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Abstract

Pain perception is influenced not only by sensory input from afferent neurons but also by

cognitive factors such as prior expectations. It has been suggested that overly precise priors

may be a key contributing factor to chronic pain states such as neuropathic pain. However, it

remains an open question how overly precise priors in favor of pain might arise. Here, we

first verify that a Bayesian approach can describe how statistical integration of prior expecta-

tions and sensory input results in pain phenomena such as placebo hypoalgesia, nocebo

hyperalgesia, chronic pain, and spontaneous neuropathic pain. Our results indicate that the

value of the prior, which is determined by the internal model parameters, may be a key con-

tributor to these phenomena. Next, we apply a hierarchical Bayesian approach to update

the parameters of the internal model based on the difference between the predicted and the

perceived pain, to reflect that people integrate prior experiences in their future expectations.

In contrast with simpler approaches, this hierarchical model structure is able to show for pla-

cebo hypoalgesia and nocebo hyperalgesia how these phenomena can arise from prior

experiences in the form of a classical conditioning procedure. We also demonstrate the phe-

nomenon of offset analgesia, in which a disproportionally large pain decrease is obtained

following a minor reduction in noxious stimulus intensity. Finally, we turn to simulations of

neuropathic pain, where our hierarchical model corroborates that persistent non-neuro-

pathic pain is a risk factor for developing neuropathic pain following denervation, and addi-

tionally offers an interesting prediction that complete absence of informative painful

experiences could be a similar risk factor. Taken together, these results provide insight to

how prior experiences may contribute to pain perception, in both experimental and neuro-

pathic pain, which in turn might be informative for improving strategies of pain prevention

and relief.
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Author summary

To efficiently navigate the world and avoid harmful situations, it is beneficial to learn

from prior pain experiences. This learning process typically results in certain contexts

being associated with an expected level of pain, which subsequently influences pain per-

ception. While this process of pain anticipation has evolved as a mechanism for avoiding

harm, recent research indicates overly precise expectations of pain may in fact contribute

to certain chronic pain conditions, in which pain persists even after tissue damage has

healed, or even arises without any initiating injury. However, it remains an open question

how prior experiences contribute to such overly precise expectations of pain. Here, we

mathematically model the pain-learning-process. Our model successfully describes several

counterintuitive but well-documented pain phenomena. We also make predictions of

how prior experiences may contribute to the perception of pain and how the same learn-

ing process could be leveraged to improve strategies of pain prevention and relief.

Introduction

Pain is beneficial for survival as it can motivate an organism to withdraw from harmful situa-

tions and avoid such harmful situations in the future. Despite its clear importance for survival

the underlying mechanisms of pain are an active area of research. This limitation in knowl-

edge, along with a wide variability in the pain experience, render many pain conditions diffi-

cult to treat. Chronic pain is one of the leading global burdens of health [1] as well as an

enormous personal and economic burden, affecting more than 30% of people worldwide [2].

A first step toward understanding any complex phenomenon is formulating a precise defini-

tion. The International Association for the Study of Pain (IASP) have defined pain as [3]:

"An unpleasant sensory and emotional experience associated with, or resembling that associ-
ated with, actual or potential tissue damage”

As a mechanism of protection from harm, pain should typically only arise when there is

actual or potential tissue damage present, and the level of pain experienced should be propor-

tional to the level of that tissue damage. However, pain can sometimes persist after the noxious

stimulus has been removed or the tissue damage has healed. In fact, in some cases pain may

arise even in absence of initiating tissue damage, as is the case with neuropathic pain (pain

caused by a lesion or disease of the somatosensory nervous system [3]). Such maladaptive pain

does not accurately reflect the level of harm to which the organism is exposed. How and why

neuropathic pain may arise and persist in the absence of tissue damage is poorly understood,

and consequently is often very difficult to treat.

Mathematical models of neuropathic pain have primarily focused on mechanisms in

peripheral afferent neurons [4–6] and spinal cord neural circuits [6–8]. While neurophysiolog-

ical changes at this level of the nervous system do contribute to neuropathic pain following

peripheral nerve lesions, pain perception is also influenced by cognitive factors such as expec-

tations based on previous experiences. It is suggested that this occurs through statistical inte-

gration of sensory input and prior information, for example through Bayesian inference

[9–12]. An optimal estimate is obtained if the contribution of each source is determined by

their respective level of uncertainty [13]. Bayesian inference has successfully been applied to

describe a range of perceptual and sensorimotor tasks, both qualitatively and quantitatively

[14–18], as well as pain phenomena such as placebo hypoalgesia and nocebo hyperalgesia
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[19–22], and statistical pain learning [23] under experimental pain paradigms. As for chronic

pain, Eckert et al., recently applied a Bayesian framework to illustrate how overly precise priors

for being in a state of pain, combined with an ambiguous likelihood of perceiving pain from a

sensory stimulation, increases the probability of transitioning to a chronic pain state [24].

Bayesian inference seems like a promising framework for modelling neuropathic pain, as dam-

age to the nervous system often results in disrupted sensory input (corresponding to increased

ambiguity of the likelihood), yet it remains an open question how overly precise priors in favor

of pain might arise.

How the prior distribution is defined plays an important role in Bayesian inference [13].

One common Bayesian approach for tracking a state that may change over time is Kalman fil-

tering [25], in which the prior is produced by an internal model of the world [13,25]. Here, we

first verify that Kalman filtering can describe how statistical integration of prior expectations

and sensory input results in placebo hypoalgesia and nocebo hyperalgesia, as demonstrated

through experiments. Through simulations we also explore how the same mechanisms can

contribute to chronic pain and spontaneous neuropathic pain. Next, to address how priors can

be influenced by previous experiences of pain, we present a modified Kalman filter model of

pain perception, adapted from previously published models on motor adaptation [15–18]. In

this model the state estimate (pain) is computed using the standard Kalman algorithm. A sec-

ond Kalman filter is used to update the parameters of the internal model in the first Kalman fil-

ter, based on the difference between the predicted and the perceived pain. This hierarchical

structure allows us to model how the context and dynamics of previous pain experiences can

give rise to and shape future expectations. Our model simulations predict that the dynamics of

previous experiences of pain and stochastic fluctuations of the parameters in the internal

model, coupled with ambiguity in sensory input following damage to the nervous system, may

be key drivers of neuropathic pain.

Results

Single-layer Kalman filter

Pain is dynamic, meaning that the intensity, quality, and other characteristics of the experience

change over time. One common Bayesian approach for modelling such temporal dynamics is

Kalman filtering [25]. In the Kalman filter a state, x, is estimated based on sensory input and a

prior estimate, which is produced by an internal model of the world [13,25]. In the context of

pain, we suggest that the state x represents the true level of actual or potential tissue damage

(hereafter referred to as tissue damage for brevity), and the estimate x̂ represents the perceived

pain. The tissue damage gives rise to sensory input, z, for example in the form of activation of

nociceptive afferent neurons. In our model, the prior estimate, �̂x , correspond to the expected

level of pain. At each time point k, we assume that there are two main factors contributing to

the prior: the level of perceived pain in the previous time step, x̂ðk� 1Þ, and the control input,

u(k), which corresponds to factors that may predict changes in the perceived level of pain, such

as motor actions, environmental context and cues, and possibly even psychological processes

such as thoughts and emotions [26]. For ease of communication, we use linear concepts in this

model, such that �̂x ðkÞ / Âx̂ðk� 1Þ þ B̂uðkÞ where Â and B̂ are the parameters of the internal

model, but the ideas we are exploring extend also to nonlinear concepts. In this first part we

will start by showing that, similar to other Bayesian models explored in literature

[19,20,24,27], this Kalman filter can successfully model a variety of pain phenomena, including

placebo hypoalgesia, nocebo hyperalgesia, and chronic pain and additionally can produce

dynamics representative of spontaneous neuropathic pain.
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The influence of expectations on pain perception is commonly and perhaps most clearly

demonstrated by the phenomenon of placebo hypoalgesia (or the reverse effect, nocebo hyper-

algesia), where identical noxious stimuli may be perceived as less (more) painful depending on

the expectations associated with the context in which the stimuli is delivered [28]. Classical

conditioning is a procedure that is often used to induce placebo or nocebo responses in experi-

mental studies [29]. In the conditioning procedure a conditioned stimulus (previously neutral

stimulus, e.g., a visual cue) is repeatedly paired with an unconditioned stimulus (e.g., a noxious

stimulus). Through this process, the conditioned stimulus can come to elicit a response origi-

nally associated with the unconditioned stimulus, a so-called conditioned response. In the con-

text of placebo hypoalgesia and nocebo hyperalgesia, the conditioned response is an

expectation of experiencing low or high pain upon presentation of the conditioned stimuli.

We simulate the placebo and nocebo effect resulting from such a classical conditioning proce-

dure by letting the conditioned stimulus correspond to the control input, u(k). We let the con-

trol input have identical magnitude in placebo and nocebo trials, to reflect that the cue that is

used as the conditioned stimulus does not inherently signal different levels of pain. The pla-

cebo and nocebo effects arise from the elements in the internal model parameter B̂ having dif-

ferent values for the cues associated with high or low pain, such that b̂placebo < b̂nocebo. Our

simulation results are presented in Fig 1, along with experimental data from an open-source

dataset provided by Jepma et al., [20].

It is also suggested that the effects of expectations can extend beyond acute pain and could

contribute to pain persisting even after the noxious stimulus has been removed and tissue

damage has healed [9–12]. In our model this disproportionate pain results from a mismatch

between the internal model parameter Â and the real-world rate of tissue recovery. The contri-

bution of the expectation and the sensory input to the final estimate is determined by their

respective uncertainty. The uncertainty in sensory input is denoted by R, where larger values

of R indicate more uncertainty. The simulation results presented in Fig 2 demonstrate elevated

uncertainty in the sensory input (higher value of R), in combination with the internal model

parameter Â ¼ 1 results in the perceived pain being significantly higher than the true level of

tissue damage and persisting even when the tissue damage has recovered.

In the context of Bayesian models, the more uncertainty there is in the likelihood and the

less uncertainty there is in the prior, the more the posterior will correspond to the prior. In our

model, this means that the perceived level of pain will be strongly influenced by the expected

pain if and only if there is more uncertainty in the sensory input than in the expectation. We

assume that, at baseline, the uncertainty in sensory input is low, but that e.g., tissue damage

can cause some disturbance to the sensory receptors that innervate the affected area, resulting

in increased uncertainty in sensory input relating to that region. Sensory input may also be

affected by damage directly to peripheral afferent nerves or regions of the central nervous sys-

tem involved in processing of sensory input. Under these circumstances, pain may arise spon-

taneously, even in the absence tissue damage. This type of pain is commonly referred to as

neuropathic pain. The gradual increase of pain before the onset of tissue damage in the bottom

right panel of Fig 2 is one example of how pain can arise spontaneously when the uncertainty

in the sensory input is elevated. In Fig 3 we provide additional examples of how, in our model,

the expected level of spontaneous neuropathic pain following for example a nerve injury

depends on the level of uncertainty in the sensory input (value of R) and the value of the inter-

nal model parameter Â.

By modeling pain perception as a Kalman filter our results so far have successfully demon-

strated pain phenomena such as placebo hypoalgesia, nocebo hyperalgesia, chronic pain, and

spontaneous neuropathic pain. We have shown that the level of uncertainty in the sensory
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input and the values of the internal model parameters may be key contributors to these phe-

nomena. What we have not been able to account for with this model is how the values of the

parameters in the internal model are determined. The internal model parameters are typically

tuned by hand or fit to experimental data (e.g., [19–22]). Although these manually tuned mod-

els do give insight to how expectations can influence pain perception, they do not account for

how the dynamics of previous pain experiences give rise to those expectations. To incorporate

how previous experiences contribute to pain expectations we must turn to descriptive models

of how the internal model is updated.

The Hierarchical Kalman filter

The traditional Kalman filter gives us a framework for understanding how loss of certainty in

sensory input, combined with predictions from an internal model of the world, might contrib-

ute to pain phenomena such as placebo hypoalgesia, nocebo hyperalgesia and spontaneous

neuropathic pain. However, in this framework the internal model parameters are manually

tuned, and therefore the traditional Kalman filter alone cannot account for how previous expe-

riences influence the internal model and the resulting pain expectations. To address this short-

coming, we turn to recent work on modelling motor adaptation, where a second Kalman filter

Fig 1. Experimental data from Jepma et al., [20] (left) and our Kalman filter simulations results (right). Placebo hypoalgesia (or the reverse effect, nocebo

hyperalgesia) is the phenomenon where identical noxious stimuli may result in lower (higher) perceived pain (x̂, filled circles) depending on expectations (�̂x ,

open triangles). In classical conditioning the expectations are influenced by cues that have been associated with high or low noxious stimuli (‘high cue’ and ‘low

cue’). In testing the effect of conditioning Jepma et al., applied two different levels of noxious heat stimuli (‘low heat’ and ‘high heat’). Note that the during the

test trials level of noxious stimuli is independent from the cue, i.e., the low cue is paired with both high and low thermal stimulation. a) and b) average expected

(open triangles) and perceived (filled circles) pain as a function of cue type and trial for experimental and simulated data, respectively. c) and e) perceived (filled

circles,), d) and f) expected (open triangles) pain as a function of stimulus temperature and cue type for experimental and simulated data, respectively. Error

bars indicate inter-individual standard errors. Note that the experimental data is measured on a 100-unit scale, whereas the simulated data is on an 11-unit

scale.

https://doi.org/10.1371/journal.pcbi.1012097.g001
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has been used to update the parameters of the internal model based on the difference between

the prediction and the posterior estimate [15–18]. This process reflects that people integrate

previous experiences in their future expectations. Here, we adapt the hierarchical Kalman filter

to the context of pain and demonstrate with an example of classical conditioning that the

model successfully reflects how previous pain experiences influence future expectations.

To verify that the hierarchical model reproduces similar results as the single-layer Kalman

filter regarding placebo hypoalgesia and nocebo hyperalgesia, we turn to the concept of classi-

cal conditioning. In Fig 4 we demonstrate the evolution of the internal model parameter B̂ ¼

½b̂placebo; b̂nocebo� and the expected pain across the conditioning trials in panels a) and b), along

with the results of the simulated placebo and nocebo conditioning in panels c) and d). Inspec-

tion of panel a) reveals that at baseline (the first conditioning trial) the distribution of the val-

ues of b̂placebo and b̂nocebo overlap, resulting in no difference in the expected pain associated with

the high and low cues (panel b)). Across the conditioning trials, the values of b̂placebo and b̂nocebo
start differentiating, such that b̂placebo < b̂nocebo, creating expectation of low pain associated with

the low cue, and high pain associated with the high cue. Finally, the effect of the conditioning

is tested by pairing the conditioned stimuli with intermediate-intensity unconditioned stimuli

(47˚C for low heat, 48˚C for high heat, independent of the visual cue), revealing that the simu-

lated conditioning procedure results in placebo hypoalgesia and nocebo hyperalgesia that

Fig 2. Results of the Kalman filter simulations of chronic pain. The model produces output reflecting chronic pain when there

is elevated uncertainty in the sensory input, in combination with the internal model parameter Â � 1 (solid blue line in upper

plots). Left: when R (dash-dotted, purple line in upper plot) is low the perceived pain, x̂ , (solid red line in lower plot, the shaded

area indicates the interquartile range) will primarily be influenced by the sensory input and closely correspond to the true level of

tissue damage, x, (dash-dotted black line in lower plot).Right: for a larger value of R, predictions from the internal model have a

stronger influence on the perceived level of pain, possibly resulting in a chronically elevated level of pain even after the tissue

damage has recovered.

https://doi.org/10.1371/journal.pcbi.1012097.g002
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qualitatively matches the experimental data and the pattern produced by the single-layer Kal-

man filter in Fig 1.

In the single-layer Kalman filter we noted that the value of the internal model parameter Â
and the uncertainty in the current sensory input, R, influence the level of spontaneous neuro-

pathic pain following nerve injury (Fig 3). In the hierarchical Kalman filter model, the value of

Â changes over time, which affects the level of predicted pain. Furthermore, the value of R
influences how the internal model updates. These differences result in pain dynamics that dif-

fer from what was observed in the single-layer Kalman filter. In particular, the model predicts

that the value of Â at the time of a nerve injury and the level of sensory disruption (i.e., value

of R) may play a role in the level and variance of subsequent neuropathic pain, see Fig 5.

The classical conditioning example demonstrated how repeated painful experiences allow

the internal model to update over time to give more accurate predictions of the real world.

Later, we saw that the value of Â at the time of a nerve injury may determine the existence and

level of neuropathic pain. Taken together, the same processes as in classical conditioning could

occur also in other contexts, and result in values of the internal model parameters that predis-

pose certain individuals to neuropathic pain. In the hierarchical Kalman filter the value of Â is

determined by previous painful experiences. Intuitively, exposure to persistent pain (A�1)

typically results in values of Â close to 1, while exposure to quickly transient pain (A<1) typi-

cally gives lower values of Â.

But what happens if there is no exposure to painful experiences? Since there are no periods

of decaying pain to inform the internal model, a tonically pain-free state also results in Â � 1,

regardless of the true value of A. Fig 6 shows how persistent pain (left), quickly transient pain

(middle) and complete absence of pain (right) each influence the internal model, and the

Fig 3. Results from Kalman filter simulations of neuropathic pain. Damage to the sensory nervous system may result in increased

uncertainty of sensory input relating to the level of tissue damage. Depending on the level of uncertainty (value of R, dash-dotted purple line

in upper plots) and the value of the internal model parameter Â (solid blue lines in upper plots), these changes could result in spontaneous

neuropathic pain (solid red lines in lower plot, the shaded area indicates the interquartile range).The initial overshoot for Â ¼ 1:1 in the two

rightmost plots, where R = 802 and R = 8002, is caused by the initial variance of the estimate P, being low. When P�R, the posterior estimate

is dominated by the prior, which here predicts increasing pain since Â > 1. Due to the uncertainty in the sensory input, the value of P rapidly

increases, until an equilibrium is reached, in which the posterior still is strongly influenced by the prior, but also has some influence from the

noisy sensory input.

https://doi.org/10.1371/journal.pcbi.1012097.g003
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resulting level of neuropathic pain following a nerve injury (vertical dashed line). As we will

elaborate in the discussion section, our model offers a promising framework to investigate and

model how persistent non-neuropathic pain may be a risk factor for developing neuropathic

pain following denervation [30–32], and additionally offers an interesting prediction that com-

plete absence of informative painful experiences could be a similar risk factor.

Another phenomenon that relates to the temporal dynamics of pain perception is offset
analgesia, which is defined as a disproportionally large pain decrease after a minor noxious

stimulus intensity reduction [33]. The phenomenon can be elicited by a simple experimental

paradigm: noxious thermal stimuli are applied to an area of skin in three consecutive time

intervals T1, T2 and T3, where the same temperature is applied during T1 and T3, and the

temperature during T2 is slightly higher. This stimulation paradigm typically results in a dis-

proportionate pain reduction in response to the temperature reduction from T2 to T3 as com-

pared to a control condition where a constant temperature is applied throughout all three time

intervals. We were curious to see if the adaptive nature of the hierarchical Kalman filter would

Fig 4. Results of the hierarchical Kalman filter simulations of classical conditioning. We simulate the conditioning procedure

similar to the learning phase of the experimental paradigm described by Jepma et al., [20]. During conditioning previously neutral

cues (‘high cue’ and ‘low cue’ in the figures) are repeatedly paired with high or low noxious stimuli, resulting in diverging values of

internal model parameters b̂placebo and b̂nocebo (panel a)), and creating expectations of high pain associated with the high cue, and low

pain associated with the low cue (panel b)). In testing the effect of conditioning the cues are paired with intermediate intensity

noxious stimuli (47˚C for ‘low heat’ and 48˚C for ‘high heat’). Note that the during the test trials the level of noxious stimuli is

independent from the cue, i.e., the low cue is paired with both high and low thermal stimulation. a) median value of b̂nocebo (dashed

red line) and b̂placebo (dashed blue line) across conditioning trials. Shaded areas indicate the interquartile range. b) average expected

pain for high-cue trials (red) and low-cue trials (blue) during conditioning. Open triangles indicate the expected pain for each

participant on each conditioning trial. c) the average expected (�̂x , open triangles) and perceived (x̂ , filled circles) pain as a function of

cue type on each test trial. d) perceived (filled circles) and e) expected (open triangles) pain as a function of stimulus temperature and

cue type. Error bars indicate inter-individual standard errors.

https://doi.org/10.1371/journal.pcbi.1012097.g004
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enable the model to reproduce this phenomenon. As can be seen in Fig 5, the model produces

an underdamped response following a reduction in noxious stimuli. This effect is qualitatively

similar yet smaller than what is typically observed in experimental studies of offset analgesia.

We will elaborate on possible reasons for the magnitude discrepancy in the discussion section.

Discussion

Here, we first verified that the Kalman filter, a common Bayesian approach for modelling tem-

poral dynamics, produced results in line with experimental data and previous, similar Bayesian

models, and additionally offered insight to how disruption of sensory input may contribute to

spontaneous neuropathic pain. Next, to address how previous experiences contribute to pain

expectations we applied a second Kalman filter to update the parameters of the internal model

based on the difference between the prediction and the posterior estimate. With this hierarchi-

cal model structure, we could again model placebo hypoalgesia and nocebo hyperalgesia that

qualitatively matches results from previous Bayesian models, but also show how these phe-

nomena can arise from previous experiences in the form of a classical conditioning procedure.

We also showed that, due to the adaptive nature of the hierarchical Kalman filter, the model

produced a disproportionally large pain decrease after a minor noxious stimulus intensity

reduction, a phenomenon that is commonly referred to as offset analgesia. Taken together,

these results indicate that the hierarchical Kalman filter provides a promising framework for

modelling how pain inference may be influenced by the context and dynamics of previous

pain experiences.

Fig 5. Results from hierarchical Kalman filter simulations of how the value of Â (solid blue lines in upper plots) at the time of a nerve

injury and the level of sensory disruption (i.e., value of R, dash-dotted purple line in upper plot) may play a role in the characteristics of

subsequent neuropathic pain. Simulations were run for three different initial values of Â : Â0 ¼ f0:9; 1:0; 1:1g. The top panels show the

inferred value of Â over time, and the bottom panels show the corresponding level of perceived pain, x̂. For R = 0.82 (left), the perceived pain

(solid red lines in the lower plots) is strongly influenced by sensory input and remains close to 0. For R = 82 (second from the left), Â � 1

regardless of the initial value, and the perceived pain is tonically at an intermediate intensity with little variance. For R = 8002 (right), the value

of Â is no longer at all influenced by sensory input and reduces to a random walk centered at the initial value Â0 and variance equal to the

noise in the internal model. In this scenario, if Â0 ¼ 1:1 > 1 the pain is likely to stay tonically high, and similarly if Â0 ¼ 0:9 < 1 the level of

pain is likely to drop to stay at 0. If Â0 � 1, the perceived level of pain may vary widely as the value of Â fluctuates above and below 0. For

R = 802 (second from the right) the model displays a mixture of the behavior described for R = 82 and R = 8002. The shaded areas indicate the

interquartile ranges.

https://doi.org/10.1371/journal.pcbi.1012097.g005
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In the proposed modelling framework, spontaneous neuropathic pain will arise if the fol-

lowing two criteria are fulfilled: 1) the internal model predicts pain, and 2) the uncertainty in

the sensory input, denoted R, is large. With the hierarchical Kalman filter we could explore

how the context and dynamics of previous pain experiences could result in the internal model

predicting pain. Our simulations corroborated that persistent non-neuropathic pain is a risk

factor for developing neuropathic pain following denervation, which is well established in pre-

vious literature [30–32] and additionally offered an interesting prediction that complete

absence of informative painful experiences could be a similar risk factor. Neuropathic pain is

often resistant to common pharmacological pain treatments [34,35]. Therefore, finding alter-

native ways of relieving or preventing neuropathic pain is of utmost interest. Our simulations

provide a hint at possible preventative measures, such as avoiding persistent pain before dener-

vation. This is in line with existing literature on risk factors for developing neuropathic pain

[30–32]. Another prediction from the model, which might seem controversial, is that exposure

to transient pain before denervation might be another strategy for mitigating the risk of devel-

oping neuropathic pain. This prediction remains to be established empirically.

When it comes to relieving existing neuropathic pain, we turn to the second criteria for

neuropathic pain; the uncertainty in the sensory input, R. Input relating to tissue injury could

come in several different sensory modalities, such as nociceptive, mechanoreceptive and ther-

moceptive afferent input. After nerve injury some (or all, e.g., following amputation) of these

sensory modalities could be affected, resulting in increased uncertainty of the sensory input.

Defining specific sensory modalities could be an interesting avenue for future development of

the model, as it could provide insight to how central processing might contribute to pain con-

ditions such as allodynia, a pain phenomenon where pain is elicited by otherwise non-painful

stimulation such as cold, warmth or touch. As for relieving existing neuropathic pain, if R can

Fig 6. Results from hierarchical Kalman filter simulations of how the value of the internal model parameters are determined by previous

painful experiences and may contribute to neuropathic pain following a nerve injury. In the left panels, A = 0.99, yielding persistent pain

(solid red line in lower plots) following noxious stimuli (indicated by stars). This value of A results in Â � 1 (solid blue line in the upper plot),

and a high risk of spontaneous neuropathic pain following a nerve injury (corresponding to a change in the value of R, indicated by the vertical

dashed line). In the middle panels A = 0.9, resulting in quickly transient pain, a lower value of Â and a lower risk of spontaneous neuropathic

pain. In the right panels A = 0.9 again, but in this simulation, there are no noxious stimuli. These circumstances result in Â � 1 and a higher

risk of spontaneous neuropathic pain than in the example in the middle. The shaded areas indicate the interquartile ranges.

https://doi.org/10.1371/journal.pcbi.1012097.g006
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be reduced and the sensory input can be controlled such that it signals lower levels of tissue

injury, this should lead to lower levels of perceived pain. While such sensory restoration is

challenging to achieve, there exist some approaches that can provide at least partial sensory

restoration, for example by electrical stimulation or surgical “rewiring” of damaged nerves.

Our model offers a possible explanation for the working mechanism of treatments for neuro-

pathic pain that involve some form of sensory restoration [36–39].

According to our model, another possible target for relieving neuropathic pain could be the

control input, u. The more uncertainty there is in the sensory input, and the less uncertainty

there is in the prior, the more the perceived level of pain will correspond to the prior. Interest-

ingly, others have shown that uncertainty in the prior may have additional pain modulatory

effects, beyond the influencing the weighting of the prior on the perceived level of pain [40].

Thus, providing control input that is certain (low Q) to be associated with low levels of pain

may be a possible avenue for relieving neuropathic pain. One example of a treatment that may

be leveraging this mechanism is mirror therapy, which is commonly used for phantom limb

pain [41,42]. Phantom limb pain is a particular form of neuropathic pain, where pain is experi-

enced to arise in a missing limb, for example following amputation. In mirror therapy a mirror

is used to create a visual illusion that the missing limb is intact. The working mechanism and

efficacy of mirror therapy is disputed [43,44], although it seemingly does provide pain relief to

some individuals [42,45,46]. In our model, the visual representation of the limb could be a

form of control input. The value of B̂ and the associated process noise Q are factors that would

determine how the control input influences the perceived level of pain. Probing how control

input and its associated uncertainty might influence neuropathic pain could shed light on why

mirror therapy, and other similar pain interventions [41,47,48], provide pain relief for some

individuals and not for others.

Fig 7. Results of the hierarchical Kalman filter simulations of offset analgesia. Offset analgesia is defined as a

disproportionally large pain decrease after a minor noxious stimulus intensity reduction. This phenomenon is often

elicited by applying noxious thermal stimulation of the same temperature in time intervals T1 and T3, separated by

time interval T2 with slightly higher temperature. Our simulation results show a qualitatively similar underdamped

response in perceived lever of pain (open red circles) to the minor temperature reduction as is observed in

experimental studies of offset analgesia. In the control condition a constant temperature is applied throughout all three

time intervals, resulting in a constant level of pain (filled red circles). Error bars indicate the inter quartile ranges.

https://doi.org/10.1371/journal.pcbi.1012097.g007
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In addition to giving clues of possible avenues for pain prevention and relief, our model

also offers a prediction for how different levels of sensory disruption may result in different

pain characteristics. Matching sensory symptoms to pain mechanisms is a challenge that

researchers and clinicians are grappling with, to better predict treatment responses of individ-

ual patients [49,50]. Regarding neuropathic pain, certain sensory characteristics have been

found to be particularly common, such as burning pain, numbness, paresthesia (tingling or

prickling sensation, “pins and needles”), and pain attacks, sudden bursts of increased pain, or

electric shock-like sensations [51–54]. The simulation results presented in Fig 5 indicate that

moderately high values or R result in an intermediate level of pain with relatively little vari-

ance, which might correspond to a monotonous pain sensation or paresthesia reported by

some individuals with neuropathic pain. For higher values of R, more diverse pain dynamics

are possible. For example, for Â � 1 at the time of the nerve injury, large variance of pain

intensity is obtained. Under these conditions pain may vary between high and low intensities,

possibly reflecting the pain attacks-descriptor that is often used when screening for neuro-

pathic pain. Thus, our model suggests that monotonous or paresthetic sensations of intermedi-

ate intensity might be more common in patients with partial denervation (R intermediate)

while pain attacks, monotonously high intensity or complete absence of pain would be

expected in patients with complete denervation (R high). How these predictions align with

clinical findings remains to be determined.

While the hierarchical Kalman filter allows for the internal model parameters to be estimated

online, rather than being fit post-hoc from data, it is important to note that other model param-

eters still must be manually tuned. Parameters that are particularly important for the behavior

of the model are the covariances R, Q and Qp, as they govern how the state and parameter esti-

mates are updated. R reflects the uncertainty of sensory input and Q reflects the predictability of

the pain. The role of Qp is two-fold: it introduces noise in the parameter estimation, and it gov-

erns how much the estimated internal model parameters are updated when there is a prediction

error ê ¼ x̂ � �̂x . Consequently, the tuning of Qp is crucial for the “learning” aspect of the

model. Here, we have focused on the role of R and its relevance for neuropathic pain. Similar

analyses of the roles of parameters Q and Qp may provide additional insights into the underlying

mechanisms of various pain conditions. As we have varied the value of R, we have kept the

other parameters as consistent as possible across simulations. This “one size fits all”-approach is

likely a contributing factor to why there are quantitative discrepancies between our simulations

and experimental data, since the model parameters are likely to vary depending on the context,

and possibly also the individual, in which the pain is experienced.

We have focused on modeling pain at the information processing level and have assumed a

linear relationship between tissue damage and sensory input arriving to the central nervous

system. However, there are a myriad of physical, chemical, and neurobiological processes that

modulate sensory afferent signals before they reach the brain. Due to these mechanisms, the

mapping from actual or potential tissue damage to sensory input can be quite complex. As an

example, thermal discriminative abilities are modified by the temperature to which the skin

has been adapted prior to delivering the thermal stimuli, indicating that the relationship

between thermal stimulation and sensory input may be non-linear [55]. Omission of this rela-

tionship, along with other modulatory mechanisms such as sensitization and habituation,

could be an explanation for why our offset analgesia simulations produced an effect that is

smaller than typically observed in experiments [56,57] or demonstrated in previous models

[58]. This limitation also means that our model may be limited in describing pain phenomena

that arise because of impairment of certain pain modulatory mechanisms, as is the case in cer-

tain forms of chronic pain.
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Another limitation of the current model is the lack of actions and decision making. As a

mechanism of protection from harm, pain should elicit actions that allow the organism to

withdraw from harmful situations that is cause pain and inform decisions on how to avoid

such situations in the future. A few different frameworks have been suggested to model this

process, commonly involving some variation of reinforcement learning [59,60]. Active infer-

ence is another framework that has been suggested to be relevant for the context of pain [12].

This framework has a lot in common with the model presented here, such as updating a inter-

nal model of the world, and also includes the possibility of holding the model fixed and alter-

ing actions within the world to sample information that better reflects the predictions [61].

Incorporating the feedback between actions and pain perception in our model could provide

insights to how behavior might contribute to persistence of pain and what actions might be

helpful for pain relief.

Finally, throughout this work we have entirely focused on the sensory aspect of pain.

According to the definition, pain is a sensory and emotional experience, yet pain is often

treated as a purely sensory experience both in clinical practice and in research. Meanwhile,

chronic pain is commonly comorbid with psychological disorders such as depression and

PTSD [62–64], although the linking mechanism between these conditions remains unclear.

Ignoring such a significant portion of the pain experience creates a risk of overlooking mecha-

nisms that might contribute to persistence of pain in chronic pain conditions, as well as possi-

ble avenues for new and improved pain treatments. For example, neuroimaging studies have

found that initially greater functional connectivity within certain motivation–valuation cir-

cuitry predicts pain persistence [65] and that spontaneous fluctuations of chronic pain inten-

sity is associated with activity in brain regions that are typically ascribed to emotional

processing [66]. Furthermore, there is tentative evidence that incorporating psychological

components in pain treatments yields significant improvements in pain relief [26]. It is possi-

ble that existing frameworks, for example within psychological and behavioral science, could

hold some of the keys to unlocking the relevance to both decision-making and emotion in the

context of pain. We believe that modeling these aspects of pain is a highly interesting avenue

for future research, as it could provide insight to previously underexplored mechanisms con-

tributing to pain persistence and relief.

Methods

Computational modeling–Single-layer Kalman filter

In modeling the process of pain perception as a Kalman filter, we suggest that the posterior esti-

mate x̂ represents the perceived pain, which is an estimate of the true level of actual or potential

tissue damage, x. Here, potential tissue damage refers to changes in tissue integrity which may

not leave lasting damage, such as transiently invoked changes in temperature or brief applica-

tion of force. For the sake of brevity, we will refer to x simply as tissue damage moving forward.

The level of tissue damage is influenced by a wide range of overlapping and distinct mechanisms

depending on the specific pain that is experienced. Such mechanisms include, but are not lim-

ited to, external stimuli being applied to the tissue, healing, or recovery of tissue integrity in the

case of potential tissue damage, and physiological processes such as sensitization and inflamma-

tion. However, we emphasize that we are not attempting to provide a precise model the dynam-

ics of tissue damage. What we aim to do here is to model how the brain models tissue damage,

and how the resulting predictions from this internal modelling process in the brain may influ-

ence the perception of pain. In keeping with Kalman filter terminology, we suggest that the

brain’s internal model of how tissue damage evolves over time generates a prior estimate, �̂x ,

which in the context of pain corresponds to the expected level of pain.
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At each time point k, we assume that there are two main factors contributing to the prior

estimate: the level of perceived pain in the previous time step, x̂ðk� 1Þ, and the control input,

u(k), which corresponds to factors that may predict changes in the perceived level of pain, such

as motor actions, environmental context and cues, and possibly even psychological processes

such as thoughts and emotions. We note that our definition of control input differs somewhat

from how control input is typically defined in control theory and engineering applications,

where this term refers to an external input or force that is deliberately applied to the system to

influence its behavior or state. The traditional definition of control input would be applicable

if we were interested in modelling the actual tissue damage, but as we have stated previously

that is not the goal of this model. Instead, we are trying to model how the brain models tissue

damage. As such, we find that the control input to the brain’s internal model of tissue damage

instead have to be factors that may predict changes in the perceived level of pain. Furthermore,

defining control inputs in this way puts our model in agreement with how priors have been

defined in previous Bayesian models of pain [19–22,27].

For ease of communication, we use linear concepts in this model, but the ideas we are

exploring extend also to nonlinear concepts. Thus, the prior estimate, or expected level of

pain, is obtained as

�̂x ðkÞ ¼ Âx̂ðk� 1Þ þ B̂uðkÞ þ �ð0;QÞ;

where Â and B̂ are the parameters of the internal model and �(0, Q) is the process noise, which

reflects the variability not captured by Â and B̂ in the prediction of how pain evolves over

time. To reflect that control input can introduce additional uncertainty into the predictions,

leading to an increase in process noise compared to when the predictions are evolving without

control input, we let the variance of the process noise be Q ¼ Q0 þ kuðkÞk2Qu. However, we do

not fully explore the implications of this heteroscedasticity in the examples presented here.

In the context of pain, we suggest that Â reflects how the pain is expected to develop in

absence of control input. If 0 < Â < 1, the pain is expected to diminish, and if Â > 1 the pain

is expected to worsen with time. The second internal model parameter, B̂, reflects how the

gain in pain predicted from control input u. If B̂ < 0 pain is expected to decrease, and B̂ > 0

predicts an increase in pain. The variance, or uncertainty, of the prior estimate is computed as

�PðkÞ ¼ ÂðkÞ
2

Pðk� 1Þ þ Q, where P(k−1) is the variance of the posterior estimate at time point k−1.

According to optimal Bayesian integration, the posterior estimate, x̂, is a combination of

the prior estimate and the sensory input. The sensory input from sensory receptors relating to

tissue damage is defined as

zðkÞ ¼ HxðkÞ þ �ð0;RÞ;

where H is the observation matrix mapping from state space (tissue injury) to measurement

space (sensory input) and �(0, R) is the measurement noise, where R denotes the variance in

how the sensory input relates to the level tissue damage. For simplicity, we let H = 1 and

dimensionless. Finally, the posterior estimate, which corresponds to the perceived level of

pain, is obtained as

x̂ðkÞ ¼ �̂x ðkÞ þ KðkÞðzðkÞ � �̂x ðkÞÞ;
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where K(k) denotes the Kalman gain, which is defined as

KðkÞ ¼
�PðkÞ

�PðkÞ þ R
:

The posterior estimate has variance PðkÞ ¼ ð1 � KðkÞÞ�PðkÞ, reflecting the uncertainty of the

estimate. In Fig 8 we provide a schematic visualization of the model, including the evolution of

states across iterations and the relationship between model variables and parameters.

An overview of the variables and parameters in the single-layer Kalman filter is given in

Table 1, along with dimensionality and, where applicable, the default value used in simulations

when nothing else is specified.

Computational modeling–Hierarchical Kalman filter

This model builds on previous work on motor adaptation [15–18]. Here, pain is estimated

using a Kalman filter, and second Kalman filter is used to update the parameters of the internal

model, p̂ ¼ ½Â; B̂�T ¼ ½Â; b̂1; . . . ; b̂m�, where b̂i ¼ ½B̂�i, based on the difference between the pre-

dicted and the perceived pain. This reflects that people integrate previous experiences of pain in

their future expectations. The prior estimate of the internal model parameters is given by

�̂p ðkþ1Þ ¼ p̂ðkÞ þ �ð0;QpÞ;

where �(0, Qp) is noise in the internal model with covariance matrix Qp. The prior estimate of

the internal model parameters has covariance �Pðkþ1Þ
p ¼ PðkÞp þ QP, where PðkÞp is the covariance of

the internal model estimate at iteration k.

For simplicity we assume that Â and all elements of B̂ are independent random variables,

and thus the covariance matrix collapses to a diagonal matrix with the variance of the noise of

Fig 8. Schematic figure of the Kalman filter model, depicting the evolution of states across iterations and the relationship between model variables and

parameters. The related variance/noise/covariance to each parameter is indicated next to the arrows. “Top-down” predictions, �̂x , are formed by the control

input, u, and the internal model, p̂ ¼ ½Â; B̂�T ¼ ½Â; b̂1; . . . ; b̂m�, where b̂i ¼ ½B̂�i,. The prediction is combined with “bottom-up” sensory input, z, to form the

final estimate, x̂, which, in our model, reflects the perceived level of pain.

https://doi.org/10.1371/journal.pcbi.1012097.g008
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each of the elements in the vector of parameters as the diagonal elements, as follows

Qp ¼

QA � � � 0

..

. . .
. ..

.

0 � � � Qbm

2

6
6
6
4

3

7
7
7
5

To form the posterior estimate of the internal model parameters, the prior estimate is com-

bined with the prediction error êðkþ1Þ ¼ x̂ðkÞ � �̂x ðkÞ, which has variance RðkÞp ¼ PðkÞ þ �PðkÞ. This

definition of the prediction error variance differs somewhat from that used in previous pub-

lished version of the model. Previous definitions include RðkÞp ¼ R [15], RðkÞp ¼ Qþ R [16,17]

and RðkÞp ¼ Qþ P [18]. Our reasoning for updating this definition is simply that we assume

that the covariance of the error should be a sum of the covariance of the terms used to compute

the error, namely P(k) for x̂ðkÞ and �PðkÞ for �̂x ðkÞ. When checking the implications of this update,

the model behavior aligns with our expectations. The internal model update takes the form,

p̂ðkþ1Þ ¼ p̂ðkÞ þ Kp
ðkþ1Þðx̂ðkÞ � �̂x ðkÞÞ þ �ð0;QpÞ

¼ �̂p ðkþ1Þ þ Kp
ðkþ1Þêðkþ1Þ;

where Kðkþ1Þ
p is the Kalman gain. Like the traditional Kalman filter, the Kalman gain is defined

by the uncertainty of the terms that are combined to form the posterior estimate,

Kðkþ1Þ

p ¼ �Pðkþ1Þ

p HðkÞp T½HðkÞp �Pðkþ1Þ

p HðkÞ
T

p þ RðkÞp �
� 1
;

Table 1. Overview of the variables and parameters in the single-layer Kalman filter along with dimensionality

and, where applicable, the default value used in simulations when nothing else is specified.

Parameter Dimensionality Default value

Actual or potential tissue damage, x 1×1 \

Perceived pain, x̂ 1×1 \

Sensory input, z 1×1 \

Observation matrix, H 1×1 1

Variance of sensory noise, R 1×1 0.82

Expected pain, �̂x 1×1 \

Control input, u m×1 |u| = {0, 3.7}

Estimated pain persistence coefficient, Â 1×1 0.8

Estimated control gain, B̂ 1×m ½B̂�i¼1;...;m ¼ 0:6

Baseline variance of process noise, Q0 1×1 0.42

Variance of process noise from control input, Qu 1×1 0.42

Prior estimate variance, �P 1×1 \

Kalman gain, K 1×1 \

Posterior estimate variance, P 1×1 \

Initial posterior estimate variance, P(0) 1×1 106

https://doi.org/10.1371/journal.pcbi.1012097.t001
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where Hp is the mapping from parameter space to state space, defined as

HðkÞp ¼
@x̂
@p̂
¼

@x̂ðkÞ

@ÂðkÞ
@x̂ðkÞ

@B̂ðkÞ

� �

¼ HA HB½ � ¼ 1 � KðkÞ
� �

x̂ðk� 1Þ uðkÞ
� �

:

Finally, the covariance of the estimated parameters is given by

Pðkþ1Þ

p ¼ �Pðkþ1Þ

p ðI � HðkÞp KðkÞKðkþ1Þ

p Þ:

This definition of Pðkþ1Þ
p also differs somewhat from what has been used in previous pub-

lished versions of the model. The difference here is the introduction of K(k) as a scaling factor

to HðkÞp Kðkþ1Þ
p . Without the scaling factor K(k) the covariance of the estimated parameters, Pðkþ1Þ

p ,

will tend to 0 when R!1. When there is infinite sensory noise there is no reliable input to

inform the accuracy of the estimated internal model parameters, and thus Pðkþ1Þ
p should not

tend to 0 (since Pðkþ1Þ
p � 0 indicates high confidence in the estimated parameters). To address

this contradictory behavior, we introduce the scaling factor K(k).

Estimation of the level of pain, x̂, is similar to the process outlined for the single-layer Kal-

man filter, with a few key changes relating to the prior estimate First, the internal model

parameters change over time, requiring us to specify the temporal index of the parameters.

Second, the term HðkÞp PðkÞp HðkÞTp has been added to the calculation of the prior estimate variance,

�PðkÞ, to reflect that the uncertainty in the internal model estimate influences the uncertainty in

the state estimate. We note that, in the single-layer Kalman filter, the baseline process noise,

Q0, has to include this source of uncertainty in addition to other factors that may cause vari-

ability in the prior estimate. Since we can explicitly account for the uncertainty here intro-

duced by Pp in the prior estimate, by the addition of the term HðkÞp PðkÞp HðkÞTp in the prior estimate

variance, we update the value of the baseline process noise to be Q0 = 0.12 (as compared to Q0

= 0.42 in the single-layer Kalman filter). Taken together, these changes imply that the prior

estimate is computed as

�̂x ðkÞ ¼ ÂðkÞx̂ðk� 1Þ þ B̂ðkÞuðkÞ þ �ð0;QÞ;

where Q ¼ Q0 þ kuðkÞk2
Qu just as for the single-layer Kalman filter, but with the updated value

of Q0. The variance of the prior estimate is �PðkÞ ¼ ÂðkÞ
2

Pðk� 1Þ þ QþHðkÞp PðkÞp HðkÞTp .

In Fig 9 we provide a schematic visualization of the hierarchical Kalman filter model,

including the evolution of states and parameters across iterations and the relationship between

model variables and parameters.

An overview of the variables and parameters in the hierarchical Kalman filter is given in

Table 2, along with dimensionality and, where applicable, the default value used in simulations

when nothing else is specified.

Simulations

Since pain frequently is measured on an 11-point scale, where 0 = no pain and 10 = worst pain

imaginable, we let tissue damage x exist on a similar 11-point scale of arbitrary units. For sim-

plicity, we have set H = 1 and dimensionless such that sensory measurements z also exist on an

11-point scale of arbitrary units. For each time step k we draw sensory input z(k)~N(x(k), R),

truncated at 0 and 10. Truncation is achieved by resampling if the drawn sample falls outside

of the permitted range. To account for asymmetry in the resulting distributions due to the

truncation, we have chosen to report medians and interquartile ranges, rather than means and
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standard deviations. These values are computed across 100 simulations, unless otherwise

specified.

Matlab code for all simulation results presented in this article are available online at:

https://zenodo.org/doi/10.5281/zenodo.10960405.

Fig 1B, 1E and 1F—Placebo hyperalgesia and nocebo hypoalgesia. For placebo hypoal-

gesia and nocebo hyperalgesia we set our simulations up to resemble with the experimental

paradigm of described by Jepma et al. [20], to allow for comparison between our simulation

results and the experimental data that is available open source at https://osf.io/bqkz3/. Here,

we focus on Study 1, which consisted of a learning phase and a test phase (similar results for

Study 2 can be found in Fig A in S1 Supplementary Results). On each trial in the learning

phase a visual cue (a geometric figure) was presented to the participants. Following the cue,

participants indicated which heat level they expected on a 100-unit visual analogue scale

(VAS). After rating their expected pain, a picture of a thermometer appeared indicating low

heat level for low-pain cues, and high heat levels for high-pain cues. In the testing phase each

trial would consist of one of the cues from the preceding learning phase being presented, fol-

lowed by the participants rating their expected level of pain on the 100-unit VAS. After the

Fig 9. Schematic figure of the hierarchical Kalman filter model, depicting the evolution of states and internal model parameters across iterations, and

the relationship between model variables and parameters. The related variance/noise/covariance to each parameter is indicated next to the arrows. State

estimation (lower part of the figure with arrows in solid black lines) is comparable to the single-layer Kalman filter model depicted in Fig 8. The estimation

error, i.e., the difference between the predicted and perceived pain, ê ¼ x̂ � �̂x , acts as the “bottom-up” input to the parameter estimation Kalman filter (upper

part of the figure with arrows in dashed grey lines).The estimated parameters from the previous iteration (and additive internal model noise, Qp) act as the

prior estimate, �̂p . Finally, the prior estimate, �̂p , and the estimation error, ê, are combined to form the new estimated internal model parameters.

https://doi.org/10.1371/journal.pcbi.1012097.g009
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expected pain rating, a noxious heat (47˚C or 48˚C, unrelated to the preceding cue) was

applied to the participants’ left inner forearm. After the thermal stimulation the participants

again used the 100-unit VAS to rate their experienced pain. The learning and test phases con-

sisted of 120 and 40 trials, respectively.

With the single-layer Kalman filter, we simulate the 40 test trials as discrete events, were the

cue and noxious stimulation on each trial are independent from the cue and stimulation of

previous trials. This means that the pain in trial k is independent of the pain in trials k−1, i.e.,

the value of the internal model parameter Â is Â ¼ 0. Thus, the prior estimate, or expected

pain, in these simulations is

�̂x ðkÞ ¼ B̂ðkÞuðkÞ þ �ð0;QÞ;

where we let the visual cue correspond to the control input, u(k). To distinguish between the

placebo and nocebo cues, we let u(k) be a two-dimensional vector such that uðkÞplacebo ¼ ½u 0�
T

and

uðkÞnocebo ¼ ½0 u�
T

are orthogonal to each other. We let the control input have identical magni-

tude, u = 3.7, in placebo and nocebo trials, to reflect that the cues do not inherently signal dif-

ferent levels of pain. The internal model parameter B̂ takes the form B̂ ¼ ½b̂placebo; b̂nocebo�. For

Table 2. Overview of the variables and parameters in the hierarchical Kalman filter along with dimensionality

and, where applicable, the default value used in simulations when nothing else is specified. Note that I(1+m) denotes

a (1+m)-dimensional identity matrix.

Parameter Dimensionality Default value

Actual or potential tissue damage, x 1×1 \

Perceived pain, x̂ 1×1 \

Sensory input, z 1×1 \

Observation matrix, H 1×1 1

Variance of sensory noise, R 1×1 0.82

Expected pain, �̂x 1×1 \

Control input, u m×1 |u| = {0, 3.7}

Estimated internal model parameter, Â 1×1 \

Initial value of Â; Âð0Þ 1×1 0.8

Estimated internal model parameter, B̂ 1×m \

Initial value of B̂; B̂ð0Þ 1×m ½B̂ð0Þ�i¼1;...;m ¼ 0:6

Alternative notation for estimated internal model parameters, p̂ (1+m)×1 \

Baseline variance of process noise, Q 1×1 0.12

Variance of process noise from control input, Qu 1×1 0.42

Prior estimate variance, �P 1×1 \

Kalman gain for pain estimation, K 1×1 \

Posterior estimate variance, P 1×1 \

Initial posterior estimate variance, P(0) 1×1 106

Mapping from parameter space to state space, Hp 1×(1+m) \

Covariance of internal model noise, Qp (1+m)×(1+m) 0.0022I(1+m)

Prior parameter estimation, �̂p (1+m)×1 \

Covariance of prior parameter estimation, �Pp (1+m)×(1+m) \

Kalman gain for parameter estimation, Kp (1+m)×(1+m) \

Covariance of parameter estimation, Pp (1+m)×(1+m) \

Initial covariance of parameter estimation, Pð0Þp (1+m)×(1+m) 106I(1+m)

Pain prediction error, ê 1×1 \

https://doi.org/10.1371/journal.pcbi.1012097.t002
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each individual, we draw b̂placebo � Nð0:7; 0:52Þ and b̂nocebo � Nð1:3; 0:52Þ (truncated at 0 and

1), to reflect the inter-individual differences in pain expectations. We let the tissue damage

elicited by the thermal stimulation be xlow = 3.1 for low heat trials (47˚C) and xhigh = 4.3 for

high heat trials (48˚C). We simulate 28 individuals, to match the number of individuals in the

experimental data and report the averages and standard errors of the expected and perceived

pain in Fig 1.

Fig 2 –Chronic pain. In Fig 2, we aim to demonstrate that, under certain circumstances,

the perceived pain may be disproportionately high compared to the true level of tissue damage

and that the pain may persist even when the tissue damage has recovered. To this end, we sim-

ulate tissue damage as xðkÞ ¼ Axðk� 1Þ þ B~uðkÞ, where x(0) = 0, A = 0.9 reflects the rate of recov-

ery, B = 0.8 reflects the gain in tissue damage from ~uðkÞ, and ~uðkÞ corresponds to input that

influences the level of tissue damage, such as force or heat applied to the tissue. Sometimes

there is a strong correlation between ~uðkÞ and u(k), the control input to the prediction stage of

the Kalman filter. Examples of such scenarios are if the tissue damage is caused by a motor

action, or if there are visual cues predictive of the imminent tissue damage (e.g., seeing a ham-

mer approach your thumb). We simulate this type of scenario in Fig 2 by letting

~uðkÞ ¼ uðkÞ ¼ f3:7 for k ¼ k∗; 0 otherwiseg. Other times ~uðkÞ and u(k) may be completely inde-

pendent, such as unknowingly being stung by a bee. In this scenario, if you do not see or hear

the bee approaching, there are no predictive cues (u(k) = 0), but the bee sting still (~uðkÞ) elicits

tissue damage which typically also results in pain. We provide simulation results for such a sce-

nario, where ~uðkÞ ¼ f3:7 for k ¼ k∗; 0 otherwiseg while u(k) = 0 8 k, in Fig C in S1 Supplemen-

tary Results. Default parameter values specified in Table 1 are used in these simulations, except

for Â ¼ 1, and the value of R which is 0.82 in the left panel and 1.82 in the right panel.

Fig 3 –Neuropathic pain. In Fig 3, different levels of sensory disruption are simulated by

letting the value of R vary, and for each value of R the resulting pain is assessed for different

values of Â. To reflect the transition to a state of nerve injury more accurately, all the simula-

tion results shown in the figure are preceded by a simulated period of no sensory disruption

(R = 0.82, default) to allow the estimated state x̂ and associated uncertainty P to settle into base-

line values.

Fig 4 - Classical conditioning. The classical conditioning simulations follow similar prin-

ciples as placebo and nocebo simulations. We, again, we set our simulations up to resemble

with the experimental paradigm of described by Jepma et al. [20], and birefly outlined in the

description of simulations for Fig 1B), 1E) and 1F) above, to allow for comparison between our

simulation results and the experimental data. Just as for the single-layer Kalman filter, we let

the visual cue correspond to the control input, u(k). To distinguish between the placebo and

nocebo cues, we let u(k) be a two-dimensional vector such that uðkÞplacebo ¼ ½u 0�
T

and uðkÞnocebo ¼

½0 u�T are orthogonal to each other. We let the control input have identical magnitude, u = 3.7,

in placebo and nocebo trials, to reflect that the cues do not inherently signal different levels of

pain, and we let the internal model parameter B̂ take the form B̂ ¼ ½b̂placebo; b̂nocebo�.

In the single-layer Kalman filter we manually tuned the values of b̂placebo and b̂nocebo to obtain

the desired model output. Here, we instead simulate the learning phase of the experiment to

let the internal model parameters of the hierarchical Kalman filter be set by the conditioning

procedure. Before the onset of the simulated conditioning procedure, the initial values of B̂ are

drawn from the normal distribution N(0.9, 0.82) truncated at 0 and1. This starting point is

chosen based on the reported expectations of pain upon presentation of a new, neutral cue

during the test phase of Study 2 in Jepma et al. (see Figs A and B in S1 Supplementary Results
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and [20]. Then, across 120 trials, we pair the uðkÞplacebo ¼ ½u 0�
T

with a low heat stimulation result-

ing in sensory input zlow~N(2.2, R), and uðkÞnocebo ¼ ½0 u�
T

is paired with a high heat stimulation

resulting in sensory input zhigh~N(5.2, R). We note that this paradigm differs somewhat from

the experimental paradigm in Jepma et al. [20], where the visual cues were paired with a pic-

ture of a thermometer indicating low or high heat levels, not with actual thermal stimulation.

Placebo and nocebo can be elicited through many different forms of conditioning; by pairing

the conditioned stimuli with noxious stimulation, by ‘symbolic conditioning’ as with the pic-

tures of the thermometers, by verbal suggestion alone, etc. [29]. While the exact neural pro-

cesses involved in the establishing the cue-pain associations for different forms of

conditioning may differ, the resulting behavioral outcomes are qualitatively similar [19–

22,29].

We simulate the conditioning procedure for 28 individuals, to match the number of indi-

viduals in the experimental data. We then simulate 40 test trials for each individual, with cue-

heat pairings matching the experimental data, and report the averages and standard errors of

the expected and perceived pain during the test trials in Fig 4. We also visualize how the inter-

nal model parameters and expected pain associated with the cues evolve across the condition-

ing procedure.

Fig 5 –Spontaneous neuropathic pain. Similar to Fig 3, we simulate different levels of

sensory disruption by varying the value of R. A key difference here is that, here, we assess the

resulting pain for different initial values of Â at the time of nerve injury. However, due to the

adaptive nature of the hierarchical Kalman filter, the value of Â does not stay constant over

time. This also means that we cannot run a baseline period before nerve injury, as in Fig 3,

since this would alter the value of Â. Instead, we manually tune the uncertainty of the state and

parameter estimations to approximately correspond to the values obtained from other baseline

simulations, such that P = 1 and Pp = I at the time of nerve injury.

Fig 10. Pain is assessed in the intervals {T1, T2, T31, T32, T33, T34} in the offset analgesia simulations. The first period following ramp-up

or ramp-down of temperature, indicated by Δ in the figure, is omitted to account for any delay in change of perceived pain relative to the

change in temperature.

https://doi.org/10.1371/journal.pcbi.1012097.g010
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Fig 6 –Risk factors for developing neuropathic pain. In Fig 6, we aim to demonstrate

how historical experiences of pain may influence the risk of developing neuropathic pain fol-

lowing a nerve injury. To this end, we first simulate a period preceding the nerve injury with

the baseline values specified in Table 2. Similar toFig 2, we simulate tissue damage as

xðkÞ ¼ Axðk� 1Þ þ B~uðkÞ, where B = 0.8, x(0) = 0 and ~uðkÞ ¼ uðkÞ ¼ f3:7 for k ¼ k∗; 0 otherwiseg
with time points k* indicated by green stars on the x-axes of the figures. The value of A is speci-

fied in the title of each subplot. Nerve injury is simulated by increasing the value of R to 8002,

indicated by a vertical dashed black line in the graphs.

Fig 7 - Offset analgesia. In experimental paradigms of offset analgesia, the subject typi-

cally receives noxious stimuli of varying intensity (temperature) without any cues signaling the

upcoming changes in intensity. Therefore, throughout all offset analgesia simulations we let

u = 0. The level of tissue damage is assumed to be linearly proportionate to the applied temper-

ature. At simulation onset the internal model parameters are set to match the real-world

parameters, Â ¼ A and B̂ ¼ B. The level of perceived pain is assessed as the median value of x̂
in intervals {T1, T2, T31, T32, T33, T34} as specified in Fig 10. The period immediately follow-

ing ramp-up or ramp-down of temperature (indicated by Δ in Fig 10) is omitted to account for

any delay in change of perceived pain relative to the change in temperature.

Supporting information

S1 Supplementary Results. Description and resulting figures of additional simulations not
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