
Enabling efficient and low-effort decentralized federated learning with the
EdgeFL framework

Downloaded from: https://research.chalmers.se, 2024-11-16 03:22 UTC

Citation for the original published paper (version of record):
Zhang, H., Bosch, J., Olsson, H. (2025). Enabling efficient and low-effort decentralized federated
learning with the EdgeFL framework. Information and Software Technology, 178.
http://dx.doi.org/10.1016/j.infsof.2024.107600

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

E
E
H
a

b

A

K
F
M
S
D
I

1

p
u
f
r
t
o
s
T
m
t
r

v
s

h
R

Information and Software Technology 178 (2025) 107600

A
0

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

nabling efficient and low-effort decentralized federated learning with the
dgeFL framework
ongyi Zhang a,∗, Jan Bosch a, Helena Holmström Olsson b

Chalmers University of Technology, Gothenburg, Sweden
Malmö University, Malmö, Sweden

R T I C L E I N F O

eywords:
ederated learning
achine learning

oftware engineering
ecentralized architecture

nformation privacy

A B S T R A C T

Context: Federated Learning (FL) has gained prominence as a solution for preserving data privacy in
machine learning applications. However, existing FL frameworks pose challenges for software engineers due
to implementation complexity, limited customization options, and scalability issues. These limitations prevent
the practical deployment of FL, especially in dynamic and resource-constrained edge environments, preventing
its widespread adoption.
Objective: To address these challenges, we propose EdgeFL, an efficient and low-effort FL framework designed
to overcome centralized aggregation, implementation complexity and scalability limitations. EdgeFL applies a
decentralized architecture that eliminates reliance on a central server by enabling direct model training and
aggregation among edge nodes, which enhances fault tolerance and adaptability to diverse edge environments.
Methods: We conducted experiments and a case study to demonstrate the effectiveness of EdgeFL. Our
approach focuses on reducing weight update latency and facilitating faster model evolution on edge devices.
Results: Our findings indicate that EdgeFL outperforms existing FL frameworks in terms of learning efficiency
and performance. By enabling quicker model evolution on edge devices, EdgeFL enhances overall efficiency
and responsiveness to changing data patterns.
Conclusion: EdgeFL offers a solution for software engineers and companies seeking the benefits of FL,
while effectively overcoming the challenges and privacy concerns associated with traditional FL frameworks.
Its decentralized approach, simplified implementation, combined with enhanced customization and fault
tolerance, make it suitable for diverse applications and industries.
. Introduction

Federated Learning (FL), a revolutionary machine learning ap-
roach, enables model training across decentralized data sources while
pholding the fundamental concepts of data privacy and security. A
requent technique in traditional machine learning is to centralize all
elevant data into a single location for model training. However, this
raditional strategy frequently confronts formidable obstacles. These
bstacles cover a wide range of issues, from data privacy concerns and
evere regulatory requirements to computationally complex demands.
o address these restrictions, FL provides a novel approach by allowing
odels to be trained locally on the devices or servers from which

he data originated, eliminating the need to send data to a central
epository [1].

The most significant advantage of FL is its data privacy preser-
ation. This strategy assures that data remains on client devices or
ervers, eliminating any concerns or suspicions about data leakage or

∗ Corresponding author.
E-mail address: hongyiz@chalmers.se (H. Zhang).

the unintended exchange of critical information [2]. Instead of sending
raw, unaltered data, FL relies on the communication of only model pa-
rameter changes, which are frequently encrypted or anonymized. This
decentralized training paradigm empowers organizations, researchers,
and individuals to form collaborations in the pursuit of model im-
provements without sacrificing the integrity and security of their data
resources.

In addition to data privacy protection, FL adds a new level to collab-
orative model training. The approach extracts collective knowledge that
is more powerful than the sum of its individual parts by encapsulating
data and knowledge scattered across several nodes or devices [3]. The
federated method supports the integration of various sources of data,
resulting in the construction of models that are not only more accurate
but also robust, which can be adaptable to a wide range of real-world
scenarios.

FL can be applied to applications in various domains, such as
ttps://doi.org/10.1016/j.infsof.2024.107600
eceived 11 May 2024; Received in revised form 9 October 2024; Accepted 10 Oct
vailable online 17 October 2024
950-5849/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
ober 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
mailto:hongyiz@chalmers.se
https://doi.org/10.1016/j.infsof.2024.107600
https://doi.org/10.1016/j.infsof.2024.107600
http://creativecommons.org/licenses/by/4.0/

H. Zhang et al.

c

c

p
F
b

t
L
d
w
c
c

t
s
l
s
d
f

w
f
t

e
e

r
t
r
m
t
i

f
a
i
e

l
i

t
t
T
d

M
w
t
s
f

t

w

d

Information and Software Technology 178 (2025) 107600
healthcare, finance, automotive, Internet of Things (IoT), and edge
omputing [4–7][8,9]. One of its advantages is its ability to enable

enterprises to exploit the collective knowledge contained within dis-
tributed datasets without violating severe privacy requirements or ex-
posing sensitive information to unnecessary risks. This capacity to
ombine knowledge while adhering to data privacy regulations is es-

pecially important in fields such as healthcare and finance, where
atient or financial data confidentiality is crucial [10]. Furthermore,
L appears as a powerful tool for reducing reliance on costly and
andwidth-intensive data transfers.

1.1. Challenges of FL development

However, while FL offers significant advantages, it also poses dis-
inctive challenges for AI engineers, as highlighted in the research by
wakatare et al. [11]. These challenges revolve around the intricate
esign and implementation of distributed systems. Engineers are tasked
ith creating systems capable of efficiently managing communication,

oordination, and synchronization between numerous clients and a
entral server. This involves overcoming challenges such as scalability

and fault tolerance to accommodate extensive deployments [12].
Existing FL frameworks, whether from academia or industry, tend

o be complex to use. FL involves various components like distributed
ystems, optimization algorithms, privacy techniques, and machine
earning models [13,14]. When these elements are combined into a
ingle framework, it can result in intricate systems with numerous
ependencies and configurations. This complexity can be challenging
or users, especially those without a strong background in distributed

systems or machine learning [15].
Additionally, FL is applied in diverse domains and use cases, each

ith its unique requirements and constraints [16]. Designing a plat-
orm or framework that can accommodate this diversity can add to
he complexity. It becomes a challenge to strike a balance between

providing flexibility for customization and maintaining simplicity for
ase of use [17]. As indicated in previous research [18], software
ngineers must understand and implement FL algorithms and optimiza-

tion techniques such as Federated Averaging and adaptive learning
ate strategies. The development of algorithms that efficiently converge
owards high-quality models while consuming the least amount of
esources represents an overwhelming task that software engineers
ust face within the context of FL. These diverse duties highlight

he complexities of FL and the skill set required for its successful
mplementation [19].

Last but not least, software engineers may face difficulties because
of the lack of comprehensive tools and frameworks designed expressly
for FL. To meet their special objectives, they may need to adapt
current tools, create customized solutions, or contribute to open-source
initiatives [20,21]. Constructing simplified workflows, putting in place
effective debugging mechanisms, and creating monitoring tools that
it FL systems are all challenging tasks that require careful attention
nd expertise. This diverse landscape emphasizes the complexities of
ntegrating FL with edge devices and IoT contexts, where resource
fficiency and adaptability are critical.

In summary, the challenges can be concluded into four aspects:

• Scalability and Decentralization in FL: Existing FL frameworks
predominantly rely on centralized aggregation, which introduces
a single point of failure and limits scalability. The challenge
lies in designing a decentralized architecture that can effectively
eliminate the central server while maintaining model accuracy
and reducing communication overhead.

• Customization and Flexibility in Aggregation Functions: Current
FL frameworks often lack the flexibility needed to customize
aggregation functions to suit specific use cases. The gap here in-
volves developing an approach that allows for adaptable aggrega-
tion functions, which can be fine-tuned to optimize performance
across different domains and data distributions.
2
• Efficient Model Evolution and Latency Reduction: The latency
associated with weight updates and model evolution in FL systems
has been a significant bottleneck. The gap is in devising methods
that can reduce this latency while ensuring rapid model conver-
gence, especially in scenarios with unequally distributed datasets.

• Complexity of Implementation: Implementing FL systems is of-
ten complex due to the need to integrate multiple components
such as distributed systems, optimization algorithms, and privacy
techniques. The challenge lies in simplifying this implementation
process to make FL more accessible to engineers without deep
expertise in these areas.

1.2. Contributions

To tackle these challenges, in this paper, we introduce EdgeFL, an
efficient and low-effort FL framework tailored for edge computing envi-
ronments. EdgeFL addresses the challenges associated with centralized
aggregation by adopting an edge-only model training and aggregation
approach. This eliminates the need for a central server and allows
for seamless scalability across various use cases. The framework offers
a simple integration process, requiring only four lines of code (LOC)
for software engineers to add FL functionalities to their AI products.
Moreover, EdgeFL supports the customization of aggregation functions,
giving engineers the flexibility to adapt them to their specific needs.
Therefore, the contributions of this paper are as follows:

(1) We identify the challenges by evaluating existing FL frameworks
in six categories, including line of code, system design, architecture
settings, aggregation type and deployability.

(2) To tackle these challenges, we introduce EdgeFL,1 a scalable and
ow-effort edge-only FL framework. To accomplish easy-
mplementation and scalable model training capacity, simple API de-

sign and learning flow abstraction are built.
(3) We propose a decentralized FL architecture and learning method

hat enables asynchronous model training to speed up industrial FL
raining and support large-scale node communication along edges.
he architecture can be used as a template for future edge-only FL
evelopment and research.

(4) We validate EdgeFL using two well-known datasets, namely
NIST and CIFAR-10 and compared them with five existing FL frame-
orks/algorithms. Furthermore, a real-world case, the distributed sen-

iment analysis on the IMDB Dataset of 50K Movie Reviews, is con-
tructed and used to validate the empirical deployment of the EdgeFL
ramework.

The remainder of this paper is structured as follows. In Section 2,
we introduce the background and related work of this study. Section 3
details our research method, including the implementation, data dis-
ribution, machine learning methods applied and evaluation metrics.

Section 4 presents the system design of our proposed EdgeFL. Section 5
evaluates our proposed framework and compares it with existing FL
frameworks. Section 6 outlines the discussion on our observed results.
Finally, Section 7 presents conclusions and future work.

2. Background and related work

2.1. Federated learning

FL is a machine learning approach that enables multiple decen-
tralized devices or entities to collaboratively train a shared model

ithout sharing their raw data [22–24]. In traditional machine learning
methods, a central server or data aggregator gathers and stores training
ata from different sources and then trains a global model using this

1 https://github.com/HarryME-zh/EdgeFL.git.

https://github.com/HarryME-zh/EdgeFL.git

H. Zhang et al. Information and Software Technology 178 (2025) 107600
Fig. 1. Diagram of FL training process.
combined data. However, this centralized approach raises concerns
related to data privacy, security, and the practicality of transferring
large data volumes to a central location [18].

In the context of the growing use of edge computing and dis-
tributed data sources, there is an increasing need to utilize data that
is distributed across various devices or entities while respecting data
ownership and privacy [25]. FL addresses this challenge by allowing
local devices, such as smartphones, IoT devices, or edge servers, to
train a shared model using their locally stored data [26]. This process
is illustrated in Fig. 1 and typically involves the following steps:

(1) Initialization: In the first step, the central server kicks off the
process by initializing a global model and distributing it to the partici-
pating devices or entities.

(2) Local Model Training: Each device or entity then takes the ini-
tiative to train the global model using its own local data independently.
Importantly, this is done without sharing the raw data. The local model
undergoes training using techniques like gradient descent or other
optimization methods. This involves updating the model parameters
based on the device’s individual data.

(3) Model Aggregation: Following the local training phase, the
devices or entities transmit their locally computed model updates,
which can include gradients, to the central server. The central server
collects and aggregates these updates using methods such as Federated
Averaging or Secure Aggregation, resulting in an improved global
model.

(4) Iterative Process: The model training and aggregation process it-
erates over multiple rounds, allowing the global model to improve over
time. Each round typically includes local model training, model aggre-
gation, and communication between devices and the central server.

FL utilizes the power of collaborative learning from a diverse range
of devices or entities, each with its unique data distribution and char-
acteristics. This diversity plays a crucial role in enhancing the global
model’s generalization and robustness by capturing a more comprehen-
sive representation of the data.

2.2. Existing FL frameworks

There are several existing FL frameworks available that facilitate the
development and deployment of FL systems:

1. TensorFlow Federated (TFF): Google’s open-source research-
centric framework that is designed to extend TensorFlow’s ca-
pabilities into the field of FL. It excels in providing a flexible
programming model and a rich set of APIs, making it a strong
choice for researchers experimenting with FL algorithms [27].
However, TFF’s focus on research and simulation may limit
its practical deployment in industrial settings, particularly in
edge environments where scalability and ease of deployment are
crucial.
3
2. PySyft: PySyft focuses on privacy-preserving FL and secure
multi-party computation and is built on top of PyTorch. Its high-
level API is excellent for leveraging differential privacy and
secure aggregation, making it suitable for applications where
data privacy is important. PySyft facilitates collaborative learn-
ing with remote data and models while preserving privacy [28].
Nevertheless, PySyft’s complexity in setting up and its emphasis
on privacy might make it less straightforward for developers who
prioritize ease of use and broad scalability.

3. FATE: FATE is an industrial-grade FL framework developed by
Webank Research, that provides a secure and adaptable in-
frastructure for collaborative model training across distributed
entities. This framework places a strong emphasis on data pri-
vacy. It is particularly well-suited for industries like finance and
healthcare that require strict data privacy controls. However,
FATE’s comprehensive feature set and its focus on data privacy
can add to its complexity, potentially making it challenging to
integrate with simpler, lightweight FL applications, especially in
edge computing scenarios [29].

4. LEAF: LEAF, developed by NVIDIA, is an experimental FL frame-
work that provides tools for evaluating FL algorithms. While
LEAF is valuable for benchmarking and experimenting, it lacks
the production-ready features required for deploying FL in real-
world, large-scale environments. The absence of strong support
for edge deployments and limited flexibility in customization
can be considered as weaknesses in comparison to our proposed
EdgeFL framework [30].

5. PaddleFL: PaddleFL is a deep-learning framework that supports
large-scale FL models with a focus on distributed infrastructure.
It offers various optimization algorithms and communication
protocols, making it a strong candidate for large-scale deploy-
ments. However, PaddleFL may not be as straightforward to
implement in heterogeneous environments or where the need for
custom aggregation functions is critical [31].

Compared to the existing frameworks, EdgeFL is designed specifi-
cally to address practical challenges that are not fully resolved by the
above-mentioned frameworks:

• Scalability and Ease of Integration: Unlike TFF and FATE, which
may be complex to deploy in large-scale, real-world applica-
tions, EdgeFL is designed to be lightweight and easily integrable,
requiring only four lines of code to implement.

• Decentralization and Edge Suitability: While frameworks like
PySyft and FATE emphasize privacy, they often rely on central-
ized components for aggregation, which can be a bottleneck.
EdgeFL eliminates the need for a central server, enhancing scala-
bility and making it more suitable for edge environments where
decentralized operations are necessary.

H. Zhang et al.

f

A
d
t
f
t
t

c
(
t
c

u

e
d

b

o

s
p
c
t
s

Information and Software Technology 178 (2025) 107600
Table 1
Comparison between existing FL frameworks and our proposed EdgeFL.

TFF PySyft FATE LEAF PaddleFL EdgeFL1

(Proposed framework)

Line of Code (LOC) for FL Feature ∼50 ∼150 ∼100 ∼350 ∼100 4
Centralized server required Yes Yes Yes Yes Yes No
Asynchronous node join No No No No No Yes
Heterogeneous environment support No No No No Limited Yes
Customizable aggregation No No No No No Yes
Containerized edge deployability No No Limited No Limited Yes
q
f
p

p

d
s
a
a
a
t
i
f
c
c
p
o
m
p
c
e
f
s
a
i

h
u
w
e

d

• Customization and Flexibility: Unlike PaddleFL and LEAF, which
may have limited support for custom aggregation functions and
edge deployments, EdgeFL offers customizable aggregation mech-
anisms and supports asynchronous node joining, making it adapt-
able to a wide range of use cases.

While many decentralized FL models discussed in the literature
ocus primarily on aggregation algorithms and model training strate-

gies [25,32,33], EdgeFL distinguishes itself by offering a comprehen-
sive, implementation-ready framework. Unlike these models, which
often lack complete infrastructure support, EdgeFL provides a robust

PI and end-to-end infrastructure that facilitates node communication,
ecentralized learning, and real-world deployment. This focus on prac-
ical application and ease of integration makes EdgeFL a valuable tool
or software engineers, allowing them to implement FL systems tailored
o their specific requirements, while also addressing challenges related
o scalability, fault tolerance, and efficient model updates.

2.3. Problem description

Despite the various functionalities of these FL frameworks, the
current FL frameworks available in academia and industry are often
complex to use, demanding a thorough understanding of FL concepts.
The majority of these systems demand a deep understanding of FL
oncepts and require the implementation of over 100 lines of code
LOC) to deploy an FL application. This often limits flexibility in
erms of customizing aggregation functions and lacks support for asyn-
hronous communication schemes, as summarized in Table 1. These

constraints raise considerable challenges for software engineers aiming
to seamlessly integrate FL into production environments.

Moreover, the complexity of existing FL frameworks extends beyond
just the initial deployment phase. Maintenance and adaptation become
obstacles as well. With numerous dependencies and configurations,
pdating or modifying an existing FL system can be a daunting task [12,

15]. This complexity not only increases the risk of introducing errors
or vulnerabilities but also impedes the agility needed to respond to
volving requirements or emerging research advancements in the FL
omain.

Additionally, the steep learning curve associated with these frame-
works can deter potential adopters, particularly those without a strong
ackground in distributed systems or machine learning [34]. The intri-

cate interplay between various components such as distributed systems,
ptimization algorithms, and privacy techniques necessitates a deep

understanding of FL concepts, making it challenging for newcomers to
navigate and harness the full potential of FL technology.

Furthermore, the lack of standardization across existing FL frame-
works exacerbates the problem. Each framework may have its own
et of APIs, data formats, and communication protocols, further com-
licating interoperability and hindering the development of reusable
omponents or libraries [34]. This fragmentation not only fragments
he community but also impedes collaboration and knowledge sharing,
lowing down the overall progress in the field of FL.
4
3. Research method

In this research, we adopted the empirical methodology and learn-
ing procedure outlined by Zhang [35] to conduct a comprehensive
uantitative measurement and evaluation of our proposed EdgeFL
ramework in comparison to existing FL frameworks [36]. The em-
irical methodology is particularly well-suited for evaluating the per-

formance and practical utility of software frameworks. It allows for
systematic observation, measurement, and comparison in controlled en-
vironments, ensuring that the results are both robust and generalizable.
The methods we employed includes a combination of experiments and
a case study [37–39]. These methods were chosen as they offer a com-
rehensive way to evaluate the performance and practicality of EdgeFL

in both controlled and real-world settings. Firstly, we conducted a
series of controlled experiments to systematically evaluate EdgeFL’s
performance against existing FL frameworks. The experiments were
esigned to simulate real-world conditions, focusing on key metrics
uch as accuracy, communication overhead, computational efficiency,
nd latency. These experiments allowed us to quantitatively measure
nd compare the scalability, efficiency, and ease of use of EdgeFL
nd its competitors. The choice of these metrics is critical because
hey directly reflect the core challenges in FL deployment, particularly
n edge computing environments. To complement the experimental
indings, we implemented a case study involving a real-world ma-
hine learning task—sentiment analysis on the IMDB dataset. The
ase study was chosen to demonstrate how EdgeFL performs in a
ractical application, highlighting its integration process, usability, and
verall effectiveness in a real-world scenario. The combination of these
ethods provides a robust evaluation process. The experiments offer
recise, repeatable measurements in a controlled setting, while the
ase study provides practical insights into EdgeFL’s applicability and
ffectiveness in real-world situations. Together, they ensure that our
indings are both rigorous and practically relevant. In the subsequent
ections of this paper, we present the details of the selection process
nd criteria for the selected frameworks. We provide a detailed insight
nto our implementation approach. This includes our methodology for

dataset partitioning and distribution, which is crucial for conducting
eterogeneous simulations. We also present the metrics that were
tilized to evaluate the performance of our framework. Additionally,
e provide an in-depth exploration of the machine-learning techniques

mployed during our experimental analysis.

3.1. Search process

We employed a structured search strategy to identify all existing FL
frameworks. Initially, we conducted a literature review, searching aca-
emic papers, conference proceedings, technical documentation, and

industry reports related to FL technologies [40]. Key search terms in-
cluded ‘‘Federated Learning Frameworks’’, ‘‘FL Platforms’’, ‘‘Distributed
Machine Learning’’, and ‘‘Collaborative Learning Systems’’. This search
strategy aimed to capture a diverse range of frameworks used in both
research and industry settings.

Building upon insights gained from the literature review, we formu-
lated criteria and metrics to guide the evaluation process. These criteria
were designed to assess the functionality, privacy preservation capabil-
ities, scalability, ease of use, and adoption/community support of FL

H. Zhang et al.

i
t

E

F
w
l
t

o
c
t

i
c

a
0

t

d
p
a
m

m
h

Information and Software Technology 178 (2025) 107600
frameworks but also the comprehensiveness of their infrastructure and
mplementation readiness. Those frameworks demonstrating robust fea-
ures, privacy preservation mechanisms, scalability, user-friendliness,

substantial adoption in research or industry, and integration with other
application development and implementation environments were pri-
oritized for further evaluation [41]. Additionally, emphasis was placed
on evaluating frameworks that provided a complete infrastructure with
APIs that allow software engineers to implement FL solutions tailored
to specific requirements, including node communication, decentralized
learning, and deployment. By considering these key aspects, we aimed
to ensure that the selected frameworks would be suitable for address-
ing the research objectives effectively and the comparison with our
proposed EdgeFL framework.

3.2. Implementation

To comprehensively assess the performance and capabilities of the
dgeFL framework, we conducted a series of experiments using two

machine learning applications: digit recognition and object recognition.
or these experiments, we leveraged the MNIST and CIFAR-10 datasets,
hich are extensively applied in the research field. To enable deep

earning training and testing, the PyTorch backend is utilized. One of
he features of the EdgeFL framework is its simplicity in integration.

With the integration of EdgeFL, the FL functionality is seamlessly
integrated into these machine-learning applications with the addition of
nly four lines of code (LOC). Furthermore, we containerized the appli-
ations, enabling easy deployment on edge devices while maintaining
heir functionality and performance.

The flexibility of the EdgeFL framework allows it to be constructed
on various container orchestration clusters, such as Kubernetes, Docker
Swarm, etc. For the purposes of this study, we adopted Docker Swarm
as our preferred cluster management solution [42]. Docker Swarm
provides an efficient and scalable environment for handling container-
zed applications. The services within Docker Swarm facilitate smooth
ommunication among containers, and an internal DNS resolver en-

sures seamless peer node service communication. By leveraging Docker
Swarm’s capabilities, we were able to establish a robust and scal-
able deployment environment for the EdgeFL framework, ensuring its
suitability for edge devices and distributed computing scenarios.

3.3. Dataset distribution

For the purpose of this study, we used two kinds of edge data dis-
tribution to analyze system performance for heterogeneous simulation.

3.3.1. Uniform distribution
Within this experimental setup, the training data samples were

distributed among the edge nodes following a uniform distribution.
This distribution ensured an equal likelihood of data samples from each
target class.

3.3.2. Normal distribution
Within this configuration, the number of samples in each class

within each edge node follows a normal density function. Mathemati-
cally, this can be expressed as: 𝑋 ∼ (𝜇 , 𝜎2) where 𝜇 and 𝜎 are defined
as: 𝜇 = 𝑘×𝑁

𝐾 , 𝜎 = 0.2 ×𝑁
In the above equations, 𝑘 represents the ID of each edge node, 𝐾

denotes the total number of edge nodes, and 𝑁 corresponds to the total
number of target classes in the training data. This configuration aims to
provide varied distributions and different numbers of samples among
different edge nodes, allowing each class to have a probability of having
the majority of samples in a specific node.
5
3.4. Machine learning method

The implementation of the models in this study utilized Python
nd relied on the following libraries: torch 1.6.0 [43], torchvision
.7.0 [44], and scikit-learn [45], which were applied in model con-

struction and evaluation.
To achieve satisfactory classification results, two distinct convolu-

ional neural networks (CNN) [46] were trained for the MNIST and
CIFAR-10 datasets. For the MNIST application, the CNN architecture
comprised two 5 × 5 convolutional layers (with 10 output channels
in the first layer and 20 in the second), each followed by 2 × 2 max
pooling. Additionally, a fully connected layer with 50 units employing
the ReLU activation function and a linear output layer were included.

For the CIFAR-10 application, the CNN architecture featured four
5 × 5 convolutional layers (with 66 output channels in the first layer,
128 in the second with a stride of 2, 192 in the third, and 256
in the fourth with a stride of 2). Furthermore, two fully connected
layers utilizing the ReLU activation function, with 3000 and 1500 units
respectively, were incorporated along with a linear output layer.

3.5. Evaluation metrics

To assess the effectiveness of EdgeFL, three key metrics were se-
lected: weights update latency, model evolution time, and model clas-
sification performance [41,47]. The choice of these metrics is grounded
in their ability to provide comprehensive insights into the performance
and efficiency of the system while addressing the characteristics of
EdgeFL’s decentralized architecture.

3.5.1. Weights update latency
Weights update latency was chosen as a primary metric due to its

irect relevance to the network and communication aspects of the FL
rocess. In traditional FL systems using centralized architectures, where
 central aggregation server collects and processes model updates, the
easure of latency is relatively straightforward. However, in the case

of EdgeFL, which adopts a decentralized architecture, the aggregation
function is moved to the edge, and a peer-to-peer model update ex-
change is facilitated. Measuring the time it takes for these updates to
be transmitted across edge nodes is a key indicator of the system’s
efficiency and responsiveness.

This metric offers insights into the network conditions, commu-
nication overhead, and overall efficiency of different FL architecture
options. It helps determine how quickly the system can adapt to new
data and how effectively it can disseminate model updates. By calculat-
ing the average weights update latency across all edge nodes during a
training round, EdgeFL’s performance in a dynamic, decentralized envi-
ronment is effectively evaluated. This metric is measured by comparing
the sending and receiving timestamps in all model receivers, shedding
light on the speed at which EdgeFL can accommodate changing data
patterns.

3.5.2. Model evolution time
Model evolution time was included as a critical metric to gauge

the speed at which local edge devices can adapt and update their
knowledge. In the context of FL, it is essential for systems to quickly
evolve their models to adapt to rapidly changing environments or data
distributions. This is especially crucial for real-time applications and
industries where up-to-date information is important.

Similar to weights update latency, the average model evolution time
across all edge nodes during one training round is measured. This

etric provides insights into the responsiveness of EdgeFL, indicating
ow swiftly the deployed models at the edge nodes are updated. By

examining the timestamps of model deployment, the system’s ability
to keep pace with evolving data patterns is effectively quantified.

H. Zhang et al.

a
l

a

c
c
a

E
t

t
n
p
N
a
c
N
T
t
e

m

t
F

s

w

Information and Software Technology 178 (2025) 107600
3.5.3. Model classification performance
Model classification performance serves as a fundamental metric to

ssess the quality of the trained model, a vital consideration in machine
earning applications of our testbed.

This metric evaluates the percentage of correctly recognized images
mong the total number of testing images. The evaluation is performed

on each edge device using their updated models, ensuring that the
test sample distribution aligns with the training samples. The average
lassification performance across all edge nodes is reported, offering a
omprehensive measure of how well EdgeFL’s decentralized learning
pproach fares in terms of model quality and accuracy.

4. System design of EdgeFL

In this section, we offer a complete and in-depth explanation of the
system design of EdgeFL, providing a full insight into its architectural
design and operational structure. This part also includes a thorough
presentation of the extensive set of APIs and functions available to
dgeFL users. It goes into the EdgeFL learning life-cycle, explaining
he steps and processes that define its functioning, and providing

a comprehensive understanding of the framework’s usefulness and
adaptability.

4.1. System design

Within the FL process, EdgeFL provides a seamless path to achieving
scalability, fault tolerance, and customized flexibility. This framework
is made up of two main components: FL Edge Nodes and Registration
Nodes, inspired by the architectural principles that underpin successful
systems like Skype [48]. The FL Edge Nodes allow users to connect
directly, thus minimizing the reliance on a central server for data
ransmission. In EdgeFL, the FL Edge Nodes collaborate seamlessly, har-
essing their collective computing power and data while preserving the
rivacy of each individual contributor. Parallel to this, the Registration
odes act as critical coordination centers, facilitating the connection
nd interaction of FL Edge Nodes. They enable the decentralized ar-
hitecture of EdgeFL by providing the necessary mechanisms for Edge
odes to identify and communicate with each other independently.
his decentralized architecture enables Edge Nodes to identify and in-
eract with one another independently, enabling a durable and flexible
cosystem for FL processes.

• FL Edge Nodes: The FL Edge Nodes, which are strategically de-
ployed on edge devices, play an important function within the
FL framework, with each Edge Node serving as an active par-
ticipant contributing to the efficacy of the FL process. These
nodes play an important role in executing the FL training process,
permitting model exchanges with other nodes, and performing
critical local model updates. In practice, the FL Edge Node code
is developed using the Flask framework, which is well-known for
its efficiency and dependability. This code architecture provides
machine-learning model files on demand, enabling smooth and
efficient interactions across all peer nodes.

• Registration Nodes: Registration Nodes serve as essential coordi-
nators for participated FL edge nodes. Their primary responsibil-
ity is to manage a catalogue of active peers, as well as to provide
important services for the registration, unregistration, and re-
trieval of relevant peer information. With their functionalities,
these Registration Nodes act as catalysts, allowing FL edge nodes
to discover and engage with one another in a fully decentralized
manner. The registration nodes are built on a solid architecture
with the Flask framework, which is well-known for its dependabil-
ity and efficiency. This infrastructure exposes a variety of APIs,
each precisely designed to streamline and improve the FL process,
hence strengthening the framework’s operational efficiency and
effectiveness.
6
Table 2
APIs and services of EdgeFL.

Name Endpoint Method

Registration API /register POST
Unregistration API /unregister POST
Peer Information Retrieval API: /peers GET
Model File Serving API /latest_model GET

4.2. APIs and services

Table 2 summarizes the most important APIs and services for
EdgeFL, including edge node registration and registration, peer infor-

ation retrieval and model file serving.

• Registration API: FL Edge Nodes initiate the registration process
by sending a registration request via this API to the Registration
Nodes. The hostname of the FL Edge Node is included in the
request. After successful registration, the Registration Nodes add
the newly added peer information to their lists of active peers.

• Unregistration API: When FL Edge Nodes stop participating in the
FL process, they use this API to send unregistration requests to
the Registration Nodes. The hostname of the outgoing FL Edge
Node is specified in these requests. In reaction, the Registration
Nodes remove the related peer information from their lists of
active participants immediately.

• Peer Information Retrieval API: FL Edge Nodes can employ this
API to query the Registration Nodes for the list of active peers.
The Registration Nodes promptly respond with the desired active
peer information. This functionality empowers FL Edge Nodes to
seamlessly discover and establish communication channels with
their peers.

• Model File Serving API: FL Edge Nodes expose this API to handle
requests for machine-learning model files. When a peer requests
the latest model, the responding FL Edge Node delivers the requi-
site machine-learning model file via an HTTP response, ensuring
the efficient sharing of critical model data.

The example function usage has been listed in Appendix. The
EdgeFL framework simplifies the integration of FL capabilities into AI
applications, requiring only four lines of code (LOC) for implemen-
ation. This ease of use allows software engineers to quickly deploy
L functionality without substantial code modifications or complex re-

engineering. The framework provides a streamlined process, beginning
with the creation of a Peer instance, which manages configuration,
registration, and communication with other FL nodes. The peer in-
tance facilitates key functions such as model aggregation through
𝑝𝑒𝑒𝑟.𝑎𝑔 𝑔 𝑟𝑒𝑔 𝑎𝑡𝑖𝑜𝑛_𝑓 𝑢𝑛𝑐() and ensures orderly participation and with-
drawal from the FL system via 𝑝𝑒𝑒𝑟.𝑠𝑡𝑎𝑟𝑡() and 𝑝𝑒𝑒𝑟.𝑢𝑛𝑟𝑒𝑔 𝑖𝑠𝑡𝑒𝑟_𝑝𝑒𝑒𝑟(),

hich allows seamless participation in the EdgeFL ecosystem.

4.3. EdgeFL learning life-cycle

The life cycle of the EdgeFL framework contains several essential
steps for an individual edge node to seamlessly become part of the
collaborative process, including joining, model training, knowledge
sharing, model aggregation, and optionally departing from the FL
process. Algorithm 1 outlines the detailed FL learning process of an
individual edge node. Here’s a detailed description of each step:

1. Edge Node Joining: The process begins with the edge node
initializing itself by creating an instance of the Peer class and
a background instance for handling model requests. The node
then connects to the registration nodes, essentially announcing
its presence and status as an active participant. In return, it
receives information about other peers and their participation

in the FL process.

H. Zhang et al. Information and Software Technology 178 (2025) 107600
Fig. 2. The learning life-cycle of EdgeFL, including joining the FL process, model training, sharing, aggregation, and eventual node leaving. These stages collectively define the
operational flow of EdgeFL within an edge node.
2. Model Training: With its registration complete, the edge node
dives into the FL training process. It begins model training using
its locally stored dataset. Through iterative updates, the node
refines its local model to enhance its performance.

3. Sharing Models: The FL client node takes an active role in
knowledge sharing, retrieving models from fellow peers within
the FL framework. It identifies these peers through the registra-
tion nodes, fetching the most recent models. These models are
then seamlessly integrated into their own local model updates.
Notably, this model retrieval process operates asynchronously,
ensuring that ongoing local model training remains uninter-
rupted. This asynchronous model aggregation mechanism allows
the FL client node to simultaneously contribute to and benefit
from the collaborative learning process.

4. Model Aggregation: The FL client node performs an aggregation
function, which combines locally updated models with models
provided by other peers. The aggregation function combines sev-
eral models to create a new aggregated model that incorporates
the collective knowledge of all participating nodes. It is crucial
to note that the EdgeFL framework’s aggregation function can
be tailored to individual analysis and case requirements, giving
software engineers the freedom to define and implement various
aggregation algorithms that meet their specific requirements.
For general performance analysis, this study employs a default
averaging function.

5. Edge Node Leaving: In the event that an edge node decides to
exit the EdgeFL system, the FL client node notifies the regis-
tration node of its intent to leave, providing its hostname for
identification. The registration node promptly updates the active
participant list, removing the departing edge node. It is worth
noting that some edge nodes may choose to stay in the system
even after completing their learning process. By choosing to stay,
they contribute by providing their completed learning models,
which proves beneficial for newcomers entering the EdgeFL
framework. This approach ensures that the system retains the
availability of fully learned models, simplifying the onboarding
process for new participants.

This life cycle is repeated as additional edge nodes join the FL
framework, contribute to the training and aggregation processes, ex-
change their models, and eventually leave when they decide to dis-
continue their involvement (see Fig. 2). While protecting the privacy
and autonomy of individual edge nodes, the EdgeFL enables continual
collaborative learning and model development.

4.4. Containerization and scalable deployment

To facilitate effortless deployment on a wide range of edge de-
vices, the EdgeFL framework underwent containerization, employing
the robust containerization technology known as Docker. This process
involved the encapsulation of all essential components, dependencies,
and configurations of EdgeFL into a lightweight and portable con-
tainer image. This containerization approach delivers the flexibility
for EdgeFL to be deployed seamlessly across diverse edge devices,
regardless of the specific underlying operating system or hardware
architecture.
7
Algorithm 1: EdgeFL - In the system, 𝛼 represents the ratio of
aggregated peers; 𝐶 is the active peer list; B is the local mini-batch
size; E represents the number of local epochs, and 𝛾 is the learning
rate.

Initialize 𝑤0
Initialize 𝛼 as the ratio of aggregated peers
Initialize 𝐶 as the active peer list
Function Server_Function():
for each round t = 1, 2, ... do

Node_Training(w_t)
Retrieval active peer list 𝐶
𝑚 ⟵ 𝑚𝑎𝑥(𝑙 𝑒𝑛(𝐶) × 𝛼 , 1);
𝑁𝑡 ⟵(random set of 𝑚 peers from 𝐶);
for each node 𝑘 ∈ 𝑁𝑡 do

Threads.start()
Fetch 𝑤𝑘

𝑡+1
Threads.end()

end for
𝑤𝑡+1 ⟵

∑𝐾
𝑘=1

1
𝐾𝑤𝑘

𝑡+1;
end for

Function Node_Training(w):
𝛽 ⟵(split 𝑃𝑘 into batches of size 𝐵);
for each local epoch 𝑖 from 1 to E do

for batch 𝑏 ∈ 𝛽 do
𝑤 ⟵ 𝑤 − 𝛾∇𝑙(𝑤; 𝑏);

end for
end for
return 𝑤 for model sharing

The architectural diagram showcased in Fig. 3 provides a repre-
sentation of the streamlined and scalable deployment architecture of
the EdgeFL framework. Within this architectural framework, each edge
node container includes a range of services, such as model training,
model aggregation, and model serving. Concurrently, the registration
node container is equipped with services for handling registration
and peer discovery tasks. This interconnected setup ensures smooth
communication among all nodes within the EdgeFL framework. An
important feature to highlight is the ability to expand the number of
registration nodes in alignment with the growth of participating edge
nodes. This scalability enables efficient coordination and management
within the EdgeFL framework, ensuring smooth coordination.

By containerizing EdgeFL, software engineers benefit from the ease
of distributing and deploying the framework on edge devices, allevi-
ating concerns about intricate installation procedures or compatibility
issues. The containerized EdgeFL image includes all the necessary
software libraries, frameworks, and configurations, creating a self-
contained environment for running the FL client nodes. Furthermore,
containerization ensures that the EdgeFL framework remains isolated
and independent, effectively preventing conflicts with other software
components residing on the edge device. This approach not only sim-
plifies deployment but also improves the stability and reliability of the
EdgeFL framework in diverse edge computing environments.

H. Zhang et al. Information and Software Technology 178 (2025) 107600
Fig. 3. Containerized architecture for seamless and scalable deployment of the EdgeFL
framework.

4.5. Comparison to existing FL framework

EdgeFL employs a decentralized architecture where FL Edge Nodes
collaborate directly, eliminating reliance on a central server and signif-
icantly enhancing fault tolerance. This decentralized approach reduces
the risk of single points of failure and provides a robust, flexible
framework suited to dynamic edge environments. In contrast, frame-
works like TensorFlow Federated and FATE rely on a central server for
managing model aggregation and coordination, which can become a
bottleneck and a potential single point of failure [29,49]. PySyft sup-
ports decentralized learning but often still involves some central coor-
dination, while LEAF’s reference implementations may also be central-
server dependent [28,30,50]. PaddleFL, while supporting decentralized
setups, typically defaults to a central coordination model, which can
limit fault tolerance compared to EdgeFL’s fully decentralized approach
[31].

In addition, EdgeFL is designed with scalability in mind, allowing
edge nodes to operate independently and interact directly with one
another. This architecture supports a scalable ecosystem that can grow
dynamically with minimal overhead. Registration Nodes facilitate peer
discovery and management in a decentralized manner, adapting well to
varying network conditions and device capabilities. On the other hand,
frameworks like TFF and FATE face scalability challenges due to their
central server-based models, which can become bottlenecks and affect
performance in large-scale, heterogeneous networks [51,52]. PySyft’s
scalability may be constrained by its reliance on central coordination,
and LEAF’s benchmark-oriented design does not inherently address
scalability in real-world deployments. PaddleFL’s central coordination
model can similarly limit its scalability and flexibility compared to the
decentralized design of EdgeFL [53–55].

EdgeFL is tailored to operate effectively in heterogeneous edge envi-
ronments, accommodating devices with varying computational power,
storage, and connectivity. Its support for asynchronous communication
and model aggregation ensures efficient performance across diverse
conditions [56,57]. The containerization of EdgeFL further enhances its
adaptability, enabling seamless deployment across different hardware
8
and software platforms. Conversely, traditional frameworks like TFF
and FedProx may struggle in heterogeneous settings due to their re-
liance on synchronous updates and assumptions of homogeneous device
capabilities. PySyft’s adaptability is enhanced by privacy-preserving
techniques but may still face challenges in highly diverse environments
[15,58]. FATE’s robustness in privacy comes with the cost of less
flexibility in heterogeneous settings, while LEAF’s benchmark focus
might not address the nuances of real-world adaptability. PaddleFL’s
adaptability is also affected by its default central coordination model
[59].

Last but not least, EdgeFL emphasizes ease of use with its stream-
lined implementation and user-friendly APIs, allowing for rapid inte-
gration into existing AI solutions with minimal re-engineering. This
simplicity is particularly advantageous in fast-paced development en-
vironments [53,60]. In contrast, other FL frameworks often require
more extensive setup and configuration. For instance, TensorFlow Fed-
erated and FATE can involve complex configurations and integration
efforts. PySyft, while offering privacy features, may necessitate addi-
tional setup for privacy and security configurations. LEAF, being a
benchmarking tool, does not prioritize ease of integration, and Pad-
dleFL, despite its robust features, can involve a more involved setup
process compared to the straightforward integration offered by EdgeFL.

5. Evaluation results

This section presents the experimental results obtained from the
EdgeFL framework, with a specific focus on three aspects outlined in
Section 3.5. (1) Weights Update Latency: This metric quantifies the
time required to transmit model weights from one node to another. (2)
Model Evolution Time: This aspect measures the duration it takes to
acquire a new version of the model. (3) Classification Accuracy: The
evaluation of model performance on the edge dataset is a key element
of this analysis. To ensure that our experiments provide robust and
meaningful results, we conducted simulations with a total of 10 nodes.
In these simulations, all nodes actively participated in the training
procedure for both MNIST and CIFAR10 applications. This setup was
designed to ensure an adequate number of samples on each edge node,
facilitating a comprehensive analysis and evaluation of the EdgeFL
framework and offering insights into the real-world performance and
effectiveness of EdgeFL in practical scenarios.

Firstly, we examine two performance metrics: weights update la-
tency and model evolution time. Our experimental findings, as pre-
sented in Table 3, showcase the comparisons among the EdgeFL frame-
work and existing FL frameworks across both MNIST and CIFAR10
applications.

In the domain of weights update latency, EdgeFL consistently
demonstrates its efficiency. It exhibits reduced delays in transmitting
model weights between edge nodes, underscoring the efficacy of its
decentralized architecture. These improvements in weights update
latency can be attributed to the streamlined communication processes
inherent to EdgeFL. The decentralized nature of the framework allows
for rapid sharing of updated models among nodes.

EdgeFL also excels at achieving rapid model evolution in scenarios
with unequally distributed datasets. EdgeFL leverages its decentral-
ized architecture and a pull-based model-sharing mechanism to facil-
itate quick model evolution. This mechanism empowers edge nodes
to promptly enhance their local models, effectively adapting to the
available data. Consequently, EdgeFL reduces the time required for
model evolution, especially when dealing with imbalanced dataset
distributions.

These findings demonstrate the advantages of EdgeFL over tradi-
tional FL methods. Its better performance in terms of model delay and
evolution time can be attributed to its efficient communication and
aggregation processes. By utilizing the potential of edge computing,
EdgeFL minimizes network overhead and streamlines the model update
process, leading to quicker and more responsive knowledge sharing

H. Zhang et al. Information and Software Technology 178 (2025) 107600
Table 3
Comparison of weight update latency and model evolution time by leveraging existing FL frameworks and our proposed EdgeFL framework.

FL Frameworks MNIST CIFAR10

Weights update latency
(s)

Model evolution time
(s)

Weights update latency
(s)

Model evolution time
(s)

TFFa – 7.76 – 16.372
PySyft 0.0247 9.05 0.0311 18.292
FATE 0.0326 13.868 0.0473 31.689
LEAFa – 10.239 – 27.362
PaddelFL 0.0258 11.667 0.0412 25.581
EdgeFL 0.0092 5.093 0.0148 10.753

a TFF and LEAF frameworks do not include actual server and client implementations but rather provide simulations of the FL process.
Therefore, measuring weight latency is not feasible within these frameworks.
Fig. 4. The comparison of classification accuracy by utilizing FedAvg (commonly used by existing FL frameworks) and EdgeFL framework.
across the edge network. The observed enhancements in model de-
lay and evolution time carry substantial implications for real-world
applications. Reduced delays enable the quick exchange of updated
models, ensuring timely access to the latest knowledge throughout
the edge network. Furthermore, the reduced evolution time enables
edge devices to promptly adapt to evolving data characteristics. These
characteristics make EdgeFL well-suited for use cases that demand
rapid model evolution and responsiveness to dynamic environmental
changes.

In addition to evaluating weights update delay and model evolution
time, we conducted extensive accuracy comparisons between EdgeFL’s
decentralized averaging and the widely used FedAvg algorithm [22]
found in existing FL frameworks. Fig. 4 illustrates the accuracy compar-
isons. The results demonstrate that EdgeFL’s decentralized averaging
approach outperforms the centralized FedAvg method when it comes
to evaluating models on edge devices. The average accuracy achieved
through EdgeFL’s decentralized averaging is approximately 2% higher
for MNIST and 5% higher for CIFAR-10 datasets. These findings un-
derscore the accuracy improvements made by EdgeFL’s decentralized
averaging approach. The observed increase in accuracy demonstrates
the effectiveness of EdgeFL’s decentralized averaging mechanism in
enhancing model performance. By utilizing the collective knowledge
and insights gained from distributed edge devices, EdgeFL facilitates
improved model convergence.

Fig. 5 illustrates the model distribution latency of the decentralized
EdgeFL algorithm in comparison to other algorithms as the number
of edge nodes increases from 10 to 100. From the figure, PySyft and
PaddleFL exhibit slightly higher latency, particularly with more nodes.
FATE records the highest latency, especially in larger networks, which
results in greater communication overhead. EdgeFL’s latency shows a
gradual rise with node expansion, indicating manageable overhead for
larger networks due to decentralized characteristics. This scalability is
achieved because each node can establish equal connections, distribut-
ing server workload more evenly to the edge, and effectively balancing
updating traffic. Consequently, EdgeFL demonstrates the most modest
growth rate among the compared algorithms, showcasing its scalable
9
Fig. 5. Model distribution latency with the increasing number of edge nodes.

performance, particularly in large-scale machine learning applications
and edge computing scenarios.

Moreover, our study demonstrates the effectiveness of EdgeFL’s
asynchronous join feature, which enables new nodes to seamlessly inte-
grate into the existing system and swiftly acquire the latest knowledge
without necessitating a full retraining process from scratch. As depicted
in Fig. 6, our observations reveal that when new nodes (node id: 11,
12) join the system midway through the training process, they rapidly
achieve the same level of accuracy as the overall system. This outcome
illustrates EdgeFL’s capability to facilitate efficient knowledge transfer
and rapid model convergence for newly joined nodes.

The asynchronous join functionality within EdgeFL offers advan-
tages in terms of scalability and time-to-adaptability. By allowing new
nodes to immediately benefit from the collective intelligence of the
system without the need for extensive training, EdgeFL reduces the

H. Zhang et al. Information and Software Technology 178 (2025) 107600
Fig. 6. Midway joined node classification performance in both MNIST and CIFAR-10
application.

Fig. 7. Training Loss with training time consumed by EdgeFL and Centralized ML.

computational burden and time required for onboarding new partici-
pants. This attribute proves its value in dynamic environments where
nodes frequently join and depart from the system.

This demonstration of the asynchronous join capability within
EdgeFL underlines its potential for real-world deployments, especially
in scenarios where rapid knowledge transfer and swift integration of
new nodes are crucial. By leveraging the existing knowledge base and
facilitating the seamless assimilation of new nodes, EdgeFL empowers
FL systems to adapt and evolve efficiently over time. These findings
underscore the advantages of EdgeFL’s asynchronous join mechanism,
highlighting its potential to enhance the scalability and flexibility of FL
within dynamic edge computing environments.

6. Case study

In addition to the comparisons, we conduct a case study to apply
the EdgeFL framework to a practical machine learning application. In
this case study, we leverage the EdgeFL framework to tackle the task of
sentiment analysis on the IMDB Dataset of 50K Movie Reviews, a well-
known benchmark for binary sentiment classification [61]. This dataset
comprises 50,000 movie reviews for training and testing, providing a
substantial amount of data for our analysis. Our objective is to perform
sentiment classification, distinguishing between positive and negative
sentiments within the movie reviews. To address this task, a Long
Short-Term Memory (LSTM) network is utilized, which is known for its
ability to capture sequential dependencies and nuances within textual
data [62,63]. LSTM networks are particularly well-suited for natural
language processing tasks like sentiment analysis.

We simulate ten distinct movie review sites, each represented by an
individual user end node. This decentralized setting not only allows
10
Fig. 8. Test accuracy change with training time consumed by EdgeFL and centralized
ML.

for parallel processing and training on diverse data sources locally.
The decentralized architecture of EdgeFL ensures that each server
node trains an LSTM model locally, making updates based on the
reviews available at its respective sites. These local models are then
collaboratively aggregated with the function ‘‘𝑝𝑒𝑒𝑟.𝑎𝑔 𝑔 𝑟𝑒𝑔 𝑎𝑡𝑖𝑜𝑛_𝑓 𝑢𝑛𝑐()’’
to create a global model that encapsulates insights from all nodes. This
FL process enables the collective model to benefit from the diversity
of reviews across different movie sites, resulting in a more robust
sentiment analysis model.

Figs. 7 and 8 illustrated the result of the sentiment analysis appli-
cation with the EdgeFL framework compared to traditional centralized
machine learning. For the result of training loss, the figure illustrates a
notable efficiency gain achieved by the EdgeFL framework in compar-
ison to traditional centralized machine learning. Specifically, EdgeFL
demonstrates approximately five times greater efficiency in terms of
training time. This efficiency is evident in the faster convergence of the
training loss curve, indicating that the model improves significantly in
less time.

Fig. 8 depicts the comparative performance of sentiment analysis
training using two approaches: EdgeFL and traditional centralized ma-
chine learning. The test accuracy of EdgeFL is the average value among
all participated end nodes. The results illustrate that EdgeFL achieves
faster training times, approximately five times more efficient when per-
forming rapid model training and inference, indicating its superiority in
scenarios involving decentralized data sources or resource-constrained
environments.

Through decentralized training across ten server nodes, we achieve
robust sentiment classification while respecting data privacy and secu-
rity, making this approach highly suitable for large-scale, distributed
natural language processing tasks, especially in scenarios involving
user-generated content and edge computing environments. In this case,
we build a practical prototype of a decentralized FL system with
the EdgeFL framework that can be seamlessly deployed to container
orchestration platforms such as Docker Swarm, Kubernetes, etc.

7. Discussion

This paper focuses on analyzing and interpreting the results ob-
tained from the experiments conducted with the EdgeFL framework.
We evaluated EdgeFL using a range of metrics. Firstly, the EdgeFL
outperformed existing FL frameworks in terms of weights update delay
[64]. EdgeFL managed to reduce weights update delay by roughly
50%, surpassing centralized alternatives. When dealing with unevenly
distributed datasets, EdgeFL demonstrated its benefit as well. EdgeFL’s
decentralized architecture addresses key limitations of traditional FL
frameworks, such as centralized aggregation and scalability challenges
[23,65]. Unlike FedAvg and similar approaches that rely on a cen-
tral server [66], EdgeFL employs decentralized model training and

H. Zhang et al.

p

i
a
s
d
f

v
e

n
i
m
d
t
i

c
w

o
d
g
w
i
l

i
c
v
i
s
s
l
a
p
c
c
E
o
a

w
t
c
t
e
f
f
f
g
s
O
t
f
e
t
f
a
f
t
E
s

d
y
p
l

w
C
t
(
g

c
E
o
i

Information and Software Technology 178 (2025) 107600
aggregation, enhancing fault tolerance and reducing latency. This ap-
roach aligns with the broader shift towards decentralized systems

in distributed computing, offering a new perspective on how FL can
be implemented in edge environments. The implications of this work
nclude a rethinking of model aggregation strategies in FL, moving
way from server-dependent methods to a more resilient, peer-to-peer
ystem. EdgeFL’s pull-based model-sharing mechanism introduces a
ynamic way for nodes to access the latest updates, contributing to
aster convergence and adaptation in non-IID environments [54,67],

which could inspire further research into adaptive and asynchronous
FL methods that better accommodate the heterogeneity of real-world
data and network conditions.

Compared to previous FL frameworks, EdgeFL’s contributions lie
in its ability to achieve faster weight updates and model convergence
without sacrificing accuracy. The framework’s decentralized averaging
technique consistently outperforms FedAvg, particularly in scenarios
with unevenly distributed datasets [54,66], demonstrating that EdgeFL
can achieve more efficient and accurate learning in diverse edge en-
ironments. Furthermore, EdgeFL enables faster model training and
volution, making it a solution for applications where data is gen-

erated and processed locally, such as IoT devices, smart cities, and
autonomous systems [68]. The ability of EdgeFL to seamlessly integrate
ew nodes without requiring complete retraining further underscores
ts scalability and adaptability, which are crucial for real-world deploy-
ent. Additionally, the case study on sentiment analysis with the IMDB
ataset demonstrates how EdgeFL can be practically applied to enhance
he performance and efficiency of machine learning tasks, particularly
n scenarios with decentralized data sources.

However, throughout our studies, it is important to note that,
despite the multiple benefits provided by EdgeFL, we observed two
major limits that deserve consideration.

Firstly, we observed a notable increase in bandwidth cost as the
number of nodes in our decentralized network grew. This escalation in
onnectivity demands is a natural consequence of decentralization, and
hile it can be partially managed through parameters such as the con-

nection parameter 𝛼 (which determines the number of models shared
in each round), it is important to note that adjusting this parameter
may have an effect on the final quality of the model. Addressing this
trade-off is crucial because excessive bandwidth consumption can limit
the scalability of EdgeFL and increase operational costs, particularly
in environments with constrained network resources. Research focused
n optimizing communication protocols, such as developing efficient
ata compression techniques, adaptive bandwidth management strate-
ies, and novel aggregation methods, is essential. These advancements
ould enable EdgeFL to maintain high model accuracy while minimiz-

ng bandwidth demands, making it more practical and cost-effective for
arge-scale, real-world deployments.

Second, we encountered computational constraints while train-
ng large neural networks, particularly when dealing with resource-
onstrained edge devices. The inherent limitations of these edge de-
ices, such as low processing power and memory, caused difficulties
n carrying out complicated training operations. These constraints can
everely impact the performance and feasibility of FL processes on
uch devices. The need to perform intensive computations and manage
arge models can lead to inefficiencies and slowdowns, which in turn
ffect the overall effectiveness of the FL system. These highlight the im-
ortance of ongoing research efforts focused on reducing computation
omplexity and developing novel ways for accommodating resource-
onstrained contexts. By addressing these computational constraints,
dgeFL can become more versatile and capable of operating effectively
n a wider range of edge devices, thus enhancing its practical value
nd usability in diverse edge scenarios.
11
8. Conclusion

This paper introduces EdgeFL, a novel decentralized FL frame-
ork designed exclusively for efficiency and low-effort implementa-

ion. EdgeFL effectively addresses scalability, integration, and effi-
iency challenges by utilizing an edge-only model training and aggrega-
ion approach, eliminating the need for a central server. The framework
nsures seamless scalability across a diverse range of use cases. The
ramework offers a straightforward integration process, requiring only
our lines of code (LOC) for software engineers to incorporate FL
unctionalities into their AI products. Furthermore, EdgeFL offers en-
ineers the flexibility to customize aggregation functions to meet their
pecific needs, enhancing the framework’s adaptability and versatility.
ur experiments and evaluations demonstrate the strengths and advan-

ages of EdgeFL. In numerous aspects, EdgeFL outperforms existing FL
rameworks. It excels in reducing weight update latency and model
volution time by 50%, enhancing classification accuracy by 2% for
he MNIST dataset and 5% for the CIFAR dataset compared to other FL
rameworks. In a real-world case study, EdgeFL demonstrated remark-
ble efficiency gains, achieving training times approximately five times
aster than traditional centralized machine learning, all while main-
aining a comparable level of model quality. These findings highlight
dgeFL’s potential in practical applications, particularly in industrial
ettings where timely and accurate model updates are crucial.

Our future work aims to validate and extend the capabilities of
EdgeFL with a broader range of use cases. We also plan to explore re-
source optimization techniques, such as model compression and quan-
tization, to enhance communication efficiency for edge devices in
EdgeFL. Additionally, we will investigate adaptive aggregation strate-
gies that dynamically adjust the aggregation process based on network
conditions, device capabilities, and data heterogeneity.

CRediT authorship contribution statement

Hongyi Zhang: Writing – review & editing, Writing – original
raft, Validation, Software, Methodology, Investigation, Formal anal-
sis, Conceptualization. Jan Bosch: Writing – review & editing, Su-
ervision, Investigation, Funding acquisition, Conceptualization. He-
ena Holmström Olsson: Writing – review & editing, Supervision,

Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was funded by the Chalmers AI Research Center and Soft-
are Center. The simulations were performed on resources at Chalmers
entre for Computational Science and Engineering (C3SE) provided by
he National Academic Infrastructure for Supercomputing in Sweden
NAISS), partially funded by the Swedish Research Council through
rant agreement no. 2022-06725.

Appendix. EdgeFL function details and example usage

The proposed EdgeFL framework provides software engineers with
an easy way to integrate FL capabilities into their AI solutions. In
ontrast to the complexity commonly associated with FL frameworks,
dgeFL offers a concise implementation that requires only four lines
f code (LOC). This ease of use enables software engineers to quickly
nclude FL functionality into their existing AI applications, with no

need for substantial code changes or complex re-engineering efforts.
The following Listing 1 demonstrates an example with which EdgeFL
can be deployed.

H. Zhang et al.

i
r
a
r
f
f
c
t

p
a
r

n

b
p
i
p
e
r

t
W
a
f

s
t

t
o
e
f
a
o

Information and Software Technology 178 (2025) 107600
--- Continue from node training part ---
--- Initialize peer instance ---
peer = Peer(config)# --- Start peer instance ---
peer.start()for epoch in range(number_of_epochs):

--- Pull model from active peers and start
aggregation

w_latest = peer.aggregation_func()
model.load_state_dict(w_latest)

train(model, torch.device(" cpu "),
train_loader , optimizer , epoch)
test(model, torch.device(" cpu "), test_loader
)
scheduler.step()

torch.save(model.state_dict(), " model-latest
.pth ")

--- unregister from the registration node if
leave

peer.unregister_peer()

Listing 1: Usage example of EdgeFL.

peer = Peer(configs): The procedure begins with the creation of an
nstance of the Peer class, a component of the EdgeFL architecture that
epresents an active participant in the system. During this initialization,
n array of configurations is created, which includes elements such as
egistration node addresses and specific settings for the aggregation
unction. This phase ensures that the FL edge node is precisely con-
igured, allowing for flawless connection with registration nodes and
ompetent involvement in FL training and aggregation efforts. Once
he Peer class instance is established, the Peer class instance serves as

a handle, supporting interactions between the FL edge node and its
eer entities. The FL edge node gains the ability to do a variety of
ctions via this peer object, including model retrieval, registration with
egistration nodes, and model aggregation.
peer.start(): This function initiates the execution for the FL edge

ode’s active participation in the EdgeFL framework. When called, it
triggers a series of mandatory steps that prepare the FL edge node
for seamless participation in the FL process. These steps include the
registration of the FL edge node with the registration nodes, the estab-
lishment of connections with its peer entities, and the activation of a
ackground instance ready to handle asynchronous file requests from
eers. By calling ‘‘peer.start()’’, the FL edge node actively participates
n the collaborative model learning process, while leveraging the com-
utational capabilities in edge devices. By using this function, the FL
dge node integrates easily into the EdgeFL ecosystem, establishing its
ole as a contributor to the system of FL.
peer.aggregation_func(): This function is in charge of orchestrating

he aggregation process, which is a cornerstone of the EdgeFL system.
hen triggered, it starts a multidimensional series of operations aimed

t increasing the collective intelligence of the FL system. First, the
unction requests models from fellow FL edge nodes specified by the

registration nodes. Following that, it employs the aggregation method,
expertly combining these models into a single updated model. The
aggregation function facilitates the collaborative nature of FL. It com-
bines the inputs of various peer entities, harmonizing their knowledge
to improve the quality and performance of the model. The FL edge
node takes an active role in this iterative model aggregation process by
calling ‘‘peer.aggregation_func()’’, effectively becoming a contributor
within the EdgeFL framework. This not only encourages the FL system’s
collective intelligence but also improves the overall quality of the
model.

peer.unregister_peer(): This function supports the FL edge node’s
eamless exit from the EdgeFL framework. When invoked, it performs
he role of notifying the registration nodes of the approaching unreg-

istration while providing the necessary information, including the FL
12
edge node’s hostname. The function, ‘‘peer.unregister_peer()’’, effec-
ively starts the process of removing the FL client node from the list
f active participants maintained by the registration nodes. This action
nsures the proper management of participants within the EdgeFL
ramework and allows for efficient resource allocation and coordination
mong the remaining active peers, adding to the EdgeFL framework’s
verall resilience and stability.

Data availability

Data will be made available on request.

References

[1] A. L’heureux, K. Grolinger, H.F. Elyamany, M.A. Capretz, Machine learning with
big data: Challenges and approaches, IEEE Access 5 (2017) 7776–7797.

[2] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, B. He, A survey on federated
learning systems: Vision, hype and reality for data privacy and protection, IEEE
Trans. Knowl. Data Eng. (2021).

[3] Z. Li, V. Sharma, S.P. Mohanty, Preserving data privacy via federated learning:
Challenges and solutions, IEEE Consum. Electron. Mag. 9 (3) (2020) 8–16.

[4] S. Lu, Y. Yao, W. Shi, Collaborative learning on the edges: A case study on
connected vehicles, in: 2nd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 19), 2019.

[5] B. Hu, Y. Gao, L. Liu, H. Ma, Federated region-learning: An edge computing based
framework for urban environment sensing, in: 2018 IEEE Global Communications
Conference, GLOBECOM, IEEE, 2018, pp. 1–7.

[6] T.S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I.C. Paschalidis, W. Shi, Federated
learning of predictive models from federated electronic health records, Int. J.
Med. Inform. 112 (2018) 59–67.

[7] H. Zhang, J. Bosch, H.H. Olsson, Real-time end-to-end federated learning: An
automotive case study, in: 2021 IEEE 45th Annual Computers, Software, and
Applications Conference, COMPSAC, IEEE, 2021, pp. 459–468.

[8] S. Pandya, G. Srivastava, R. Jhaveri, M.R. Babu, S. Bhattacharya, P.K.R. Mad-
dikunta, S. Mastorakis, M.J. Piran, T.R. Gadekallu, Federated learning for smart
cities: A comprehensive survey, Sustain. Energy Technol. Assess. 55 (2023)
102987.

[9] A. Rauniyar, D.H. Hagos, D. Jha, J.E. Håkegård, U. Bagci, D.B. Rawat, V.
Vlassov, Federated learning for medical applications: A taxonomy, current trends,
challenges, and future research directions, IEEE Internet Things J. (2023).

[10] H. Tao, M.Z.A. Bhuiyan, M.A. Rahman, G. Wang, T. Wang, M.M. Ahmed, J. Li,
Economic perspective analysis of protecting big data security and privacy, Future
Gener. Comput. Syst. 98 (2019) 660–671.

[11] L.E. Lwakatare, A. Raj, J. Bosch, H.H. Olsson, I. Crnkovic, A taxonomy of
software engineering challenges for machine learning systems: An empirical
investigation, in: International Conference on Agile Software Development,
Springer, Cham, 2019, pp. 227–243.

[12] Y. Dai, Z. Chen, J. Li, S. Heinecke, L. Sun, R. Xu, Tackling data heterogeneity in
federated learning with class prototypes, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 37, 2023, pp. 7314–7322.

[13] Q. Xia, W. Ye, Z. Tao, J. Wu, Q. Li, A survey of federated learning for edge
computing: Research problems and solutions, High-Confid. Comput. 1 (1) (2021)
100008.

[14] M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey
on enabling technologies, protocols, and applications, IEEE Access 8 (2020)
140699–140725.

[15] M. Ye, X. Fang, B. Du, P.C. Yuen, D. Tao, Heterogeneous federated learning:
State-of-the-art and research challenges, ACM Comput. Surv. 56 (3) (2023) 1–44.

[16] L. Zhang, X. Lei, Y. Shi, H. Huang, C. Chen, Federated learning with domain
generalization, 2021, arXiv preprint arXiv:2111.10487.

[17] D. Gao, H. Wang, X. Guo, L. Wang, G. Gui, W. Wang, Z. Yin, S. Wang, Y. Liu, T.
He, Federated learning based on CTC for heterogeneous internet of things, IEEE
Internet Things J. (2023).

[18] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C.
Kiddon, J. Konecny, S. Mazzocchi, H.B. McMahan, et al., Towards federated
learning at scale: System design, 2019, arXiv preprint arXiv:1902.01046.

[19] W. Huang, M. Ye, Z. Shi, H. Li, B. Du, Rethinking federated learning with domain
shift: A prototype view, in: 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, IEEE, 2023, pp. 16312–16322.

[20] L.U. Khan, W. Saad, Z. Han, E. Hossain, C.S. Hong, Federated learning for
internet of things: Recent advances, taxonomy, and open challenges, IEEE
Commun. Surv. Tutor. 23 (3) (2021) 1759–1799.

[21] J.C. Jiang, B. Kantarci, S. Oktug, T. Soyata, Federated learning in smart city
sensing: Challenges and opportunities, Sensors 20 (21) (2020) 6230.

http://refhub.elsevier.com/S0950-5849(24)00205-2/sb1
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb1
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb1
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb2
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb2
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb2
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb2
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb2
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb3
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb3
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb3
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb4
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb4
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb4
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb4
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb4
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb5
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb5
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb5
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb5
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb5
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb6
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb6
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb6
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb6
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb6
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb7
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb7
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb7
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb7
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb7
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb8
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb8
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb8
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb8
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb8
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb8
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb8
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb9
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb9
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb9
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb9
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb9
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb10
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb10
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb10
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb10
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb10
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb11
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb11
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb11
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb11
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb11
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb11
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb11
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb12
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb12
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb12
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb12
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb12
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb13
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb13
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb13
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb13
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb13
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb14
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb14
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb14
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb14
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb14
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb15
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb15
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb15
http://arxiv.org/abs/2111.10487
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb17
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb17
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb17
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb17
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb17
http://arxiv.org/abs/1902.01046
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb19
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb19
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb19
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb19
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb19
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb20
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb20
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb20
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb20
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb20
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb21
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb21
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb21

H. Zhang et al. Information and Software Technology 178 (2025) 107600
[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-
efficient learning of deep networks from decentralized data, in: Artificial
Intelligence and Statistics, 2017, pp. 1273–1282.

[23] L. Li, Y. Fan, M. Tse, K.-Y. Lin, A review of applications in federated learning,
Comput. Ind. Eng. 149 (2020) 106854.

[24] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, Y. Gao, A survey on federated learning,
Knowl.-Based Syst. 216 (2021) 106775.

[25] E. Gabrielli, G. Pica, G. Tolomei, A survey on decentralized federated learning,
2023, arXiv preprint arXiv:2308.04604.

[26] G. Liu, C. Wang, X. Ma, Y. Yang, Keep your data locally: Federated-learning-
based data privacy preservation in edge computing, IEEE Netw. 35 (2) (2021)
60–66.

[27] TensorFlow, TensorFlow federated, machine learning on decentralized data,
2021.

[28] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner, E. Bluemke, J.-M.
Nounahon, J. Passerat-Palmbach, K. Prakash, N. Rose, et al., Pysyft: A library
for easy federated learning, Fed. Learn. Syst.: Towards Next-Gener. AI (2021)
111–139.

[29] Y. Liu, T. Fan, T. Chen, Q. Xu, Q. Yang, Fate: An industrial grade platform for
collaborative learning with data protection, J. Mach. Learn. Res. 22 (1) (2021)
10320–10325.

[30] S. Caldas, S.M.K. Duddu, P. Wu, T. Li, J. Konečnỳ, H.B. McMahan, V. Smith,
A. Talwalkar, Leaf: A benchmark for federated settings, 2018, arXiv preprint
arXiv:1812.01097.

[31] Y. Ma, D. Yu, T. Wu, H. Wang, PaddlePaddle: An open-source deep learning
platform from industrial practice, Front. Data Domputing 1 (1) (2019) 105–115.

[32] A. Tariq, M.A. Serhani, F. Sallabi, T. Qayyum, E.S. Barka, K.A. Shuaib,
Trustworthy federated learning: A survey, 2023, arXiv preprint arXiv:2305.
11537.

[33] L. Yuan, Z. Wang, L. Sun, S.Y. Philip, C.G. Brinton, Decentralized federated
learning: A survey and perspective, IEEE Internet Things J. (2024).

[34] M. Chahoud, S. Otoum, A. Mourad, On the feasibility of federated learning
towards on-demand client deployment at the edge, Inf. Process. Manage. 60 (1)
(2023) 103150.

[35] D. Zhang, J.J. Tsai, Machine learning and software engineering, Softw. Qual. J.
11 (2) (2003) 87–119.

[36] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K.
El Emam, J. Rosenberg, Preliminary guidelines for empirical research in software
engineering, IEEE Trans. Softw. Eng. 28 (8) (2002) 721–734.

[37] D.I. Sjoberg, B. Anda, E. Arisholm, T. Dyba, M. Jorgensen, A. Karahasanovic, E.F.
Koren, M. Vokác, Conducting realistic experiments in software engineering, in:
Proceedings International Symposium on Empirical Software Engineering, IEEE,
2002, pp. 17–26.

[38] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, et al.,
Experimentation in Software Engineering, vol. 236, Springer, 2012.

[39] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2009) 131–164.

[40] B. Kitchenham, S. Charters, et al., Guidelines for performing systematic literature
reviews in software engineering, 2007.

[41] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, M. Jirstrand, A performance
evaluation of federated learning algorithms, in: Proceedings of the Second
Workshop on Distributed Infrastructures for Deep Learning, 2018, pp. 1–8.

[42] F. Soppelsa, C. Kaewkasi, Native Docker Clustering with Swarm, Packt Publishing
Ltd, 2016.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, in: Advances in Neural Information Processing Systems,
2019, pp. 8026–8037.

[44] S. Marcel, Y. Rodriguez, Torchvision the machine-vision package of torch, in:
Proceedings of the 18th ACM International Conference on Multimedia, 2010,
pp. 1485–1488.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
13
[46] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012)
1097–1105.

[47] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S.A. Camtepe, H. Kim, S.
Nepal, End-to-end evaluation of federated learning and split learning for internet
of things, 2020, arXiv preprint arXiv:2003.13376.

[48] R. Kazman, H.-M. Chen, The architecture of complexity revisited: Design
primitives for ultra-large-scale systems, 2023.

[49] T. Solanki, B.K. Rai, S. Sharma, Federated learning using tensor flow, in:
Federated Learning for IoT Applications, Springer, 2022, pp. 157–167.

[50] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, J. Passerat-
Palmbach, A generic framework for privacy preserving deep learning, 2018, arXiv
preprint arXiv:1811.04017.

[51] Q. Li, Y. Diao, Q. Chen, B. He, Federated learning on non-iid data silos:
An experimental study, in: 2022 IEEE 38th International Conference on Data
Engineering, ICDE, IEEE, 2022, pp. 965–978.

[52] P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, K.
Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., Advances and open
problems in federated learning, Found. Trends® Mach. Learn. 14 (1–2) (2021)
1–210.

[53] E.T.M. Beltrán, M.Q. Pérez, P.M.S. Sánchez, S.L. Bernal, G. Bovet, M.G. Pérez,
G.M. Pérez, A.H. Celdrán, Decentralized federated learning: Fundamentals, state
of the art, frameworks, trends, and challenges, IEEE Commun. Surv. Tutor.
(2023).

[54] H. Zhu, J. Xu, S. Liu, Y. Jin, Federated learning on non-IID data: A survey,
Neurocomputing 465 (2021) 371–390.

[55] Y. Zhou, Y. Shi, H. Zhou, J. Wang, L. Fu, Y. Yang, Toward scalable wireless
federated learning: Challenges and solutions, IEEE Internet Things Mag. 6 (4)
(2023) 10–16.

[56] P.M. Mammen, Federated learning: Opportunities and challenges, 2021, arXiv
preprint arXiv:2101.05428.

[57] J. Pang, Y. Huang, Z. Xie, Q. Han, Z. Cai, Realizing the heterogeneity: A self-
organized federated learning framework for IoT, IEEE Internet Things J. 8 (5)
(2020) 3088–3098.

[58] C. Xu, Y. Qu, Y. Xiang, L. Gao, Asynchronous federated learning on
heterogeneous devices: A survey, Comp. Sci. Rev. 50 (2023) 100595.

[59] W. Huang, M. Ye, Z. Shi, G. Wan, H. Li, B. Du, Q. Yang, Federated learning
for generalization, robustness, fairness: A survey and benchmark, IEEE Trans.
Pattern Anal. Mach. Intell. (2024).

[60] I. Kholod, E. Yanaki, D. Fomichev, E. Shalugin, E. Novikova, E. Filippov, M.
Nordlund, Open-source federated learning frameworks for IoT: A comparative
review and analysis, Sensors 21 (1) (2020) 167.

[61] A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, C. Potts, Learning word
vectors for sentiment analysis, in: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics, Portland, Oregon, USA, 2011, pp.
142–150, URL http://www.aclweb.org/anthology/P11-1015.

[62] N.M. Ali, M.M. Abd El Hamid, A. Youssif, Sentiment analysis for movies reviews
dataset using deep learning models, Int. J. Data Min. Knowl. Manag. Process.
(IJDKP) 9 (2019).

[63] S.M. Qaisar, Sentiment analysis of IMDb movie reviews using long short-term
memory, in: 2020 2nd International Conference on Computer and Information
Sciences, ICCIS, IEEE, 2020, pp. 1–4.

[64] O. Shahid, S. Pouriyeh, R.M. Parizi, Q.Z. Sheng, G. Srivastava, L. Zhao,
Communication efficiency in federated learning: Achievements and challenges,
2021, arXiv preprint arXiv:2107.10996.

[65] K. Bonawitz, Towards federated learning at scale: Syste m design, 2019, arXiv
preprint arXiv:1902.01046.

[66] S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, M. Guizani, A
survey on federated learning: The journey from centralized to distributed on-site
learning and beyond, IEEE Internet Things J. 8 (7) (2020) 5476–5497.

[67] X. Li, K. Huang, W. Yang, S. Wang, Z. Zhang, On the convergence of fedavg on
non-iid data, 2019, arXiv preprint arXiv:1907.02189.

[68] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, A.S. Avestimehr,
Federated learning for the internet of things: Applications, challenges, and
opportunities, IEEE Internet Things Mag. 5 (1) (2022) 24–29.

http://refhub.elsevier.com/S0950-5849(24)00205-2/sb22
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb22
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb22
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb22
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb22
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb23
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb23
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb23
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb24
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb24
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb24
http://arxiv.org/abs/2308.04604
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb26
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb26
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb26
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb26
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb26
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb27
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb27
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb27
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb28
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb28
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb28
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb28
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb28
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb28
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb28
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb29
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb29
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb29
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb29
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb29
http://arxiv.org/abs/1812.01097
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb31
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb31
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb31
http://arxiv.org/abs/2305.11537
http://arxiv.org/abs/2305.11537
http://arxiv.org/abs/2305.11537
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb33
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb33
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb33
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb34
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb34
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb34
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb34
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb34
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb35
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb35
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb35
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb36
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb36
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb36
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb36
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb36
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb37
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb37
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb37
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb37
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb37
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb37
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb37
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb38
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb38
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb38
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb39
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb39
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb39
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb40
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb40
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb40
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb41
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb41
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb41
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb41
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb41
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb42
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb42
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb42
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb43
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb43
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb43
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb43
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb43
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb43
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb43
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb44
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb44
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb44
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb44
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb44
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb45
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb45
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb45
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb45
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb45
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb46
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb46
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb46
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb46
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb46
http://arxiv.org/abs/2003.13376
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb48
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb48
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb48
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb49
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb49
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb49
http://arxiv.org/abs/1811.04017
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb51
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb51
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb51
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb51
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb51
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb52
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb52
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb52
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb52
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb52
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb52
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb52
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb53
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb53
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb53
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb53
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb53
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb53
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb53
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb54
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb54
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb54
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb55
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb55
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb55
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb55
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb55
http://arxiv.org/abs/2101.05428
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb57
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb57
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb57
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb57
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb57
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb58
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb58
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb58
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb59
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb59
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb59
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb59
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb59
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb60
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb60
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb60
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb60
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb60
http://www.aclweb.org/anthology/P11-1015
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb62
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb62
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb62
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb62
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb62
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb63
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb63
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb63
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb63
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb63
http://arxiv.org/abs/2107.10996
http://arxiv.org/abs/1902.01046
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb66
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb66
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb66
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb66
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb66
http://arxiv.org/abs/1907.02189
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb68
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb68
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb68
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb68
http://refhub.elsevier.com/S0950-5849(24)00205-2/sb68

	Enabling efficient and low-effort decentralized federated learning with the EdgeFL framework
	Introduction
	Challenges of FL development
	Contributions

	Background and Related Work
	Federated Learning
	Existing FL Frameworks
	Problem Description

	Research Method
	Search Process
	Implementation
	Dataset Distribution
	Uniform Distribution
	Normal Distribution

	Machine Learning Method
	Evaluation Metrics
	Weights update latency
	Model Evolution time
	Model Classification Performance

	System Design of EdgeFL
	System Design
	APIs and Services
	EdgeFL Learning Life-Cycle
	Containerization and Scalable Deployment
	Comparison to Existing FL Framework

	Evaluation Results
	Case Study
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	EdgeFL Function Details and Example Usage
	Appendix. EdgeFL Function Details and Example Usage
	Data availability
	Appendix . Data availability
	References

