy:

argmin
φ

KL [pθ∥qφ] = argmin
φ

Epθ(x′) [− log qφ(x
′)]

=: argmin
φ

L(φ). (16)

Note that we use the divergence from pθ to qφ, since
we require qφ to cover the support of pθ. The expec-
tation w.r.t. pθ is intractable, but we already have a
method to sample from this distribution: Kθ(x

′|x0).
For example, we can estimate the gradient with the
CIS kernel defined in Algorithm 1:

∇φL(φ) ≈ EKR
θ (x′|x0) [−∇φ log qφ(x

′)]

≈ −
J∑

j=0

wj∇φ log qφ(xj) =: ∇φL̂(φ). (17)

Therefore, the model pθ and the proposal qφ can be
estimated simultaneously, using samples from the same
kernel KR

θ .

As in Proposition 3.2, this estimate is unbiased under
the idealised assumption that x0 ∼ pθ(·).
Proposition 5.3 (Unbiased CIS estimate of ∇φL(φ)).
If x0 ∼ pθ(·), then the CIS estimator gives an unbiased
estimate of the gradient Epθ(x0),qφ(x1:J )

[
∇φL̂(φ)

]
=

∇φL(φ).

See Appendix A.10 for the proof.

Adapting qφ towards pθ has been proposed before, espe-
cially in the field of Adaptive IS (Bugallo et al., 2017).
It has also been used for NCE; Xu (2022) proposed it,
but as a means of achieving qφ ≈ pd, and Gustafsson

et al. (2022) motivates qφ ≈ pθ when estimating pθ
with ML-IS and then also use this proposal for RNCE.
Our connection to CD provides a theoretical argument
for why this is a good design choice.

5.2 Persistent NCE

Persistent Contrastive Divergence (PCD) is an exten-
sion of CD, with a modified kernel-based sampling
method (Tieleman, 2008). Instead of re-initialising the
MCMC chain based on a sample x0 ∼ pd(·) at every
training iteration, PCD initialises the chain at iteration
t using the sampled output at the previous iteration,
t− 1. Only at the start is the chain initialised with an
actual data sample. The motivation is that this will
improve convergence over standard CD, as the samples
from the kernel will lie closer to the model distribution.

For persistent RNCE and CNCE, we update the
Markov chain at iteration t by sampling an actual
index z as in Algorithm 1 or 2. At iteration t, we
estimate the gradient using Kθ(x

′ | x(t)
0 ) in place of

Kθ(x
′ | x0) in Eq. (5), where x

(t)
0 := x

(t−1)
z is a sample

from the kernel in the previous iteration, t− 1. Note
that, while we sample z to update the Markov chain,
we still marginalise over this latent variable when evalu-
ating the expectation in Eq. (5). Similarly to Tieleman
(2008), when training with SGD, we keep track of one
continuing chain for each training data point in a batch.
For CNCE, this translates to running J chains per data
point in parallel.

5.3 MH variant of CNCE

The kernel used in the CD formulation of the CNCE
criterion has similarities with the Metropolis–Hastings
(MH) algorithm (Metropolis et al., 1953; Hastings,
1970), but with a non-standard acceptance probability.
In the context of MCMC, and specifically the class of
methods proposed by Hastings (1970), the MH accep-
tance probability is optimal in terms of Peskun ordering
(Peskun, 1973).

With this in mind, we might expect that the MH ac-
ceptance probability will improve performance also in
CNCE. Hence, we consider CD with the kernel given
in Algorithm 2, but with the acceptance probability,
α(x0,x1) = w1|0, replaced by the standard MH accep-
tance probability

α(x0,x1) = min {1, w̃θ(x1 | x0)/w̃θ(x0 | x1)} . (18)

We use a conditional proposal distribution and calculate
the weights according to Eq. (8). The kernel will leave
pθ invariant as it fulfils the detailed balance condition
(Hastings, 1970). Just as with the original CNCE
criterion, we propose to marginalise over the latent
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Figure 1: Left: Convergence of pθ for different choices of proposal distribution q. Here, qφ is initialised at pd and we
show the median divergence KL [pd∥pθ]. The error bars mark the 25th and 75th percentile respectively, estimated
from 20 repetitions. Middle-Right: Results for ring model experiments reported over training iterations
and as median (solid lines) and worst-case (dashed lines) estimated from 100 experiments. Middle: Squared
parameter error of CNCE, CNCE with Metropolis–Hastings acceptance probability (MH-CNCE), persistent
CNCE (P-CNCE) and persistent MH-CNCE (P-MH-CNCE). Right: Acceptance probability of (P-)CNCE and
(P-)MH-CNCE when training with (P-)CNCE.

variable z and to use an average over J noisy examples
to reduce the variance of the Monte Carlo estimate.
We refer to this method as MH-CNCE.

5.4 Sequential Monte Carlo RNCE

Sequential Monte Carlo (SMC) is a generalisation of IS
which interleaves IS steps with resampling in a sequen-
tial manner; see, e.g., (Naesseth et al., 2019). SMC
is particularly useful for sampling from time series or
other sequential models, but can be used more generally
(Naesseth et al., 2019). The interpretation of RNCE as
ML-CIS suggests a generalisation of RNCE obtained by
replacing CIS with Conditional SMC (CSMC; see (An-
drieu et al., 2010)). Details on this algorithm are given
in Appendix B. The resulting SMC-RNCE method has
the potential to improve RNCE for sequential models
or, wherever SMC is more efficient than IS.

6 EXPERIMENTS

We provide experiments to empirically test the the-
oretical results of the paper and to demonstrate the
proposed extensions of the NCE criteria. For additional
experiments and details, see Appendix D 1.

6.1 Adaptive proposal distribution

To support the claims of Section 5.1, we conduct a toy
experiment where pd = N (0, I) and pθ = N (µθ,Σθ)
are 5-dimensional multivariate Gaussians, allowing us
to sample from and evaluate both distributions exactly.
The model pθ is parameterised by a mean vector µθ and
a diagonal covariance matrix Σθ, which are estimated
using RNCE.

1Code available at github.com/jackonelli/nce_cd_cis

We study the effect of adapting the proposal distri-
bution to either the data or model distribution. For
reference, we test the idealised cases where q = pd and
q = pθ, the former is fixed whereas for the latter we set
q to the current pθ at every step. The adaptive proposal
q = qφ is parameterised the same way as pθ, but with
independent parameters φ. It is jointly estimated with
pθ, using the approximation of the gradient in Eq. (17),
which only requires the unnormalised model p̃θ. To
make the problem more challenging and realistic, we
initialise qφ equal to pd, since we in practice would only
have access to samples from pd for initialisation.

Fig. 1 shows the convergence of pθ for the different
choices of proposals. It is clear that q = pθ is the best
choice. Interestingly, the (only practically applicable)
adaptive proposal qφ performs much better than using
the exact data distribution. Note that an adaptive
proposal which targets the static pd corresponds to
matching the moments of pd from data, and would
therefore be a very close approximation of q = pd.

6.2 MH variant and persistent CNCE

The MH acceptance probability in Eq. (18) is known to
perform well in the MCMC setting and we investigate
its impact for CNCE, by evaluating the proposed MH-
CNCE extension. We also investigate the performance
benefits of applying persistence to CNCE (P-CNCE)
as well as to the MH extension (P-MH-CNCE). To
this end, we conduct an experiment similar to the ring
model experiment in (Ceylan and Gutmann, 2018).
The unnormalised probability density function (pdf)
is given by: log p̃θ(x) = −0.5 exp(θ)(∥x∥2 − µ)2 with
x ∈ R5 and ∥ · ∥2 the Euclidean norm. We seek to
estimate the log precision θ, while the mean µ is known.

We train models using SGD, with N = 200 data sam-

https://github.com/jackonelli/nce_cd_cis/tree/test_merge
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Table 1: Results for the autoregressive EBM, given as mean ± standard error over ten estimates. Top: Test
log-likelihood estimated using SMC with 5 · 106 samples. Bottom: 2-Wasserstein distance between pθ and pd,
estimated using 1 · 104 samples (2 · 103 samples for Miniboone). Samples from pθ are drawn using SMC.

Dataset (D): Power (6) Gas (8) Hepmass (21) Miniboone (43) BSDS300 (63)

Log-likelihood

ML-IS -3.93 ± 0.195 -2037.2 ± 0.25 -607.42 ± 48.02 - -
RNCE 0.617 ± 0.010 2.60 ± 4.68 -14.95 ± 0.001 -249.72 ± 8.70 155.37 ± 1.09
SMC-RNCE 0.695 ± 0.0002 13.01 ± 0.013 -13.47 ± 0.0004 -15.24 ± 0.65 145.73 ± 1.22

Wasserstein distance

ML-IS 255.75 ± 51.54 5183.4 ± 4332.5 747.01 ± 60.25 - -
RNCE 44.11 ± 1.54 203.69 ± 12.57 244.84 ± 0.614 1175.7 ± 201.52 85.47 ± 6.54
SMC-RNCE 39.32 ± 1.25 64.02 ± 8.79 236.70 ± 0.300 259.94 ± 49.74 76.50 ± 9.34

ples drawn from the true pdf and J = 5 samples from
q. The proposal distribution, q, is a Gaussian, centred
at the data sample, x0, and with a diagonal covariance
matrix, q(x1 | x0) = N

(
x1;x0, ϵ

2I
)
. The parameter ϵ

is a hyperparameter, estimated as the mean standard
deviation of the training data.

During training, we measure the squared error of the
estimated precision, exp(θ). Fig. 1 shows the median
and worst-case squared error obtained over 100 experi-
ments. To assess the difference between the CNCE and
MH-CNCE acceptance probabilities, we additionally
track these quantities and report their median in Fig. 1.
For the comparison to be reasonable, we need to eval-
uate the probabilities on the same set of samples and
hence show the acceptance probabilities obtained when
training with CNCE (or P-CNCE for PCD), but where
we also calculate the MH acceptance probability. The
trends are similar when training with (P-)MH-CNCE
and evaluating both probabilities.

The MH acceptance probability is indeed larger than
the one used by CNCE, as confirmed by Fig. 1. This
also seems to lead to slightly faster converge, at least
for standard CNCE. Even when the improvement in
performance is small, changing the acceptance prob-
ability comes without any additional costs. Further
improvements over both CNCE and MH-CNCE are
seen by adding persistence, in terms of convergence rate
as well as both median and worst-case performance.

6.3 Autoregressive EBM

Inspired by Nash and Durkan (2019); Strauss and Oliva
(2021), we perform experiments with an autoregressive
EBM (AR-EBM). Specifically, we factorise the model
as pθ(x) = 1

Zθ

∏D
d=1 p̃θ(xd | x1:(d−1)), for a given or-

dering of the D features xd, d = 1, . . . , D, and where
x1:(d−1) = [x1, . . . ,xd−1]

⊤. The AR-EBM predicts the
energy − log p̃θ(xd | x1:(d−1)) of feature d conditional

on the preceding features x1:(d−1).

We learn a parameterised proposal distribution qφ, to-
gether with the AR-EBM. The proposal distribution
also has an autoregressive factorisation and each factor
is a Gaussian Mixture Model (GMM) with 10 compo-
nents. In the experiments, both the AR-EBM and the
proposal are parameterised by fully-connected neural
networks with residual connections (He et al., 2016),
see Appendix D for details.

The AR-EBM has a sequential structure that can be
leveraged by an SMC algorithm. We therefore compare
the following methods for training the model: ML-IS,
RNCE, and the proposed SMC extension of RNCE
(SMC-RNCE, Section 5.4). We perform experiments
on four datasets (Power, Gas, Hepmass and Miniboone)
from the UCI machine learning repository (Kelly et al.)
as well as the BSDS300 dataset (Martin et al., 2001),
pre-processed according to Nash and Durkan (2019).

All methods use a total of J = 20 samples from
the proposal, either to estimate the log-normalisation
constant in Eq. (2) (ML-IS) or as negative examples
(RNCE/SMC-RNCE). In Table 1, we report test log-
likelihoods, estimated using SMC, as well as estimated
2-Wasserstein distances (Villani, 2009) between pθ and
pd for each AR-EBM.

Results for ML-IS are omitted for the two datasets
of highest dimension, (Miniboone and BSDS300), as
we found training to be highly unstable. As expected,
we observe a performance advantage of the proposed
SMC-RNCE criterion, and particularly for the Gas and
Miniboone datasets. We also observe an advantage
of RNCE over ML-IS, as suggested by the established
equivalence between RNCE and ML-CIS.
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7 CONCLUSION

In this paper, we contributed to building a more co-
herent framework for the estimation of unnormalised
models, by linking the proxy-criterion noise-contrastive
estimation (NCE) to approximate maximum likelihood
(ML) methods. Firstly, we established that ranking
NCE is equivalent to ML estimation with conditional
importance sampling (CIS). This equivalence gives a
possible explanation for why ranking NCE would per-
form better than ML estimation with standard impor-
tance sampling; the gradient of the ranking NCE cri-
terion is an approximately unbiased gradient of the
log-likelihood. Secondly, we derived ranking NCE
and conditional NCE as special cases of contrastive
divergence, using MCMC kernels based on CIS and
a Metropolis–Hastings-like method, respectively. The
established links provide theoretical support for why
the optimal noise distribution in NCE is the model,
and not the data, distribution and we propose a prac-
tical method for adapting the proposal to this distribu-
tion. Moreover, our integration of NCE into a standard
MCMC setting enables the use of more robust MCMC
approaches while at the same time preserving the ef-
ficiency and simplicity of NCE. We propose several
extensions to the NCE methods and showcase their
potential to improve model performance.
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A THEORETICAL DERIVATIONS

A.1 Gradient of the negative log-likelihood with the IS estimator

In maximum likelihood estimation with importance sampling (ML-IS), we approximate the normalisation constant
Zθ in Eq. (2) with the IS estimator, defined in Eq. (3), using J samples xj ∼ q(·), j = 1, . . . , J . The gradient of
this approximation is

−∇θ log pθ(x0) ≈ −∇θ log p̃θ(x0) +∇θ log Ẑ
IS
θ .

Using the definition of the weights w̃θ(xj) in Eq. (3), we write the gradient of the estimated log-normalisation
constant:

∇θ log Ẑ
IS
θ =

1

ẐIS
θ

∇θẐ
IS
θ =

1

JẐIS
θ

J∑
j=1

∇θw̃θ(xj) =
1

JẐIS
θ

J∑
j=1

w̃θ(xj)∇θ log w̃θ(xj)

=
1

JẐIS
θ

J∑
j=1

w̃θ(xj)∇θ log p̃θ(xj) =

J∑
j=1

w̃θ(xj)∑J
ℓ=1 w̃θ(xℓ)

∇θ log p̃θ(xj). (19)

Note that this gradient is a self-normalised estimate of the desired gradient, Epθ(x)[∇θ log p̃θ(x)], and will therefore
typically be biased (Robert et al., 1999). Note also that the normalisation is only done over the samples from q(·)
and differs from the normalised weight wj as defined in Eq. (9), where the sum is over j = 0, . . . , J .

A.2 RNCE criterion derivation

The RNCE criterion by Jozefowicz et al. (2016) is based on a multi-class classification problem with a single true
data point and multiple noisy ones. Recall, we have x0 ∼ pd(·) and noisy samples xj ∼ q(·), j = 1, . . . , J . We
prepend x0 to the noisy samples and define x0:J = [x0,x1, . . . ,xJ ].

Assume we forget the origin of x0,x1:J . Let the variable z ∈ {0, . . . , J} denote the index, or class, of the true data
sample, and assume that all outcomes are equally probable a priori, i.e., p(z = j) = 1/(J + 1) for j = 0, 1, . . . , J .
Conditioned on x0:J , we want the model to maximise the posterior probability of z = 0:

p(z = 0 | x0:J) =
p(x1:J | z = 0)p(x0 | z = 0)p(z = 0)

p(x0:J)
=

pθ(x0)
∏J

j=1 q(xj)p(z = 0)∑J
j=0 pθ(xj)

∏
ℓ ̸=j q(xℓ)p(z = j)

=
pθ(x0)

∏J
j=1 q(xj)∑J

j=0 pθ(xj)
∏

ℓ ̸=j q(xℓ)
=

Divide num. and den. by
1

Zθ

J∏
j=0

q(xj)


=

p̃θ(x0)/q(x0)∑J
j=0 p̃θ(xj)/q(xj)

=
w̃θ(x0)∑J
j=0 w̃θ(xj)

. (20)

The RNCE criterion in Eq. (6) follows from minimising the negative logarithm of this probability.

A.3 Proof of Proposition 3.1

First, we derive an expression for the gradient of the RNCE criterion in terms of the CIS estimator ẐCIS
θ in

Eq. (10). We use the expression for the RNCE criterion in Eq. (6):

∇θLR(θ,x0:J) = ∇θ

− log w̃θ(x0) + log
J∑

j=0

w̃θ(xj)


= ∇θ

(
− log w̃θ(x0) + log(J + 1)ẐCIS

θ

)
= −∇θ log p̃θ(x0) +∇θ log q(x0) +∇θ log Ẑ

CIS
θ +∇θ log(J + 1)

= −∇θ log p̃θ(x0) +∇θ log Ẑ
CIS
θ . (21)
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This is equivalent to the gradient of the negative log-likelihood in Eq. (2), with the normalisation constant
estimated with CIS:

∇θ(− log pθ(x0)) ≈ ∇θ(− log p̃θ(x0) + log ẐCIS
θ )

= −∇θ log p̃θ(x0) +∇θ log Ẑ
CIS
θ . (22)

This concludes the proof. However, for completeness, we also demonstrate that the expression in Eq. (21) matches
the expression in Eq. (9). The second term in the last equality of Eq. (21) can be expressed as

∇θ log Ẑ
CIS
θ =

1

ẐCIS
θ

∇θẐ
CIS
θ =

1

(J + 1)ẐCIS
θ

J∑
j=0

∇θw̃θ(xj)

=
1

(J + 1)ẐCIS
θ

J∑
j=0

w̃θ(xj)∇θ log w̃θ(xj) =

J∑
j=0

w̃θ(xj)∑J
ℓ=0 w̃θ(xℓ)

∇θ log w̃θ(xj)

=

J∑
j=0

wj∇θ log w̃θ(xj) =

J∑
j=0

wj∇θ log p̃θ(xj). (23)

For the last equality, we use ∇θ log q(xj) = 0, assuming that q is independent of θ. Clearly, plugging Eq. (23)
into Eq. (21) yields the expression in Eq. (9).

A.4 Proof of Proposition 3.2

To compute the CIS estimator of the normalisation constant ẐCIS
θ we first sample an index z uniformly, such that

p(z = i) =

{
1

J+1 if i ∈ {0, 1, . . . , J},
0 otherwise,

(24)

and then sample

xz ∼ pθ(x),

xj ∼ q(x), j ̸= z, j = 0, . . . , J. (25)

To simplify the notation, we introduce x−z := [x0, . . . ,xz−1,xz+1, . . . ,xJ ]. Note that we in the main paper,
without loss of generalisation, fix z = 0 (we can just re-order the indices).

First, we prove a general property of the CIS estimator:
Lemma A.1 (Unbiased general CIS estimate). Assume xz ∼ pθ(·) and x−z ∼ q(·). Then, for any function f
and deterministic index i ∈ {0, . . . , J}

Ep(z,x0:J )

[
f(xi)

ẐCIS
θ

]
=

1

Zθ
Eq(x) [f(x)] . (26)

Proof. We can write the joint distribution as

p(z,x0:J) =

p(z)︷ ︸︸ ︷
1

J + 1
×

p(xz|z)︷ ︸︸ ︷
pθ(xz)×

p(x−z)︷ ︸︸ ︷∏
j ̸=z

q(xj) (27)

Then, we find the marginal distribution of x0:J as

p(x0:J) =

J∑
z=0

1

J + 1
pθ(xz)

∏
j ̸=z

q(xj) =

J∑
z=0

1

(J + 1)Zθ
w̃θ(xz)

J∏
j=0

q(xj)

=
1

(J + 1)Zθ

J∏
j=0

q(xj)

J∑
z=0

w̃θ(xz) =
ẐCIS
θ

Zθ

J∏
j=0

q(xj) (28)
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and from Eq. (27)

p(z | x0:J) =
p(z,x0:J)

p(x0:J)
=

w̃θ(xz)∑J
ℓ=0 w̃θ(xℓ)

. (29)

Then, for any function f(·) and deterministic index i we have:

Ep(z,x0:J )

[
f(xi)

ẐCIS
θ

]
= Ep(x0:J )

[
f(xi)

ẐCIS
θ

]
=

∫
f(xi)

ẐCIS
θ

ẐCIS
θ

Zθ

J∏
j=0

q(xj)dx0:J

=
1

Zθ

∫
f(xi)q(xi)dxi

∏
j ̸=i

q(xj)dx−i =
1

Zθ
Eq [f(x)]

∫ ∏
j ̸=i

q(xj)dx−i

=
1

Zθ
Eq [f(x)] , (30)

where the first equality follows from the fact that the integrand does not depend on z.

To prove Proposition 3.2, we first note that

Epθ(x0)q(x1:J )

[
∇θ log Ẑ

CIS
θ

]
= Ep(z,x0:J )

[
∇θ log Ẑ

CIS
θ

]
= Ep(z,x0:J )

[
1

ẐCIS
θ

∇θẐ
CIS
θ

]

=
1

J + 1

J∑
j=0

Ep(z,x0:J )

[
∇θw̃θ(xj)

ẐCIS
θ

]
. (31)

From Lemma A.1 we have

Ep(z,x0:J )

[
∇θw̃θ(xj)

ẐCIS
θ

]
=

1

Zθ
Eq [∇θw̃θ(x)]

=
1

Zθ

∫
w̃θ(x) [∇θ log w̃θ(x)] q(x)dx

=
1

Zθ

∫
Zθpθ(x)

q(x)

[
∇θ log

Zθpθ(x)

q(x)

]
q(x)dx

=

∫
pθ(x) [∇θ logZθ +∇θ log pθ(x)−∇θ log q(x)] dx

= ∇θ logZθ. (32)

The middle term in the second to last row is zero since:∫
pθ(x)∇θ log pθ(x)dx =

∫
∇θpθ(x)dx = ∇θ

∫
pθ(x)dx = ∇θ1 = 0, (33)

and ∇θ log q(x) = 0 if q(x) is independent of θ.

Finally, we conclude the proof with

Epθ(x0)q(x1:J )

[
∇θ log Ẑ

CIS
θ

]
=

1

J + 1

J∑
j=0

∇θ logZθ = ∇θ logZθ. (34)

That is, we get an unbiased estimate of the ∇θ logZθ if q is independent of θ and if the estimate is computed
using a sample from the distribution p(z,x0:J) defined above, corresponding to the CIS procedure where we
sample from pθ(x0)q(x1:J).
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A.5 Proof of Proposition 4.1

The expectation w.r.t. KR
θ in Eq. (5), starting at a data sample x0 ∼ pd, is given by

EKR
θ (x′|x0) [∇θ log p̃θ(x

′)] = Eq(x1:J )

[
ECategorical(z;w0:J ) [∇θ log p̃θ(xz)]

]
= Eq(x1:J )

 J∑
j=0

wj∇θ log p̃θ(xj)

 . (35)

Approximating the expected value with a single Monte Carlo sample x1:J ∼ q(·) and plugging in the expression
for the weights wj when evaluating Eq. (5), we recover Eq. (9).

A.6 CNCE criterion derivation

The CNCE criterion is a proxy-criterion based on a binary classification problem with true sample x0 ∼ pd(·)
and noisy sample x1 ∼ q(· | x0). We forget the origin of x0,x1 and introduce the latent class variable z ∈ {0, 1}
according to

pθ(x0,x1 | z) =

{
pθ(x0)q(x1 | x0), if z = 0,

pθ(x1)q(x0 | x1), if z = 1.
(36)

Let p(z = 0) = η. The posterior of z follows as

pθ(z = 0 | x0,x1) =
pθ(x0,x1 | z = 0)η

pθ(x0,x1 | z = 0))η + pθ(x0,x1 | z = 1))(1− η)

=
pθ(x0)q(x1 | x0)η

pθ(x0)q(x1 | x0)η + pθ(x1)q(x0 | x1)(1− η)

=
p̃θ(x0)q(x1 | x0)η

p̃θ(x0)q(x1 | x0)η + p̃θ(x1)q(x0 | x1)(1− η)

=
1

1 +
w̃θ(x1 | x0)(1− η)

w̃θ(x0 | x1)η

. (37)

Note that the normalisation constant of pθ cancels, so that we can use the unnormalised model p̃θ directly to
calculate the posterior. In accordance with Ceylan and Gutmann (2018), we assume a uniform prior on z, i.e.
η = 1

2 , as well as average over J noisy samples, which yields the CNCE criterion in Eq. (7).

A.7 Gradient of CNCE criterion

We derive the gradient of the CNCE criterion in Eq. (7):

∇θLC(θ,x0:J) =
1

J

J∑
j=1

∇θ log

(
1 +

w̃θ(xj | x0)

w̃θ(x0 | xj)

)

= − 1

J

J∑
j=1

∇θ log

(
p̃θ(x0)q(xj | x0)

p̃θ(x0)q(xj | x0) + p̃θ(xj)q(x0 | xj)

)

=
1

J

J∑
j=1

(
−∇θ log (p̃θ(x0)q(xj | x0)) +∇θ log (p̃θ(x0)q(xj | x0) + p̃θ(xj)q(x0 | xj))

)
= −∇θ log p̃θ(x0) +

1

J

J∑
j=1

(
∇θ log (p̃θ(x0)q(xj | x0) + p̃θ(xj)q(x0 | xj))

)
(38)
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Let Zz
θ = p̃θ(x0)q(xj | x0) + p̃θ(xj)q(x0 | xj), then

∇θ logZ
z
θ =

∇θZ
z
θ

Zz
θ

=
q(xj | x0)∇θp̃θ(x0) + q(x0 | xj)∇θp̃θ(xj)

p̃θ(x0)q(xj | x0) + p̃θ(xj)q(x0 | xj)

=
q(xj | x0)p̃θ(x0)∇θ log p̃θ(x0) + q(x0 | xj)p̃θ(xj)∇θ log p̃θ(xj)

p̃θ(x0)q(xj | x0) + p̃θ(xj)q(x0 | xj)

= w0|j∇θ log p̃θ(x0) + wj|0∇θ log p̃θ(xj)

= (1− wj|0)∇θ log p̃θ(x0) + wj|0∇θ log p̃θ(xj). (39)

A.8 Proof of Proposition 4.2

To show that CNCE is equivalent to using CD-1 together with the kernel given by Algorithm 2, we calculate the
expectation with respect to KC

θ , initialising at x0

EKC
θ (x′|x0) [∇θ log p̃θ(x

′)] = Eq(x1|x0)

[
(1− w1|0)∇θ log p̃θ(x0) + w1|0∇θ log p̃θ(x1)

]
. (40)

We recover Eq. (12) by approximating the expectation with an average over samples xj ∼ q(· | x0), j = 1, . . . , J
and by plugging the result into Eq. (5).

A.9 Proofs of Propositions 5.1 and 5.2

With q = pθ we have uniform weights wj =
1

J+1 , j = 0, . . . , J (from Eq. (9)). From Eq. (9), we then have

∇θLR(θ) = −∇θ log p̃θ(x0) +

J∑
j=0

1

J + 1
∇θ log p̃θ(xj)

= − J

J + 1
∇θ log p̃θ(x0) +

1

J + 1

J∑
j=1

∇θ log p̃θ(xj). (41)

Taking the expectation w.r.t. q(x1:J) = pθ(x1:J)

Eq(x1:J ) [∇θLR(θ)] = − J

J + 1
∇θ log p̃θ(x0) +

1

J + 1

J∑
j=1

Epθ(xj) [∇θ log p̃θ(xj)]

=
J

J + 1
(−∇θ log p̃θ(x0) +∇θ logZθ)

=
J

J + 1
(−∇θ log pθ(x0)) , (42)

which proves Proposition 5.1.

Analogous to the above proof, with q(· | x0) = pθ(·) we have uniform weights w(x0 | xj) = w(xj | x0) = 1
2 ,

j = 1, . . . , J . From Eq. (12), we then have

∇θLC(θ) = −∇θ log p̃θ(x0) +
1

J

J∑
j=1

(
1

2
∇θ log p̃θ(x0) +

1

2
∇θ log p̃θ(xj)

)

= −1

2
∇θ log p̃θ(x0) +

1

2J

J∑
j=1

∇θ log p̃θ(xj). (43)

Taking the expectation w.r.t. q(x1:J | x0) = pθ(x1:J)

Eq(x1:J |x0) [∇θLC(θ)] = −1

2
∇θ log p̃θ(x0) +

1

2J

J∑
j=1

Epθ(xj) [∇θ log p̃θ(xj)]

=
1

2
(−∇θ log p̃θ(x0) +∇θ logZθ)

=
1

2
(−∇θ log pθ(x0)) , (44)

which proves Proposition 5.2.
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A.10 Proof of Proposition 5.3

From Eq. (17) we have

∇L(φ) = Epθ(x) [−∇ log qφ(x)] ≈ ∇L̂(φ) = −
J∑

j=0

wj∇φ log qφ(xj)

= − 1

J + 1

J∑
j=0

w̃θ(xj)∇φ log qφ(xj)

ẐCIS
θ

. (45)

Then

Epθ(x0)qφ(x1:J )

[
∇L̂(φ)

]
= Ep(z,x0:J )

[
∇L̂(φ)

]
= − 1

J + 1

J∑
j=0

Ep(z,x0:J )

[
1

ẐCIS
θ

w̃θ(xj)∇φ log qφ(xj)

]
. (46)

From Lemma A.1 we have

Ep(z,x0:J )

[
w̃θ(xj)∇φ log qφ(xj)

ẐCIS
θ

]
=

1

Zθ
Eqφ(x) [w̃θ(x)∇φ log qφ(x)] = Eqφ(x)

[
1

Zθ
w̃θ(x)∇φ log qφ(x)

]
=

∫
qφ(x)

1

Zθ
w̃θ(x)∇φ log qφ(x)dx

=

∫
qφ(x)

1

Zθ

p̃θ(x)

qφ(x)
∇φ log qφ(x)dx

=

∫
pθ(x)∇φ log qφ(x)dx = Epθ(x) [∇φ log qφ(x)] = −∇φL(φ). (47)

Then

Epθ(x0)qφ(x1:J )

[
∇L̂(φ)

]
=

1

J + 1

J∑
j=0

∇φL(φ) = ∇φL(φ), (48)

which concludes the proof.

B EXTENSIONS OF NCE

In the main paper, we outlined a new adaptive proposal strategy, persistent NCE, an MH-variant of CNCE as
well as an SMC variant of RNCE, as extensions of the NCE criteria. Here, we detail one additional extension
based on CD, namely that of taking several MCMC steps in the CD kernel. We also give further details on the
SMC variant of RNCE (SMC-RNCE).

B.1 NCE with multiple MCMC steps

In the light of interpreting RNCE and CNCE as special cases of contrastive divergence, a natural extension
of these criteria is that of taking several MCMC steps in the kernel. This, with the hope that it will improve
convergence of the algorithm. We outline the procedure for RNCE with k MCMC steps, using the kernel in
Algorithm 1. At each MCMC step ℓ = 1, . . . , k, we sample x

(ℓ)
1:J and condition on x

(ℓ)
0 = x

(ℓ−1)
z , with x

(ℓ−1)
z being

the sampled output from the previous step. Marginalising over the index variables, z, we estimate the second
term in Eq. (5) as

EKR
θ (x′|x0) [∇θ log p̃θ(x

′)] ≈ 1

k

k∑
ℓ=1

J∑
j=0

w
(ℓ)
j ∇θ log p̃θ(x

(ℓ)
j ). (49)

Hence, we estimate the expected gradient as an average over the estimates obtained at each step of the kernel.
Note that the weight normalisation, Eq. (9), is performed independently at each step ℓ, using only samples
involved in that particular step. The procedure would be similar for CNCE, but instead employing the kernel
outlined in Algorithm 2.
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B.2 Sequential Monte Carlo RNCE

Interpreting RNCE as CD-1 with a kernel based on CIS, we propose an extension to RNCE, where the CIS
kernel is replaced by a kernel based on conditional Sequential Monte Carlo (SMC), see e.g. (Naesseth et al.,
2019), referred to by SMC-RNCE. Here, we give details on the CSMC algorithm. The CSMC kernel is outlined in
Algorithm 3.

SMC, in general, tries to address the issue of weight degeneracy sometimes observed in IS, see e.g. (Naesseth
et al., 2019), by solving the inference problem recursively. Assume that the model density factorises as

pθ(x) =
1

Zθ

D∏
d=1

p̃θ(xd | x1:(d−1)), (50)

for a given ordering of the D features xd, d = 1, . . . , D, and where x1:(d−1) = [x1, . . . ,xd−1]. In this case, SMC
can make use of the autoregressive structure to recursively draw samples from the proposal distribution and by
adapting said distribution based on the previously drawn samples.

In Conditional SMC (CSMC), similar to CIS, we condition on a sample x0 (a data sample in SMC-RNCE), which
is set deterministically in the SMC algorithm. Following the notation in Eq. (50), CSMC iterates over all features
starting at d = 1 and ending at d = D. At step d, samples x

(j)
1:d, j = 1, . . . , J , are drawn from the proposal

q(x1:d) = q(xd | x1:(d−1))

J∑
j=0

wj,d−1δx(j)

1:(d−1)

(x1:(d−1)), (51)

with δ
x
(j)

1:(d−1)

(·) the Dirac delta distribution at the previously drawn sample x
(j)
1:(d−1) (or the conditioning sample

for the case j = 0). The weights at step d are calculated as

wj,d =
wθ(x

(j)
d )∑J

ℓ=0 wθ(x
(ℓ)
d )

, (52)

with, for a model that factorises according to Eq. (50),

wθ(x
(j)
d ) =

p̃θ(x
(j)
d | x(j)

1:(d−1))

q(x
(j)
d | x(j)

1:(d−1))
. (53)

The CSMC estimate of the normalisation constant, Zθ, is

ẐCSMC
θ =

D∏
d=1

1

J + 1

J∑
j=0

wθ(x
(j)
d ). (54)

One issue that can arise in SMC is so-called path degeneracy, see e.g. (Naesseth et al., 2019). To alleviate this
issue, we can use adaptive resampling and sample x

(j)
1:(d−1), j = 1, . . . , J , at step d only if the effective sample

size (ESSd−1) goes below (J + 1)/2, and otherwise keep the corresponding samples from the last iteration. The
effective sample size is calculated as

ESSd =
1∑J

j=0 w
2
j,d

.

In case we do not resample x
(j)
1:(d−1), we account for this by calculating the weights according to

wθ(x
(j)
d ) =

wj,d−1

1/(J + 1)

p̃θ(x
(j)
d | x(j)

1:(d−1))

q(x
(j)
d | x(j)

1:(d−1))
. (55)
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These adapted weights are then used in the CSMC estimate of the normalisation constant (Eq. (54)).

Algorithm 3 CSMC kernel
Input: x0

for d = 1 to D do
for j = 1 to J do

1. if d = 1
Set x

(j)
1:(d−1)

:= ∅
else

Sample z ∼ Categorical ([w0,d−1, . . . , wJ,d−1]), set x
(j)
1:(d−1)

:= x
(z)
1:(d−1)

2. Sample x
(j)
d ∼ q(· | x(j)

1:(d−1))

3. Calculate weight wθ(x
(j)
d ), using Eq. (53)

4. Calculate weights wθ(x
(0)
d ), wj,d, j = 0, . . . , J , using Eqs. (52) and (53)

6. Sample z ∼ Categorical ([w0,D, . . . , wJ,D])

7. Return x′ = x
(z)
1:D

C COMPARISON WITH YAIR AND MICHAELI (2021)

Most similar to our contribution is the work by Yair and Michaeli (2021). They show that CD-1 can be derived
from CNCE, while we show that CNCE (as well as RNCE) can be derived as special cases of CD-1. Both results
give valuable insight to two important families of estimation methods. However, our two different approaches
lead to some crucial distinctions, both conceptual and theoretical, which we detail below.

Yair and Michaeli (2021) use the original derivation of the CD gradient, starting at another objective function than
the log-likelihood, see (Hinton, 2002). From there, they argue that this derivation is flawed, since it assumes that
an intractable term can be neglected. Deriving CD-1 from CNCE is therefore more principled, they claim. Here,
we take the opposite view. We view the CD gradient in Eq. (5) as a straightforward MCMC approximation of the
log-likelihood gradient in Eq. (4). This view is common and leads to exactly the same gradient expression, see e.g.
(Welling et al., 2003; Asuncion et al., 2010). NCE on the other hand, is derived by introducing a proxy-criterion
without any apparent connection to standard ML estimation. Therefore, we claim that it is more useful to
formulate the NCE methods in terms of their connection to ML.

The theoretical differences stem from the way Yair and Michaeli (2021) derive their connection. Specifically, they
rewrite the gradient of the CNCE criterion on the form

∇θLC(θ) = Ex0∼pd,x1|x0∼q [αθ(x0,x1) (−∇θ log pθ(x0) +∇θ log pθ(x1))] (56a)

αθ(x0,x1) =

(
1 +

pθ(x0)q(x1 | x0)

pθ(x1)q(x0 | x1)

)−1

. (56b)

If q is chosen to be the transition probability of a reversible Markov chain, then the detailed balance condition is
fulfilled and αθ(x0,x1) = 1/2, ∀x0,x1, which means that the gradient of the CNCE criterion is proportional to
the CD-1 gradient. Note that the derivation holds only for proposal (or noise) distributions which satisfy this
property.

Going in the opposite direction, we start from the CD gradient estimate in Eq. (5) and derive both CNCE and
RNCE as special cases of CD-1. We establish these links without any restrictions on the proposal distribution q.
By deriving CNCE from CD-1, we are also able to discover that CNCE corresponds to CD with a well-known MH
kernel, albeit with a sub-optimal acceptance probability. This allows us to propose a theoretical improvement to
CNCE (MH-CNCE), at virtually no cost.

Our interpretation of RNCE and CNCE as CD-1 also provides a strong argument for choosing q similar to pθ,
rather than pd. Yair and Michaeli (2021) are more ambiguous on this point and simultaneously claim that q
should not significantly deviate from pd, while also requiring that q depend on pθ.
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We also arrive at different ways of generalising the methods to CD-k, that is with multi-step sampling in the
MCMC kernel. For us, the multi-step versions of RNCE and CNCE follows naturally by taking multiple steps
in the respective MCMC kernels, resulting in CD-k, see Appendix B.1. This avoids the need to introduce the
"time-reversal classification task" used by Yair and Michaeli (2021). Importantly, we do pair-wise comparison of
the conditional sample and the newly proposed one at each step of the MCMC kernel, while Yair and Michaeli
(2021) compare the full MCMC chain to the reversed one for all k steps at once.

D ADDITIONAL EXPERIMENTS AND EXPERIMENT DETAILS

We provide additional details on the experiments performed in the main article, as well as additional experimental
results.

D.1 Adaptive proposal distribution

The model pθ is parameterised by a mean vector µθ and a vector sθ, such that Σθ is a diagonal covariance matrix,
where the diagonal is the elements of sθ squared. We initialise µθ = 4 and Σθ = 2I.

The models are trained using N = 100 samples from pd and J = 10 proposal samples from q for every data point
drawn from pd. The parameters are estimated using SGD with learning rate κ = 0.01

√
B, where B = 32 is the

batch size. The parameter vectors θ and φ are updated once every batch, using the same learning rate.

D.2 MH variant and persistent CNCE

We provide additional results, investigating the effect of changing the CNCE acceptance probability to the one of
the standard Metropolis–Hastings (MH) algorithm as well as that of using persistence in CNCE and MH-CNCE
(P-CNCE and P-MH-CNCE, respectively). We also give additional details on the ring model experiments
performed in the main paper.

We perform experiments using the ring model explained in Section 6.2 with N = 200, 1000 and J = 5, 10. The
proposal q is the same as previously. Each experiment is repeated 100 times, each time with a new set of uniformly
sampled model parameters µ ∈ {5, 10}, σ2 ∈ {0.3, 1.5}, with θ = log(σ−2), and a new data set of N data points.
Initial estimates of θ is sampled uniformly from the same interval as the true value. To the best of our ability, we
follow the setup in (Ceylan and Gutmann, 2018), but select only two data set sizes, as well as run additional
experiments with a smaller number of noise samples (J = 5). Moreover, we train our models using SGD, training
each model for 50 epochs with a batch size of B = 20.

For improving stability of the persistent CNCE methods, we use a decaying learning rate. The learning rate is set
as κ = κbase ·

√
B and is linearly decayed, starting at κbase = 0.01 and ending at κbase = 0.001. For P-CNCE as

well as P-MH-CNCE, we run B · J MCMC chains in parallel, as each data point xi
0 in a batch forms a total of J

pairs (x0,xj), j = 1, . . . , J .

Results are shown in Fig. 2 and 3. In addition to the median squared error of the estimated precision over
iterations, we show the worst-case performance at each iteration. We also show the median acceptance probabilities
obtained with all methods, calculated when training with CNCE and MH-CNCE for the standard algorithms, or
P-CNCE and P-MH-CNCE for the persistent algorithms.

The advantages of a higher acceptance probability as well as persistence is most evident for the smaller sample size.
However, also for N = 1000 we observe that both P-CNCE and P-MH-CNCE improves worst-case performance
over standard CNCE and MH-CNCE. While the median performance of P-CNCE and P-MH-CNCE is worse, this
still indicates that the methods have some robustness. The performance advantage of using the MH acceptance
probability, compared to the one used in CNCE, is less evident when combined with persistence.

D.3 Autoregressive EBM

The experimental setup for the experiments performed with the autoregressive EBM (AR-EBM) are based on
similar experiments performed by Nash and Durkan (2019); Strauss and Oliva (2021). Note that, while the
experiments are based on previous work (Nash and Durkan, 2019; Strauss and Oliva, 2021), we formulate the
model distribution such that the conditional distributions in Eq. (50) share a single normalisation constant, Zθ.
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Figure 2: Results for ring model experiments with N = 200 training data points. Results are reported over
training iterations and as median (solid lines) and worst-case (dashed lines) estimated from 100 experiments.
Left: Squared parameter error of standard CNCE, CNCE with Metropolis–Hastings acceptance probability (MH-
CNCE), persistent CNCE (P-CNCE) and persistent MH-CNCE (P-MH-CNCE). Middle: Acceptance probability
of (P-)CNCE and (P-)MH-CNCE when training with (P-)CNCE. Right: Acceptance probability of CNCE and
MH-CNCE when training with (P-)MH-CNCE.

In contrast, the model distributions in (Nash and Durkan, 2019; Strauss and Oliva, 2021) are formulated such
that each one-dimensional conditional distribution has its own normalisation constant, which is also estimated
separately from the other’s.

For the experiments, we select reasonable hyperparameters based on values used in (Nash and Durkan, 2019). In
some cases, we adapt the hyperparameters based on initial test runs using ML-IS or to reduce computational
cost (see below). We also use the test runs, guided by Nash and Durkan (2019), to decide on a sufficient number
of training iterations for each dataset. The hyperparameters are summarised in Table 3. We found training
with ML-IS on the Miniboone and BSDS300 datasets to be highly unstable. As we did not manage to find
hyperparameters that stabilise training for this method combined with these datasets, we omit the corresponding
results.

In all experiments, both the AR-EBM, pθ, and the proposal network, qφ, are fully-connected neural networks
with residual connections, consisting of pre-activation residual blocks with two layers (He et al., 2016). For the
AR-EBM we use four residual blocks with 128 hidden units for all datasets. For the proposal network, we use two
residual blocks with 512 hidden units for the dataset of highest dimension (BSDS300) and two residual blocks
with 256 hidden units for the remaining datasets. The size of the AR-EBM is directly taken from Nash and
Durkan (2019), while we choose a smaller proposal network than used in (Nash and Durkan, 2019), to reduce
computational cost. In both models, we use ReLU activations and apply dropout between the two layers of each
residual block, using a dropout rate of 0.1, as a default. However, as we did not observe convergence of the loss on
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Figure 3: Results for ring model experiments with N = 1000 training data points. Results are reported over
training iterations and as median (solid lines) and worst-case (dashed lines) estimated from 100 experiments. Left:
Squared parameter error of standard CNCE, CNCE with Metropolis–Hastings acceptance probability (MH-CNCE)
and persistent CNCE (P-CNCE). Middle: Acceptance probability of CNCE and MH-CNCE when training with
(P-)CNCE. Right: Acceptance probability of CNCE and MH-CNCE when training with (P-)MH-CNCE.

the Gas dataset using this setup, we exchange the activation function in the AR-EBM to Tanh and train without
dropout for this dataset, following Nash and Durkan (2019). Moreover, for the smaller Miniboone dataset, we use
a dropout rate of 0.5 as in (Nash and Durkan, 2019), to avoid overfitting.

The structure of the proposal network is taken from (Strauss and Oliva, 2021). The input to the network is the
feature vector x0 with all but the observed features x0,1:(d−1) set to 0, and a one-hot mask indicating which
features are observed (with zeros in the positions of unobserved features, and ones in the positions of observed
features). The proposal network parameterises a Gaussian Mixture Model (GMM) with ten components. The
GMM is used to evaluate the conditional density qφ(xd | x1:(d−1)) and to generate proposal/noise samples. To
avoid numerical issues, we set the standard deviation of each Gaussian to a minimum of 1 · 10−3.

Apart from the parameters of the GMM, we follow previous experimental setups (Nash and Durkan, 2019; Strauss
and Oliva, 2021) and let the proposal network output a context vector of length 64. This context vector, which
can be interpreted as a latent representation of x1:(d−1), is given as input to the AR-EBM as a means of sharing
information between the two models. Given the context vector as well as the unobserved feature x0,d as input, the
AR-EBM directly predicts the unnormalised log density (the negative energy) log p̃θ(xd | x1:(d−1)). As in (Nash
and Durkan, 2019), we apply a softplus non-linearity to the output of the AR-EBM, such that the predicted
density is upper bounded by 1.

Prior to training, data is pre-processed according to Nash and Durkan (2019). For the Power, Gas and Miniboone
datasets we hold out 10% of the data for testing, and split the remaining dataset into training and validation sets
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Table 2: Dimension and total size of the datasets used in the AR-EBM experiments.

Power Gas Hepmass Miniboone BSDS300

Dimension (D) 6 8 21 43 63
Size (N) 2,049,280 1,052,065 525,123 36,488 1,300,000

using a 90%-10% split. For Hepmass and BSDS300 we use pre-existing data splits. For Hepmass, this means
that the test set makes up approximately one third (instead of 10%) of the full dataset. For BSDS300, the test
set instead consists of approximately 20% of the full dataset, and the remaining data is split into training and
validation sets using a (approximately) 95%− 5% split. Each dataset but BSDS300 is standardised and features
that are discrete, highly correlated or with too many reoccurring values are removed. For the Power dataset, we
additionally add uniform noise to the features, for the purpose of numerical stability. Moreover, instead of using
the full images of the original BSDS300 dataset, we use the same data as in (Nash and Durkan, 2019), consisting
of patches extracted from the original images. The final number of data dimensions, as well as the total size of
each dataset are given in Table 2.

The AR-EBM, pθ, and proposal network, qφ, are trained in parallel. We investigate several methods for training
the AR-EBM (ML-IS, RNCE and SMC-RNCE) and train qφ using maximum likelihood as done in (Nash and
Durkan, 2019; Strauss and Oliva, 2021). Although we argue that qφ should resemble pθ, we find that our proposed
method for adapting qφ to the model distribution is not suitable for the particular setup where information is
shared (through the context vector) between the AR-EBM and the proposal network. Having both pθ and qφ
aiming at the same target (the data distribution), is beneficial in this case, as this updates the context vector
in the same direction, while having different targets (the data vs. the model distribution) instead risks stalling
training, as the proposal might have a negative impact on the AR-EBM through the context vector.

Just as in (Nash and Durkan, 2019), the models are trained using Adam optimisation (Kingma and Ba Lei,
2015) and a learning rate following a cosine annealing schedule. The initial learning rate is set to 5 · 10−4. We
use a batch size of 512, with the exception for the Miniboone and BSDS300 datasets, where we, because of
limitations in GPU memory, use a batch size of 128. The total number of training iterations used for each dataset
is reported in Table 3. In all cases, we use the first 5000 iterations as a warm-up phase, where we train only the
proposal network and keep pθ fixed. For training the AR-EBM, all methods use J = 20 proposal/noise samples
per observation. In SMC-RNCE, we use adaptive resampling, as explained in Appendix B. During training, we
evaluate the model on a smaller part (10%) of the validation set every 1,000 training iterations, and keep the
one with the highest log-likelihood out of the evaluated (together with the corresponding proposal network). An
exception is made for the Miniboone dataset, where we evaluate the models on the full validation set every 1,000
training iterations, because of the smaller number of observations in the dataset.

We train the models on one GPU (NVIDIA GeForce RTX 3090, 24 GB). The total training time depends on the
method used to train the AR-EBM as well as the dataset in question. For the Power, Gas and Hepmass datasets,
training takes around 5-25 hours, while the corresponding numbers for the Miniboone and BSDS300 datasets are
15-40 and 40-120 hours, respectively.

We evaluate the log-likelihood over the test set, applying SMC to estimate the normalisation constant. We make
a total of ten estimates, using 5 · 106 particles in the SMC algorithm, and report the mean as well as standard
error of the log-likelihood. The 2-Wasserstein distance is estimated with sampling. We randomly draw (with
replacement) 1 · 104 samples from the test set, to represent the data distribution, and use SMC to draw an equal
amount of samples from the model distribution. An exception is again made for the Miniboone dataset, where
we draw only 2 · 103 from each distribution, because of the smaller size of the test set. We make a total of ten
estimates, and report the mean as well as the standard error of the estimated Wasserstein distance.
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Table 3: Hyperparameters used in the AR-EBM experiments.

Power Gas Hepmass Miniboone BSDS300

Number of blocks, pθ 4 4 4 4 4
Hidden dimension, pθ 128 128 128 128 128
Activation function, pθ ReLU Tanh ReLU ReLU ReLU
Number of blocks, qφ 2 2 2 2 2
Hidden dimension, qφ 256 256 256 256 512
Activation function, qφ ReLU ReLU ReLU ReLU ReLU
Context dimension 64 64 64 64 64
GMM components 10 10 10 10 10
Negative samples, J 20 20 20 20 20
Batch size 512 512 512 128 128
Dropout rate (pθ and qφ) 0.1 0.0 0.1 0.5 0.1
(Initial) learning rate 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4

Training iterations 1 · 106 6 · 105 2 · 105 3 · 105 6 · 105
Warm-up iterations 5000 5000 5000 5000 5000
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