THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

From Chance to Choice: Strategies to Attaining
Resilience in Cyber-Physical Systems

RI1cARDO DiNIZz CALDAS

Division of Interaction Design and Software Engineering
Department of Computer Science & Engineering
Chalmers University of Technology | University of Gothenburg
Gothenburg, Sweden, 2024

From Chance to Choice: Strategies to Attaining Resilience in Cyber-
Physical Systems

RicARDO DiNIZ CALDAS

Copyright ©2024 Ricardo Diniz Caldas
except where otherwise stated.
All rights reserved.

ISBN 978-91-8103-133-1
Doktorsavhandlingar vid Chalmers tekniska hogskola, Ny serie nr 5591.
ISSN 0346-718X

Division of Interaction Design and Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using IXTEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2024.

ii

“Tenho o privilégio de nao saber quase tudo,
e isso explica
o resto.”

Manoel de Barros

iv

Abstract

Background: Autonomy is a key attribute of cyber-physical systems engi-
neered to achieve human-machine coexistence and collaboration toward human-
centered goals. To be trusted, autonomous systems must operate resiliently, yet
designing and verifying resilient behavior remains an open challenge. Resilient
cyber-physical systems should avoid, withstand, recover from, and adapt to
adversities arising from computational, network, or environmental disruptions.
Wearable biosensors are a prime example of cyber-physical systems that must
operate resiliently. Such a healthcare monitoring system could fail during a
network outage or erroneous sensor data, endangering lives. A resilient health-
care monitoring system, with redundant paths and adaptive capacity, ensures
continuous monitoring and timely alerts despite disruptions.

Objective: This thesis aims to equip developers and quality assurance
teams with strategies for attaining resilience in cyber-physical systems, ensuring
that resilience is engineered rather than attained by coincidence. Attaining
resilience in cyber-physical systems entails justified adaptation to overcome un-
known stimuli, ever-changing objectives, and deprecated components. Software
as a tool for self-management is crucial for dealing with uncertainty. Achieving
resilience is challenging since unexpected effects may emerge during execution,
requiring runtime decision-making rather than design time.

Method: The strategies are rooted in publications in software engineer-
ing, self-managed and adaptive systems, robotics, and transportation. They
encompass quantitative and qualitative research that follows a design science
research methodology.

Results: The thesis introduces seven strategies for attaining resilience,
including: (i) best practices for runtime assessment, (ii) tools to manage
interactions among diverse and smart agents, (iii) methods for uncertainty
mitigation at the code level, runtime adaptation, and explanation of property
violations, and (iv) exemplars that serve as models to advance resilience
research. Our results demonstrate that resilience is achieved through systematic
design and runtime decision-making, ensuring that systems consistently meet
operational goals.

Conclusion: This study advocates for resilience as a strategic goal, high-
lighting its importance as a foundational discipline within software engineering
for cyber-physical systems. The findings benefit both researchers and practition-
ers, emphasizing resilience engineering as essential for the future of autonomous
systems.

Keywords

Resilience Attainment, Strategies, Cyber-Physical Systems, Software Engineer-
ing, Self-Adaptation, Uncertainty

Acknowledgment

The work presented in this thesis results from years of dedication, sustained
effort, and the unwavering support of many individuals and institutions. With-
out the guidance of my mentors, the encouragement of friends and family, and
financial support, this journey would not have been possible.

I would like to extend my deepest appreciation to my supervisors, Patrizio
Pelliccione, Thorsten Berger, and Daniel Striiber. Your insights and mentorship
have been invaluable, shaping the research and vision of this thesis. Even
more importantly, your tutoring over these five years has been instrumental
in developing my research abilities, and for this, I am eternally grateful. My
sincere thanks also go to my examiner, Gerardo Schneider, for his constructive
feedback, which significantly enhanced the quality of my work. I am also
profoundly grateful to Genaina Rodrigues for her inspiring contributions to my
research growth. I also extend my gratitude to Camila who attentively helped
me to untangle the knots and navigate with more serenity.

To everyone I've met over the past five years who helped make Gothenburg
feel like home, thank you. To the friends I met through Chalmers—Razan,
Krishna, Bea, Sofia, Malsha, Wardah, Cristy, Afonso, Teodor, Hamdy, Mazen,
Ranim, Amna, Habib, Tayssir, and Sabina—and to the entire IDSE division, I
am deeply grateful for the supportive and memorable environment you created.
T also want to thank the friends I met during my research visit to Italy—Rickson,
Tony, Eva, Matteo, Tiziano, and Chris—for their warm hospitality. Additionally,
I am grateful to friends whose paths crossed mine beyond academia—Zabou,
Anton, Kristina, Natasa, Juan, Jelena, Giovanni, and with special regard to
Saulo and Gabriel Moisés. Finally, my heartfelt gratitude goes to those across
the ocean, whose love and encouragement sustained me in times of saudade,
my parents, Ricardo and Léa, my siblings, Gabriela and Leonardo, my friends,
and, last but not least, my partner, best friend, and beloved, Amanda.

Finally, I am grateful to WASP, my financial supporter, for enabling this
work and providing opportunities to connect with researchers committed to
advancing knowledge and making a positive impact. This research is financially
supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP), funded by the Knut and Alice Wallenberg Foundation.

vii

List of Publications

This thesis is based on the following publications:

[A] R. Caldas, J. A. P. Garcfa , M. Schiopu , P. Pelliccione, G. Rodrigues, T. Berger,
“Runtime Verification and Field-based Testing for ROS-based Robotic Sys-
tems” Trans. Softw. Eng. (TSE) 50(10): 2544 - 2567, IEEE, 2024. DOI:
10.1109/TSE.2024.3444697.

[B] G. S. Rodrigues, R. Caldas, G. Araujo, V. de Moraes, G. Rodrigues, P. Pellic-
cione “An Architecture for Mission Coordination of Heterogeneous Robots”J.
Syst.Softw.(JSS) 191:111368 (2022), ACM, 2022. DOI:10.1016/j.jss.2022.111363

[C] R. Queiroz, D. Sharma, R. Caldas, K. Czarnecki, S. Garcfa, T. Berger,
P. Pelliccione “A Driver-Vehicle Model for ADS Scenario-based Testing”
Trans. on Intell. Transp. Syst. (ITS) 25(8): 8641-8654, IEEE, 2024. DOI:
10.1109/TITS.2024.3373531

[D] R. Caldas, A. Rodrigues, E. B. Gil, G. N. Rodrigues, T. N. Vogel, P. Pellic-
cione “A Hybrid Approach Combining Control Theory and Al for Engineering
Self-Adaptive Systems” Proceedings of the 15th Intl. Symp. on Softw. Eng.
for Adapt. and Self-Managing Syst. (SEAMS), IEEE/ACM, 2020. DOI:
10.1145/3387939.3391595

[E] M. Rizwan, C. Reichenbach, R. Caldas, M. Mayr, V. Krueger, “EzSkiROS:
Enhancing Robot Skill Composition with Embedded DSL for Early Error
Detection” Frontiers in Robotics and AI (RAI), Frontiers, 2024. DOL:
10.3389/frobt.2024.1363443

[F] J. P. C. de Araujo, G. N. Rodrigues, M. Carwehl, T. Vogel, L. Grunske,
R. Caldas, P. Pelliccione, “Explainability for Property Violations in Cyber-
Physical Systems: An Immune-Inspired Approach” IEEE Softw. 41(5): 43-51,
IEEE, 2024. DOI: 10.1109/MS.2024.3387289

[G] G. Araujo, R. Caldas, F. Formica, G. Rodrigues, P. Pelliccione, C. Menghi
“Search-based Trace Diagnostic” (submitted).

[H] E. B. Gil, R. Caldas, A. Rodrigues, G. L. G. da Silva, G. N. Rodrigues,
P. Pelliccione “Body Sensor Network: A Self-Adaptive System Exemplar in
the Healthcare Domain” Proceedings of the 16th Intl. Symp. on Softw. Eng.
for Adapt. and Self-Managing Syst. (SEAMS). IEEE/ACM, 2021. DOI:
10.1109/SEAMS51251.2021.00037

[I] M. Askarpour, C. Tsigkanos, C. Menghi, R. Calinescu, P. Pelliccione, S. Garcia,
R. Caldas, T. J. von Oertzen, M. Wimmer, L. Berardinelli, M. Rossi, M. M. Bersani,
G. S. Rodrigues “RoboMAX: Robotic Mission Adaptation eXemplars” Pro-
ceedings of the 16th Intl. Symp. on Softw. Eng. for Adapt. and Self-Managing
Syst. (SEAMS), IEEE/ACM, 2021. DOI: 10.1109/SEAMS51251.2021.00040

ix

Other publications

The following publications are related to my PhD studies or are currently
in submission/under revision. They are not appended to this thesis due to
their contents overlapping those of appended publications or their content not
related to the thesis.

[a] Silva, S., Caldas, R., Pelliccione, P., Bertolino, A. “Different Approaches
for Testing Body Sensor Network Applications.” Journal of Systems and
Software (JSS), ACM, (submitted and currently under revision)

[b] M. Rizwan, R. Caldas, C. Reichenbach, M. Mayr, “EzSkiROS: A Case
Study on Embedded Robotics DSLs to Catch Bugs Early” Proceedings
of the 5th Intl. Workshop on Robotics Software Engineering (RoSE),
IEEE/ACM, 2023. DOI: 10.1109/RoSE59155.2023.00014.

[c] R. Caldas, R. Ghzouli, A. V. Papadopoulos, P. Pelliccione, D. Weyns,
T. Berger “Towards Mapping Control Theory and Software Engineering
Properties using Specification Patterns” 2nd International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE,
2021. DOI: 10.1109/ACS0OS-C52956.2021.00067.

[d] G.F. Solano, R. Caldas, G. Rodrigues, T. Vogel, P. Pelliccione. “Taming
uncertainty in the assurance process of self-adaptive systems: a goal-
oriented approach.” In Proceedings of the 14th Intl. Symp. on Softw.
Eng. for Adapt. and Self-Managing Syst. (SEAMS), IEEE, 2019. DOI:
10.1109/SEAMS.2019.00020

[e] A. Rodrigues R. Caldas, G. Rodrigues, T. Vogel, and P. Pelliccione.
“A learning approach to enhance assurances for real-time self-adaptive
systems.” In Proceedings of the 13th Intl. Conference on Softw. FEng.
for Adapt. and Self-Managing Syst. (SEAMS), IEEE/ACM, 2018. DOI:
10.1145/8194153.3194147

Research Contribution

This thesis is a composite of 9 appended publications. All publications report
on work performed in coordination between more than three researchers in
various capacities. This section, thus, precisely describes the thesis author’s
contributions to the appended publications. The contributions are classified
using the Contributor Roles Taxonomy (CRediT)*.

Overall, the thesis author was leading in Papers A, D, and H. In the other
papers, B, C, E, F, G, and I, he contributed to various research activities with
a consistent focus on the empirical assessment of the work. Next, we describe
the author’s contributions to papers A-1.

e Paper A: Conceptualization, Methodology, Literature Review, Data
Curation, Validation, Visualization, Writing — Original Draft.

o Paper B: Conceptualization (with G. S. Rodrigues), Experimental De-
sign, Data Preparation, Visualization, Results Reporting.

e Paper C: Design Artifact Implementation, Experiment Design, Data
Collection, Visualization, Writing — Review & Editing.

e Paper D: Conceptualization , Artifact Implementation, Experimental
Design, Data Collection, Visualization, Writing — Original Draft.

e Paper E: Conceptualization (with M. Rizwan), Pair Programming,
Experimental Planning, Data Analysis, Visualization, Writing — Related
Work, Review & Editing.

e Paper F: Algorithm Discussion, Writing — Manuscript Review.

o Paper G: Conceptualization (with G. Araujo), Solution Design, Technol-
ogy Prototyping, Experiment Design, Data Analysis, Writing — Related
Work, Review & Editing.

e Paper H: Conceptualization, Artifact Implementation, Visualization,
Writing — Original Draft, Packaging.

e Paper I:. Specifications Design, Artifact Documentation, Writing —
Manuscript Review.

Thttps://casrai.org/credit/

https://casrai.org/credit/

xii

Contents

Abstract

Acknowledgement

List of Publications

Personal Contribution

1

Introduction

1.1 Problem Formulation
1.2 Research Objective and Research Questions
1.3 Methodology
1.4 Brief Outline of Contributions
1.5 Thesis Organization

Terms and Related Work

2.1
2.2
2.3

Terminology L
Means to Attain Resilience
Related Terms and Definitions

Summary and Discussion

3.1 Summary of Original Work
3.2 Discussion and Research Impact
3.3 Threats to Validity L.
3.4 Conclusions and Future Work
Paper A

4.1 Imtroduction
4.2 Background
4.3 Methodology
4.4 Guidelineso
4.5 Validation
4.6 Discussion e
4.7 Threats to Validity L.
4.8 Related Worko oo
4.9 Conclusion

vii

ix

xi

© e

12
14

15
15
22
27

33
33
43
46
48

xiv CONTENTS
5 Paper B 87
5.1 Introduction. 88
5.2 Related Worko o 89
5.3 Running example and background 91
5.4 The MissionControl Approach 94
5.5 Implementation L 106
5,6 Evaluation. 108
5.7 Final Remarks and Future Works 123
6 Paper C 125
6.1 Introduction. 126
6.2 Background and Related Work 127
6.3 The SDV Model 130
6.4 Model Implementation 0L 135
6.5 Evaluation. 136
6.6 Conclusion e 146
7 Paper D 149
7.1 Introduction 150
7.2 Backgroundo 151
7.3 A Hybrid Approach Combining Control Theory and AT 154
7.4 Experimental Results. 162
7.5 Related Worko 167
7.6 Conclusion and Future Work 168
8 Paper E 169
8.1 Imtroduction 170
8.2 Related Worko 172
8.3 Embedding Robotics DSLs in Python 173
8.4 SkiROS2: An open source software for skill based robot execution183
8.5 Case Study I: Concise and Verifiable Robot Skill Interface . . . 189
8.6 Case Study II: Verifiable construction of a behavior tree in Skill
Implementation Lo oo 193
8.7 Overall Evaluation of the Extended EzSkiROS 196
8.8 Threats to validity 0. 197
8.9 Conclusion e 198
9 Paper F 199
9.1 Introduction. 200
9.2 The Body Sensor Network CPS 201
9.3 Our Immune-Inspired Methodology 202
9.4 Conclusion and Prospects 207
10 Paper G 209
10.1 Introductiono 210
10.2 Motivating Example 0oL 211
10.3 Search-based Trace-Diagnostic 214
10.4 Search-based Trace Diagnostic for HLS 216
10.5 Evaluation 223

10.6 Discussion and Threats to Validity 230

CONTENTS

XV

10.7 Related Work

10.8 Conclusion

11 Paper H
11.1 Introduction

11.2 SA-BSN Exemplar and Adaptation Overview
11.3 SA-BSN Implementation Details
11.4 Hands on the SA-BSN

11.5 Conclusion

12 Paper I
12.1 Introduction

12.2 Structure of RoboMAX Exemplars

12.3 Methodology
12.4 Dataset . .

12.5 Meta-Analysis

12.6 Conclusion

Bibliography

232
233

235
236
237
239
242
247

249
250
251
254
256
257
260

261

Xvi CONTENTS

Chapter 1

Introduction

Resilience is a core principle to engineering human-centric computing systems.
The research presented in this thesis sheds light on resilience within cyber-
physical systems. It offers strategies to equip researchers and practitioners with
the knowledge, methods, and tools necessary for advancing computing systems
for humanity. In this chapter, we describe the problem of attaining resilience in
cyber-physical systems, summarize our studies to tackle the problem and frame
our results in the context of the research questions, casting our contributions in
the format of strategies.

1.1 Problem Formulation

Cyber-physical systems stand at the intersection of the digital and physical
worlds, increasingly supporting individuals and groups in their social and
professional endeavors. In contrast to traditional embedded systems, cyber-
physical systems are often designed as networks of interactive and dynamic
elements [1], which include healthcare systems, mobility systems, process control
systems, and collective robotics. Such applications directly reflect strategic
economic and social development areas, i.e., transport, energy, well-being
industry, and infrastructure, and thus, highlight the fundamental importance
of rigorous engineering of cyber-physical systems.

Definition — Cyber-Physical Systems

Cyber-physical systems are “engineered systems built from, and that

depends upon, the seamless integration of computational algorithms and
physical components” [2]

Wearable biosensors are a prime example of cyber-physical systems since
they are software-intensive systems deeply intertwined with the physiological
factors as definitive features of living beings. Such technology has revolutionized
personal health management by enabling continuous monitoring of vital signs,
early detection of diseases, and personalized treatment plans, improving health
outcomes, increasing life expectancy, and reducing healthcare costs [3,4].

2 CHAPTER 1. INTRODUCTION

The problem of integrating computational algorithms and physical compo-
nents is not new. It was pioneered by Turing A. M.s discourse about abstract
and physical machines [5] and Shannon C. E’s mathematical models of physical
systems as the semantics of messages in a generic communication system [6].
The underpinning of such development led to the advent of digital computers
in the 20? century and further underwent a drastic transformation with the
latest advances in sensors, actuators, and processing units [7]. In the early
2000s, investigations to tackle the integration between computing and physical
components ultimately resulted in the birth and rise of cyber-physical sys-
tems [8]. However, due to a lack of trust, cyber-physical systems struggle to be
integrated into everyday environments such as homes, hospitals, and hotels.

As a catalyst for trustworthy cyber-physical systems development, the
European roadmap and strategy for cyber-physical systems (CyPhERS) lists
five technological challenges to engineering cyber-physical systems [9].

« Interoperability [10]: Integrating components from different suppliers is
especially challenging in the presence of legacy parts and when aiming at
the continuous update of the cyber-physical system [11,12].

e Autonomy: The large scale and complexity of cyber-physical systems
amplify the challenge of increasing the level of automatic behavior in the
individual components participating in the system and their collabora-
tion [13].

o Privacy: When there is the need to collect and process data along the cross-
organization chains of services, data become available to participating
parties of these services, and this exacerbates issues on the security and
privacy of sensitive information [14,15].

e Dependability: Faults, and, in general, changes, threaten the integrity of
the services provided by cyber-physical systems and might compromise
their persistence [16].

e Uncertainty: Dealing with imprecise or incomplete information and
seamlessly operating in the face of the unknown [17] threaten confidence
in the provided service [18].

Autonomy, dependability, and uncertainty mitigation underscore the critical
role of persistent service delivery in the face of change, particularly during
execution, which are hallmarks of resilient systems [19]. In this context,
resilience emerges as a fundamental trait of cyber-physical systems, consisting
of the core technological imperative for developing trustworthy next-generation
systems [20]. Building upon the requirements outlined by CyPhERS, we
postulate that resilience is indispensable for the successful deployment and
practical utility of cyber-physical systems. Nevertheless, systematic approaches
to attaining resilience remain under-explored, especially within computer science
and engineering.

Whether resilience is a desired property is out of the question; as a matter
of fact, resilience is a desirable property for many kinds of systems of all natures
and fields, for example, material sciences [21], ecological systems [22] or social
systems [23,24].

1.1. PROBLEM FORMULATION 3

In the most general sense, system efficiency is the ability to produce some-
thing with minimal effort and resources, and resiliency-driven approaches tend
to balance short-term efficiency with longer-term effectiveness [25]. Computer
science is prone to the efficiency-driven paradigm. The field of algorithms, for
example, focuses almost solely on ensuring efficiency and minimizing computa-
tional cost [26,27]. While research in software engineering focuses on producing
tools to support rapid coding and verification [28-31] and cost-effective teaming
to efficient software development processes [32-34].

We, though, question the aim of efficiency-driven approaches in opposition
to leveraging a balance between resilience and short-term efficiency in algo-
rithms, development processes, testing pipelines, and requirements elicitation
techniques [35,36]. As P.G. Neumann insightfully notes, “there is much to be
gained from farsighted thinking that also enables short-term achievements.” [37],
underscoring the value of engineering with a perspective that extends beyond
immediate gains. Ackley D., for instance, builds an argument for engineering
algorithms with focus robustness by showcasing that the praised quicksort,
while efficient, proves less reliable than bubblesort under system faults [38,39].
Resiliency-driven software engineering has been the particular focus of several
research groups: Andersson J. and Mirandola R. et al., for instance, developed
a conceptual framework that formally defines resilience as a property of com-
puting systems [40,41]. In complement, Calinescu R. developed probabilistic
tools to collect assurances on correctness towards resilient operation [42,43].
Moreover, Weyns D. leverages resilience in the context of architecture for
self-adaptation and self-evolution [44]. Finally, CAmara et al. focuses on
probabilistic model checking for resilience measures evaluation [45-47].

Resiliency-driven engineering in computer science and engineering is not
yet a reality for practitioners [48]. To leap from efficiency-driven to resiliency-
driven engineering, developers and quality assurance teams first need to better
understand strategies for using runtime data or runtime conditions in the
systems’ development and quality assurance. Second, they need to be able
to apply known techniques to attain resilience in systems with heterogeneous
components that interact with other autonomous components of the system or
the environment. Third, they must be equipped with techniques to acknowledge
and tame uncertainty at the code level, during runtime, and after execution.
In summary, this thesis aims at equipping developers and quality assurance
teams with strategies for attaining resilience in cyber-physical systems.

Thesis Statement

Resilience should not be attained by coincidence; it should be by strategy.

More specifically, within cyber-physical systems, attaining resilience in-
volves rethinking the system’s design with a focus on dynamic environments.
Cyber-physical systems are subject to interactions with (human) users and
operators [49, 50], changing needs [51], and diverse and smart components
joining and leaving the system [12]. The software controller must automatically
manage its dynamicity and uncertainty, using, for instance, self-adaptation to
continuously adequate the system behavior to the specification goals [52-54].
Accordingly, the cyber-physical system control software must also ensure that
the system requirements are continuously satisfied [55, 56].

4 CHAPTER 1. INTRODUCTION

1.2 Research Objective and Research Questions

This research addresses key challenges in attaining resilience in cyber-physical
systems. Our approach follows a problem-solution model, addressing the
overarching objective through specific research questions (RQs). We define four
questions (RQ1-RQ4) to guide this work.

RQ1 explores runtime assessment for resilience in cyber-physical systems.
Next, RQ2 and RQ3 focus on knowledge from the literature to tackle system
construction challenges. Specifically, RQ2 examines the engineering of cyber-
physical systems with diverse and smart components, while RQ3 investigates
resilience under uncertain conditions. Lastly, RQ4 considers the role of research
artifacts in supporting future work from a community perspective.

1.2.1 Current Practices, Methods, and Tools

Cyber-physical systems operate in real-world environments that introduce
unpredictable errors, making it unrealistic to ensure their correct behavior
solely at design time [57,58]. These systems interact with and change their
environments, encountering uncertainty and variability that challenge accurate
modeling [59]. Assuring such real-world scenarios, especially in fields like service
robotics, remains one of the most complex tasks for software engineers [60].
Assurance often requires runtime assessment to capture actual operational data
and conditions.

Runtime assessment methods, such as runtime monitoring [61-63] and
field-based testing [64,65], improve observability and control, helping identify
changes in the system or environment. However, a gap exists between research
outputs and practitioners’ needs, particularly in terms of using these techniques
to support resilience in cyber-physical systems.

Research Question 1 (RQ1)

How are the current practices, methods, and tools enabling runtime
assessment to attain resilience in cyber-physical systems?

RQ1 aims to identify resources that guide software developers in using
runtime assessment to enhance resilience in cyber-physical systems. To address
this, we analyzed the scientific literature and mined software repositories,
developing a list of best practices and recommendations to support developers
and QA teams in conducting field-based testing and runtime verification.”

1.2.2 Diverse and Smart Cyber-Physical Systems

In cyber-physical systems composed of diverse and smart components, achieving
resilience is a complex challenge due to the systems’ inherent heterogeneity and
distributed nature [66]. These systems are made up of nodes that often differ
in hardware capabilities, software configurations, or communication protocols.
Ensuring resilience across such varied elements requires approaches that can
handle these differences while maintaining system performance.

1.2. RESEARCH OBJECTIVE AND RESEARCH QUESTIONS 5

Research Question 2 (RQ2)

How to attain resilience in cyber-physical systems with diverse and
smart agents?

RQ2 seeks to identify strategies for attaining resilience in cyber-physical,
particularly those with diverse and smart components. To address this, we ex-
amine resilience from two perspectives: (RQ2.1) resilience strategies targeting
the design stage, ensuring that systems operate robustly despite varied compo-
nent characteristics, and (RQ2.2) quality assurance methods for validating
resilience in environments with smart agents.

During the design phase, developers can embed resilience strategies to proac-
tively detect emergent faults, prevent system degradation, and enable failure
recovery. Strategies such as redundancy, isolation, and encapsulation [67] have
proven effective for robust distributed systems, where robustness serves as a
specific form of resilience!. Among these, redundancy has shown particularly
strong results [68], though it requires complex coordination and consensus
among system agents to ensure uninterrupted and correct service delivery [69].
However, coordinating diverse agents in cyber-physical systems is especially
challenging due to the varied capabilities and operational constraints of each
component [70,71]. For example, in a team of heterogeneous robots conducting
a search-and-rescue mission, each robot’s specific capabilities must be consid-
ered when tasks are assigned or reallocated. This reallocation must be adaptive
yet scalable, as task coordination across diverse agents can significantly impact
the system’s long-term performance and resilience. Ultimately, principles for au-
tomating the coordination of heterogeneous agents with redundant capabilities
at the design level are not yet fully established.

Research Question 2.1 (RQ2.1)

How to attain resilience in cyber-physical systems containing diverse
agents with redundant capabilities by design?

RQ2.1 explores how engineers can incorporate design strategies that enable
resilience in cyber-physical systems composed of heterogeneous agents requiring
coordination. Specifically, to address RQ2.1, we investigate approaches for
automated task allocation within cyber-physical systems, where a high-level
declarative specification drives the assignment of tasks to agents with distinct
but overlapping capabilities, ensuring coordinated behavior.

While coordination in multi-agent cyber-physical systems often assumes a
shared goal, agents may operate with distinct, sometimes conflicting objectives.
To attain resilience, these systems must maintain correct behavior even when
interacting with other smart, autonomous agents displaying varied behaviors.
Building assurance cases for such interactions requires simulating multi-agent
environments in controlled testing setups [72,73]. In complex scenarios, quality
assurance teams must integrate dynamic agents, sometimes with adversarial
behavior, alongside environmental elements like static (e.g., traffic signs) and
dynamic (e.g., vehicles, pedestrians) objects [74, 75].

!Robustness is a form of resilience (c.f. Section 2.3.3)

6 CHAPTER 1. INTRODUCTION

Realistically modeling the behavior of these agents to the level needed for
effective testing is challenging and often does not scale well. To address this,
quality assurance teams typically rely on existing models of dynamic elements,
either data-driven [76,77] or algebraic models [78,79]. However, it remains
unclear how to specify these test scenarios effectively at scale for applications
involving diverse agents and interactions.

Research Question 2.2 (RQ2.2)

How to attain resilience in cyber-physical systems by specifying test
scenarios that reflect complex interactions between smart agents?

RQ2.2 investigates methods for specifying dynamic test scenarios to validate
the cyber-physical systems. To address RQ2.2, we developed a model using
reactive behavior trees that enable scalable and flexible composition of agent
behaviors for high reusability.

1.2.3 Cyber-Physical Systems Prone to Uncertainty

Attaining resilience in cyber-physical systems necessitates implementing strate-
gies that effectively counteract operational changes’ disruptive impacts. These
systems must be designed to function reliably despite unpredictable interactions
with their environment and other agents [80,81]. One effective approach to
accommodating change in the design and testing phases is to model these
changes as uncertainty. Indeed, uncertainty has significantly contributed to
failures in cyber-physical systems [82,83]. To build resilient cyber-physical
systems, engineering teams require tools that enable them to manage uncer-
tainty and facilitate adaptability. Various studies have explored methods to
understand [84,85] and mitigate [17,86,87] uncertainty. However, it remains
an open question how these methods can effectively equip engineers to attain
resilience in cyber-physical systems.

Research Question 3 (RQ3)

How to attain resilience in cyber-physical systems prone to uncertainty?

RQ3 examines the implications of uncertainty within cyber-physical sys-
tems and explores pathways to attain resilience in the face of uncertainty
and the complexity it introduces. Our investigation of RQ3 encompasses
three dimensions. First, we assess how to manage uncertainty through de-
sign strategies, either by embedding environmental assumptions into in-code
decision-making (RQ3.1) or by employing runtime reconfiguration to address
uncertainty dynamically (RQ3.2). Furthermore, we consider how uncertainty
can be mitigated during quality assurance by using automated tools that learn
from faults to enhance system recovery capabilities (RQ3.3).

Taming uncertainty during design involves equipping cyber-physical systems
with mechanisms to manage unpredictable scenarios as they unfold at runtime,
even when designers lack precise knowledge of what may happen. However,
waiting to address issues at runtime can lead to the awakening of silent bugs
that later escalate into system failures, often due to misaligned assumptions

1.2. RESEARCH OBJECTIVE AND RESEARCH QUESTIONS 7

made during the design phase. For instance, in robotic pick-and-place tasks, a
developer might assume that an object remains in the exact location where the
robot places it, overlooking possible environmental factors that could alter its
position. Such bugs could be mitigated by embedding relevant environmental
assumptions directly into the system’s mission code, such as specifying the
expected locations of static objects involved in tasks. Bridging the gap between
the development environment and real-world conditions can enhance system
resilience [88,89]. Nonetheless, it remains unclear how to embed these environ-
mental assumptions into the programming language developers use without
adding unnecessary complexity or extra modeling layers.

Research Question 3.1 (RQ3.1)

How to attain resilience in cyber-physical systems prone to uncertainty
through specification patterns that enable developers to embed environ-
mental assumptions directly in code?

RQ3.1 explores language constructs that facilitate the integration of envi-
ronmental assumptions directly into code during implementation. To answer
RQ3.1, we propose four specification patterns: domain language mapping, early
dynamic checking, symbolic tracing, and source provenance tracking. These
patterns support incorporating environmental assumptions at the software
level, helping developers catch errors early and enhance system resilience.

Self-adaptation is a fundamental strategy to manage runtime uncertainty,
enabling systems to adjust to unforeseen changes in their environment and
maintain correct service despite change [17,90]. Two primary approaches
guide self-adaptation in software design: architecture-based adaptation, which
employs Monitor-Analysis-Planning-Execution (MAPE) components to handle
adaptation autonomously [91,92], and control-based adaptation, rooted in
control theory to ensure stability and robustness through mathematically
grounded mechanisms [93]. Control-based adaptation is particularly promising,
as it offers robust, correct-by-design solutions that help sustain operations
under disturbances. However, traditional control methods may struggle to
adapt to unknown interactions that arise at runtime, underscoring the need for
continued refinement using field data.

Research Question 3.2 (RQ3.2)

How to effectively use field data in control-based self-adaptation to
attain resilience in cyber-physical systems prone to uncertainty?

RQ3.2 investigates the role of field data in adapting control-theoretic mech-
anisms to respond dynamically to runtime uncertainties. To address RQ3.2,
we propose a layered architecture integrating control theory with search-based
optimization algorithms, offering a flexible framework to inspire resilient cyber-
physical systems’ design.

Self-adaptive mechanisms can respond to runtime disruptions, but diagnos-
ing the root causes of failures, particularly in systems tightly coupled to the
physical environment, remains challenging. Automated change explanation has
become vital, aiming to identify and understand failure-inducing changes to

8 CHAPTER 1. INTRODUCTION

reduce recovery time. However, most existing methods depend on predefined
failure scenarios [94] or operate solely from execution traces, lacking a direct
link to system requirements [95,96]. This gap suggests the need for adaptable,
requirement-driven explanation methods that systematically trace runtime
faults to root causes.

Research Question 3.3 (RQ3.3)

How to systematically derive explanations for detected faults to attain
resilience in cyber-physical systems prone to uncertainty?

RQ3.3 investigates how information from system executions can be used
to explain faults systematically. By treating explanation as a search problem,
we aim to link property violations with execution traces, allowing developers
to pinpoint root causes, thus enabling resilience through dynamic, adaptive
fault understanding.

1.2.4 Resilience Exemplars

Research on resilience in computing systems has not kept pace with advance-
ments in other fields, also due to a lack of representative exemplars, i.e.,
challenge problems and solutions that enable testing and refinement of re-
silience attainment strategies. With the focus on self-adaptation, the SEAMS
community established a repository of exemplars?, providing accessible artifacts
for experimentation and evaluation. However, this repository lacks adequate
support for control-theoretic self-adaptation and multi-robot mission scenarios,
crucial for advancing resilience in cyber-physical systems characterized by
complex interactions between computational and physical elements. Exempli-
fying change is essential for achieving resilience, offering developers practical
examples of strategies applicable to real-world situations. Notable existing
exemplars, such as DeltaloT for the Internet of Things [97] and DARTSim
for unmanned air vehicle simulations [98], provide a foundation for assessing
resilience tactics. Addressing gaps with new exemplars helps to enhance the
repository and accelerate the development of resilient systems.

Research Question 4 (RQ4)

How to develop exemplars to advance research on resilience attainment
in cyber-physical systems?

RQ4 aims to identify and create exemplars that empower the research
community with concrete resources, thereby accelerating research in resilience
for cyber-physical systems. To contribute to this objective, we have developed
two exemplars for the SEAMS repository, designed to fill current gaps and
enable meaningful experimentation in resilience research.

2https://www.hpi.uni-potsdam.de/giese/public/selfadapt /exemplars/

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

1.3. METHODOLOGY 9

1.3 Methodology

This thesis aims to devise strategies to equip practitioners with methods, tools,
and techniques to attain resilience in cyber-physical systems. With this objec-
tive in mind, we have followed the design science methodology applied to such
research intentions, in which strategies are the design artifacts. Fundamentally,
design science is a problem-solving paradigm [99], seeking to deliver innovative
and useful ideas, practices, technical capabilities, and products. The paradigm
looks at research as a means to delivering relevant artifacts justified by knowl-
edge applied with rigor [100-102]. Design science leverages solution-seeking
research [103] in a suitable research framework to tackle our research goal.
Ultimately, the strategies are the research artifacts resulting from a systematic
design effort aiming at relevance, rigor, and novelty.

1.3.1 Devise Strategies with Design Science

The distinct nature of our research questions (RQ1-RQ4) requires different
types of studies within the design science approach. We use the design science
problem-solving framework [104] to identify the different studies followed in
this thesis. According to the framework, there are four individual knowledge-
constructing activities, namely descriptive study, solution wvalidation study,
solution design study, and problem solution pair study. Figure 1.1 describes
that we used descriptive study to answer to RQ1, problem-solving studies
to answer to RQ2 and RQ3, and solution design to answer RQ4. Next, we
elaborate on the nature of each research question and provide the reasoning
behind the choice of the research method to tackle them from the point-of-view
of the knowledge-constructing activities from design science. Especially for
RQ2 and RQ3, we provide only one example of how the Problem-Solution
pair constructs map to the study RQ3.2, although a similar reasoning applies
to all.

Problem domain Solution domain

"o B £0di 022 hoy == A

Problem Construct(s) Design Construct(s)
Characterization of Problem Construct(s! Design Construct(s; R bl —
? SEDEHheaRe Resilient operation Self-adaptation e-US:rti?asc?sen o
o state-of-the-practice N perat Control theor:
) despite uncertainty Field data
< g
= > c
° =3
=1 o
7] =]
O
2 @
TTTIETTTT S Nl $#E s &%
2 [
5 =}
[92)
o 8 g
o [a] o
= <
8 Problem Instance(s; Solution Instance(s)
— . i
o Practices and tools to Problemlnstance S| Solution Instance(s’ Problem-specific
runtime assessment Changing goals Control-based self- exemplars
Changing system adaptation with
- configurations search-based training —_—

Figure 1.1: Methodology description according to the problem-solution frame-
work for design science [104]

10 CHAPTER 1. INTRODUCTION

First, RQ1 investigates the scientific literature and software repositories
to attain resilience in cyber-physical systems, focusing on runtime assessment,
assuming that practices and tools may be extracted from public knowledge.
Therefore, to answer the question, the researchers must find and extract
instances of recurring artifacts from known published knowledge and reason
within a theoretical framework that best fits the study’s goal, i.e., runtime
assessment to attain resilience in cyber-physical systems, in the case of RQ1.
Consequently, the design science study that best answers RQ1 is a descriptive
study, as depicted in Figure 1.1. In short, descriptive studies develop an
understanding of a currently poorly understood phenomenon, e.g., attaining
resilience in cyber-physical systems. Such studies may reveal problems that
need to be addressed or practices or tools that could benefit practitioners
and researchers. Through synthesis, problems, practices, and tools elicited in
descriptive studies may turn into strategies (i.e., actionable items) to steer
research and practice toward the research goal.

Then, RQ2 and RQ3 investigate solutions to open problems. RQ2 asks
for means to attain resilience in a particular type of cyber-physical systems
that contain heterogeneous and smart agents. RQ3 asks for ways to attain
resilience in uncertain cyber-physical systems. Both problems are open and not
well defined, given the particularities of cyber-physical systems. For instance,
depicted in Figure 1.1, RQ3.1 investigates self-adaptation to attaining resilience
in cyber-physical systems in the face of uncertainty. The question departs
from uncertainties emerging from changing goals and system configurations
during runtime. It requires runtime mechanisms that carry the capacity of
self-adaptation, with mathematical rigor, and learning with data from the field.
Ultimately, the solution instance reflects the design constructs implemented
within an architecture on the language that can be exercised to gather empirical
evidence of its effectiveness. In conclusion, a problem-solution pair study is
the appropriate study to address RQ2 and RQ3. Problem solution pair
studies rely on identifying a problem instance, e.g., changing goals and system
configurations, and investigating it to devise a generalized problem formulation
(e.g., resilient operation despite uncertainty) that should match a proposed
solution composed of the design constructs (e.g., self-adaptation, control theory),
and materialized as a solution instance, (e.g., code integrated to the experiment
apparatus). The researchers rigorously validate the solution artifact by following
empirical methods, typically experimentation.

Finally, RQ4 asks for new exemplars for equipping researchers with concrete
support to developing new scientific studies, methods, and tools, resulting in
further and faster advancement of scientific knowledge for attaining resilience in
cyber-physical systems. This question assumes that providing novel exemplars
to the scientific community constitutes a solution to an overarching and well-
understood problem and that the lack of (re-)usable exemplars hinders the
evolution of and advancement of research in the field. Therefore, as depicted
in Figure 1.1, RQ4 requires a solution design study. Solution design studies
present new instances of a general solution to a well-established problem that
is the best fit to address RQ4. In this case, the design constructs abide by re-
usable scientific artifacts to replicate experiments, validate research proposals,
or compare to scientific artifacts, which can be concretely implemented as
specific exemplar artifacts to recurring problems.

1.3. METHODOLOGY 11

1.3.2 Data Collection Techniques

Various data collection techniques fulfill the studies in this thesis: focused
group, user study, systematic literature review, repository mining, case study,
and experimentation. Distinct study types ask for different data collection
methods. This section discusses the methods used in this thesis to navigate
the problem-solution framework from Fig. 1.1. A summary of data collection
techniques mapped to the studies is presented in Table 1.1.

Descriptive Study Problem Solution Pair Solution Design
Data Collection Technique (RQ1) (RQ2, RQ3) (RQ4)

Design Validation Design Validation Design Validation

Focused Group X

User Study X X
Systematic Literature Review X

Repository Mining X

Case Study X

Experimentation X X

Table 1.1: Summary and mapping of data collection techniques to studies to
answer RQ1-RQ4

Aiming at realizing a descriptive study that sheds light on the current
practices, methods, and tools to enable runtime assessment as a means to
attain resilience in cyber-physical systems, answering to RQ1, the researchers
should combine a systematic literature review [105] and artifact analysis through
repository mining. The systematic assessment of the scientific literature defines
the theoretical grounding that supports the characterization of such current
practices and tools. At the same time, the collection of repositories and code
analysis allows for the provision of concrete examples of how such theoretical
constructs are used in reality. Moreover, to collect confidence that the uncovered
practices are useful and applicable for developers, practitioners should validate
the resulting characterization of the practice. Qualitative studies, such as user
studies, are recommended to achieve such results.

Problem solution pair studies to answer RQ2 and RQ3 follow a protocol in
which the problem instance and problem constructs result from focused group
discussions mixed with lightweight literature reviews among the participant
researchers (i.e., paper authors) with varied experience in the fields of cyber-
physical systems and resilience attainment. Design constructs are synthesized to
answer the raised questions and implemented in a solution instance. To collect
evidence that the solution instance offers an answer to the research questions,
the main technique is experimentation [106] for attesting the effectiveness and
efficiency of the solution instance. At the same time, case study [107] may also
be used to attest qualitative properties of the solution instance that may not
be accurately measured, such as readability and maintainability.

The solution design study supporting the scientific community with reusable
scientific artifacts, answering RQ4, departs from defined design constructs that
can be gathered from the community and made available through surveys or
synthesized and validated through experimentation.

12 CHAPTER 1. INTRODUCTION

1.4 Brief Outline of Contributions

In the light of design science, our study devises seven strategies (STG1-STGT)
that respond to the research questions (RQ1-RQ4). Fig. 1.2 displays the
strategies within a model that assembles the contributions of this thesis in a
holistic perspective of the work, mapping research questions and publications.
The strategies are organized into design and quality assurance activities. The
design and development group engulfs STG2, STG4, and STG5; the quality
assurance group engulfs STG3 and STG6; STG1 and STGT7 pertain to both.

Paper A

[STG1]
- Learn about
DeS|gn Runtime
[STG2] Assessment [STG3]
Paper B Leverage Harness Paper C

Principled Behavior Reuse

Coalition I T on Test
. ractices, N
Formation Methods, Tools Scenarios
[RQ2.1] [RQ2.2]
Automated Complex
Coordination 7 Interactions
[RQ2] Diverse
[STG 4] Smart Agents
Search-based [RQ3.2]
. Field Data [STG6]
Control-theoretic Paper F
[RQ3] Uncertainty Automate
Adaptation . :
[RQ3.1] [RQ3.3] Diagnosis and
In-code e Explanation
Assumptions LUEIVES]

[RQ4] Exemplars

Paper D

[STGS5]
Embed Patterns Quality

to Catch Errors
Early [STG7] Assurance

Promote

Paper G

Resilience
Paper E Exemplars

Paper H

Paper |

Figure 1.2: Overview of the strategies (STG) and how they map publications
(Paper) and research questions (RQ)

Strategy 1 (STG1) — Learn Best Practices to Runtime Assessment

Resilient cyber-physical systems require decision-making during runtime. To
effectively adhere to changes, the system must benefit from awareness of the
system itself and its environment. Runtime assessment techniques enable
introspection and self-management of software-intensive systems. STG1 aims
to equip developers and quality assurance teams with practical knowledge of
runtime assessment of cyber-physical systems. Consequently, STG1 promotes
a set of 20 guidelines that equip practitioners with methods, tools, and the
current (and best) practices for employing runtime verification and field-based
testing to attain resilience in cyber-physical systems. STG1 is an outcome of
the descriptive study presented in Paper A as an answer to RQ1 and supports
attaining resilience from both design and quality assurance angles.

1.4. BRIEF OUTLINE OF CONTRIBUTIONS 13

Strategy 2 (STG2) — Leverage Integrability and Modifiability to
Multi-Agent Coalition Formation

Attaining resilience in cyber-physical systems with heterogeneous agents re-
quires coordinating agents with diverse and, at times, overlapping capabilities.
STG2 offers principles to guide developers in designing resilient cyber-physical
systems with multiple heterogeneous and intelligent agents, aiming to pre-
vent failures due to sub-optimal task allocation. STG2 centers on two design
principles: integrability and modifiability. Integrability enables agents to com-
bine capabilities effectively, supporting coalition formation and reducing task
allocation errors. Modifiability ensures agents can adapt coalition roles as con-
ditions change, enhancing system responsiveness. STG2 includes an example
of multi-robot architecture that applies these principles, demonstrating their
role in improving resilience. Developed from a problem-solution study in Paper
B, STG2 answers RQ2.1 by offering developers guidance for building robust
cyber-physical systems.

Strategy 3 (STG3) — Harness Behavior Reuse for Scalable Specifica-
tion of Smart Agents with Distinct Goals

Attaining resilience in cyber-physical systems requires collecting evidence that
multiple agents with distinct, even conflicting, objectives can coexist without
compromising the systems’ integrity. Such evidence is important, especially
for complex systems operating in dynamic environments. However, collecting
assurance cases for dynamic interactions is impractical. Quality assurance
teams must repeatedly re-implement intricate agent behaviors in test scenarios
with shared environments, which is inefficient and lacks scalability. STG3
addresses this by equipping quality assurance teams with a reusable behavior
library, reducing time and effort in defining new test scenarios involving mul-
tiple smart agents. STG3, developed in Paper C, answers RQ2.2 by helping
quality assurance teams efficiently collect assurances about the system’s correct
behavior in multi-agent interactions.

Strategy 4 (STG4) — Tame Field Data for Control-based Adaptation

A core strategy to attain resilience in cyber-physical systems under uncertainty
is integrating field data into control-based self-adaptation mechanisms. Self-
adaptation enables systems to degrade gracefully and recover from faults amid
unforeseen runtime changes. However, designing adaptive systems capable
of handling unpredictable conditions is challenging and requires a structured
approach to tame field data. Control theory offers a solid framework for building
feedback loops that respond dynamically to variability and disturbance. Search-
based optimization offers algorithms to navigate large configuration spaces
efficiently. STG4 guides practitioners using control-theoretic principles aligned
with search-based optimization to achieve resilient operation by incorporating
runtime data to enhance adaptability and fault tolerance. This strategy,
derived from a problem-solution study in Paper D, directly addresses RQ3.2
by proposing a design-focused approach for embedding resilience into cyber-
physical systems through adaptive, data-driven control mechanisms.

14 CHAPTER 1. INTRODUCTION

Strategy 5 (STG5) — Embed Specification Patterns to Catch Errors
Early

Building resilience in uncertain environments requires cyber-physical systems
to be prepared for interactions influenced by external agents and the system
itself. Such interactions bring uncertainty, making incorporating environmental
assumptions in the codebase essential. Failures often arise from assumptions
overlooked or not formalized during design. STG5 proposes specification pat-
terns to encode these assumptions, like relationships, attributes, and constraints,
directly in code. These patterns enable dynamic checking, symbolic tracing,
and source provenance tracking, allowing developers to catch errors caused by
assumption violations early in development. Based on a problem-solution study
in Paper E, STG5 provides a structured method for embedding assumptions
as patterns, enhancing resilience in cyber-physical systems under uncertainty,
and addressing RQ3.1 from a design perspective.

Strategy 6 (STG6) — Automate Diagnostics and Explanations for
Swift Recovery

Cyber-physical systems must quickly recover from failures to enhance resilience,
which requires a clear understanding of their root causes. In such systems,
tightly coupled with their physical environment, replicating failure scenarios
for root cause analysis can be impractical, costly, or impossible. STG6 provides
tools for quality assurance teams to automatically derive diagnostics and
explanations for runtime failures, enabling faster recovery. Using traces and
property specifications, STG6 supports automated root cause analysis, paving
the way for resilience through efficient failure explanation and swift system
recovery. This strategy is based on insights from problem-solution studies in
Papers F and G, directly addressing RQ3.3.

Strategy 7 (STGT7) — Promote Exemplars to Advance Resilience
Research

The scientific community must prioritize the development of methods, tools,
and evidence that support developers and quality assurance teams in attaining
resilience in cyber-physical systems. STG7 encourages researchers to create and
share exemplars that drive motivation and innovation in resilience research for
cyber-physical systems. Two solution design studies detailed in Papers H and I
inform this strategy, effectively addressing RQ4. STG7 enhances resilience from
both design and quality assurance perspectives by focusing on exemplification.

1.5 Thesis Organization

Chapter 1 discussed the problem and research questions tackled by the strategies
to attain resilience in cyber-physical systems. Next, Chapter 2 defines the
terminology used throughout the thesis and outlines related works. Then, in
Chapter 3, we summarize all the work that amounts to the thesis regarding
published papers and discuss their results. Finally, on Chapters 4-12, we
append the publications containing the works’ details.

Chapter 2

Terms and Related Work

Resilience, as a theme, is as antique as recurrent in the universal literature.
Quer time, resilience has been adopted and refined across various fields, yet it has
only recently gained attention in computer science and engineering. This chapter
defines fundamental terms used throughout the thesis. It highlights current and
related works by comparing the thesis to the most recent contributions in the
scientific literature on resilience in cyber-physical systems.

2.1 Terminology

What is resilience? Resilience, as a term, is broadly used, both in the universal
and scientific literature. This thesis, sheds light on resilience as a property
of systems, thus needs to be precisely defined. While providing a map to
resilience in cyber-physical systems, this section elaborates on the term using a
conceptual framework fuelled by the Boeing 737-MAX 8, Tesla Autopilot and
Waymo case studies.

2.1.1 What is Resilience?

Resilience, as a term, comes from the Latin word resilire, meaning “to leap
back”, “rebound”, “recoil”, or “retreat.” The term was first documented in
the Material Sciences during the beginning of the 19th century; elucidated
from a historical perspective in the History of strength of materials book from
Timoshenko S. [21]. The book reviews the evolution of strength of materi-
als and refers to Thomas Young’s studies that posit resilience as a property
of a beam (or bar) and that resilience is proportional to the beam’s length.
Over time, its meaning has been adapted in various contexts, from material
sciences (early 1800s) to ecology (1970s) and sociology and psychology (1990s),
before becoming prominent in computing (early 21st century). As of today, re-
silience, a concept broadly studied across fields like environmental sciences [108],
ecology [109], psychiatry [110], economics [111], lacks a universally accepted
definition due to its diverse applications [112].

This thesis approaches resilience in cyber-physical systems from a broader
software engineering perspective and, thus, draws upon J.C. Laprie’s founda-
tional definition.

15

16 CHAPTER 2. TERMS AND RELATED WORK

Definition — Resilience

Resilience is “the persistence of service delivery that can justifiably be
trusted, when facing changes.”, Laprie J. C. [19]

Following Laprie’s definition, resilience has garnered significant attention in
computing, encompassing various aspects such as system-level fault tolerance,
robustness, and software adaptability. Resilience, in computing, often refers to
the system’s ability to maintain required functionality in the face of adversity;
Whereas change, materialized as faults, errors, or failures, plays a key role
in software system’s success. As a systems’ property, resilience may manifest
in architectural design patterns, for instance, promoting loose coupling and
modularity (e.g., in micro-services [113]), as enablers to runtime modification
and flexibility. Resilience may also manifest in verification and validation
techniques that, for example, proactively induce changes in the system through
fault injection (e.g., chaos engineering [114]).

As a foundational study to enable the discourse and systematic attainment
of resilience in computing systems, we present a recent work that conceptualizes
and describes the basic terms on which this thesis relies. Formally, Andersson
J. et al. [41] defined resilience within the conceptual framework depicted in
Fig. 2.1. Other frameworks also formally define resilience [115,116]. We follow
Andersson Js definition since it allows us to focus on robustness, change, and
uncertainty, further discussed in the thesis.

The conceptual framework, depicted in Fig. 2.1, separates the space of
possible system states into three: acceptable states, survival space, and dead
space. System states (e, in Fig. 2.1) correspond to a collection of attributes
required for describing the system and its behavior. Each state may be classified
according to distinct acceptance criteria. The acceptance criterion (6) defines
a set of constraints and relationships on the system state that allows for the

dead space survival space acceptance space

Ok

[gracefully degradable]

3 .

[recoverable]

Figure 2.1: Visual representation of resilience for computing systems. Adapted
from the version defined by Andersson J. et al. [41].

2.1. TERMINOLOGY 17

identification of the subset of the system state space consisting of all those
states where the service delivered by the system can be considered correct and
acceptable according to 6. There can be several acceptance levels within the
determined criteria (6), in which k corresponds to the identifier of a series of
progressively less stringent acceptance criteria. The survival space encompasses
all those states where the service delivered by the system is not acceptable
but for which a sequence of internally or externally initiated corrective actions
exists, which rings the system back to a state within the acceptable space. The
dead space, in opposition, encompasses all states where the delivered service is
not acceptable and precludes the possibility of returning to an acceptable state.

System changes, depicted as dashed lines in Fig. 2.1, are categorized along
two dimensions: readiness and persistence. Readiness concerns the system’s
readiness to deal with the change, and it differentiates between expected and
unexpected changes, with expected changes further divided into handled, in
which the system has resources to manage, and unhandled, which are foreseen
but not addressed. On the other side, unexpected changes, or “surprises”, may
lead to any subspace in the state space, acceptable, survival, or dead spaces.
Persistence distinguishes between transient, either temporary or reversible
effects, and permanent changes, with long-lasting impacts on system function.
Together, these dimensions allow for a precise assessment of a system’s capacity
to manage and recover from disruptions.

Next, we study three cases of cyber-physical systems in the contexts of the
aviation and automotive industries from the perspective of resilience within
the conceptual framework.

2.1.2 Boeing 737-MAX: A Case of Brittle Software

Non-resilient systems are brittle; they break when bent. This section analyses
the Boeing 737-MAX 8 case, which caused two accidents in late 2018 and
early 20192. Remark: There are several hypotheses on what led to the crashed
airplanes, including design flaws, lack of transparency with the released software,
and lack of monitoring from the regulatory corpus [117] — failures of this
dimension are often due to a chain of events. In this section, we focus on
the software system, namely MCAS, from the point of view of software and
resilience as a property of the cyber-physical system [118].

In early 2018, Boeing released the 737-MAX 8, which, compared with
previous 737 models, had a larger engine to enhance fuel efficiency. Such
enhancement required repositioning the engines higher and further forward
on the wings compared to earlier designs. The new engine placement caused
in-flight instability in particular flight conditions. While the engine housings
typically do not generate lift during normal flight, they create more lift in
situations like takeoffs or hard turns. Under such conditions, the extra lift
combined with the plane’s momentum could cause it to exceed the desired
pitch, potentially leading to a stall®.

Thttps://edition.cnn.com/2018/10/28 /asia/lion-air- plane-crash-intl

2https://edition.cnn.com/2019/03/10/africa/ethiopia-airline-crash-nairobi-intl

3In aviation, a stall occurs when an aircraft’s wings can no longer generate enough lift to
sustain flight

https://edition.cnn.com/2018/10/28/asia/lion-air-plane-crash-intl
https://edition.cnn.com/2019/03/10/africa/ethiopia-airline-crash-nairobi-intl

18 CHAPTER 2. TERMS AND RELATED WORK

Boeing relied on software to release fuel-efficient aircraft competitively in
the market. The cyber-physical systems producer released a software solution
that automatically prevents the aircraft from stalling, the Maneuvering Char-
acteristics Augmentation System (MCAS). The software is part of the flight
management system and is wired to the flight controllers and aircraft sensors.
In short, the MCAS monitors the airspeed, altitude, and angle of attack, and, in
case of imminent stall, the MCAS acts by adjusting the rear stabilizer, lowering
the nose, and pushing the yoke downwards; once the aircraft has no risk of
stalling, the control is handed back to the pilot. The pilot can override the
MCAS system if desired. However, the system is reactivated if the combination
of airspeed, altitude, and angle of attack still requires so. Nonetheless, the
software system was unprepared for erroneous sensor measurement data.

Curran N. T., et al. [119] analyze the MCAS system and simulate how the
original MCAS design can fail under realistic conditions. We rely on their study
to understand the software design brittleness in the lenses of the conceptual
framework presented in Fig. 2.1. The case study analyses maneuvers from
commercial flights: takeoff, climb, cruise, descent, and approach. We focus on
the takeoff since it was the phase in which the Lion Air Flight JT610 and the
Ethiopian Airlines Flight 302 failed, illustrated in Fig. 2.2. Assuming the states
0k (t) represent the airplane’s altitude h(t); 8o(t) (robust space) determines that
the aircraft follows the required altitude during takeoff, and 6;(t) represents a
degraded state in which the error does not escalate and permits the airplane to
reach cruise, and the survival space is characterized by a recoverable state, in
which, the pilot reaction time in which the pilot can still engage in a recovery
maneuver. Otherwise, the system is said to be in a dead space.

Jlegend
| o expected i
== robust space (6g)
| & execution trace |
| mm acceptable space (6;)

Legend

| @ expected 60001
- executiontrace
m dead space

6000

5000 50001

40001

T 4000 E
z 5
Y g "
3 3000 g sooor
E g

2000 2000

1000 1000+

S0 160 150 200 250 300 380 50 100 150 200 250 300 350
Time (t) [s] Time (t) [s]
(a) Crash scenario (non-resilient) (b) Scenario with intervention (resilient)

Figure 2.2: Graphical representation of the takeoff maneuver from Boeing
737-MAX 8. This figure is inspired in data and graphs from [119].

To simulate the scenarios under which the 737 MAX 8 faced edge conditions,
Curran N. T. et al. implemented an injection mechanism that emulates
changes (i.e., erroneous inputs) from the sensors or the pilot. The changes were
permanent, injected around time ¢ = 100s, and caused MCAS to fire, pushing
the aircraft downwards to stop stalling. In the case of Fig. 2.2a, in which no
resilience mechanisms exist, the aircraft crashes on the ground. On the other

2.1. TERMINOLOGY 19

side, in Fig. 2.2b, we illustrate a case in which there is an intervention that
maintains the system delivering its service in a degraded state, yet acceptable.

Manually, the Intervention, in Fig. 2.2b, asks the pilot to disengage from
the MCAS functionality, which was unsuccessfully attempted in both flights,
resulting in a crash. In fact, a report from the Lion JT610 crash explained
that the pilot tried to correct the aircraft by pointing the nose higher, but
the system kept pushing it down 21 times before the crash occurred — such a
manual solution is error-prone. The MCAS deployed in the Boeing 737-MAX
was not resilient.

How could the MCAS detect, identify, and thus understand whether the
sensors collected erroneous information? How can the new update of the
MCAS be developed to acknowledge change and react? Given that the MCAS
is inevitably subject to uncertain operational conditions, how to prepare the
system for operating in a degraded but acceptable state? How to collect
explanations for faults that enable system recovery before they turn into
failures? These are open questions that, in a broader context, motivate the
writing of this thesis.

2.1.3 Tesla Autopilot and Waymo ADS: Resilience in the
Automotive Industry

Road traffic kills 1.19 million people per year according to WHO?*. It is as if
a Boeing 737-MAX 8 would fall every hour of a year in the death toll. The
automotive industry faces a grand safety challenge and focusing on resilience
when building automotive systems has a great potential to save lives. This
section analyses both Tesla Autopilot and the Waymo Autonomous Driving
System (ADS) from the point of view of resilience attainment and its challenges.
Moreover, we analyze the cases separately since Tesla’s ADS is autonomy level
2 and Waymo’s ADS is level 4, meaning that they are developed to different
capacities even though both share similar goals. [120]

2.1.3.1 Is Tesla Autopilot Ready for the Real World?

Resilient systems are firm; they might deform when bent but do not break.
Tesla’s Autopilot, the company’s advanced driver-assistance system (ADS),
plays a critical role in this context. In this section, we examine the resilience
of the Tesla’s ADS, particularly in light of Joshua Brown’s fatal crash. This
case highlights key challenges in the interaction between autonomous systems
and their environments, revealing potential vulnerabilities in the design of
cyber-physical systems.

In 2016, Joshua Brown’s Tesla Model S, operating on Autopilot, was
involved in a fatal crash — the first of 47 verified fatalities associated with
Tesla’s Autopilot.’® Autopilot, unlike the MCAS (Sect. 2.1.2), employed a
combination of forward-facing cameras, radar, and ultrasonic sensors to assist
with driving tasks. However, it failed to detect a white tractor-trailer crossing
the road under a bright sky. The forward-facing camera misinterpreted the

4https://www.who.int/publications/i/item/9789240086517
Shttps://money.cnn.com/2016/07/01/technology /tesla-driver-death-autopilot/
Shttps://www.tesladeaths.com (accessed on 08-10-2024)

https://www.who.int/publications/i/item/9789240086517
https://money.cnn.com/2016/07/01/technology/tesla-driver-death-autopilot/
https://www.tesladeaths.com

20 CHAPTER 2. TERMS AND RELATED WORK

trailer’s reflective surface as part of the sky, and the radar, tuned to ignore
overhead objects, failed to engage emergency braking, misclassifying the trailer
as a sign. This radar algorithm, designed to reduce false positives, ultimately
contributed to the system’s inability to recognize the critical obstacle in its path.

This crash underscores significant limitations in the resilience of Tesla’s
Autopilot system. Although Autopilot was designed for highway driving,
with lane-keeping and adaptive cruise control, it was not equipped to handle
complex scenarios such as cross-traffic, as seen in Brown’s accident. The
National Transportation Safety Board (NTSB) report revealed that the system
relied heavily on driver attention for safety-critical interventions [121]. In the
moments leading up to the crash, the driver did not respond to system alerts
or take control of the vehicle, exposing a critical flaw in the human-machine
interaction model. The NTSB attributed part of the crash to the driver’s
overreliance on automation — an indication of brittleness.

Resilient cyber-physical systems must account for complex interactions
with multiple agents in their environment. These interactions may include
unexpected events such as a tractor-trailer with a reflective surface crossing the
road, risky maneuvers by other vehicles, or unpredictable pedestrian behavior.
Each agent, whether human-driven or automated, operates with distinct goals —
some global, like minimizing traffic time, and others individual, like reaching a
destination faster. These agents may collaborate or act in opposition, and they
are often designed by different manufacturers, each employing distinct capa-
bilities and decision-making frameworks. Despite adherence to manufacturing
standards, variability in these systems’ abilities creates further challenges for
ensuring resilience in real-world scenarios.

2.1.3.2 Dynamic Safety for Resilience in Waymo ADS

Resilient systems acknowledge change and uncertainty as key concerns to
successful execution. According to the National Highway Traffic Safety Admin-
istration (NHTSA), there is an average of one crash every 670,000 miles driven
in the United States. In 2024, Waymo reported 22.2 million driverless miles
across Phoenix, San Francisco, and Los Angeles, with one crash occurring every
115,000 miles driven. This marks significant progress, including 84% fewer
airbag deployment crashes, 73% fewer injury-causing crashes, and 48% fewer
police-reported crashes compared to human-driven vehicles. Importantly, no
fatalities have been reported in association with Waymo’s ADS operations.” In
this section, we examine the Waymo’s ADS from the perspective of resilience
attainment.

The Waymo ADS adopts team a dynamic safety approach, treating safety as
an emergent property of software design, an observable metric for deployment
readiness, and a continuously evolving measure of system confidence [122].
In-use monitoring supports field testing throughout the dynamic safety phases,
ensuring performance alignment with targets set during the readiness review
phase. Continuous monitoring further helps with detecting changes in existing
or emerging threats. As the deployment scales and data availability increase,
the statistical confidence in the system’s readiness improves. Waymo’s team
leveraged field data to reconstruct fatal crashes within its operational design

Thttps://waymo.com/blog/2024/09/safety-data-hub (accessed on 09-10-2024)

https://waymo.com/blog/2024/09/safety-data-hub

2.1. TERMINOLOGY 21

Initiator (52 events) Responder (39 events)

g+

Legend

] Il collision avoided (6,)
G\‘o\'\S’\ | Il collided w mitigation (6;)
{ Il collided w/o mitigation

3 30 25 20 15 10 5 0O 5 10 15 20 25 30 35
Number of Events

Figure 2.3: Crash outcomes of tests on the Waymo’s autonomous driving
system. This figure is inspired by data and graphs from [123].

domain to further quantify the system’s effectiveness, as described by Scanlon
et al. [123]. The team collected data from fatal collisions in Chandler, Arizona,
over a 10-year span (2008-2017), which were then reconstructed by a special-
ized company. These reconstructions generated pre-crash collision sequences,
allowing Waymo to conduct counterfactual simulations where the Waymo team
tested the ADS against real-world collision scenarios.

In contrast to the analysis of the MCAS system (Sect. 2.1.2), this study
assesses resilience from a scenario-based perspective. Here, 0 (t) represents the
vehicle’s ability to avoid crashes or mitigate crash severity. Scenarios where the
Waymo ADS successfully avoided a collision demonstrate system robustness
(0o(t)). In cases where the system could not prevent a crash but reduced
its severity, the vehicle exhibited degraded yet acceptable behavior (61(t)).
If the vehicle did not mitigate or prevent a crash, it is considered to have
reached an irrecoverable state. Fig. 2.3 illustrates 72 experiments conducted
by Scanlon et al., which recorded whether the vehicle avoided a crash, collided
with mitigation, or collided without mitigation.

Scanlon et al. [123] simulated 72 crashes and 91 vehicle actors, 52 initiators,
and 39 responders. Fig. 2.3 presents the crash outcomes based on the vehicle’s
role. The system successfully navigated the scenario without a collision in
all cases where the Waymo ADS acted as the initiator (52 events). As a
responder (39 events), the Waymo ADS avoided 82% of collisions (32 events)
and mitigated an additional 10% (4 events). The remaining 8% (3 events)
resulted in unchanged collisions, all in front-to-rear impacts. Notably, none of
the simulations showed severe collisions.

Waymo strives to achieve resilience in its automotive system. However,
questions remain about the system’s ability to coordinate groups of vehicles
with different capabilities, such as varying perception and speed profiles. How
can Waymo’s developers and quality assurance teams systematically assess
and ensure that the ADS will function reliably under uncertain conditions?
Additionally, how can they effectively analyze and explain the failures that led
to collisions without mitigation?

22 CHAPTER 2. TERMS AND RELATED WORK

2.2 Means to Attain Resilience

Attaining resilience in cyber-physical systems requires adopting strategies
that counteract the disruptive effects of operational changes. Across various
fields, e.g., emergent distributed systems, like the Internet of Things [124]
and cloud computing [125], researchers widely agree on three core goals to
support resilience: reducing the probability of failure, minimizing the impact
of failures, and shortening recovery time [41]. While resilience research has
also expanded to human factors, addressing developers’ resilience for creating
resilient software [126], studies specific to cyber-physical systems remain limited
and mostly focused on security [127]. Resilience, however, transcends security,
requiring a broader, cross-cutting approach to effectively handle change.

Definition — Resilience Attainment

Strategies to attain resilience handle runtime changes to mitigate failure.

Inspired by existing frameworks [41], we posit that resilience attainment
depends fundamentally on addressing change. Techniques supporting resilience
must manage change through strategies that encompass understanding the
change, representing the change, and preparing the system for change. Un-
derstanding the change concerns detection, identification, and explanation of
failure-inducing changes; Representing the change concerns modeling, specifi-
cation, and exemplification of changes; and Preparing the system for change
concerns, designing and testing systems to accommodate change or enable
rapid recovery from failures. Fig. 2.4 maps the goals to support resilience
attainment and strategies to enact each goal. In the following, we discuss each
strategy, showcasing noteworthy studies on resilience attainment and gaps in
the literature.

\Q)al Reduced failure Reduced consequences Reduced time to

probability from failure recovery

Strategy
kel Llegend .
s o _-Detect Ead —& —& one can
- /' e P A
£ §<—Identify —@<0 \ e O<o— oES‘fa‘:svl

< . T N g 0 achieve
TG S Explain \ 4 Ad [goal]
=}

one may

g [} /,,MOde,l& * > need to
@ o Specify ™ [strategy]
g g - “ ' to achieve
g “Example - N\ 3 [goal]
— one must
L ¢ _Design —& —@ —® [strategy]
g2 —< @ @ to achieve
8 8 Ie o o lgoal
2] “Test Ad & &
g <1 7 e

Figure 2.4: Goals and Strategies to attain resilience.

2.2. MEANS TO ATTAIN RESILIENCE 23

2.2.1 Understanding Change

Understanding change is often useful to attain resilience in cyber-physical
systems, as it enables a system to observe the change and adapt in response to
internal and external shifts that may threaten its functionality. Understanding
change entails detecting, identifying, and explaining changes to manage failure
risks, promote recovery, and sustain operational goals despite uncertainties.

Detecting change is essential to resilience attainment in cyber-physical
systems. Change detection may be useful for techniques that aim at reducing
failure probability and the consequences of failures, yet are fundamental for
techniques that promote system recovery. Change detection is concerned
with finding patterns in how the system behavior evolves over time. Two key
techniques for change detection are anomaly detection and runtime monitoring.
Anomaly detection, similarly to outlier detection [128], focuses on extracting
such patterns from data (i.e., system logs) that do not conform to expected
behavior [129-131]. Runtime monitoring continuously checks the system for
violations of predefined properties on system traces and may happen along
the system’s execution [132-134]. Literature on change detection to attain
resilience in cyber-physical systems discusses attack detection [135,136], deep
learning [137,138] and control theory [139,140], and timidly discuss runtime
monitoring [61]. Thus, it sheds light on the lack of studies on aspects other than
security anomalies, like safety checks, and the need for tooling and a better
understanding of systematically detecting changes in cyber-physical systems
during runtime.

Identifying change may help understand the nature and impact of the
detected change. Changes are either evolutionary or operational. They may
be expected or unexpected, once expected they can be handled or unhandled.
Changes might be transient or permanent. Changes may also be intended or
unintended. The changes may be done or triggered by software developers, the
system itself, or externalities. Each change has a different potential effect in the
system [141]. In the context of resilience attainment, we discuss failure-inducing
runtime changes. Reactive self-adaptation techniques, for instance, may require
the identification of the changes in order to restore it and maintain correct
service delivery, e.g., FORMS [142] models change with environment processes
in the context of autonomous vehicles. Although the literature on software
changes is extensive, especially in software evolution [143,144], there lacks
approaches targeting the specific nature of cyber-physical systems, which are
closely intertwined with the physical world. As a solution, change has been
modeled as a probability that the system will not behave as expected, a.k.a.
uncertainty. A recent thrust has been towards understanding and identifying
uncertainty as a key activity to establish system-level resilience. Perez-Palacin
D. and Mirandola R. propose MUSE, an approach to identify the presence of
uncertainty in software systems [145]. Maribel A. et al. then discuss uncertainty
awareness and classification in the context of automated driving [146], and
Calinescu R. et al. promote an understanding of (classes of) uncertainty from
a community perspective [147].

Explaining change concerns collecting facts about a failure-inducing
runtime change, which involves determining its root cause. A change ex-
planation is essential to techniques that reduce the time needed to recover

24 CHAPTER 2. TERMS AND RELATED WORK

since the cause of failure must be understood. Fundamentally, root cause
analysis is derived from the works of Pearl J., from statistics, in which “its
aim 1is to infer not only beliefs or probabilities under static conditions, but
also the dynamics of beliefs under changing conditions, for example, changes
induced by treatments or external interventions” [148]. However, automatically
deriving explanations for changes has recently gathered thrust in computer
science due to the trend in artificial intelligence algorithms [149,150]. The
literature in property violations explanation within cyber-physical systems is
substantial [151,152]. However, these approaches either ask for a known set
of possible failure-inducing changes up front, e.g., obtained through change
identification [94] or extrapolate explanations from traces of execution rather
than from the system requirements [95,96]. Methods that do not depend on
identified change types or are requirements-focused have a noteworthy potential
to support resilience attainment in cyber-physical systems.

2.2.2 Representing Change

Cyber-physical systems can better understand, anticipate, and respond to
runtime changes or environmental shifts by representing change since they
can reason over models. Change representation enables structured approaches
to handling uncertainties and guiding system responses, ultimately fostering
adaptability and recovery. We discuss representing changes with modeling and
specifying, and deriving concrete examples of change.

Modeling & Specifying change is key to effective failure-inducing change
mitigation. The outcome of strategies for understanding change (i.e., detection,
identification, and explanation) manifests in models. When modeling and
specifying for resilience attainment in cyber-physical systems, it is crucial to
account for dynamic behavior. Transition systems [153], such as finite state
machines (FSMs), Markovian Models (e.g, Markov Chains, Markov Decision
Processes and its variations), and hierarchical tree structures (e.g., Hierarchical
Task Networks [154], Goal Models [155], and Behavior Trees [156,157]) are used
to capture the system behaviors. Specification languages like Hybrid Logic of
Signals (HLS) [158] or Signal Temporal Logic (STL) [159] offers a tractable
way to specify continuous behavior formally. Recently, interest has grown
in using natural language for specification in software, opening avenues for
naturalness as a property of behavior specification [160]. Explicitly modeling
uncertainty or embedding uncertainty annotations in the system or environmen-
tal models is important in specifying change. For instance, RELAX introduced
flexible operators (e.g., MAY ... OR, AS CLOSE AS POSSIBLE TO ...) and
uncertainty annotations (e.g., environmental uncertainty, behavioral uncer-
tainty) for modeling systems. Such operators are powered by an underlying
fuzzy logic [161]. On another stance, RUNE uses Parametric Markov Decision
Processes (pMDPs) and partial knowledge to encode the notion of uncertain
model regions to reasoning over uncertainty [162]. Solano G. et al. [86] enables
uncertainty annotations in goal models using markov decision processes and
parametric model checking as the underlying notation. Finally, Filippone G. et
al. discussed implementing new operators in HTNs for uncertainty handling in
multi-robot applications [163]. Whether these methods fully capture predictable
or unpredictable changes to enable runtime reasoning remains an open question.

2.2. MEANS TO ATTAIN RESILIENCE 25

Exemplifying change enhances resilience in cyber-physical systems by
supporting developers and testers with model problems or solutions leveraging
strategies that can be (re-)used for real-world applications. In the context of self-
adaptive systems, exemplifying change involves using case studies, prototypes,
and simulations that reflect the kinds of changes a cyber-physical system
is likely to face. The self-adaptive systems community, primarily through
SEAMS, offers a rich library of exemplars for self-adaptation in cyber-physical
systems. Notable examples include DeltaloT for self-adaptation in Internet
of Things [97], Platooning LEGOs as a physical exemplar of an industrial
cyber-physical system [164], and DARTSim containing a simulation of a team
of uncrewed air vehicles performing a reconnaissance mission in a hostile and
unknown environment [165]. They are cyber-physical systems encoded with
dynamic adaptation mechanisms to cope with runtime system changes. By
grounding these adaptations in well-defined, scenario-driven exemplars, SEAMS
research enables designers to assess the effectiveness of specific resilience tactics,
improving their resilience before deployment.

2.2.3 Preparing the System for Change

Developers must prepare the system for change to attain resilience in cyber-
physical systems. In other words, they must enhance the system’s readiness to
handle expected or unexpected change. Thus, we discuss designing for change
and testing for change as strategies to prepare the system to handle change at
runtime effectively.

Designing for change focuses on establishing strategic design decisions
to accommodate anticipated and unforeseen changes. Practical design for
change incorporates static and dynamic techniques, providing a comprehensive
approach to preparing the system for resilience.

Static design techniques acknowledge that unpredictable changes may emerge
and allocate resources to handle them, for instance, embedding redundant
components or subsystems to ensure correct behavior in case a component
fails or becomes compromised. Redundant components, when complementary
but not identical, need to be correctly allocated to satisfy the purpose of the
overall system. The literature allocation with heterogeneous components is
broad; in robotics, there is a focus on task allocation [166,167]. Ramachandran
R. K. [168] proposes a method based on simulated annealing that aims to
maintain the high availability of a team of quadrotor unmanned aerial vehicles
with complementary sensors, subject to resource failures. Similarly, Chen
C. [169] study and implement an architecture for rejecting actuator faults and
their effect in the synchronization of heterogeneous multi-agent systems. Still,
on static techniques, code-level approaches may also prepare the system to
handle runtime changes [170]. There is, however, a lack of research corpus on
implementation strategies that bring possibly emerging changes from runtime
to design, while they have a great potential to mitigate runtime faults.

Dynamic design techniques feature self-adaptation [171,172]. Designing
for self-adaptation plays a key role in sustaining runtime changes; such tech-
niques aim at re-configuration, changing parameters, and modifying the system
structures [91,92,173]. To this end, self-adaptation techniques involve continu-
ously monitoring, analyzing, and acting on the system under adaptation [174].

26 CHAPTER 2. TERMS AND RELATED WORK

Control-based self-adaptation is a promising line of research offering mathemat-
ically grounded adaptation with guarantees of stability and timing constraints
from control theory [93,175,176]. As an example of using control-based self-
adaptation to attain resilience by design, Papadopoulos A. et al. explored the
applicability of control theory for the design of resilient run-time scheduling
algorithms for mixed-criticality systems, allowing for guaranteed service to
concurrently to multiple hard real-time criticality-cognizant servers [177].

Testing for change is equally essential, as it provides assurance that the
system will respond correctly to various change events. Testing techniques
to attain resilience follow three paradigms: field-based testing, scenario-based
testing, and runtime verification, which allow developers to assess the system’s
runtime behavior.

Scenario-based testing is the dominant paradigm of black-box testing, where
scenarios are used to check how the system copes with both nominal and non-
nominal situations, such as environmental shifts or operational faults [178].
This paradigm aims to collect assurance cases by simulating the interaction
of the system under test with static or dynamic objects from the operational
environment. A notable case of scenario-based testing for attaining resilience
in autonomous driving vehicles stems from the works on SCENIC [179, 180].
The approaches rely on probabilistic modeling of the dynamic objects (vehicles
and pedestrians) to challenge the vehicle under testing within a realistic setting
in simulation. Other works follow a similar direction [181,182]. Although
powerful, scenario-based testing depends on effectively describing the behavior
of the scenario, including the dynamic objects; how to encode complex enough
behavior on such objects is an open challenge.

Field-based testing is a technique that may use information from the real
world [65]. This testing paradigm aims to bridge the gap between lab environ-
ments and the system’s operational environment under test. Test cases can use
information from the field or can be fully generated in the field. Field testing
can also happen on a separate instance running in production, i.e., offline test-
ing. For example, a study builds on ChaosMonkey (i.e., field testing technique
from Netflix [183]) for developing a fault injection mechanism for testing the
robustness of radio base stations similarly in the running system [184]. Notably,
recent works study self-adaptive testing in the field, which carries a potential
for resilience attainment through testing [185,186]. However, the approach has
not yet been studied in the context of cyber-physical systems.

Runtime verification employs monitoring techniques to detect and address
deviations from expected behavior while the system operates, ensuring that it
meets the requirements [187,188]. Runtime verification is more lightweight than
other forms of verification, e.g., model checking [153], and aims to check system
properties over runtime data, either online or offline. Runtime verification
techniques also enable the enforcement of rules over the system to help maintain
correct service delivery. A noteworthy approach using runtime verification to
attain resilience in cyber-physical systems is RUNE? [162], which focuses on
equilibrium verification through Bayesian inference to reason about the ability of
the system to remain viable. Their approach has shown promising results in the
realm of search-and-rescue robotics though still needs to be tested in the field.

2.3. RELATED TERMS AND DEFINITIONS 27

2.3 Related Terms and Definitions

Resilience as a property of software systems emerges from previous research
on what researchers refer to as fault-tolerance and dependability [19]. The
evolution of research on resilience cross-cuts many areas of computer science
research, leading to different terms with similar meanings. This section mainly
discusses terms similar to resilience, correlated to resilience, or from which
resilience derives. The topics described here consist of self-sustained areas
of research that advance in parallel to resilience research within computing
systems. We discuss the terms in Fig. 2.5 comparing them to resilience.

long-term

efficiency

contributes to
is similar to

robustness resilience

is a form of complements

sustainability

complements

antifragility

Figure 2.5: Resilience and related terms.

In short, long-term efficiency contributes to resilience. While an efficient
system can optimize resource use and operate within constraints, resilience
focuses on the system’s ability to recover and adapt to disruptions. Fault-
tolerance has been used as a synonym for resilience. However, use ignores
that resilient systems face the unexpected, while fault-tolerant systems do
not. Robustness is a form of resilience. While robust systems can absorb
disturbances and continue operating within acceptable performance bounds,
resilience is more flexible. Antifragility complements resilience by focusing on
growth in response to stress. While resilience is about withstanding faults and
returning to a stable state, antifragility thrives on these faults, using them
as opportunities for improvement. Sustainability emphasizes the long-term
viability, complementing resilience. Resilience emphasizes a system’s ability to
withstand and recover from specific faults or disturbances, while sustainability
focuses on optimizing resource usage and maintaining efficiency over time.

Next, we comprehensively describe each of the five related terms. We
provide definitions and examples of how to attain such properties in computing
systems, focused on cyber-physical systems, when possible, and how they
compare to resilience.

28 CHAPTER 2. TERMS AND RELATED WORK

2.3.1 Efficiency

Long-term efficiency contributes to resilience. A system is considered efficient
if it minimizes the waste of resources, such as time, energy, and computational
power, while achieving its intended functionality. In energy-efficient software
systems, the optimal use of computational resources ensures that the system
can continue to operate effectively even when power availability is reduced,
making it more resilient to environmental changes. For example, consider a
mobile robotic system operating in an environment with limited battery power.
An efficient mobile robot would prioritize essential functions like navigation
and obstacle avoidance while minimizing energy consumption for non-critical
tasks. This allows the robot to extend its operational time without frequent
recharges or interruptions, ultimately increasing its ability to sustain long-term
operations.

Definition — Efficiency

Efficiency is “the probability that an intended chain of actions produces
a particular outcome while minimizing the use of resources” [189).

In computing, the literature on efficiency discusses energy efficiency as a
software system property [190-192]. It also discusses time efficiency in the
context of testing and verification programs [193,194] and algorithmic effi-
ciency [26]. Energy efficiency is significant in cyber-physical systems such as
mobile and embedded systems, where power constraints limit the systems
performance [195]. Efficiency, as a property of software-intensive systems
are typically attained through various strategies, including optimization algo-
rithms [193], resource-aware allocation [196,197], and energy-efficient coding
practices [198-201]. These approaches ensure that systems can perform their
intended functions while minimizing resource usage, contributing to short-term
performance and long-term resilience.

This thesis critiques the traditional focus on (short-term) efficiency in
the design of cyber-physical systems as opposed to emphasizing long-term
efficiency, which supports resilience. While an efficient system can optimize
resource use and operate within constraints, resilience focuses on the system’s
ability to recover and adapt to disruptions. Long-term efficiency, therefore,
supports resilience by reducing the strain on resources and prolonging system
functionality in dynamic or adverse environments.

)

2.3.2 Fault-Tolerance and Dependability

Fault-tolerance has been used, in the past, as a synonym of resilience. A system
is fault-tolerant if its programs can be correctly executed despite logic faults [16].
For example, consider a fault-tolerant automated driving system, e.g., the Tesla
vehicle from Section 2.1.3. In the event of a sensor failure, the ADS could
rely on redundancy from other sensors to maintain its operational capabilities.
Despite the fault, it could still navigate safely by leveraging sensor fusion
to replace the missing data and ensure no collisions occur. This is a typical
scenario where a fault-tolerant system can handle component-level failures
without impacting the overall safety and mission objectives.

2.3. RELATED TERMS AND DEFINITIONS 29

Definition — Fault-Tolerance

Fault-Tolerance is “the persistence of service delivery despite the occur-
rence of logic faults” [202]

Fault-tolerance® has been broadly studied within computer science, featuring
robotics [203], distributed computing [204], operating systems [205], real-time
systems [206,207], and others. It lays important foundations for computer
science and engineering as is. Fault tolerance as a property of computing
systems, or dependability, is typically attained by design techniques. For
example, error detection and recovery [208,209], redundancy [210-212], and
checkpointing and rollback recovery [213,214]. Error detection ensures that
faults are caught early, while recovery mechanisms, such as rollbacks or retries,
are triggered to restore the system to a safe state [215]. Rollback-recovery,
for instance, involves design redundancy, and checkpointing periodically saves
the state of a system so that it can recover from that point in the case of an
emerging fault [216].

Fault-tolerant systems are robust to faults through error handling because
they are prepared for known failure modes. Such use ignores that resilient
systems face the unexpected while fault-tolerant systems do not.

2.3.3 Robustness

Robustness is a form of resilience. A system is robust if, for any change, the
system state displacement is not enough to overcome the acceptance criteria for
which the system was designed [67,217]. For example, consider a high-traffic
e-commerce platform during a sale event. A sudden increase of concurrent users
entangles the server infrastructure, with each user interaction generating many
requests. In the face of such a stressful situation, a robust system would remain
operational and accessible, even under extreme load. It would successfully
handle the increased request volume, ensuring uninterrupted customer service.
A robust server under these circumstances demonstrates the ability to maintain
core functionality despite significant environmental stress.

Definition — Robustness

Robustness is “the degree to which a system or component can function

correctly in the presence of invalid inputs or stressful environmental
conditions” [218]

The literature on robustness is extensive [218,219]. In task scheduling, for
example, plan robustness generally means that it can be executed and will lead
to satisfying results despite changes in the environment [220]. As a property
of software systems, robustness is attained by design or testing. Design-based
robustness incorporates architectural tactics such as redundancy, isolation, and
encapsulation to ensure that systems can withstand unexpected inputs and
operational stress from the ground up [67,221,222]. For example, Huhns et al.
investigate the design of robust multi-agent systems, showing how redundancy

8Fault-tolerance is used interchangeably with dependability in this thesis. Despite the
similarity, they are different terms. Fault tolerance is means to dependability [16].

30 CHAPTER 2. TERMS AND RELATED WORK

and fault-tolerant agent interactions can create resilience even in complex,
dynamic environments [68,69,223]. On the testing side, robustness testing forms
a substantial portion of test suites in mature software — often around 80% [224].
Techniques such as fuzz testing, stress testing, and fault injection are essential for
robustness assurance, subjecting systems to boundary conditions and abnormal
inputs to reveal vulnerabilities [225-227]. For distributed embedded systems
with limited computational resources, targeted fault injection tests can be
employed to evaluate robustness under constrained conditions [184].

Although robustness is fundamental, it does not encompass all aspects
of resilience. While robust systems can absorb disturbances and continue
operating within acceptable performance bounds, resilience is more flexible.
In other words, a resilient system remains operational in the face of faults
and can degrade gracefully and recover to its original state after a disruption.
Robustness can be seen as a foundational element of resilience but does not
fully address its capacity.

2.3.4 Antifragility

Antifragility complements resilience by focusing on growth in response to stress.
While resilience focuses on a system’s ability to recover from disruptions and
maintain acceptable performance, antifragility refers to a system’s capacity to
gain strength or improve when exposed to volatility, stressors, or faults [228]. A
system is antifragile if it benefits from the same factors that might cause other
fragile software systems to degrade [229]. For instance, consider an autonomous
drone fleet deployed for environmental monitoring. When subjected to strong
winds or sensor malfunctions, an antifragile fleet would not merely compensate
for these disturbances but actively improve the flight stability control algorithm
to better handle similar conditions in the future.

Definition — Antifragility

Antifragility is “the ability of a system to leverage disturbances to self-
improve and enhance its resilience over (run)time” [230].

Antifragility is growing as a research field in computer science and engineer-
ing [231]. In the work of Monperrus M. [232], principles of antifragile software
systems emphasize learning from runtime disruptions. The author suggests
automated software repair [233-235] or runtime fault-injection [236,237] to
enhance the software system’s antifragility. Similarly, Botros J.S. [238] demon-
strates how chaos engineering, adaptation, and monitoring can be intertwined
in a framework to foster antifragility in cloud computing systems. Another
example is the use of machine learning in autonomous systems to evolve in the
face of failure [239], which can thrive when supported by the mathematical
grounding from control theory [240].

Antifragility differs from resilience in its approach to disruption. While re-
silience is about withstanding faults and returning to a stable state, antifragility
thrives on these faults, using them as opportunities for improvement. An an-
tifragile system evolves through adversity, developing enhanced capabilities
beyond recovery or restoration.

2.3. RELATED TERMS AND DEFINITIONS 31

2.3.5 Sustainability

Sustainability complements resilience by emphasizing long-term viability through
resource maintenance. A sustainable system can maintain its operational quality
and performance over extended periods while efficiently utilizing the computa-
tional resources and maintenance efforts [241]. For example, sustainable ADS
software would efficiently process data from the visual perception sensors (i.e.,
cameras, radar, and LiDAR), ensuring reliable performance for collision detec-
tion while minimizing power and resource usage. As the vehicle’s environment
changes, for instance, due to changes in seasons or new sensors are added,
the system would continue to operate effectively without requiring significant
hardware upgrades or excessive energy consumption. This ensures long-term
performance with minimal resource strain.

Definition — Sustainability

Sustainability is “the capacity of a system to endure and evolve while

minimizing resource consumption, maintaining efficiency, and ensuring
long-term performance” [242].

Sustainability grows as a pivoting area within computer science research [243—
246]. In cyber-physical systems, techniques to attain sustainability may be
implemented through processor architecture for optimized energy usage in task
scheduling [247-249]. On the software side, sustainability has been studied
from the point of view of architecture and requirements. For instance, system
sustainability can be attained by proposing design decisions that tackle the
“sustainability debt” [250] in the AUTOSAR? architecture for automotive
vehicles or promoting decision maps to understand the effects of design decisions
to sustainability of the software system [251]. Moreover, the sustainability of
software systems can be assessed using non-functional requirements [252] or
implemented following industry-compliant guidelines [253]. Penzenstadler, B.
lays means to leveraging sustainability within requirements engineering for
software systems [254, 255], for instance, by introducing the environmental
sustainability goals from stakeholder finding and domain analysis toward usage
model and system requirements.

While sustainability and resilience share a common goal of ensuring a
system’s long-term viability, the two concepts diverge in their primary focus.
Resilience emphasizes a system’s ability to withstand and recover from specific
faults or disturbances, while sustainability focuses on optimizing resource usage
and maintaining efficiency over time.

Yhttp://www.autosar.org

 http://www.autosar.org

32

CHAPTER 2. TERMS AND RELATED WORK

Chapter 3

Summary and Discussion

Attaining resilience is a matter of strategy. A joint effort between researchers
and practitioners casts the necessity to prioritize scientific and technological
advancement toward human-centric resilient computing. Contributions to re-
silience attainment in computing systems pave the way towards that. This
chapter lists and summarizes the research work that amounts to the thesis. The
chapter also discusses our contributions and impact on research and practice
when possible. Finally, the chapter synthesizes possible avenues for future work.

3.1 Summary of Original Work

This section presents a summary of the papers (A-I) highlighting the main
contributions, how they support the strategies (STG1-STGT), and answers to
questions (RQ1-RQ4). Each paper is briefly described, focusing on the novelty
and the paper’s evaluation results. We also emphasize the main contributions
of the author of the thesis to each paper.

. * Guidelines for Runtime Assessment
RQ1 STG1 A ROS-based Robotics | Sl En e User study

STG2 B Mobile Robotics * Architecture for Multi-Robot ¢ Experimentation
RO2 Multi-Robot Systems Systems * Guideline-based analysis
STG3 c Automotive * Driver-Vehicle Model « Static analysis
Autonomous Driving * Behavior trees for testing * Experimentation
Healthcare * Control Theory and Al . .
S 2 Body Sensor Network * Field data for PID tuning FppeNiiEEEn
Robotics * Patterns for robotics coding
RO3 SICE E Manipulation * Acase study of skill-based dev. Uil
Healthcare o] - - q
F ey SmEsr e Immune-inspired explainability Feasibility experiment
STG6 n . .
G Automotive utom_ated W0 Dlagnostlcs . Experimentation
* Evolutionary search for diagnostics
Healthcare . . g q
H Body Sensor Network Exemplar for experimentation Feasibility experiment
RQ4 STG7

¢ Repository of mission exemplars

I Robotics e . e
¢ Uncertainty in robotics missions

Table 3.1: Summary of contributions from papers A-I.

33

34 CHAPTER 3. SUMMARY AND DISCUSSION

Paper A— R. Caldas, J. A. P. Garcia , M. Schiopu , P. Pelliccione,
G. Rodrigues, T. Berger, “Runtime Verification and Field-based Test-
ing for ROS-based Robotic Systems”, In: Trans. Softw. Eng. (TSE),
IEEE, 2024.

In paper A, we propose a catalog of 20 guidelines for runtime assurance of
ROS-based robotic systems (Fig. 3.1) by looking at the scientific literature
and mined ROS code, using the lenses of Runtime Verification [256] and
Field-based Testing [65]. Grounded on theory, the guidelines deliver practical
recommendations to equip robotics developers with the means to develop
and collect assurance arguments on ROS-based systems. In addition, the
paper comprehensively assesses the state-of-the-art and state-of-the-practice
runtime assurance for ROS systems. We show that our guidelines are sound
by conducting a user study that received 55 responses from practitioners and
academics with experience in robotics development. The results show that
the guidelines were highly appreciated regarding applicability, usefulness, and
clarity. We offer an overview of existing methods and tools for testing ROS-
based systems, focusing on how they address the challenges of field-based
testing and runtime verification. Ultimately, the paper provides insights and
avenues for future research. For more information, check the original work in
Chapter 4.

{Legend Artifact

"> Acty Quality Assurance Team Activities

Artifact % > Activity
[ey [Juieine reor RS et 72 pcoy
Developers Activities Specify (Un)Desired Behavior

Constraint Identification

CH1. Identify timing
constraints

CI2. Identify
security and
privacy constraints

SDB1. Specify.

rties using
ased
ge.

pre
logi
fan >
SDB2. Use domain
specific languages
(DSLs)to specify
properties.

SDB3 Use
languages and
toolsto scenario-
based
specification of
testcases

CI3. Identify safety
constraints

Code design and impl.

Environment

Prepare

PE. Understand
the overhead

acceptancecriteria

PE2. Create
models for runtime.
assessment

|

11 Provide an API
for querying and
updating internal
lifecycle >

12
|— . — . —>| | forloggingand
i >
source 13. Provido an AP for
injectng fauls in
execuion scenarios

CD2. Ensure global
ofevents and
state:

s 7
N
|
|

code

fortesting

execution
environment
-_

system under test

Monitor and test

(-

behavior
specification

MTA. Improve the
robustness of the
system by
performing noise
and fault injection

MTA2. Exploit
‘automation for test
case generation,
prioritzation,
selectionand
oracle generation

executable 4O
testcases

or m—
scenarios "' —

D

report

SET. Use record-
and-replay when
performing
exploratory field

SE2. No GUIs!
Prioritize headless
simulation

ART. Perform
postmortem analysis

to

passingtestcases)

AR2. Use reliable
o

Figure 3.1: Catalog of Guidelines for Runtime Verification and Field-based
Testing for ROS-based Robotic Systems. Note: originals are in Chapter 4

Paper A solely realizes the strategy STG1 and answers to the research
question RQ1.

Individual Contribution: The author of this thesis led the work. He conceived
the original ideas of the work, designed the methodology, conducted the anal-
ysis of literature in partnership with another researcher, and the analysis of
the mined codebases with others. He led the writing of the paper and was
responsible for validating and visualizing the data and results.

3.1. SUMMARY OF ORIGINAL WORK 35

Paper B— G. S. Rodrigues, R. Caldas, G. Araujo, V. de Moraes,
G. Rodrigues, P. Pelliccione, “An Architecture for Mission Coor-
dination of Heterogeneous Robots”, In: J. Syst. Softw. (JSS) 191:
111363 (2022), ACM, 2022.

Paper B proposes MissionControl, an architecture to coordinate missions to
automatically form coalitions of heterogeneous robots, shown in Fig. 3.2.

Our proposed architecture has been defined to satisfy key attributes of mod-
ifiability and integrability by decoupling coordination and task execution.
Coordination builds on ensemble-based systems [257] while for task execution,
we leverage behavior trees [156] as the technology for skill-based execution.
Empirically, we show that MissionControl leads to 57,63% more complete
missions, on average, compared to a simple task allocation mechanism. We ran
our experimental apparatus for 81 scenarios (totaling 648 trials). The mission
could fail due to ‘no skill’ found to complete the mission, robots could stop
due to lack of battery, the trial could timeout, or the robot could get stuck in
walls. In addition, we show that our architecture complies with best practices
on robotic architecture design, following a guideline-based evaluation. Check
the original work in Chapter 5 for more information.

MissionControl Architecture Comparison of Complete Missions (%)
[%]
@) MissionControl Runtime Environment 100
Coordinator <3| oca Robot = 87,5
plan >
l 75
| Missions H Workers I Local Mission Properties
62,5
Knowledge Base Knowledge Base
[v i
H L] 50
Coalition Formation & Sequencing Process @I
37,5
Library of Skill Synchronization [15] 25
Skill Deseriptors [Descript l Active Skil Manager
| | - 12,5

Estimating Manager [Sensors / Actuators]

0

Simple Alloc. MissionControl

Figure 3.2: Overview of the MissionControl architecture and results from the
empirical assessment of the implementation. Note: originals are in Chapter 5

Paper B realizes the strategy STG2 and, jointly with Paper C, answers to
the research question RQ2.

Individual Contribution: The author of this thesis contributed to the work
led by another researcher, namely G. S. Rodrigues from the University of
Brasilia, Brazil. In this work, the thesis author contributed to discussions
on conceptualizing the main idea. He focused mainly on the experimental
setting and planning the evaluation work. His work included outlining the
experiments, preparing for data analysis and visualization, and reporting the
results. Particularly, he contributed to the feasibility evaluation pipeline and
the guideline-based evaluation of the architecture.

36 CHAPTER 3. SUMMARY AND DISCUSSION

Paper C — R. Queiroz, D. Sharma, R. Caldas, K. Czarnecki, S. Garcia,
T. Berger, P. Pelliccione, “A Driver-Vehicle Model for ADS Scenario-
based Testing”, Trans. on Intell. Transp. Syst. (ITS) 25(8): 8641-
8654, IEEE, 2024.

In this paper, we propose the GeoScenario Simulated Driver-Vehicle model
to specify and simulate the realistic behavior of human-operated vehicles
in testing, offering high expressiveness, execution accuracy, scalability, and
reuse. Illustrated in Fig. 3.3, the simulated driver-vehicle model extends the
GeoScenario [73], an autonomous driving scenario simulation environment by
using the driver behavior model proposed in Michon et al. [258], in which the
maneuver selection logic is implemented using behavior trees [259].
Empirically, we show that the model can successfully express with over 80%
of reuse and accurately execute all eighteen National Highway Traffic Safety
Administration’s (NHTSA) vehicle-to-vehicle pre-crash scenarios (except one
variant). We also show that, after calibration, the model can produce maneuver
decisions and trajectories that closely resemble those from recorded real-world
traffic concerning Spatial-Temporal Euclidean Distance (STED) to the expected
trajectories. The model also scales in scenarios with up to 10-20 simultaneous
and highly interactive vehicles in real-time simulation. For more information,
check the original work in Chapter 6.

Spatio-temporal Euclidean Distance (STED) Distribution

o o
o

o

@)

STED (m)

’/"
v spv

ot Nl oY
e Hh g3
all®) { {T »}—— 000 oao o

all (@ { He}—o
follow (b) { HPH ©
follow (a) 1 H{E—H

free/follow (b)
green light (b)

free (b) p_| : }—1 (X}
free (a) | {HH
free/follow (a) %
green light (3) ,.EH
red light (b) D)
red light (a) '&—1 @

X
(©)

Figure 3.3: Cut-in scenario simulated in GeoScenario and results from the
empirical assessment of realism of scenarios. Note: originals are in Chapter 6

Paper C solely realizes the strategy STG3 and, jointly with Paper B, answers
to the research question RQ2.

Individual Contribution: The author of this thesis contributed to the work led
by another researcher, namely R. Queiroz from the University of Waterloo,
Canada. The thesis author contributed to implementing a significant portion
of the design artifact. Notably, the thesis author implemented the internal
domain-specific language based on behavior trees to allow for the specification
of human-driver behavioral models with reuse and flexibility. In addition, the
thesis author evaluated the work, contributing to the design and execution of
experimental trials, data collection, analysis, visualization, and reporting. The
thesis author focused on assessing the expressiveness and level of reuse of the
designed human-driver specifications. This thesis’s author also contributed to
manuscript revisions during the peer-review process.

3.1. SUMMARY OF ORIGINAL WORK 37

Paper D— R. Caldas, A. Rodrigues, E. B. Gil, G. N. Rodrigues,
T. N. Vogel, P. Pelliccione, “A Hybrid Approach Combining Control
Theory and Al for Engineering Self-Adaptive Systems”, In: Proceed-
ings of the 15th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), IEEE/ACM,
2020

This paper proposes intertwining control theory and AT in a two-phase opti-
mization approach to support the engineering of control-based self-adaptation
systems. Depicted in Fig. 3.4, our control-based self-adaptation architecture re-
lies on two layers: strategy management and strategy enactment. The strategy
management layer utilizes parametric formulae of the system requirements in
goal model notation [86]. The strategy enactor follows a typical proportional-
integral-derivative (PID) controller and enacts the selected strategy by fine-
tuning the knobs of (a.k.a. re-configuring) the application at runtime. Both
layers used the Non-dominated Sorting Genetic Algorithm (NSGA-II) [260]
for synthesizing adaptation strategies and finding optimal actions to enact the
change in the system. Empirically, we show that the NSGA-II algorithm can
effectively find nearly optimal configurations for the PID controller, which, in
turn, results in a self-adaptive system capable of resiliently adapting in the
face of various kinds of uncertainties in a body sensor network example (from
paper I). Check the original work in Chapter 7 for more information.

System Manager B Adaptation Space Exploration

Gain, Offset
Manager Strategy
i Manager

Time

1suaﬁegy HO—

Enactor Kp. Ki Strategy
Optimization Enactor Lo

ontrol Theory|
Metrics

Managed System

Steady State Error (%)

? Stable
Unstable
mEm Optimized

L}
.

[o |
4 6 8 10 12 14 16
Overshoot (%)

Figure 3.4: The hybrid approach to control-based adaptation and the empirical
results of understanding whether the tool finds nearly optimal configurations.
Note: originals are in Chapter 7.

Paper D solely realizes the strategy STG4 and, jointly with Papers E, F,
G, answers to the research question RQ3.

Individual Contribution: The author of this thesis led this work. The thesis
author conceptualized the idea with another researcher from the team. The
author of this thesis also implemented the hybrid approach and developed the
experimental setting to gather empirical evidence that the approach is sound.
The author of the thesis collected the data, analyzed, reported, and created
the visualizations.

38 CHAPTER 3. SUMMARY AND DISCUSSION

Paper E—- M. Rizwan, C. Reichenbach, R. Caldas, M. Mayr, V. Krueger,
“EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL
for Early Error Detection”, In: Frontiers in Robotics and AI (RAI),
Frontiers, 2024

Paper E proposes EzSkiROS, an embedded domain-specific language to support
the development of robotic applications. Depicted in Fig. 3.5, EzSkiROS is
an extension of SkiROS2 [261], a framework for specifying robotics control
code driven by skills implementations. EzSkiROS results from a case study in
which we promote four design patterns for embedded domain-specific languages,
namely: domain language mapping [262], early dynamic checking [263], symbolic
tracking [264], and source provenance tracking [265]; addressing common
challenges in robotic software development. Through a user study, we show that
EzSkiROS helped to catch bugs due to mismatching environmental assumptions
and that the resulting specification is more readable, clear, and concise. Check
the original work in Chapter 8 for more information.

‘ managing
coding Robot Developers

> World Model Task Manager
O)— Ontology E?] =
[Ontology Items Pred-emcmaceanan. g, mmmeo] ok EEEEEEEEEE TN A
=Y ! Pre-launch file | E : i J
o]yl P pereeeeneeeeees &
. - o' | parameters E ! T L&A ! ' |
O) Skill Description —38 o @ {1 Running SKillA
New Syntax (Skill Desc.) ” ! Skill SKill A iy
' conditions v Manager ©----- ' ' s
I : =y anager " ' s mmsn e g o i ez e
1 | check param | 1+ 7 1 Skill B ' V
—O)— , |remapsinBT. | | E E' ------ E N
Skill Implementation > ook [1 Skill C ' q,;@
New Syntax (BT expand) E existence of a : E Launchiie E 'Q
! skill in the BT. L el s
1. Design time 2. Launch time 3. Runtime

Figure 3.5: Simulation of the robotic arm UR5 and EzSkiROS. Note: originals
in Chapter 8

Paper E solely realizes the strategy STGS5 and, jointly with Papers D, F,
G, answers to the research question RQ3.

Individual Contribution: The author of this thesis contributed to the work led
by another researcher, namely M. Rizwan from the University of Lund, Sweden.
The thesis author participated in conceptualizing the ideas that resulted in the
paper, supported by pair programming in some of the core features of the work.
The thesis author also participated in planning and running the evaluation
section of the work, delving into data analysis, reporting, and visualizations of
the approach. The author also supported paper writing, especially the related
work section, and revisions during peer review.

3.1. SUMMARY OF ORIGINAL WORK 39

Paper F—J. P. C. de Araujo, G. N. Rodrigues, M. Carwehl, T. Vogel,
L. Grunske, R. Caldas, P. Pelliccione,, “Explainability for Prop-
erty Violations in Cyber-Physical Systems: An Immune-Inspired
Approach”, In: IEEE Software 41(5): 43-51, IEEE, 2024

This paper proposes an immune-inspired approach to automated explainability
derivation from traces. Figure 3.7 illustrates the approach in three steps: (i)
Feature Engineering, (ii) Negative Selection, and (iii) Detector Analysis. This
pipeline follows the Negative Selection Algorithm [266]. The input to the
automated explanation analysis tool is a system property specified in first-order
logic, and the operational dataset consists of (multiple) execution traces derived
from simulated system runs. This paper analyzes the feasibility of the solution
in a body sensor network system (from paper H). Our analysis diagnosed that
features related to the sensor’s unavailability, battery depletion, and timing
failure were relevant factors that contributed to anomalous behaviors regarding
the property at hand. Check the original work in Chapter 9.

(i) Feature Engineering (i) Negative Selection

System Property

= £O10 > .
=3 1 o S 4: &
=3 Oo °
£ v & o <7
[J¢ Mateh?
Operation Dataset —— © N
o~
o UVQQ &
i Random
Pettovue | @ TNk (iii) Detector Analysis »ovo Lt LA Genrsion
0 m—
64% —
AUl = 5 4 Sl
- = »
a la;g;ﬂ o . \70 a (@)) Yes, discard!
T
p= Y o a e
=4 0~ — - =
e | PR 7
e N gl \|iT=® i}
[Pos | Fawe |
[Therm. was available during data transfer
1 Sensor transferred Data 59%
2 Therm. was available dunr}g Central Node data 6.6% 1%
processing
) Therm. battery depletion during trace
4 Therm. became unavailable during trace o o
Q. ‘0.
5 Therm. battery depletion during data processing OOO OO?
o Y
e Trompmeysenmmamgsaatorseeres | [1 I A I I N |
7 Therm. battery depletion during data collection S S B E B P © O S S
k9 909 O o B B ° 9
B 383838 9 3 B b 3 =S
8 Therm. processed data g8 8L LB B 5 B R S 8
S & p © O =3 B o 2 =
9 ABPD battery depletion during trace e e 8RR R 8 2 g e
g e e E g R
10 Heartrate battery depletion during trace L = o L
Y
11 Oximeter battery depletion during trace Timing Battery Depletion (33.4%) Sensor Unavailable (60%)
Failur
12 ABPS battery depletion during trace \e‘eug:

Figure 3.6: Overview of the pipeline to automated explanation using the
negative selection algorithm. Note: originals in Chapter 9

Paper F jointly with paper G realizes the strategy STG6 and, jointly with
Papers D, E, G, answers to the research question RQ3.

Individual Contribution: The author of this thesis contributed to the work led
by another researcher, J. P. C. Araujo, from the Humboldt University Berlin,
Germany. The thesis author contributed by discussing the adoption of the
negative selection algorithm. He also assisted with writing and reviewing the
manuscript.

40 CHAPTER 3. SUMMARY AND DISCUSSION

Paper G- G. Araujo, R. Caldas, F. Formica, G. Rodrigues, P. Pellic-
cione, C. Menghi, “Search-based Trace Diagnostic” (submitted)

Paper G proposes a search-based trace diagnostics method. Figure 3.7 il-
lustrates a scenario that violates a safety property, and the explanation is
automatically derived using the search-based trace diagnostics method. De-
parting from a violated requirement, specified in hybrid logic signals [158], and
a trace, the method exploits genetic algorithms to generate valid mutations of
the violated requirement and, consequently, derive diagnostics to the property
violation. Significantly, the genetic algorithm relies on the Smith-Waterman
algorithm [267] as the fitness function. The C4.5 algorithm [268], available at
Weka [269] that builds a decision tree containing the diagnostics, the semantics
of the nodes on the root of the tree are more likely to have strongly influenced
the property violation. Empirically, we evaluated our solution by performing 34
experiments involving 17 trace-requirement combinations that led to a property
violation from two systems from the automotive domain and one from the
robotic domain. Our results show that Diagnosis can produce informative
diagnoses within a practical time (47 hours) for most of our experiments (33
out of 34). Check the original work in Chapter 10 for more information.

y[m] o((and)

660660 QQQQQQ T =

, o(80) o)
RN PN
<0.6864 > 0.6864 SHTHM5 > 5475945
[7 7 \ 7 p
, ! True (740)
=5 >

ego = =

-
o

6(20) False (1501 o(50)

g g g g g g g"’m'm‘j/ A 2 9480503 < 0»7038/ \ > 07038
o N / N

0 5 10 x[m]

Figure 3.7: Scenario violating the requirements and derived diagnostics.
Note: originals in Chapter 10

Paper G jointly with paper F realizes the strategy STG®6 and, jointly with
Papers D, E, F, answers to the research question RQ3.

Individual Contribution: The author of this thesis contributed to the work
led by another researcher, namely G. Araujo from the University of Brasilia,
Brazil. The thesis author contributed with the initial ideas of the work and the
concrete solution design. Particularly, he assisted with designing and framing
the solution within the genetic algorithm paradigm by participating in initial
technology spikes and discussing the implementation with the leading author.
In addition, he contributed to interpreting the diagnostics results in the format
of decision trees. The thesis author also assisted with the design of the experi-
ments for validation, data analysis, and reporting. More specifically, it concerns
the experimentation goals, the semantics of effectiveness and efficiency, and
the comparison to human-driven diagnostics. He also assisted with writing the
related work section and revising the manuscript.

3.1. SUMMARY OF ORIGINAL WORK 41

Paper H- E. B. Gil, R. Caldas, A. Rodrigues, G. L. G. da Silva, G. N.
Rodrigues, P. Pelliccione “Body Sensor Network: A Self-Adaptive
System Exemplar in the Healthcare Domain” In: Proceedings of the

16th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). IEEE/ACM, 2021

Paper H proposes the BSN, a self-adaptive body sensor network exemplar in
healthcare. The BSN features in the list of self-adaptation exemplars of the
community on engineering adaptive and self-managing systems. Interestingly,
the paper contributes the only exemplar that leverages a replaceable, self-
adaptation based on control theory [175]. In addition, the BSN was implemented
in the robot operating system (ROS) [270], which ties the application to the
de facto development environment used in robotics. Finally, it embeds a node
dedicated to uncertainty injection for experimentation in the self-adaptive
domain with the capacity to simulate all four kinds of uncertainty sources:
changing system goals, environmental changes, and changes in the system
itself [84]. Our exemplar is easy to install and deploy, offering instructions on
building locally and using a prepared virtual machine or docker. The exemplar
from Paper I was used in papers D and G for validation purposes. Check the
original work in Chapter 11 for more information.

---------------------- m ‘Managing System Knowledge Repository
13 E Strat a
° ! Strategy % 5| Strategy
i ! Manager Enactor

Tt

G2: Pationt status is
monitored [G3#G4]
G3: Vital signs

are monitored

T1: Monitor vital signs
[T1ART1.2HT1.3HTI. 4%

é|>,

G4: Vital signs are H
f, |Meneowd Syt
T1: Analyze i
vitl signs i o
Ti.1: Collact ;
5202 cata T16: Collect i o
Glucose data { eart
T1.2: Collect i Rate
ECG data T1.5: Callect ;
Diastolic. ;
T1.3: Collect 2 ; __
it T4 Colect ABP data : T
Systolic F
ABP data i

@ |
i
g i
211
K
2l
=i

=
z |
3|
e |i
g |
gl
2|
NN
%

100% — relsbiltyrace
overshoot
Pl setpoint
: sse

\ Lo, P N
80% W N S " g -

60% -

settling time

40%
Adaptation|

m,g.;

Figure 3.8: Overview of the requirements and architecture of the body sensor
network. Note: originals in Chapter 11

Paper H jointly with paper I realizes the strategy STGT and, jointly with
Papers I, answers to the research question RQ4.

Individual Contribution: The author of this thesis led this work. The thesis
author conceptualized the idea and implemented the design artifact, including
all available components. He led the writing, reporting, visualizations, and
packaging of the artifact for sharing.

42 CHAPTER 3. SUMMARY AND DISCUSSION

Paper I- M. Askarpour, C. Tsigkanos, C. Menghi, R. Calinescu, P.
Pelliccione, S. Garcia, R. Caldas, T. J. von Oertzen, M. Wimmer, L.
Berardinelli, M. Rossi, M. M. Bersani, G. S. Rodrigues, “RoboMAX:
Robotic Mission Adaptation eXemplars” In: Proceedings of the 16th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), IEEE/ACM, 2021

Paper I proposes RoboMAX, a series of natural language mission specifications
to support the development of robotic applications subject to uncertainty.
RoboMAX serves as a repository of scenarios collected from academics and
practitioners working in domains such as hospitals and warehouses. The written
scenarios are further classified concerning sources of uncertainty that may affect
the conclusion of the mission, depicted in Fig. 3.9. The repository is extensible
and available in an online repository. Check the original work in Chapter 12
for more information.

Sources of Uncertainty in Robotic Missions

Automatic Learning Abstraction

Decentralization &

I Incompleteness
Coordination P

Future Mission Model Drift
Changes

Mission

Specification Complex Models

Outdated Mission Sensing
Execution Context Actuation
Human in the loop Variability Space

Changing Models

Figure 3.9: Classifications of sources of uncertainty affecting the 13 initial
scenarios from RoboMAX.

Paper I jointly with paper H realizes the strategy STG7 and, jointly with
Paper H, answers to the research question RQ4.

Individual Contribution: The author of this thesis contributed to this work
led by another researcher, namely M. Askarpour from McMaster University,
Canada. The author of this thesis contributed by designing and writing three
specifications (i.e., robot missions) that compose the collection of artifacts
that amount to the repository. He assisted with classifying the specifications
according to the required and implemented framework.

3.2. DISCUSSION AND RESEARCH IMPACT 43

3.2 Discussion and Research Impact

In this section, we revisit the research questions and their answers, outlining our
contributions to research and practice in resilience attainment in cyber-physical
systems. Moreover, when possible, we reflect on the research impact of the
contributions and papers appended to the thesis.

RQ1. How are the current practices, methods, and tools enabling
runtime assessment to attain resilience in cyber-physical systems?

RQ1 is answered by the strategy STG1 and supported by paper A. The strategy
STG1 argues for enacting a catalog of best practices on runtime verification
and field-based testing to equip development and quality assurance teams
with runtime introspection and modification capacities. With this objective,
paper A gathered the state-of-the-art through a systematic literature review,
enhanced by the state-of-the-practice with a repository mining and analysis. It
synthesized 20 guidelines with recommendations that support the development
and quality assurance of robotic systems, a particular kind of cyber-physical
system. In this context, we discuss two outstanding aspects of our study: a
methodological contribution and a technological contribution.

Methodologically, our study bridges the gap between theory and practice by
combining a systematic literature review on fundamental software engineering
technologies, i.e., runtime verification and field-based testing, and the practice
of such in a framework widely used in practice, both in academia and industry,
the robot operating system (ROS). In this sense, the closest comparison to
our work is the work from Malavolta et al. [271], which relies purely on
mining ROS repositories to collect architectural decisions. Their mapping to a
theory on software architecture is implicit in the paper and limits the task of
finding and exposing gaps in the literature. In addition, we believe that the
guidelines should be extended to include theoretical and practical advances
in the field. Therefore, we released a live version of the guidelines, hosted
on an open-source website (https://ros-rvft.github.io/) with reproducibility
and extensibility instructions. The protocol for extension is described and
transparent and aims to maintain the quality of the guidelines catalog. As far
as we know, there is no similar practice.

Technologically, our study also delivers the first recommendations for
robotics testing to support such challenging tasks in robotics software de-
velopment concretely. In contrast, other contributions to guiding testing in
the context of robotics focus on developing practices [272], methods [273,274],
tools [275], and concrete recommendations are not evident from these works.
Our proposed, loosely coupled guidelines are agnostic from the development
process and can be employed by any roboticist using the robot operating
system. Although not supported by concrete examples, the guidelines can be
generalized to robotics and cyber-physical systems.

RQ2. How to attain resilience in cyber-physical systems with diverse
and smart agents?

RQ2 is answered by strategies STG2 and STG3, supported by papers B
and C, respectively. Strategy STG2 advocates separating concerns between

https://ros-rvft.github.io/

44 CHAPTER 3. SUMMARY AND DISCUSSION

coordination and task execution to attain robust operation, with the automated
task (re-)allocation for cyber-physical systems with heterogeneous components.
Accordingly, paper B promotes the automated formation of coalitions, i.e.,
teams of agents, focusing on ensemble formation for robust execution. The
strategy STG3 argues for behavior reuse when specifying test cases for cyber-
physical systems with smart agents and, thus, collects assurance cases for
robust cyber-physical systems’ behavior. Accordingly, paper C develops a
model that supports the implementation of other dynamic and smart agents as
part of the test scenario. In this context, we highlight this study’s contributions
compared to similar works for attaining resilience in heterogeneous and smart
cyber-physical systems.

Our study uniquely prepares cyber-physical systems for operating with
heterogeneous and smart agents. From the architecture side (STG2), we
promote the automated composition of heterogeneous nodes in a dynamic
setting that, differently from other multi-agent system architectures, enables
task (re-)allocation in the face of uncertainty [276-278], our architecture is
system agnostic, as long as the system’s architecture allows for skill descriptions
and the descriptors follow MissionControl’s interface. Our study heavily inspired
further work on the specification and automated decomposition of missions
for robotic systems [279], an approach that integrates the human-on-the-loop
for coordination of mission reconfigurations in self-adaptive systems [280],
automated plan recovery in dynamic environments [281], and uncertainty
handling for multi-robot applications [163].

From the assurance case collection side (STG3), we allow for a multi-
layered model that unites precise, lower-level task specifications with high-level
mission coordination. In contrast to less flexible approaches to implementing
test scenarios, for instance, using models that do not scale as well [282], are
capacity-driven (e.g., driver following maneuver [78]), or are not controllable
or modifiable since they are data-driven [72]. This study motivated work on
complementary models that extrapolate human driver’s behavior, specifically
lane change maneuvers, by evaluating available safety margins from a personal
minimal acceptable gap size [283]; it also motivated the development of human
(pedestrian) models [284].

RQ3. How to attain resilience in cyber-physical systems prone to
uncertainty?

RQ3 is answered by the Strategies (STG4-STG6) and supported by Papers
D-G. Strategy STG4 argues for embedding control-based self-adaptation in
cyber-physical systems. Accordingly, paper D presents a two-layered adaptation
approach with high-level strategy management and lower-level strategy enact-
ment (using a PID controller) to reduce the effect of exposure to uncertainties.
Strategy STG5H argues for preparing the codebase to catch errors early. Accord-
ingly, paper E implements four design patterns to prepare the codebase to catch
errors that are subject to environmental uncertainty early. Strategy STG6 ar-
gues for using tools to automate the derivation of diagnostics and explanations
to support swift recovery. Accordingly, papers F and G propose trace-checking
techniques that are either focused on collecting multiple traces or generating
variations of the requirement specification to find likely causes for the failures.

3.2. DISCUSSION AND RESEARCH IMPACT 45

In this context, we discuss the studies’ contributions to mitigating uncertainty
to attain resilience in cyber-physical systems.

The strategy STG4 aims to systematically mitigate uncertainty by collecting
execution logs and feeding them back to tune the control-based self-adaptation
engine. Differently from other approaches to automatically construct controllers
for managing the software system’s adaptation needs [285-287], we developed a
first-of-its-kind two-layered control-based self-adaptation mechanism. Our work
inspired a wave on better adaptive systems combining the mape architecture,
control theory, and machine learning [239], the design of controller synthesis to
deep-learning perception components [288], and the design of hybrid control
algorithms for enhanced driving performance [289]. As a counterpart, there was
some criticism of using the NSGA-II algorithm for tuning the controller [290],
the authors of the arXiv document write: “For example, a very recent work in
SBSE (Search-Based Software Engineering) for SASs (Self-Adaptive Systems)
[(a reference to paper D)], [...], has wrongly adapted NSGA-II to optimize a
single-objective problem for SAS.”. Although the authors’ reasoning is right,
our solution does not solely stand on NSGA-II and would work with any other
search-based algorithm.

Strategy STGH, on the other hand, aims to mitigate uncertainty by prepar-
ing the codebase to detect errors in the implementation earlier. Embedding
environment assumptions in the codebase typically follow model-driven ap-
proaches [291-293]; they, however, do not always lie on the potential of em-
bedded domain-specific languages such as employing early checking techniques
or leveraging the constructs of the host language as means to ease the intro-
duction of advanced language mechanisms in a formalism well-known by the
developers—the proposed patterns uniquely from paper E address this issue in
the context of cyber-physical systems. We only recently released the papers,
and there was no time yet for impact in the literature or practice. Yet, we
speculate that our work will shape how practitioners write code for robotic
systems by mindfully bringing environmental assumptions to code and checking
environmental assumption violations before runtime.

On the quality assurance side, STG6 aims to mitigate uncertainty by equip-
ping engineers with automated tooling to support the explanation for runtime
failures using trace-checking. The approach in paper G uniquely uses the
negative selection algorithm to identify anomalous behavior in the data, lever-
aging flexibility to capture complex relationships between cyber and physical
elements, differently from [294-296] that use opaque models as surrogates,
whose less transparent reasoning requires an additional step by integrating
explainability techniques to render comprehensible explanations. The approach
in paper H uniquely uses genetic algorithms for mutating the violated formal
specification, and thus, requires only one trace of execution, differently from
other works that require many traces or extrapolating information coming from
the traces [151,152,297]. The works are recent, and there is no evidence of their
impact in the literature or practice; however, we speculate that automated
explanations will heavily rely on trace-checking-based techniques that efficiently
analyze field data against requirement specifications.

46 CHAPTER 3. SUMMARY AND DISCUSSION

RQ4. How to develop exemplars to advance research on resilience
attainment in cyber-physical systems?

RQ4 is answered by the Strategy (STG7) and supported by Papers H and I
Strategy STG7 argues for offering exemplars to support the development of
new methods, tools, and evidence in the field of resilience in cyber-physical
systems. Accordingly, papers H and I provided exemplars for the community
on engineering self-management and adaptive systems. In this context, we
discuss the studies’ contributions to the community.

An extensive list of exemplars is used to advance research in self-adaptive
systems.! Uniquely; the body sensor network presented the first exemplar
showcasing control-based adaptation that uses the robot operating system
(ROS) for a healthcare application. Other works are deployed in the healthcare
domain, using the ROS [270], but none provided interfaces to control-theoretic
solutions. The body sensor network exemplar has been widely used in further
developments of research for control-based self-adaptation [2908-300], as an in-
spiration for other exemplars [301], or research on normative requirements and
explanability [302,303]. RoboMAX, on the other side, stands on the scarcity of
model problems that support understanding the needs of the robotics domain.
Like a similar IoT exemplar [304], RoboMAX provides high-level requirements
and key contextual information associated with the considered systems and
their adaptation concerns. In this way, the RoboMAX repository serves a
different purpose and complements other exemplars that offer simulators for
simple robotics applications [98, 305, 306].

3.3 Threats to Validity

This thesis’ arguments were constructed following a qualitative research paradigm
— from nine research publications (Papers A-I), we synthesized seven strategies

(STG1-STGY7) to attain resilience in cyber-physical systems. We then briefly

analyze the validity of the strategies, answering questions inspired by guidelines

to a threat to validity assessment [307].

Do the strategies fully answer to the research questions?

Our strategies collectively address each research question, validated through
user studies, case studies, and controlled experiments. STG1 relies on runtime
verification and field-based testing, with validation aligning with established
anomaly detection techniques. STG2 and STG3 address resilience in multi-agent
systems by enhancing scalability and reuse, validated through extensive testing
and analysis. While we recognize that resilience in multi-agent systems could be
further supported by areas such as consensus and conflict management, STG2
and STGS3 offer essential solutions to address RQ2. STG4-STG6 contribute
to managing uncertainty in cyber-physical systems, focusing on uncertainty
handling by prevention, adaptation, and automated analysis; other dimensions
like incomplete knowledge and human-in-the-loop are not covered. Finally,
STGT provides resilience exemplars, expanding SEAMS resources and covering
diverse aspects of uncertainty, like requirements and fault-injection.

Thttps://www.hpi.uni-potsdam.de/giese/public/selfadapt /exemplars/

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

3.3. THREATS TO VALIDITY 47

Are the strategies solid, i.e., built on solid grounding?

The strategies are based on nine peer-reviewed publications in renowned venues,
ensuring credibility through rigorous expert review of the claims, data, and
methods used. Most publications employ quantitative methods supporting
transparency and reproducibility; Papers B, C, D, F, G, and H provide detailed
experimental setups, online access to code and data, and, where applicable, data
analysis algorithms. These steps enable independent verification, reinforcing
the reliability of our findings. Qualitative research (Papers A, E, and I)
was conducted with bias mitigation in mind, including triangulation and
thorough documentation. The process for extrapolating the strategies from
the publications is subject to bias since the researcher is also the author of the
papers. To reduce author bias, we compared each strategy with comparable
frameworks and findings in related work (Chapter 2).

Is there evidence that the strategies enhance resilience?

The impact of each strategy on resilience can vary depending on the system
context. Nonetheless, the strategies in this thesis were designed as comple-
mentary methods to aid developers and quality assurance teams in improving
resilience in cyber-physical systems. Although we did not test for effectiveness
and efficiency, the strategies align with the challenges to resilience attainment
discussed in the scientific literature. Moreover, we applied thorough documen-
tation to reduce potential bias. Existing resilience frameworks, such as those
by Andersson et al. [41], Trivedi et al. [115], and Sharma et al. [116], provide
metrics that can be used to evaluate the strategies in a structured, statistically
sound experimental setting in the future. However, as our resilience assessment
was not conducted in real-world environments or other software architectures,
the generalizability of these strategies may limited to the scenarios in the papers.
We intend to follow up on this in the near future. As far as we know, there
are no off-the-shelf experimental settings for testing resilience enhancement in
cyber-physical systems, which remains a gap in the field.

Are the strategies suitable to all cyber-physical systems?

The strategies presented in this thesis address a range of cyber-physical systems,
including mobile robots, robotic arms, autonomous vehicles, and healthcare
sensor networks. Our contributions extend to widely used software environ-
ments, such as the Robot Operating System (ROS), a building block of various
cyber-physical systems. While we have not specifically tested our strategies in
domains like Smart grids, Industry 4.0, or the Internet of Things (IoT), the
underlying theories and principles driving our approaches have shown promise
in similar contexts. We grounded our strategies in well-established frameworks
and empirical studies relevant to these additional domains. By doing so, we
mitigate potential biases stemming from limited domain testing, enhancing the
generalizability of our strategies. We acknowledge that further validation in
these areas would be beneficial, yet we believe the foundational aspects of our
strategies will adapt effectively across different cyber-physical systems.

48 CHAPTER 3. SUMMARY AND DISCUSSION

3.4 Conclusions and Future Work

This thesis introduced a strategic approach to resilience development for cyber-
physical systems, moving beyond incidental resilience that may yield only short-
term stability. We propose seven strategies that address runtime assessment,
the diversity and smartness of agents within these systems, taming uncertainty
as an intentional approach to cope with runtime change, and exemplars that
serve as resilience role models. The strategies are rooted in publications
across software engineering, self-managed and adaptive systems, robotics, and
transportation, encompassing quantitative and qualitative research that follows
a design science methodology. Our strategies reflect substantial advances in
the resilience of cyber-physical systems, addressing challenges in the field. In
addition to future directions outlined within the individual studies, we propose
two broader avenues for future work that emerged from this thesis.

Uncertainty-Aware Specification for Resilient Cyber-Physical Sys-
tems. Systematically using unanticipated changes as a key enabler to runtime
reasoning and resilience attainment remains an open question. One potential
research direction involves relaxing specifications [86,161], allowing systems to
be constructed and deployed despite incomplete knowledge of their operational
environment. However, incorporating field data in uncertainty-aware models
to guide runtime adaptations poses significant challenges, particularly with
maintaining guarantees of correctness [308,309]. This complexity increases in
multi-agent systems with diverse, intelligent components [163]. Key questions
arise: “What methods best encode uncertainty in specifications for multi-agent
systems?”, “How can uncertainty-aware specifications be leveraged at runtime
to support resilience amid unanticipated changes?”, “What approaches ensure
runtime guarantees of resilience as unforeseen changes emerge?”. Exploring
these questions would represent a relevant advance in the engineering of modern
cyber-physical systems.

Experimental Support to Resilience Assessment of Cyber-Physical
Systems. Standardized platforms for resilience assessment in cyber-physical
systems remain a gap in the field. Achieving resilience requires an operational
measure of “more” or “less” resilience, grounded in resilience metrics proposed
in the literature [41,115,116]. However, these metrics often require controlled,
fault-inducing scenarios and simulated uncertainties, which are challenging
to scale for large or multi-agent systems. Effective assessment also depends
on field data manipulation, constrained by the need for physical context or
real-time system adaptation [89,310,311]. Further, designing thorough ex-
periments requires decision-making around the timing, type, and sequence
of fault injection, which are difficult to generalize yet essential for evaluating
resilience accurately [65]. To advance resilience assessment, researchers should
address questions like: “What metrics best quantify resilience across varying
conditions?” “How can field data be systematically incorporated to simulate
realistic scenarios without losing experimental control?” “What best practices
scale fault injections effectively for complex, multi-agent systems? Progress in
this area will strengthen cyber-physical system validation, ensuring resilience
strategies perform under diverse, realistic conditions.

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Problem Formulation
	Research Objective and Research Questions
	Methodology
	Brief Outline of Contributions
	Thesis Organization

	Terms and Related Work
	Terminology
	Means to Attain Resilience
	Related Terms and Definitions

	Summary and Discussion
	Summary of Original Work
	Discussion and Research Impact
	Threats to Validity
	Conclusions and Future Work

	Paper A
	Introduction
	Background
	Methodology
	Guidelines
	Validation
	Discussion
	Threats to Validity
	Related Work
	Conclusion

	Paper B
	Introduction
	Related Work
	Running example and background
	The MissionControl Approach
	Implementation
	Evaluation
	Final Remarks and Future Works

	Paper C
	Introduction
	Background and Related Work
	The SDV Model
	Model Implementation
	Evaluation
	Conclusion

	Paper D
	Introduction
	Background
	A Hybrid Approach Combining Control Theory and AI
	Experimental Results
	Related Work
	Conclusion and Future Work

	Paper E
	Introduction
	Related Work
	Embedding Robotics DSLs in Python
	SkiROS2: An open source software for skill based robot execution
	Case Study I: Concise and Verifiable Robot Skill Interface
	Case Study II: Verifiable construction of a behavior tree in Skill Implementation
	Overall Evaluation of the Extended EzSkiROS
	Threats to validity
	Conclusion

	Paper F
	Introduction
	The Body Sensor Network CPS
	Our Immune-Inspired Methodology
	Conclusion and Prospects

	Paper G
	Introduction
	Motivating Example
	Search-based Trace-Diagnostic
	Search-based Trace Diagnostic for HLS
	Evaluation
	Discussion and Threats to Validity
	Related Work
	Conclusion

	Paper H
	Introduction
	SA-BSN Exemplar and Adaptation Overview
	SA-BSN Implementation Details
	Hands on the SA-BSN
	Conclusion

	Paper I
	Introduction
	Structure of RoboMAX Exemplars
	Methodology
	Dataset
	Meta-Analysis
	Conclusion

	Bibliography

