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When developing general-purpose robot software components, we often lack
complete knowledge of the specific contexts in which they will be executed.
This limits our ability tomake predictions, including our ability to detect program
bugs statically. Since running a robot is an expensive task, finding errors at
runtime can prolong the debugging loop or even cause safety hazards. This
paper proposes an approach to help developers catch these errors as soon aswe
have some context (typically at pre-launch time) with minimal additional efforts.
We use embedded domain-specific language (DSL) techniques to enforce early
checks. We describe design patterns suitable for robot programming and show
how to use these design patterns for DSL embedding in Python, using two
case studies on an open-source robot skill platform SkiROS2, designed for the
composition of robot skills. These two case studies help us understand how to
use DSL embedding on two abstraction levels: the high-level skill description
that focuses on what the robot can do and under what circumstances and
the lower-level decision-making and execution flow of tasks. Using our DSL
EzSkiROS, we show how our design patterns enable robotics software platforms
to detect bugs in the high-level contracts between the robot’s capabilities and
the robot’s understanding of the world. We also apply the same techniques to
detect bugs in the lower-level implementation code, such as writing behavior
trees (BTs), to control the robot’s behavior based on its capabilities. We perform
consistency checks during the code deployment phase, significantly earlier
than the typical runtime checks. This enhances the overall safety by identifying
potential issues with the skill execution before they can impact robot behavior.
An initial study with SkiROS2 developers shows that our DSL-based approach is
useful for finding bugs early and thus improving the maintainability of the code.

KEYWORDS

embedded domain-specific languages, robot skills, skill-based control platforms,
behavior trees, domain-specific language design patterns

1 Introduction

The design and implementation of robotic systems to perform socio-technical
missions have never been more relevant or challenging. To ensure that robot
developers can meet market demands with confidence in the correctness of their
systems, a range of development tools and techniques is required. Specifically,
robot development tools should provide expressive programming languages and
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FIGURE 1
Robot using a pick skill with a visualization of the necessary
parameters. To run this skill, we only need the Gripper and the Object
parameters. SkiROS2 can deduce all other necessary parameters
through a set of rules in the skill description shown in listings 4 and 6.

frameworks that allow human developers to describe correct
robot behavior (Brugali et al., 2007). One such robot development
platform is SkiROS21, a skill-based robot control platform with
knowledge integration. SkiROS2 (Mayr et al., 2023b) allows
developers to define modular skills for autonomous mission
execution.

These skills, ranging from “pick” to “drive,” are modularly
defined with pre- and post-conditions. In SkiROS2, the assessment
and validation of these conditions rely on the robot’s knowledge,
systematically organized into an ontology. These ontologies are
a rich, interlinked representation of concepts and relationships
within a specific domain. They serve as a foundation for verifying
that all necessary conditions for skill execution are satisfied. For
instance, in an automated assembly line or robotic healthcare
surgery, the ontology would encompass all relevant entities
and their relationships, providing a comprehensive context for
skill execution.

Consider a scenario where the robot has to pick an Object
with its Gripper as shown in Figure 1. The pre-conditions of a
“pick” skill might include ontology-based relationships such as
“the gripper is part of the robot arm.” This relationship assists
in deducing additional parameters such as “which arm to move”
by employing subtle semantic differences of entities and their
relationships in the ontology. For example, if we say that the
gripper is part of the arm, then we know which arm to move
if we want to pick an object with the gripper. The distinction
between relationships like “is part of ” and “is holding” is critical in
ensuring the correct application of parameters and actions during
skill execution.

The developermust be careful when declaring such relationships
as bugs introduced at this stage can lead to silent errors, disrupting
the skill’s behavior and potentially leading to incorrect or inefficient

1 https://github.com/RVMI/skiros2

task execution. The reason is that some of these errors in the skill
description are logical errors that would not manifest themselves
as explicit runtime errors. Certain errors may only become evident
when a particular skill is executed, which could be weeks later
when demonstrating the robot under specific circumstances that
are not immediately predictable. This delay in detection makes
troubleshooting and rectifying these errors more challenging.
Therefore, properly defining relationships and conditions within the
ontology and skill descriptions is crucial to ensure the technical
correctness and operational reliability of robotic skills in real-world
applications.

In SkiROS2, each high-level skill description acts as a
behavioral contract, setting parameters and conditions that the
corresponding implementations must satisfy. These descriptions
guide the development of concrete skill implementations. Many
implementations use extended behavior trees (BTs) that reuse
other existing skills, relying on their pre-conditions and post-
conditions for a structured execution. Extended BTs in SkiROS2
merge task-level planning and execution, allowing for modularity
and reactivity (Rovida et al., 2017b). The reactivity stems inherently
from BTs in the way with which tasks are organized, which
defines their priority order, with more important tasks interrupting
less important tasks (Iovino et al., 2022). However, constructing
consistent and correct BTs is crucial as inconsistencies can lead to
unexpected failures and outcomes.

To avoid such errors, we propose using a domain-specific
language (DSL) to allow the code to be analyzed for potential
errors before deploying it on the actual robot. Our proposed
approach ensures that the high-level abstract skill descriptions align
with the lower-level BTs, providing a comprehensive framework
for skill execution. DSLs offer specific constructs for defining
and connecting nodes, conditions, and actions, enforcing correct
patterns and practices, thus reducing the likelihood of logical or
structural errors. The benefits of using DSLs to aid in debugging,
visualization, and static checking are well recognized, making them
a valuable tool in robot software development. DSLs have been
used for mission specification (Dragule et al., 2021) and modeling
of robot knowledge (Ceh et al., 2011). Nordmann et al. (2016)
collected and categorized over 100 such DSLs for robotics in their
Robotics DSL Zoo2.

We aim to support robot developers, particularly those who write
control logic in Python, in catching bugs early by embedding DSLs
directly in Python. We support our case through the following ways:

• Four design patterns for embedding DSLs in general-purpose
programing languages that address common challenges
in robotics, with details on how to implement these
patterns in Python.

• A case study of a robotics software SkiROS2, in which we
introduce our DSL EzSkiROS for early detection of type errors
and other bugs, highlighting its effectiveness in identifying
errors in both high-level skill descriptions and lower-level
implementation details.

• Ademonstration of howEzSkiROSdetects various types of bugs
in robot capabilities, worldmodel contracts, and behavior trees,

2 https://corlab.github.io/dslzoo
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showcasing the DSL’s comprehensive coverage and versatility in
early detection of bugs early.

Lastly, we discuss the advancements and distinctions
of our approach compared to the initial insights presented
in the paper Rizwan et al. (2023), providing an overview of the
evolution and impact of our design patterns.

2 Related work

Several studies have explored the use of model-driven
approaches for programming robots, focusing on the development
of DSLs to enhance the reliability of robotic systems. Buch et al.
(2014) described an internal DSL technique written in C++, which
incorporates structuring of complex actions, where actions are
modeled through sets of parameters, and each action contains a
pre-condition specifying the state of relevant parts. This structure
implies the use of pre- and post-conditions in sequencing robotic
skills. Unlike our DSL, their DSL uses a model-driven approach,
which instantiates the textual representation of the assembly
sequence, which is interpreted to execute the assembling behavior.
However, it is unclear if they use early checking techniques
to prevent erroneous sequences. Although it discusses error
handling and the probabilistic approach to tackle uncertainties,
specific methods like early checking techniques are not
clearly outlined.

Kunze et al. (2011) proposed the Semantic Robot Description
Language (SRDL), a model-based approach that utilizes the
Web Ontology Language (OWL) notation to match robot
descriptions and actions through the static analysis of robot
capability dependencies. SRDL models the knowledge about
robots, capabilities, and actions, contributing to the understanding
and specification of robotic behaviors. However, the extent to
which SRDL supports early dynamic checking in general-purpose
languages remains unclear, highlighting the need for further
exploration in this area.

Coste-Maniere and Turro (1997) proposed MAESTRO, an
external DSL for specifying the reactive behavior and checking
in the robotics domain. MAESTRO focuses on complex and
hierarchical missions, accommodating concurrency and portability
requirements. It allows the specification of user-defined typed events
and conditions, offering type-checking of user-defined types and
stop condition checks to ensure the correctness and safety of
specified behaviors.

Behavior trees have emerged as an effective method to model
and execute autonomous robotic behaviors, particularly in dynamic
environments. Unlike the traditional finite-state machines (FSMs),
BTs represent action selection decisions in a hierarchical tree
structure enhancing the flexibility in planning and replanning
robotic behavior. Dortmans and Punter (2022) highlighted that
BTs offer a more maintainable approach to decision-making than
FSMs, which is crucial in the rapidly evolving field of robotics.
Originally developed for the video game industry, BTs have
been widely adopted in robotics due to their modularity and
scalability. Iovino et al. (2022) presented a detailed survey of BTs in
robotics andAI, discussing their application, evolution, and benefits.
BTs are composed of various types of nodes, including control

nodes (e.g., sequences and selectors), leaf nodes (e.g., tasks and
conditions), and decorator nodes (modifying the behavior or output
of other nodes), organized in a tree structure from a root node and
branching out.

Integration of BTs with robotic systems often involves the
use of DSLs and frameworks such as the robot operating
system (ROS). Ghzouli et al. (2023) emphasized the growing use
of BTs in open-source robotic applications supported by ROS,
indicating their practicality in the real-world applications. However,
verifying the safety and correctness of BTs remains a challenge.

Henn et al. (2022) used SMTs to check safety properties specified
in the linear constraint Horn clause notation over behavior tree
specifications. Moreover, Tadiello and Troubitsyna (2022) used
Event-B for the formal specification and verification of BT instances,
ensuring the maintenance of invariant properties.

From a static semantics perspective, BhTSL is an example
where the compiler checks the source text for non-declared
variables and variable redeclaration (Oliveira et al., 2020). Despite
the advancements in BT DSLs, there is a lack of DSLs performing
static checks as rigorously as desired. According to the survey paper
(Ghzouli et al., 2020), the most used behavior tree DSLs, such as
BehaviorTree.CPP3, py_trees4, and the behavior tree from Unreal
Engine5, primarily focus on runtime type safety and flexibility.
For instance, in the MOOD2Be’s6 project from Horizon 2020, the
BehaviorTree.CPP tool offers a C++ implementation of BTs with
type safety (Faconti, 2019), but the type-checking capability is largely
left to the developer and is subject to runtime checks. This indicates
a gap in the domain of DSLs for BTs in ensuring correct execution
behavior and preventing inconsistencies in the implementation
between the skills or actions in a BT before runtime.

In conclusion, although there have been significant
advancements in DSLs for robotics and BTs, there is a continuous
need for the development of languages and tools that allow for
both static and early dynamic checks to ensure the safety, reliability,
and efficiency of robotic systems. Future research should focus on
enhancing the capabilities ofDSLs to perform comprehensive checks
and verification, both at design time and runtime, to address the
increasing complexity and demands ofmodern robotic applications.

3 Embedding robotics DSLs in Python

Domain-specific languages can help developers by simplifying
the notation, improving performance, or through early error
detection.However, development andmaintenance ofDSLs requires
effort. For external DSLs (e.g., MAESTRO and SRDL), much of
this effort comes from building a language frontend. Internal
or embedded DSLs [as shown in Buch et al. (2014)] avoid this
overhead and instead re-use an existing “host” language, possibly
adjusting the language’s behavior to accommodate the needs of the
problem domain.

3 https://github.com/BehaviorTree/BehaviorTree.CPP

4 https://github.com/splintered-reality/py_trees

5 https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/

BehaviorTrees

6 https://robmosys.eu/mood2be/
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We consider Python as one of the three main languages
supported by the popular robotics platform ROS (Quigley et al.,
2009). The other two languages, C++ and LISP, also support internal
DSLs, but with different trade-offs.

3.1 Python language features for DSLs

Although Python’s syntax is fixed, it offers several language
constructs that DSL designers can repurpose to reflect their domain,
such as freely overloadable infix operators (excluding type-restricted
Boolean operators), type annotations (since Python 3.0), and
runtime reflection.

Listing 1 illustrates how the Python code can use these three
techniques. Here, class MagicDict inherits from Python’s built-
in dict class (representing mutable finite maps or associative
arrays) and defines two Python functions. An instance of this
MagicDict class behaves almost entirely like a regular dict,
meaning that we can, e.g., read from and write to its elements
(Listing 2, lines 2–5).

The first Python function we define in MagicDict is __
getattribute__ (Listing 1, lines 4–11), which is a special
operation that Python uses to resolve the names of attributes
(meaning fields and methods) in an object. If m is a MagicDict,
then whenever we read from a field of m (e.g., when we evaluate
m.f), Python calls m.__getattribute__(‘f’), which
defaults to an internal mechanism in Python that reads out the value
of the field of that name or raises an exception. Our implementation
overrides this behavior and extends it: whenever we are reading
or calling an attribute that is not defined or inherited in the
MagicDict class, our code instead interprets the attribute name
as a key of the underlying dictionary (lines 10–11). We see the effect
of this behavior in Listing 2, lines 5 and 6: our MagicDict allows
us to use m.foo as an alternative to m[’foo’] to look up the key
’foo’ in the MagicDict m.

Class MagicDict overloads the infix subtraction operator in
line 13 and defines an operation that allows “subtracting” a dict
from aMagicDict. Our implementation is quite simplistic: ifm1 is

Listing 1. An example of DSL-friendly Python features: Lines 4–11 show runtime reflection, and line 14 shows a custom infix operator definition
and a type annotation.

Listing 2. Interactive use of the MagicDict class from Listing 1.
Lines 1–4 demonstrate standard dict features.

a MagicDict and m2 is a dict or an object that behaves similarly,
then m1 - m2 returns a copy of m1, but without any keys that are
also present in m2, as shown in Listing 2; lines 9–10.

Line 13 also illustrates Python’s type annotations, annotating the
parameter other with type dict. By default, such annotations
have no runtime effect, but DSL designers can access and repurpose
them to collect DSL-specific information without interference from
Python. With Python 3.5 (with extensions in 3.9), these annotations
also allow type parameters (e.g., x: list [int]).

Python also permits the dynamic construction of classes (and
metaclasses), which we have found particularly valuable for the
robotics domain; since the system configuration and world model
used in robotics are often specified outside of Python (e.g., in
configuration files or ontologies) but are critical to program logic,
we can map them to suitable type hierarchies at robot pre-launch
time (just after build time).

3.2 Robotics DSL design patterns

In the following section, we list our DSL design patterns. A
brief summary that highlights each pattern's purpose and key
implementation concepts can be found in Table 1.
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TABLE 1 Patterns summary.

Pattern Purpose Implementation

Domain language mapping Make domain notation visible in host language and reduce
notational overhead

See the “Piggyback” DSL implementation pattern documented by
Spinellis (2001)

Staged verification Detect type and configuration errors in a critical piece of code early,
such as during robot pre-launch time, with no or minimal extra
effort for developers

Execute all critical pieces of code early, while redefining the
semantics of the predetermined set of operations (e.g., ontology
relations from our previous example) to immediately return or to
only perform checking

Symbolic tracing
Detect bugs in a critical piece of code early, if that code depends on
parameters or operation return values, with minimal extra effort for
developers

Execute the critical code while passing symbolic values as
parameters and/or returning symbolic values from operations of
relevance

Collect any constraints imposed by operations on the symbolic
values

After executing the critical code, verify the constraints against the
problem domain

Source provenance tracking Make early dynamic error reports more actionable by reporting
relevant source locations

Dynamic stack inspection

3.2.1 Domain language mapping
Domain language mapping identifies language concepts in the

host language that correspond to the domain language in some
sense and then uses the techniques described in Spinellis (2001)
to implement them. This mapping can be manual or the result of
reflection.

As an example, the Web Ontology Language (OWL) allows
us to express the relationships and attributes of the objects in the
world, the robot hardware, and the robot’s available capabilities
(skills and primitives). Existing libraries like owlready2 (Lamy, 2017)
already expose these specifications as Python objects, so if the
ontology contains a class pkg:Robot, we can create a new “robot”
object by writing

r = pkg.Robot ("MyRobotName")

and iterate over all known robots by writing
for robot in pkg.Robot.instances (): …

Although Moghadam et al. (2013) expressed concerns about
“syntactic noise” for DSL embedding in earlier versions of
Python, when compared to external DSLs, we found such
noise to be modest in modern Python and instead emphasize
the advantages of embedding in a language that is already
integrated into the ROS environment and developers are
familiar with.

3.2.1.1 Maintenance and integration considerations
When domain knowledge is available in the machine-

readable form, much or all of the mapping process may
be automatable. For example, the owlready2 library creates
these classes at runtime based on the contents of the
ontology specification files. Thus, changes in the ontology are
immediately reflected in Python; if we rename pkg:Robot

in the ontology, our earlier code example will trigger
an error when it encounters pkg.Robot in the Python
source code.

Another strategy for automating the mapping process
is to generate the code in the host language. In our
example, this code would take the form of Python
modules, such as pkg.py, which contain classes and
methods to reflect the mapping (e.g., a class Robot).
This strategy mirrors the DSL implementation strategies
for host languages that lack advanced reflection facilities,
such as C (Levine et al., 1992).

Code generation has two potential disadvantages over reflection.
First, code generation persists a snapshot of the domain language
mapping. The build and development process must thus ensure that
this snapshot is kept fresh and prevents developers from accidentally
modifying the generated code. Second, code generation requires the
domain language mapping to take place before build time. When
the domain knowledge is only available at pre-launch time, the
generated code will necessarily be stale, which may render this
implementation strategy useless.

In our discussions with practitioners, we did however observe
a key advantage that code generation offers. Since the mapping
becomes visible as the Python source code, it is also available to
language servers and integrated development environments and
may help developers find bugs in their code even earlier.

3.2.2 Staged verification
Staged Verification verifies certain kind of properties in

a critical piece of code at an early stage before execution.
The term “staged” refers to performing these verifications in
a controlled manner at a specific early point in the process.
This approach prevents runtime failures, simplifies debugging,
and enables safe validation in systems that integrate complex
elements. In tools like SkiROS2, combining Python code,
ontologies, and configuration files at runtime introduces
points of failure. To detect such failures early, we propose
the following second pattern:
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Listing 3. Constructing the behavior tree of a drive skill in SkiROS2:
It is a sequential execution of a compound skill (a skill with its own
BT of smaller, executable skills) “Navigate” and a primitive skill (an
atomic skill that cannot be broken down into smaller parts)
to update the world model “WmSetRelation.”

The conditions for this pattern are as follows:

• We can collect all critical pieces of code at a suitably early point
during execution.
• The critical code does not depend on return

values of operations that we cannot predict at the
pre-launch time.

In Python, configuration and type errors only trigger software
faults once we run the code that depends on faulty data. In robotics,
wemight find such code in operations that (a) run comparatively late
(e.g., several minutes after the start of the robot) and (b) are difficult
to unit-test (e.g., due to their coupling to specific ROS functionality
and/or robotics hardware). For robotics developers, both challenges
increase the cost of verification and validation (Reichenbach, 2021).
A fault might trigger only after a lengthy robot program and require
substantial manual effort to reproduce. For example, a software
module for controlling an armmight take a configuration parameter
that describes the target arm pose. If the arm controller is triggered
late (e.g., because the arm is part of a mobile platform that must first
reach its goal position), any typos in the arm pose will also trigger
the fault late. If the pose description comes from a configuration
file or ontology, traditional static checkers will also be ineffective.
We can only check for such bugs after we have loaded all relevant
configurations.

Through careful software design, developers can work around
this problem, e.g., by checking that code and configuration are
well-formed as soon as possible, before they run the control logic.
If the critical code itself is free of external side effects, the check
can be as simple as running the critical code twice. For example,
SkiROS2 composes BTs (Colledanchise and Ögren, 2018) within
such critical Python code (Listing 3); composing (as opposed to
running) these objects has no side effects, so we can safely construct
them early to detect simple errors (e.g., typos in parameter names).
This is a typical example that eludes static checking but is amenable
to early dynamic checking. Line 7 depends on self.params

[“Robot”].value, which is a configuration parameter that we
cannot access until the robot is ready to launch.

Not all of the robotics code is similarly declarative. Consider the
following example, in a hypothetical robotics framework inwhich all
operations are subclasses of RobotOp and must provide a method
run () that takes no extra parameters.

Here, developers introduced a separatemethodcheck () that
can perform an early check during robot initialization or pre-launch.
However, check () and run () both have to be maintained to
make the same assumptions.

The early dynamic checking pattern instead uses internal DSL
techniques to enable developers to use the same code in two different
ways: (a) for checking and (b) for logic.

In our example, calling run () “normally” captures case (b).
For case (a), we can also call run (), but instead of passing
an instance of MyRobotOp, we pass a mock instance of the
same class, in which operations like runA () immediately return.

If we execute MyRobotOpMock.run () with the
same configuration as MyRobotOp, run () will execute
almost as for MyRobotOp but immediately return from
any call to runA or runB. If the configuration is invalid,
for example, if config.mode == “C” or config.v ==

false, running MyRobotOpMock.run () will trigger the
error early.

Since Python can reflect on a class or an object to identify all
fields andmethods, we can construct classes likeMyRobotOpMock
at runtime; instead of writing them by hand, we can implement
a general-purpose mock class generator that constructs methods
like runA and accessors like config automatically. If the
configuration objects trigger side effects, we can apply the same
technique to them.

However, the above implementation strategy is only effective
if we know that the critical code will only call methods on self

and other Python objects that we know about ahead of time. We
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can relax this requirement by controlling how Python resolves
nonlocal names:7

FunctionType(MyRobotOp.run.__code__,
globals() | {‘print’: g})(obj)

This code will execute obj.run () via the equivalent
MyRobotOp.run (obj) but replace all calls to print

by calls to some function g. The same technique can
use a custom map-like object to detect at runtime which
operations the body of the method wants to call and handle
them suitably.

However, the more general-purpose we want the critical code
to be, the more challenging it becomes to apply this pattern. For
instance, if the critical code can get stuck in an infinite loop,
so may the check; if this is a concern, the check runner may
need to use a heuristic timeout mechanism. A more significant
limitation is that we may not, in general, know what our mocked
operations like runA () should return, if anything. If the critical
code depends on a return value (e.g., if it reads ROS messages),
the mocked code must be able to provide suitable answers. The
same limitation arises when the critical code is in a method
that takes parameters. If we know the type of the parameter
or return value, e.g., through a type annotation, we can exploit
this information to repeatedly check (i.e., fuzz-test) the critical
code with different values; however, without further cooperation
from developers, this method can quickly become computationally
prohibitive.

If we know that the code in question has a simple control
flow, we may be able to apply the next pattern, symbolic
tracing.

3.2.3 Symbolic tracing
Here, a symbolic value is a special kind of mock

value that we use to record information
(King, 1976).

The conditions for this pattern are as follows:

• We can access and execute the critical code.
• We have access to sufficient information (via type

annotations and properties) to simulate parameter
values and operation return values symbolically
(see below).
• The number of control flow paths through the critical code is

small (see below).

Consider the following RobotOp subclass:

This class only calls two operations, but its run operation
depends on a parameter speedup about which we know nothing

7 Python’s eval function offers similar capabilities, but as of Python 3.10, it

does not seem to allow passing parameters to code objects.

a priori—thus, we cannot directly apply the early dynamic
checking pattern.

In cases where we lack prior knowledge about an operation,
it may still be possible to obtain useful insights about it.
For example, if we are aware that setArmSpeed accepts
only numeric parameters and setArmSafety only accepts
Boolean parameters, we can flag this code as having a type
error. To avoid blindly testing various parameters, we can
pass a symbolic parameter to the run function and employ a
modified version of the mock-execution strategy used in early
dynamic checking. The mock objects can be adapted as follows:

We can now 1) create a fresh object obj and an
SetArmSpeedOpMock instance that we call mock, 2) call
SetArmSpeedOp.run (mock, obj), and 3) read out
all constraints that we collected during this call from TYPE_

CONSTRAINTS and check them for consistency, which makes
it easy to spot the bug. If the constraints come from accesses
to obj (e.g., method calls like obj.__add__(1) that result
from code like obj + 1), obj itself can collect the resultant
constraints.

Depending on the problem domain, constraint solving can be
arbitrarily complex, from simple type equality checks to automated
satisfiability checking (Balldin and Reichenbach, 2020). It can
involve dependencies across different pieces of the critical code
(e.g., to check if all components agree on the types of messages
sent across ROS channels or to ensure that every message that
is sent has at least one reader). However, this approach requires
information about specific operations like setArmSpeed and
setArmSafety, which can be provided to Python in a variety of
ways, e.g., via type annotations.

As an example, consider an operation that picks up a coffee
from the table with a gripper, where we annotate all parameters
to run with the Web Ontology Language (OWL) ontology types.

This example is derived from the SkiROS2 ontologies, with
minor simplifications. In the above SkiROS2 code, the developer
intended to write a pre-condition that to be able to pick a coffee
cup, the robot should be close to the table. Instead, the developer
mistakenly wrote that a robot should be a part of the coffee table.

The ontology requires thatrobotPartOf is a relation between
a technical Device and a Robot. However, Furniture is not a
subtype of Device, so the assertion in line 6 is unsatisfiable.
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We can again detect this bug through symbolic tracing. This
time, we must construct symbolic variables for robot, gripper,
and coffee_table that expose methods for all applicable
relations, as described by their types. For instance, gripper
will contain a method robotPartOf(gripper, obj) that
records on each call that gripper and obj should be in a
robotPartOf relation. Meanwhile, coffee_table will not
have such an operation. When we execute run (), we can then
defer to Python’s own type analysis, which will abort execution and
notify us that coffee_table lacks the requisite method.

Key to this symbolic tracing is our use of mock objects as
symbolic variables. Symbolic variables reify Python variables to
objects that can trace the operations that they interact with, in
execution order, and translate them into constraints.

The main limitation of this technique stems from its interaction
with Python’s Boolean values and control flow, e.g., conditionals
and loops. Python does not allow the Boolean operators to return
symbolic values but instead forces them (at the language level) to
be bool values; similarly, conditionals and loops rely on access to
Boolean outcomes. Thus, when we execute the code in the form if

x: …,wemust decide right there and then if we should collapse the
symbolic variable that x is bound to True or False. Although we
can re-run the critical code multiple times with different decisions
per branch, the number of runs will in general be exponential over
the number of times that a symbolic variable collapses to bool.

3.2.4 Source provenance tracking
The intent in early error detection in (embedded) DSLs is

generally to prevent undesirable behavior. When this undesirable
behavior is due to a problematic user specification, it is—in
our experience—valuable to point the user to the problematic
specification. In practice, “blaming” the right part of the program
can be non-trivial since the disagreement may be across multiple
user specifications (Ahmed et al. (2011) discussed this challenge in
more detail).

Handling multiple conflicting constraints can be particularly
challenging for embedded DSLs. Let us say that we are
using a technique like symbolic tracing in two user-defined
functions, namely, declaration () and implementation (), such that
implementation () must ensure the constraints that are required
declaration ().

In the above example, we might find a bug: implementation
allows x = 10, but this is not allowed according to declaration
(). A typical but naïve implementation of such a consistency
check might simply inform the user that declaration and
implementation disagree about what x is allowed to do and raise an
exception.

The programmer must now identify the line of code that
is the culprit by hand. In practical scenarios, such as our case
studies, there may be multiple declaration and implementation
functions in the same file (usually as methods), which further
complicates the task.

Reflection can help us here; for example, given a function object
in Python, we can use reflection to access implementation._
_code__.co_firstlineno and implementation.__code
__.co_filename to obtain the location at which the function
was defined in the form of the first line of the code and the source
file name. For larger definitions, even this information may be
insufficiently precise.

Some languages offer facilities that allow us to obtain even
the exact lines of code that were responsible for the error (lines
3 and 7, in our example). Although some languages support
this inspection through macro- or pre-processor facilities (e.g., _
_LINE__ and __FILE__ in C), Python 3.1 and later versions
offer direct read access to the call stack via inspect. stack

(). The symbolic tracing code for require () and ensure

() can then “walk” this stack down until it finds the first stack
frame that belongs to the code under analysis and extract file
name and line number from there. The symbolic tracer can
then attach this provenance information to the constraint and
expose it to the user if the constraint is contributing to some
error report.

3.3 Alternative techniques for checking

Internal DSLs are not the only way to implement the kind of
early checking that we describe. The mypy tool8 is a stand-alone
program for the type-checking Python code.mypy supports plugins
that can describe custom typing rules, which we could use, e.g., to
check for ontology types. Similarly, we could use the Python ast

module to implement our own analysis over the Python source
code. However, both approaches require separate passes and would
first have to be integrated into the ROS launch process. Moreover,
they are effectively static, in that they cannot communicate with
the program under analysis; thus, we cannot guarantee that the
checker tool will see the same configuration (e.g., ontology and
world model).

Another alternative would be to implement static analysis over
the bytecode returned by the Python disassembler dis, which can
operate on the running program. However, this API is not stable
across Python revisions9.

An external DSL such as MAESTRO Coste-Maniere and Turro
(1997) would similarly require a separate analysis pass. However, it
would be able to offer arbitrary, domain-specific syntax and avoid
any trade-offs induced by the embedding in Python (e.g., Boolean
coercions). The main downside of this technique is that it requires
a completely separate DSL implementation, including maintenance
and integration.

8 https://mypy-lang.org/

9 https://docs.python.org/3/library/dis.html
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4 SkiROS2: an open-source software
for skill-based robot execution

As a case study, we implement our patterns on the open-source
software for skill-based robot execution SkiROS2 (Mayr et al.,
2023b). SkiROS2 is used by several research institutions in the
context of industrial robot tasks, as demonstrated in Mayr et al.
(2022a), Mayr et al. (2022b), Mayr et al. (2023c), Mayr et al.
(2023a), Ahmad et al. (2023), and Wuthier et al. (2021). It is a
re-implementation of the predecessor SkiROS1 by Rovida et al.
(2017a) and is implemented in Python on top of the robot
operating system (Quigley et al., 2009) middleware. SkiROS2 uses
behavior tree (Colledanchise and Ögren, 2018) formalism to
represent procedures.

SkiROS2 implements a layered, hybrid control architecture to
define and execute parametric skills for robots (Bøgh et al., 2012),
Krueger et al. (2016). The SkiROS2 system architecture is shown
in Figure 2, which illustrates how different components interact
with each other in various phases. It uses ontologies to represent
the comprehensive knowledge about the world. SkiROS2 represents
knowledge about the skills, the robot, and the environment
in a world model (WM) with the ontologies specified in the
OWL format. This explicit representation, built on the World
Wide Web Consortium’s Resource Description Framework (RDF)
(Hitzler et al., 2009) standard, allows the use of existing ontologies.
This approach to knowledge management is important for complex
decision-making and reasoning in autonomous systems (Cangelosi
and Asada, 2022). WM is central to SkiROS2’s architecture and
serves as a dynamic repository of the robot’s environment and state.
It continuously updates and maintains a semantic representation
of the surroundings, objects, and the robot’s own status. The
integration of the WM with the ontologies shown in Figure 2
ensures that the robot has a thorough understanding of its
operational context, enhancing its interaction capabilities with
the environment.

4.1 Skill model

Skills in SkiROS2 are parametric procedures that modify
the world state from an initial state to a final state according
to pre- and post-conditions (Pedersen et al., 2016). Every skill
has a Skill Description and one or more Skill Implementation
as shown in Figure 2. The Skill Description consists of the following
four elements:

1. Parameters define the input and output of a skill. The types of
these parameters can vary from certain primitive data types to
a world model element in the ontologies.

2. Pre-conditions must hold before the skill is executed.
3. Hold-conditions must be fulfilled during the execution.
4. Post-conditions indicate that a skill has been

successfully executed.

These conditions are checked by the Skill Manager
as shown in Figure 2. These conditions are important for
planning and also for dynamic sanity checks, when planning
is disabled. When a skill is invoked, the system first checks
the pre-conditions to decide if it is safe or viable to start

the skill. During execution, hold conditions are continuously
monitored to ensure ongoing criteria are met. Finally, once the
skill reports its completion, post-conditions are checked to confirm
successful execution. These checks are essential to maintain the
robustness, safety, and reliability of robotic operations, ensuring
that skills are only performed when appropriate and achieve the
intended results.

4.1.1 Skill description
Listing 4 shows how developers define a “pick” skill in

SkiROS2 by calling the Python method addParam to set the
parameters of the skill and similarly to define its pre- and
post-conditions. The parameters are typed, using basic datatypes
(e.g., str) or a WM element defined in ontology, and can be
required, optional, or inferred from the world model. Pre-conditions
allow SkiROS2 to check requirements for skill execution and to
automatically infer skill parameters from the world model. For
example, in the “pick” skill shown in Listing 4, the parameter
“Object” in line 10 is REQUIRED, i.e., it must be set before
the execution of the skill. At execution time, SkiROS2 infers the
parameter “ObjectLocation” (line 9) by reasoning about the
pre-condition rule“ObjectLocationContainObject” (line
13). If “Object” is semantically not at a location in the WM, the
pre-conditions are not satisfiable and the skill cannot be executed.

4.1.2 Skill Implementation
The Skill Implementation, on the other hand, acts as a class that

implements the interface Skill Description and refers to the actual
coding and logic that enables a robot to perform a task. Skills can be
either primitive or compound skills. Depending on the type of skill,
primitive skills implement atomic functions that change the real
world, such as moving a robot arm, whereas compound skills build
complex behaviors in a BT. An example of a pick Skill Implementation
is shown in Listing 5.

The createDescription method (line 2 in Listing 5) sets the
description(interface) toanimplementation.Theexpandmethod(line
5 in Listing 5) within the skill implementation uses behavior trees to
structure the execution of skills. Each node in the tree could represent
a specific skill (action node) or a decision-making process (commonly
known as a control flow node) that determines which skill to execute
next, as illustrated inFigure 3.Thecontrol flownode sets theprocessor
and specifies how the compound skill is decomposed into a behavior
tree (line 6). In SkiROS2, control flownodes or processors dictate how
a compound skill invokes its child skills. Before delving into specific
processors, it is essential to understand the common states in which a
node might return during execution.

• Success indicates that the skill or all skills (in case of compound
skills) have been completed successfully.
• Failure indicates that the skill has failed to complete

successfully or conditions for success are not met.
• Running indicates that the skill is still in progress and has not

yet reached a conclusion of success or failure.

These states are not only exclusive to compound skills but are
also applicable to leaf nodes/primitive skills. Following are the lists
of processors and how they operate in these states:

• Serial processes the children one by one in order until all
succeed. It will continuously loop through the children until
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FIGURE 2
Diagram with the different components of SkiROS2, their interaction during different time phases, and the advancements by EzSkiROS (shown as green
blocks). In SkiROS2, a bug that has been introduced in a skill description by a developer will often only trigger at runtime. EzSkiROS addresses these
costs and risks by adding checks to find a wide range of bugs by running a pre-launch file where the skills are loaded before runtime.

one returns RUNNING or FAILURE or until all children
succeed. SerialStar is a variation of the serial processor with
error handling.
• Selector runs its children one after the other until one succeeds

(returning SUCCESS) or all fail (returning FAILURE). If a
child is in progress (RUNNING), the processor will also return
RUNNING. SelectorStar is a variation of Selector analogous to
SerialStar.

Listing4. An excerpt of the parameters and pre- and post-conditions of a pick skill in SkiROS2without EzSkiROS. It depends heavily on the usage of strings
to refer to parameters or classes in the ontology.

• ParallelFf (parallel first fail) invokes all the children at the
same time. It returns SUCCESS only if all children succeed. If
any child fails, it immediately returns FAILURE and halts the
other children.
• ParallelFs (parallel first stop) also runs all the children

simultaneously. However, it stops all processes and returns
SUCCESS as soon as any child succeeds or FAILURE if any
child fails, regardless of the others’ states.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Rizwan et al. 10.3389/frobt.2024.1363443

When we say that a node “returns” something, we are referring
to the result of an operation or computation performed by
that node. This result dictates the next action in the behavior
tree, such as whether to continue, stop, or try a different
approach.

As shown in Listing 5, the skill() operator allows us
to set the children of the behavior tree of the skill being
implemented. To add several children at once, it is possible
to use the syntax shown in the Listing 5 (lines 9–22). Each
child can either be another processor (to make a nested control
structure) or an individual component skill. Individual skills
follow the template self.skill (skilltype, label =

“ ”, specify = {}, remap = {}), where skilltype
is a Skill Description, i.e., an abstract skill that may have multiple
implementations. At runtime, SkiROS2 selects and substitutes
one of the implementations of this skill description, unless users
manually select a specific implementation using the optional
label parameter. All skills share a parameter namespace so that
parameters with the same names are implicitly unified across
all component skills. For example, if we use a compound skill
with the parameter Robot set to some specific object, SkiROS2
implicitly sets this parameter in all component skills. Skill
developers can override this behavior with the optional specify
and remap parameters to self.skill.specify

takes a Python dictionary that maps parameter names to concrete
values (e.g., theDuration of aWait action, in line 19 of Listing 5).
Meanwhile, remap maps parameter names to the names of other
parameters. Considering line 15 shown in Listing 5, this line
specifies that the parameter Target of the ApproachMovement
skill should be the parameter GraspPose, whereas the same

Listing5. The skill implementation of the pick Skill Description is shown in Listing 4.

parameter for the same skill in line 23 should be the parameter
ApproachPose.

The relationship between Skill Descriptions and BTs is evident
in how the expand function uses the behavior tree structure to
implement the skill logic. The parameters, pre-conditions, hold-
conditions, and post-conditions defined in the Skill Description
guide the construction and execution of BTs. For instance, the
pre-conditions in a skill description determine when a particular
branch of the behavior tree is activated, and the post-conditions
signal when a skill or sequence of skills has been successfully
completed.

These skills are loaded by the Skill Manager at robot launch
time (shown in Figure 2).

5 Case study I: concise and verifiable
robot skill interface

We have validated our design patterns in an internal DSL
EzSkiROS, which adds early dynamic checking (Section 3.2) to
skill descriptions. Following a user-centered design methodology,
we developed EzSkiROS by first identifying needs for early bug
checking via semi-structured interviews with skilled roboticists
who use SkiROS2, reviewed documentation, and manual code
inspection. We found that even expert skill developers made
errors in writing Skill Descriptions and that Python’s dynamic
typing only identified bugs when they triggered faults during
robot execution.

We designed EzSkiROS to simplify how Skill Descriptions
are specified, with the intent to increase their readability,
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FIGURE 3
BT of the pick skill in the eBT format Rovida et al. (2017b). It has a SerialStar operator and will execute all children in sequence. The pre-conditions and
post-conditions are shown.

Listing 6. The skill description of the pick skill is shown in Listing 4
with EzSkiROS. We represent OWL classes in Python as
identifiers in type declarations.

maintainability, and writability. We map ontology objects and
relations into Python’s type system. Skill Descriptions can then
directly include ontology information in type annotations. This
approach streamlines the syntax by avoiding redundant syntactic
elements and specifying type information through annotations
rather than string encodings, as illustrated with the example
of the pick skill in Listing 6. The listing also illustrates the
EzSkiROS syntax for the example of the pick skill from Listing 4.
The Skill Description shown in Listing 6 is more concise and
intuitive, with type annotations providing a clear and direct
way to specify the types of parameters and their ontology
information.

In EzSkiROS, we employed owlready2’s approach to domain
language mapping in exposing the world model elements
in the ontology as Python types and objects. For instance,
as shown in Listing 6, line 3 describes a parameter Robot

with the type annotation INFERRED [cora.Robot]. Here,
cora.Robot is a Python class that we dynamically generate to
mirror an OWL class “Robot” in the OWL namespace “cora”.
INFERRED is a parametric type that tags inferred parameters.
We mark optional parameters analogously as OPTIONAL; all
other parameters are required. At robot pre-launch time, we use
Python’s reflection facilities to extract and check this parameter
information, both to link with SkiROS2′ skill manager and for
part of our early dynamic checking. In addition to our ontology
types, we also allowed basic data types (str, float, int,

bool) in EzSkiROS, enforcing that each must specify a default
value. Originally, SkiROS2 also allowed the parameters of data
types list and dict. However, in EzSkiROS, we restricted the use
of lists and dicts as it was not clear if we would need this in
practice. One of the developers claimed that dicts are considered
“hacks” in the system’s context. Although lists are valid for
representing, e.g., joint configurations, it might be better served
by a specialized joint-configuration type to encapsulate their
complexities and intended use more accurately. We allowed
enums to handle such parameters, acknowledging that enums
cannot encode lists or dicts, but it can provide a more controlled
and predictable set of values, enhancing the system’s integrity
and reliability.

In addition to skill parameters, we also want to make sure
that skill conditions satisfy the contracts in our ontology. These
pre-, post-, and hold-conditions can be expressed in different
ways depending on what aspects of the robot’s environment and
state we want to assess. According to SkiROS2 documentation,
one can define a skill with the help of four kinds of skill
conditions:
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1. ConditionHasProperty is a unary relation to check whether
a certain element or entity has a specific property. It is
useful when the skill needs to verify certain attributes or
characteristics of objects or elements before proceeding.When
a condition checks for a property, it is essentially querying the
ontology to see if the entity conforms to certain criteria or
states definedwithin it. For instance, if an ontology defines that
a “door” entity can have a state property with values “open” or
“closed,” ConditionHasProperty might check if the door’s state
is “open.”

2. ConditionProperty is a binary relation which relies on the
ontology to understand and evaluate properties or attributes
of entities. However, it might be used to assess the value or
state of a property rather than just its presence. For example,
it could check whether the temperature (property) is within a
certain range.

3. ConditionRelation is used to evaluate the relationships between
different elements or entities. It is crucial for tasks that require
understanding spatial or hierarchical relationships, such as “is
next to,” “is on top of,” or “is part of.”This condition utilizes the
relational information in the ontology to assess how entities are
related. Ontologies define not just entities but also the possible
relationships between them. For example, it might check if
“object A is on top of object B” by referring to the ontology’s
definitions of “object A,” “object B,” and “on top of ” relations.

4. AbstractConditionRelation is a more generalized or template
form of ConditionRelation, which can be specified or extended
for various specific relational conditions.

Since all types of skill conditions rely heavily on the ontology
for their evaluation, it is important to add Early Dynamic
checking to detect mistyped conditions. We utilize Symbolic
Tracing as described in Section 3.2. This step collects all pre-,
post-, and hold conditions via the overloaded Python operator
“+=” (lines 13–23). We then check for wrong ontology relations
and ontology type errors among these conditions. Since we use
Domain Language Mapping to expose the world model entities
as classes and relations as Python methods, Python’s own name
analysis will catch such mistyped ontology relation or entity names,
and the symbolic values that we pass into the description

method capture all types of information that we need for
type-checking.

We test our DSL implementation by integrating it with
SkiROS2 to see how it behaves with a real skill running on a
robot10. To demonstrate the effectiveness of our type check in
EzSkiROS, we use a “pick” skill written in EzSkiROS (Listing 6)
and load it while launching a simulation of a robot shown in
Figure 1.

Listing 7 shows that the ObjectProperty “hasA” is
a relation allowed only between a “product” and a
“TransformationPose”. If we introduce a nonsensical relation
like Object.hasA (Gripper), then the early dynamic check
in EzSkiROS over ontology types returns a type error:

TypeError: Gripper: <class ’ezskiros.param_

type_system.rparts.GripperEffector’> is not

a skiros.TransformationPose

10 Available online in https://github.com/lu-cs-sde/EzSkiROS

In addition to the error message, we also provide the source of
the error highlighting the line that contains the error.

5.1 Evaluation

To evaluate the effectiveness and usability of EzSkiROS in
detecting bugs at pre-launch time, we conducted a user study with
robotics experts. Seven robotic skill developers participated in our
user study, including one member of the SkiROS2 development
team. The user study consisted of three phases: an initial
demonstration, a follow-up discussion, and a feedback survey11.
Due to time limitations, we defer a detailed study, with exercises for
users to write new skills in EzSkiROS, to the future.

To showcase the embedded DSL and the early bug checking
capabilities of EzSkiROS, we presented a video showing 1) a contrast
between the old and new skill descriptions written in EzSkiROS and
2) demonstrating how errors in the skill description are detected
early at pre-launch time by intentionally introducing an error in the
skill conditions.

During the follow-up discussion, we encouraged participants
to ask any questions or clarify any confusion they had about the
EzSkiROS demonstration video.

After the discussion, we invited the participants to complete
a survey to evaluate the readability and effectiveness of the
early ontology type checks implemented in EzSkiROS. The survey
included Likert-scale questions about readability, modifiability, and
writability. Six participants answered “strongly agree” that EzSkiROS
improved readability, and one answered “somewhat disagree.” For
modifiability, four of them “strongly agree,” but three participants
answered “somewhat agree” and “neutral.” All the participants
answered “strongly agree” or “somewhat agree” that EzSkiROS
improved writability.

To gain more in-depth insights, the survey also included open-
ended questions, e.g., a) “Would EzSkiROS have been beneficial
to you, and why or why not?”; b) “What potential benefits or
concerns do you see in adopting EzSkiROS in your work?;” and
c) “What potential benefits or concerns do you see in beginners,
such as new employees or M. Sc. students doing project work,
adopting EzSkiROS?”

For question a), all participants agreed that EzSkiROS would
have helped them. Participants liked the syntax of EzSkiROS,
and they thought that it takes less time to read and understand
the ontology relations than before. One of them claimed that
“pre- and post-conditions are easy to make sense.” They also
found that mapping the ontology to Python types would have
helped reduce the number of lookups required in the ontology.
One of the participants said, “in my experience, SkiROS2 error
messages are terrible, and half the time they are not even the
correct error messages (i.e. they do not point me to the correct
cause), so I think the improved error reporting would have been
extremely useful.”

For question b), the majority of participants reported that
EzSkiROS’s concise syntax is a potential benefit, which they
believe would save coding time and effort. One participant found

11 A replication of the survey https://github.com/lu-cs-sde/EzSkiROS
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EzSkiROS’s specific error messages useful, responding that “the
extra checks allow to know some errors before the robot is started,”
while one participant answered that EzSkiROS does not benefit
their current work, but it might be useful for writing a new skill
from scratch. None of the participants expressed any concerns about
adopting EzSkiROS in their work.

For question c), one developer acknowledges the benefits of
EzSkiROS by saying “In addition to the error reporting, it seems
much easier for a beginner to learn this syntax, particularly
because it looks more like “standard” object oriented programming
(OOP.)” One person claimed that EzSkiROS would help beginners,
describing SkiROS2 as “it is quite a learning curve and needs
some courage to start learning SkiROS2 from the beginning
autonomously.”

In summary, the results of the user evaluation survey indicate
a positive perception of EzSkiROS in terms of readability and
writability. Most respondents found EzSkiROS to be easy to
read and understand, with only one exception. In addition,
respondents found EzSkiROS’s early error checking to be
particularly useful in detecting and resolving errors in a timely
manner. This suggests that the users perceived EzSkiROS as an
effective tool.

6 Case study II: verifiable construction
of a behavior tree in skill
implementation

In the second case study, we examined the utility of our
design patterns by extending EzSkiROS to add Early Dynamic
Checking to the implementation of compound skills. Compound
Skill Implementation uses behavior trees to efficiently handle
decision-making processes, task execution, and error recovery.
Our design methodology involved identifying the requirements for
constructing BTs by examining their specifications. To understand
common challenges, we analyzed GitHub issues encountered by
developers when writing BTs in SkiROS2. This analysis included
a systematic search for specific keywords such as “Behavior
Tree,” “Remaps,” and “Skill Implementation,” informed by insights
from senior Ph.D. students. Subsequently, we engaged in a
verification process with the developers to ensure the validity of the
identified issues.

We found that past mistakes in BT construction
involved mistyped skill names and parameter names (cf.
Listing 5), especially in parameter remapping. We additionally
identified the concern that the pre-conditions and post-
conditions of skills might be mismatched, which we explore
in Section 6.1.

Listing7. The definition of the object property “has A” in the SkiROS2 ontology.

As shown in our previous case study, we usedDomainLanguage
Mapping to identify mistyped names in skill implementations early.
Since the parameters to each skill implementation are defined in the
skill description that is being implemented, this mapping required
us to link each implementation to its corresponding description.
Existing SkiROS2 code relied on calls to a setDescription

() method to dynamically establish this relationship, as shown
in line 2 of Listing 5. In practice, each skill implementation has
exactly one skill description that it implements, meaning that
there is no need to dynamically set this property. Instead, this
relationship is closely related to the concepts of subtyping and
interface implementation. We thus applied Domain Language
Mapping to use Python’s syntax for inheritance as a device for
specifying the link from skill implementation to skill description
(as shown in Listing 8; line 1). This approach both shortened the
specification and allowed us to reliably identify the parameters
and conditions (pre-conditions, post-conditions, etc.,) for each skill
implementation.

Recall from the discussion shown in Section 4.1.2 how
behavior trees are constructed in the Skill Implementation phase.
Behavior trees were specified in the expand method where a list
of skills is passed to a skill() wrapper after initializing a
processor (lines 7–24). Each skill is defined with self.skill

(skilltype, label = “ ”, remap = .., specify

= ..), allowing for parameter remapping. While composing
skills in a behavior tree, the skills, their implementations, and
the parameter remappings were passed as string parameters.
For example, the BT specification for a “pick” skill in Listing 5
consists of a skill ApproachMovement.go_to_linear

as self.skill (“ApproachMovement”, “go_to_

linear”, remap = ’Target’:’Grasp-Pose’). There
are two problems with this notation that could lead to a runtime
error: 1) if we pass a string that does not match any available skill
descriptions or its implementations, and 2) incorrect remapping,
such as referencing non-existent parameters, can lead to errors.
Remapping is critical as it redirects parameters from one skill to
another, ensuring proper data flow.

To prevent unexpected behavior at runtime, it is vital to
detect and report such errors early. To address these issues,
we use Domain Language Mapping to expose skill descriptions,
implementations, and their parameters as Python objects and passed
as identifiers (as shown in line 10 of Listing 8) that allow us to
use Python’s name analysis to locate skills with correct parameters
(to remap to) and to find typos in those identifiers. Listing 8
shows how “pick” skill parameters are passed to the expandBT
method and accessed directly as params.ApproachPose. This
approach simplifies parameter remapping, ensuring accuracy and
cohesiveness in skill execution.
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6.1 Need for static pre-/post-condition
matching in SkiROS2

As mentioned in Sections 4, 5, pre- and post-conditions in
a BT implementation of a compound skill ensure the correct
execution of skills to complete a robot’s task. These conditions
are checked in SkiROS2 by the Skill Manager before starting and
parameterizing the skill. Although these conditions might seem
less critical in controlled or smaller settings, their importance
escalates as the complexity and scale of tasks grow. Poor quality
or incorrectly defined conditions can significantly limit the ability
of SkiROS2 to scale and handle complex, dynamic tasks efficiently.
If we do not use a planner, manually creating compound skills or
adjusting existing compounds without thorough checks can lead
to mismatches between expected and actual skill behaviors. Static
checking of pre-/post-conditions becomes essential to identify and
correct these errors early in the development cycle, preventing
potential failures during execution. To verify this requirement, we
randomly selected five SkiROS2 skills written by developers to
understand the prevalence of errors. Among those five skills, four
of them failed the following basic checks:

• For skills in a serial or serialstar processors = serial (A,

B, C), the pre-condition of “s” must entail the pre-condition
of “A,” and the aggregate post-conditions of “A” must entail the
pre-condition of “B” and so on.
• For skills in a selector or selectorstar processor s =

selector (A, B, C), the pre-condition of “s” must
entail the conjunction of the pre-conditions of “A,” “B,” and “C.”
Post-conditions of “s” can be conservatively checked as any of
the children can lead to success without a predetermined order.
• For parallel skills, all children must succeed, with specific

differences in handling the completion and order. This requires
that no post-condition of one skill may invalidate the pre-
conditionofanotherduetothesimultaneousnatureofexecution.

This evidence points to a common oversight in defining these
conditions carefully and makes it important to have robust tooling
to ensure that pre- and post-conditions are correctly matched and
implemented. To address these challenges, we plan to create a
comprehensive mapping and verification system in the future. This

Listing8. The EzSkiROS representation of the skill implementation is shown in Listing 5. Here, the inheritance from Pick.SkillBaselinks the pick
skill description shown in Listing 6to its implementation.

systemwouldtrackallpre-andpost-conditions,managedependencies
and changes, handle remapping accurately, and ensure that all
conditions are consistent and verifiable at each step of the skill
execution. It would be beneficial to use the design pattern Source
Provenance Tracking to blame the exact skill whose post-condition
did not match the expected state, which will make the debugging of
behavior trees easier thanbefore. Itwould likely involve a combination
of static analysis tools, careful structuring of skill descriptions, and
possibly enhancements to the SkiROS2 framework to support more
robust condition checking and error reporting.

7 Overall evaluation of the extended
EzSkiROS

Our evaluation of the extension of EzSkiROS (as mentioned
in case study II) is primarily based on an in-depth review
provided by an experienced SkiROS2 developer and maintainer
who has used the tool for transforming the old SkiROS2 code into
EzSkiROS. We requested developer feedback on various aspects
of EzSkiROS, including its strengths and weaknesses, the impact
on code readability and writability, the ease of code translation,
the comprehensibility of errors encountered, and any general
observations or suggestions they may have. The user’s experience
offers valuable insights into the strengths, weaknesses, and overall
impact of EzSkiROS on skill description development in robotics.

Strengths and Weaknesses: The developer highlighted several
key strengths of EzSkiROS.

• Early detection of misuse: EzSkiROS enables the detection
of misuse in the world model before the skills are utilized,
enhancing the correctness of the code.

• Validation of naming in conditions: The tool validates naming
in pre-conditions and post-conditions, ensuring consistency
and correctness in element types and names.

• Improved error messaging: Compared to traditional SkiROS2,
EzSkiROS provides clearer and more concise error messages.

• Readability: There is a significant improvement in the
readability of skill descriptions and skill implementations of
both compound and primitive skills.
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However, the developer also noted a primary weakness.

• Developer productivity: Despite the aforementioned strengths,
the developer expects that EzSkiROS will not provide
substantial productivity benefits. The developer attributes this
to the dynamic nature of most checks and the fact that world
model errors abort Python execution, leading to one error being
reported at a time.

Impact on Code Quality: The developer review suggests that
EzSkiROS positively impacts the code quality in several ways:

• Correctness: By enforcing element types on parameters and
consistent naming, the correctness of the code is improved.

• Readability and intuitiveness: The conciseness and clarity in pre-
andpost-conditionsmake thecodeeasier to readandunderstand.

• Clarity in skill dependencies: The dependencies between Skill
Description and SkillBase (Skill Implementation) of a skill are
more apparent in the code.

• Conciseness in writing behavior trees: Writing behavior trees for
compound skills have become more concise and less cluttered.

Translation Process: The developer reported that the translation
of existing skill descriptions to EzSkiROS to be straightforward.
The time required for translation depends on the number of skill
descriptions to be converted, but it can be automated.

Error Reporting and Understanding: The user affirmed that the
errors identified by EzSkiROS were sensible and contributed to a
better understanding of the issues in the skill descriptions.

General Feedback: The developer acknowledged EzSkiROS as a
significant step forward, particularly in moving from string-based
descriptions tomore natural and correct Python code.The reduction
in common errors due to the validation of parameter names and
world element relations was especially noted. For future work, the
developer suggested the following:

• Static analysis integration: Implementing static analysis to run
checks onmodules and skills independently, possibly integrated
with a linter, to further reduce bugs at an early stage.

• Code generation for enhanced development experience:
Utilizing code generation to enable features like autocompletion
and static checks during coding, particularly for the world
model, to improve the development experience.

The user review provides an insightful evaluation of EzSkiROS,
highlighting its strengths in improving code readability, correctness,
and error messaging. The contribution of EzSkiROS to reducing
common errors and improving the overall quality of skill
descriptions is evident. According to the reviewer, it falls short
in significantly enhancing developer productivity due to the fact
that we do dynamic checks at pre-launch and the user suggests static
analysis. It is important to note here that static check requires certain
information (ontology and robot configuration) to be available at
development time, which is not guaranteed. Modulo this caveat,
we see no fundamental barrier toward using the techniques that
we describe here for both pre-launch and static checks in practice,
using language server or development environment plugins.

8 Threats to validity

8.1 Internal validity

EzSkiROS was evaluated on the skills implemented by Ph.D.
students using SkiROS2 for research purposes. Consequently, there
may be undetected errors or issues in other skills that utilize
different or more extensive features of SkiROS2. Furthermore, the
user study included only a small number of participants, which
may not provide a comprehensive representation of all potential
SkiROS2 users. This limitation could affect the reliability and
generalizability of user feedback and reviews. For the initial in-
depth reviewof EzSkiROS, only one experienced SkiROS2developer
was interviewed, and we have not yet evaluated it with more users
of SkiROS2.

8.2 External validity

Although we expect that our design patterns can aid other
Python-based robotic software, we have not validated this.
Moreover, we have only validated these patterns for Python; it is an
open question whether they would be effective in other languages
such as Ruby or LISP.

9 Conclusion

In this paper, we present two analyses of different abstraction
levels of robotic software and how we can use DSL design patterns
to detect bugs at a pre-launch stage before runtime. Case study I
demonstrated the value of our design patterns by showing how they
help detect bugs in the high-level contracts between a variety of
robot capabilities and the robot’s worldmodel. Case study II expands
EzSkiROS by adapting the same techniques to detecting bugs in
lower-level implementation code; in our case that implementation
uses a behavior tree to integrate different robot capabilities.

In exploring the relationship between the two analyses, it is
important to ask the following: do they work separately, depend on
each other, or are they independent yetwork better together, creating
a stronger combined effect than each would alone? The study shows
that analysis of behavior trees (case study II) requires information
about the skill parameters from the higher-level descriptions to
check correct information being passed on between skills. Behavior
trees also need to access the pre-, post-, and hold-conditions from
the skill descriptions of the skill being implemented. On the other
hand, the higher-level analysis (case study I) is stand-alone but
can benefit from the BT sequencing information to suggest pre-
and post-conditions to the developer. Our work demonstrates how
embeddedDSLs can help robotics developers detect bugs early, even
when the analysis depends on data which are not available until run-
time.Our evaluationwith EzSkiROS further suggests that embedded
DSLs can achieve this goal while simultaneously increasing code
maintainability.

In our future work, we plan to collect some objective results
to further substantiate our efforts. We plan to make EzSkiROS
publicly available to SkiROS2 users so that people can write skills
and transform their old skills into EzSkiROS, and we can get some
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error reports and if people find the error reports helpful. We aim
to conduct an in-depth user study to explore how EzSkiROS assist
users in writing skill descriptions and detecting bugs in behavior
trees through pre- and post-condition matching. This study will
mainly focus on understanding the user experience with EzSkiROS,
particularly in terms of its usability and effectiveness in early bug
detection. A significant aspect of this study will be to extend
the possibility of the integration of the two analyses at different
abstraction levels and see how their combination influences the
bug detection process. We are particularly interested in whether
this integration simplifies the process of writing error-free skill
descriptions and how it impacts the overall development workflow.
By analyzing the data collected from this study, we expect to gain
valuable insights into the practical applications and limitations
of EzSkiROS. This will not only help us in refining the tool but
also contribute to the broader understanding of skill programming
in robotics.
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