
Online Conflict-Free Scheduling of Fleets of Autonomous Mobile Robots

Downloaded from: https://research.chalmers.se, 2024-12-20 07:44 UTC

Citation for the original published paper (version of record):
Popolizio, F., Vinetti, M., Combrink, A. et al (2024). Online Conflict-Free Scheduling of Fleets of
Autonomous Mobile Robots. IEEE International Conference on Automation Science and
Engineering: 3063-3068. http://dx.doi.org/10.1109/CASE59546.2024.10711693

N.B. When citing this work, cite the original published paper.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Online Conflict-Free Scheduling of Fleets of Autonomous Mobile Robots

Francesco Popolizio1, Martina Vinetti1, Alvin Combrink1,
Sabino Francesco Roselli1, Maria Pia Fanti2 and Martin Fabian1

Abstract— This work presents a Fleet Manager for a fleet
of Autonomous Mobile Robots (AMRs) that perform material
handling tasks in a shared environment. The Fleet Manager
assigns AMRs to newly released tasks, computes paths for
them to travel to the task’s locations, and schedules their travel
along the computed paths so that conflicts with other AMRs
are avoided. The objective is for each AMR to complete its task
as quickly as possible, to then be assigned a new task.

The Fleet Manager works online, assigning a released task
to the AMR closest to the task’s location, and then computing
the path and schedule to fit in with the already assigned and
executing AMRs. Conflicts occur when, in order to reach their
targets, AMRs would have to simultaneously occupy the same
space. Resolving this is done by appropriate scheduling, or by
moving idle AMRs out of the way. For fleet management to be
practicable, the computation time for assigning an AMR to a
task and computing its path and schedule must be negligible
compared to other system times.

Tests were conducted to evaluate the performance of the
Fleet Manager on a number of benchmark problem instances,
counting up to hundreds of AMRs. The results show that
the presented Fleet Manager can handle these systems quickly
enough to be practically useful in real industrial scenarios.

I. INTRODUCTION

Recent years have seen a growing interest in the use of
Autonomous Mobile Robots (AMRs) in applications such
as manufacturing plants, automated warehouses [1], airport
operations [2], office buildings [3, 4], power grids [5], etc.
Potentially, AMRs increase flexibility, robustness, and effi-
ciency of the systems [6], especially so with fleets of AMRs
simultaneously performing tasks in shared environments.
However, as the number of AMRs in a system grows, so does
the complexity of planning and controlling their movements
to ensure conflict-free interaction between them [7].

Managing a fleet of AMRs relates to Multi-Agent Path
Finding (MAPF), which is the problem of deciding collision-
free paths for multiple agents from their start locations to
goal locations in a shared, known, environment [8]. Goal
locations are defined by tasks that are completed when the
agent assigned to the task reaches the specified location. In
the offline MAPF, all tasks are known beforehand, thus a
static task assignment can be computed, and the computation
time is typically not critical. In the online MAPF, by contrast,

We gratefully acknowledge the Vinnova project CLOUDS (Intelligent
algorithms to support Circular soLutions fOr sUstainable proDuction Sys-
tems) and the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

1Division of Systems and Control, Department of Electrical Engineer-
ing, Chalmers University of Technology, Göteborg, Sweden {frapop,
vinetti, combrink, rsabino, fabian}@chalmers.se

2Department of Electrical and Information Engineering, Polytechnic of
Bari, Bari, Italy mariapia.fanti@poliba.it

tasks are not known beforehand but are released to the system
at a priori unknown times. Thus, agents that have completed
their tasks have to be assigned new tasks, so the computation
time must be short enough for the new assignment not to be
obsolete once it has been computed.

Though the offline MAPF has received a lot of interest [9,
10, 11, 12, 13], the online MAPF has received less so. Still,
several algorithms to solve the online MAPF have emerged
in recent times. Token Passing (TP) [14] solves the online
Multi-Agent Pickup and Delivery problem (MAPF with two
goal locations). The algorithm is decoupled and paths of
already assigned agents are not changed. It also assumes stay
at target [8], where an idle agent stays in its current location
until assigned a task or moved out of another agents’ way.
Rolling-Horizon Collision Resolution (RHCR) [15] re-plans
paths at fixed intervals and uses the concept introduced in
WHCA* [12] of resolving conflicts within a time-window
only. RHCR is combined with the offline MAPF solvers
CA* [12], CBS [10], Enhanced CBS [16], and Priority-Based
Search [17].

For a more in-depth overview of MAPFs proposed meth-
ods and variants, see for example [8, 18, 19].

This work presents a Fleet Manager to solve a decoupled
variant of the warehouse model [8] from the online MAPF
problem, with the stay at target assumption, where an agent
receives a new task when completing its assigned one. In
this context, since incoming tasks need to be completed
as soon as possible, the arrival and release times of tasks
coincide. Tasks are released online without the knowledge of
future tasks, and decisions are made in real-time so that short
computation time is essential. The proposed method manages
one task at a time, computing the path and the schedule
for the assigned AMR, while keeping existing schedules for
other AMRs unchanged.

In this context, a newly released task is assigned to the
nearest available AMR and a path connecting the AMR’s
current location to the task location is computed. Such a
path should be as short as possible, while at the same time
avoiding, if possible, the task locations of the other AMRs
and the current locations of idle AMRs. For this path, a
schedule is computed, that is, each location along the path
is designated a time when the AMR should be there. Only
discrete time steps are considered.

For AMRs with non-overlapping paths, computing sched-
ules is trivial since each AMR can operate independently,
without any risk of conflict. However, scheduling becomes
complicated when the paths of different AMRs overlap,
due to having to avoid conflicts. Conflicts are avoided by

2024 IEEE 20th International Conference on Automation
Science and Engineering (CASE)
August 28 - September 1, 2024. Bari, Italy

979-8-3503-5851-3/24/$31.00 ©2024 IEEE 3063

20
24

 IE
EE

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

io
n

Sc
ie

nc
e

an
d

En
gi

ne
er

in
g

(C
A

SE
) |

 9
79

-8
-3

50
3-

58
51

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

A
SE

59
54

6.
20

24
.1

07
11

69
3

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 09,2024 at 17:37:43 UTC from IEEE Xplore. Restrictions apply.

guaranteeing that AMRs never occupy the same location at
the same time. Moreover, the Fleet Manager ensures that
idle AMRs do not obstruct moving AMRs. When necessary,
special tasks are assigned to idle AMRs to move them out
of the way to resolve conflicts.

The scheduling of the AMRs is formulated as an op-
timization problem that, given as input the path of an
AMR to schedule together with the paths and schedules
of the other already scheduled AMRs, results in a conflict-
free schedule. This paper presents a Tailor-Made Scheduler
(TMS) specifically designed to solve this problem and, for
comparison, a scheduler with the optimization solver Z3 [20]
(Z3S), available under free academic license.

A set of small and medium-sized problem instances are
constructed, varying the number of tasks released and the
number of AMRs available, within the same plant. The
Fleet Manager is benchmarked using both TMS and Z3S,
and TMS outperforms Z3S in all experiments in terms of
computation time.

Furthermore, a set of large problem instances are generated
to test the Fleet Manager using TMS, to evaluate the per-
formance in terms of throughput. The results are compared
with others reported in the literature, demonstrating superior
performance for the presented Fleet Manager.

The outline of this paper is as follows: Section II includes
the problem definition with the inputs and assumptions,
including the mathematical formulation of the scheduling
problem, the management of the conflicts and the entire fleet
management; Section III presents the results obtained under
different simulation scenarios; final remarks and conclusions
are given in Section IV.

II. PROBLEM DEFINITION

The plant in which the fleet operates is abstracted into
a weighted, undirected, connected graph, ⟨N , E ,W⟩, where
N is the set of nodes, representing possible locations for
AMRs and tasks, E is the set of edges, representing the road
segments between the nodes, and W : E → N+ maps edges
to the time it takes to traverse them. AMRs do not stop on
an edge while traversing it, and all AMRs have the same,
constant speed. An AMR a ∈ A (with A the set of all
AMRs) occupies a node na

t ∈ N at time t ∈ N+. AMRs
cannot simultaneously occupy the same nodes or traverse the
same edges in opposite directions, as this leads to collisions.
However, multiple AMRs can simultaneously traverse the
same edge in the same direction.

A task is a triple τ = ⟨nτ , rτ , zτ ⟩ ∈ N ×N+ ×N+, with
nτ the task node where the AMR assigned to the task is
to go, rτ the task release time, the earliest time when the
assigned AMR can start, and zτ the task service time, the
time that the assigned AMR has to stay at the task node
before the task is completed. Let T be the set of all tasks.

A. Fleet Manager Overview

The Fleet Manager, Fig. 1, is the central algorithm for
handling the fleet of AMRs. To begin with, at time step
t, all released tasks τ ∈ {i ∈ T | ri = t} are added to the

Start

Release of a set of
tasks appended to Q

Q = ∅?

t = t + 1

All AMRs busy?

τ = Q.pop(0)

Assignment of τ to an AMR

Path Planner

Conflicts?

Conflict Manager

Scheduler

Fleet
M

anager

False

False

True

True

False

True

Fig. 1: Flowchart of the Fleet Manager.

waiting list Q, an ordered set containing the tasks to be
performed. The tasks in Q are then handled one at a time
until Q is empty, or there are no more available AMRs.
The Fleet Manager handles a task as follows: the first task
in Q is assigned to the available AMR closest to the task
node, and a path from the AMR’s current location to the task
node is computed by the Path Planner. Conflicts, referring to
situations where idle AMRs along the computed path must be
moved, are checked for and solved by the Conflict Manager.

Finally, the Scheduler decides the time steps at which the
assigned AMR travels along the path, dependent on existing
schedules of other AMRs. At this point, the task τ has been
handled.

B. The Path Planner

A path p = ⟨n0, n1, . . . , nk⟩ ∈ N ∗ is an ordered set
of nodes with ni ∈ p for i = 0 . . . k. Given an AMR a,
its position na

t at time t, and an assigned task τ , the Path
Planner computes a path where n0 = na

t and nk = nτ ,
and each pair ⟨ni, ni+1⟩ ∈ E . Besides finding a short path,
the Path Planner tries to avoid conflicts with other AMRs
by avoiding nodes where idle AMRs could currently or
eventually be. For this objective, a Path Planning Heuristic
determines whether to circumvent a node that would cause
a conflict or to include it in the path and resolve the
conflict, aiming to minimize task completion duration. This
determination involves considering estimated durations to
move the conflict AMR out of the way. The strategy is
to temporarily increase the weights of edges connected to
nodes where either idle AMRs aI ∈ AI are located (i.e.
naI
t) or are task nodes of assigned but uncompleted tasks

3064

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 09,2024 at 17:37:43 UTC from IEEE Xplore. Restrictions apply.

τU ∈ TA&U , i.e. where idle AMRs will be in the future. The
weight penalty w+

i for node ni is calculated as:

w+
i =

|{aI ∈ AI | naI
t = ni}|

2
+

∑
τU∈TA&U |nτU

=ni

1 + zτU
2

where AI is the set of idle AMRs and TA&U is the set of
task nodes of the last assigned and uncompleted task for each
AMR. Note that w+

i can only be either 0, 1/2, or (1+zτU)/2,
since only one AMR can occupy a node ni at a time. w+

i

is added to the weight of all edges connected to node ni.
Dijkstra’s algorithm [21] is then used to find the shortest path
from na

t to nτ in the graph with modified edge-weights.

C. Scheduler

Once the path is defined, the arrival time at each node
along the path is decided, i.e. the AMR is scheduled.

A mathematical model of the scheduling problem is pre-
sented below, where at a time t the AMR a is scheduled
along the path p to execute task τ . Note that at time
t there may be some other AMRs moving in the plant
along previously computed paths, according to previously
computed schedules.

Let the integer decision variable xn, for n ∈ N , model the
discrete time step at which a arrives at node n. The objective
function to minimize is the arrival time at the task node nτ .
The list of parameters used to formulate the problem is given
as:

• p, path of the assigned AMR, with p0 and p∗, respec-
tively, first and last node of p

• p′, currently scheduled path traversed by a′ ∈ A, with
p′0 and p′∗, respectively, first and last node of p′

• P , set of currently scheduled paths, with p′ ∈ P
• nprev and nnext , respectively, the previous and the next

node of n, with n ∈ p
• p∗,prev is the node preceding p∗ ∈ p
• t, integer variable indicating the current discrete time

step
• zp′ , service time of the task located at p′∗,∀p′ ∈ P
• wn,nnext = W(⟨n, nnext⟩), integer weight of the edge

⟨n, nnext⟩ ∈ E
• sn′ , integer variable that indicates the time at which

node n′ of path p′ ∈ P is visited by a′

• n′
e, first node in p′ upstream of the edges shared

between p′ and p

Model: The optimality criterion is to minimize the time a
reaches its task node, p∗:

minxp∗ (1)

subject to:

xn = −1 ∀n ∈ (N \ p) (2)
xp0

= t (3)
xnnext

− xn ≥ wn,nnext
∀n ∈ p \ {p∗} (4)[

(xn < sn′) ∧ (xnnext
− wn,nnext

< sn′)
]
∨ (5)

[
xn > sn′

next
− wn′,n′

next

]
,

∀n ∈ p \ {p∗}, n′ ∈ p′ \ {p′∗}, n = n′

xp∗ > sn′
next

− wn′,n′
next

∀n′ ∈ p′, p∗ = n′ (6)[
(xn < sp′

∗
) ∧ (xnnext

− wn,nnext
< sp′

∗
)
]
∨ (7)[

xn > sp′
∗
+ zp′

]
, ∀n ∈ p \ {p∗}, n = p′∗[

xn < sn′
e
−

n′
e,next∑
r=n′

wr,rprev

]
∨
[
xn > sn′

]
, (8)

∀n ∈ p \ {p∗}, n′ ∈ p′, n = n′, nnext = n′
prev

xp∗ > sn′
e

∀n′
e ∈ p′, p∗ = n′

e, p∗,prev = n′
e,next (9)

Constraint (2) sets an invalid arrival time for all the nodes
n ∈ N that are not involved in p; (3) sets the arrival time
of a in p0 equal to the current time step; (4) imposes the
minimum arrival times for each n ∈ p, by considering the
edge’s travel time. Constraints (5), (6), (7) guarantee that in
each node there is only one AMR at a time. When p and
p′ share a node (n = n′), there are two general possibilities
defined by (5): the first case is when a can pass through n
before a′, but it has to leave n before a′; the second is that a
has to wait for a′ to traverse n. A different case arises when
the shared node between p and p′ is p∗, (6). In that case, a
will visit p∗ after a′ to avoid blocking it. The last case occurs
when the shared node between p and p′ is p′∗, (7): a can pass
through n = p′∗ before p′ if it can leave that node before a′;
otherwise, a could visit n at least after a′ completes its task
(also considering its service time zp′). In this case, after a′

completes its task, the Conflict Manager will move it from
that node. Constraints (8), (9) deal with avoiding multiple
AMRs on the same edges in opposite directions. In fact,
based only on the constraints (5), (6), (7), a situation as in
Figure 2 would not be resolved and would cause a collision
between a0 and a1 in the time between time steps 3 and 4.

0 1
3 4

34

a0 τ0

a1τ1

Fig. 2: Collision between two AMRs on an edge.

Constraint (8) defines the two general cases to avoid two
AMRs on an edge at the same time: the first case is when
a can cross the edge or sequence of shared edges before a′

enters it. If this solution is not feasible, then the second case
is that a enters the sequence of shared edges after a′ passes
through it. The latter is the only possible solution when the
sequence of shared edges extends up to p∗, see (9).

Once a has been scheduled for the path p, i.e. the decision
variables xn of the problem have been determined, the sched-
ule is stored in S, the set of all the computed schedules s.
The set S contains the history of all the schedules computed
up to the current step; this is used to know the position of the
scheduled AMRs at each instant of time, so as to schedule
the following AMRs so that there are no collisions between
the moving AMRs.

3065

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 09,2024 at 17:37:43 UTC from IEEE Xplore. Restrictions apply.

The problem (1)–(9) can be solved by any general-purpose
optimization solver, such as Z3. However, since only one
AMR is scheduled at a time, on a predefined path, and
the schedules of other AMRs are fixed (s ∈ S), a greedy
algorithm can find a schedule without an optimization solver.
Thus, a Tailor-Made Scheduler (TMS) that enforces con-
straints (2)–(9) was developed. In the TMS, those constraints
are represented by conditions to compute all the xn variables,
and to be sure that all the constraints are met they are
incorporated into a loop. Within this loop, all conditions are
evaluated sequentially, over all xn. The loop persists until
all conditions are satisfied. During each iteration, the loop
checks whether the values of the variables have changed
from the previous iteration. If changes are detected, the loop
recommences the evaluation of all conditions; otherwise, the
loop terminates.

D. The Conflict Manager

A conflict arises when the path found by the Path Planner
does not avoid nodes with idle AMRs or task nodes of
currently executing tasks. Conflicts cannot be resolved by
the Scheduler, as it is only capable of deciding the timing of
the AMR a’s movements to avoid occupying the same nodes
or edges simultaneously with other moving AMRs. When
conflicts are detected, the Fleet Manager invokes the Conflict
Manager to move the AMRs causing the conflicts out of the
way. Two different types of conflicts can be identified:

• Type I, conflict with an idle AMR, aI ∈ AI ;
• Type II, conflict with a currently scheduled AMR, aS ,

in its task node.
For Type I conflicts, aI must certainly be moved. However,

Type II could be resolved without moving the AMR causing
the conflict. In the best case, a has enough time to arrive
at and leave the task node of aS before aS . Otherwise, aS
arrives at its task node before a, becomes idle, and must be
moved.

The Conflict Manager can be described by the flow chart
in Figure 3, and receives as input:

• J , set of AMRs belonging to the Type I conflict;
• Y , set of AMRs belonging to the Type II conflict.
The first step of the Conflict Manager is to move all AMRs

in J out of the way, one at a time. To move an AMR, it
is first necessary to select the nearest node that is not the
task node of a task assigned to another AMR, that the AMR
can be moved to. Subsequently, a path to the selected node
is calculated and saved in P , which ideally does not cause
further conflicts, else this becomes a cascade conflict (see
below). Finally, the AMR is scheduled to travel along the
calculated path. This schedule will also be recorded in the
set S and the corresponding conflict task in T , which is a
specific task with zero service time.

Regarding Type II conflicts, among all AMRs in Y , only
those that actually cause a conflict are moved. For this, a
temporary schedule is calculated for the main task, i.e. the
task that was being addressed before entering the Conflict
Manager. From the temporary schedule it is determined

Start

J = ∅?

move conflict AMR

Compute the temporary
schedule of the main task

Can a pass
without moving
any AMR in Y ?

Define Y ′

move conflict AMR

from Y remove Y ′

End

Ty
pe

I
Ty

pe
II

False

True

False

True

Fig. 3: Flowchart of the Conflict Manager.

which AMRs in Y will reach the corresponding task node
before a does; so only these AMRs, grouped in the set
Y ′ ⊆ Y , are moved. After moving the AMRs in Y ′ the
Conflict Manager checks again if there are other conflicts
with the AMRs in Y , caused by the schedules of the AMRs
in Y ′, calculating again a temporary schedule of the main
path. Provided that there is always at least one node to move
the AMR causing the conflict to, the Conflict Manager ends
when the temporary schedule no longer creates conflicts with
the AMRs in Y .

When an AMR causing a conflict is moved, it cannot be
guaranteed that it does not generate further conflicts. An
example of this cascade conflict is shown in Figure 4.

0 1 2 3
0 1 0 1 0 1

a τ0 a1 a2

Fig. 4: Example of cascade conflict.

In this case, the AMR a wants to execute the task τ0,
released at time 0; in the task node of τ0 there is an idle
AMR, a1. Therefore, to reach τ0, it is necessary to move
a1. The only solution is to move a1 to the right, to node 2;
but node 2 is occupied by another idle AMR, a2. To solve
this situation, the Conflict Manager will move a2 to node
3, a1 to node 2, before it can execute the main task, i.e.
τ0. When managing cascade conflicts, in order to minimize
delays, each AMR will move at its earliest possible time
given the scheduling constraints. In the example of Figure 4,
all AMRs move simultaneously at time 0, since this allows
a to reach τ0’s task node at its earliest possible time.

The Conflict Manager recursively handles an arbitrary
number of cascade conflicts, given that it is possible to move
the last conflicting AMR in the cascade (and the computation
does not exceed the hardware’s memory).

Note that certain rare edge-cases cannot be handled by

3066

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 09,2024 at 17:37:43 UTC from IEEE Xplore. Restrictions apply.

the Conflict Manager, potentially leading to deadlocks. In
the experiments in Section III this has occurred once, in
a scenario involving 300 AMRs with 140 000 tasks to be
executed over 5000 time steps. Currently, this issue is simply
disregarded; however, in the future, strategies to handle such
situations will be developed.

III. EXPERIMENTAL EVALUATION

For experimental evaluation, the 33× 46 Fulfilment ware-
house map of [15, 22] is used, see Figure 5, containing
1278 nodes that can be occupied by AMRs. Initially, the
AMRs are randomly positioned at any orange, gray, or blue
cells. Given a time horizon T and release rate rr, Trr tasks
(rounded to the nearest integer) are generated with task nodes
and release times uniformly sampled from blue positions and
[0, . . . , T − 1], respectively. Service times are set to 0.

All tests are performed on an Intel i7-1185G7 4.80 GHz
CPU with 32 GB of 3200 MHz RAM.

Fig. 5: Fulfilment warehouse map. Blue squares are possible
task nodes, black squares are obstacles. Orange circles are
used as initial positions in [15, 22], but here AMRs may start
at any orange, blue or gray position.

Table I shows the average Fleet Manager computation
time per task, in seconds, using Z3S and TMS, respectively,
on the same problem instances. The computation times
at steady-state are evaluated, just considering the average
computational time per task completed in the last 500 time
steps, with T = 1000, rr = 1.5, and the number of AMRs
ranging from 25 to 750.

TABLE I: Average computation time (seconds) per task.

Number of AMRs
25 50 200 400 500 600 750

Z3S 2.740 0.580 0.347 0.292 0.277 0.271 0.261

TMS 0.135 0.004 0.004 0.004 0.005 0.005 0.006

The results show superior performance of TMS over Z3S.
The worst-case scenario is 25 AMRs, due to the limited
number of AMRs resulting in lengthy paths. Tasks are
typically assigned to the nearest available AMR; however,
with a small number of AMRs and a high number of tasks,
a long queue of tasks forms, leading to newly released tasks

being assigned to the first available AMRs, even if they are
distant from the task node. This issue decreases with more
AMRs, allowing shorter Fleet Manager computation time.

While Z3S shows expected computational improvements
with more AMRs, TMS does not confirm this expectation.
Tests indicate that with a larger fleet, it takes longer for
the Path Planner to find a path compared to the case of
a smaller fleet. The reason could lie in the Path Planning
Heuristics, which will have to iterate over a greater number
of AMRs when modifying the edge weights. However, the
computation time required for the Path Planner is in the
order of milliseconds, so it is negligible when using Z3S;
conversely, when using TMS, the computation time of the
Path Planner becomes comparable to that required by the
scheduler.

Given the significant computational time difference in
Table I, further tests will use TMS.

Figure 6 shows results for five experiments for each release
rate rr ∈ {1.0, 1.2, 1.4}, with T = 3000 and 25 AMRs.
Similar to the results in Table I, it is the steady-state metrics
that are evaluated. Therefore, the computation time is defined
as the average Fleet Manager computation time for tasks
completed in the past 500 time steps. The throughput is
defined as the average number of completed tasks over the
past 500 time steps. It is shown that the throughput is able
to match lower release rates (rr = 1.0) but for higher
release rates it becomes more common for the throughput
to drop (rr = 1.4 and one experiment with rr = 1.2).
Probably the system becomes saturated with tasks such that
few AMRs are available at any given time. Since tasks are
assigned to the nearest available AMR, having few to choose
from likely results in longer average path lengths. A longer
path means that more time is needed to complete a task,
as well as more conflicts arising. This is supported by the
correlation of growing queue sizes and computation times
for the experiments where performance deteriorates.

Table II shows the average throughput for TMS and the
reported throughput for RHCR [15] for different numbers
of AMRs. The TMS throughput is the average over all
experiments where neither performance deteriorates (defined
here as where the queue size grows larger than 2 |A|) nor
deadlocks occur, and is calculated using the final steady-state
throughput value, i.e. using the last 500 time steps. T = 5000
and the release rate is selected such that > 95 % of the 100
experiments can be used to calculate the throughput.

TABLE II: Throughput comparison.

Number of AMRs 25 60 100 140 200

TMS 1.10 4.01 8.51 12.97 19.50
RHCR [15] - 2.33 3.56 4.55 -

IV. CONCLUSIONS

This paper presents an online Fleet Manager for AMR
path planning and scheduling. Due to real-time requirements,
short computation time is paramount, and experiments show

3067

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 09,2024 at 17:37:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Throughput (500 windowed), task queue size, and
computation time (500 windowed, in seconds) of five ex-
periments for each release rate rr = 1.0 (purple), rr = 1.2
(blue) and rr = 1.4 (green).

that the Fleet Manager can handle large problem instances
quickly, therefore being a suitable solution for real-world,
large-scale applications.

In this work, the problem of scheduling AMRs along their
paths is solved by means of a Tailor-Made Scheduler (TMS),
and a freely available general-purpose optimization solver.
These two approaches are compared over sets of benchmark
instances, showing the TMS to be significantly faster than
the general-purpose solver.

Further tests, using TMS, highlight the Fleet Manager’s
performance in terms of throughput. Its performance sur-
passes those reported in existing literature. Moreover, the
Fleet Manager scales well with respect to the number of
AMRs and assigned tasks, for the same map size. However,
limitations arise concerning the achievable throughput.

These findings collectively highlight the efficacy of the
proposed Fleet Manager in real-world scenarios, offering
enhanced computational efficiency and notable performance
advantages over existing approaches.

REFERENCES

[1] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz.
“Coordinating hundreds of cooperative, autonomous vehicles
in warehouses”. In: AI magazine 29.1 (2008), pp. 9–19.

[2] Robert Morris et al. “Planning, Scheduling and Monitoring
for Airport Surface Operations.” In: AAAI Workshop: Plan-
ning for Hybrid Systems. 2016, pp. 608–614.

[3] Brian Coltin and Manuela Veloso. “Online pickup and de-
livery planning with transfers for mobile robots”. In: 2014
IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2014, pp. 5786–5791.

[4] Manuela Veloso et al. “Cobots: Robust symbiotic au-
tonomous mobile service robots”. In: Twenty-fourth interna-
tional joint conference on artificial intelligence. AAAI Press,
2015, pp. 4423–4429.

[5] Rogério Sales Gonçalves and João Carlos Mendes Carvalho.
“Review and latest trends in mobile robots used on power
transmission lines”. In: International Journal of Advanced
Robotic Systems 10.12 (2013), p. 408.

[6] Giuseppe Fragapane et al. “Increasing flexibility and produc-
tivity in Industry 4.0 production networks with autonomous
mobile robots and smart intralogistics”. In: Annals of oper-
ations research 308.1-2 (2022), pp. 125–143.

[7] Kasim M Al-Aubidy, Mohammed M Ali, and Ahmad M Der-
bas. “Multi-robot task scheduling and routing using neuro-
fuzzy control”. In: 2015 IEEE 12th International Multi-
Conference on Systems, Signals & Devices (SSD15). IEEE.
2015, pp. 1–6.

[8] Roni Stern et al. “Multi-agent pathfinding: Definitions, vari-
ants, and benchmarks”. In: Proceedings of the International
Symposium on Combinatorial Search. Vol. 10. 1. 2019,
pp. 151–158.

[9] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal
basis for the heuristic determination of minimum cost paths”.
In: IEEE transactions on Systems Science and Cybernetics
4.2 (1968), pp. 100–107.

[10] Guni Sharon et al. “Conflict-based search for optimal multi-
agent pathfinding”. In: Artificial Intelligence 219 (2015),
pp. 40–66.

[11] Guni Sharon et al. “The increasing cost tree search for
optimal multi-agent pathfinding”. In: Artificial intelligence
195 (2013), pp. 470–495.

[12] David Silver. “Cooperative pathfinding”. In: Proceedings of
the aaai conference on artificial intelligence and interactive
digital entertainment. Vol. 1. 1. 2005, pp. 117–122.

[13] Glenn Wagner and Howie Choset. “M*: A complete mul-
tirobot path planning algorithm with performance bounds”.
In: 2011 IEEE/RSJ international conference on intelligent
robots and systems. IEEE. 2011, pp. 3260–3267.

[14] Hang Ma et al. “Lifelong multi-agent path finding for online
pickup and delivery tasks”. In: (2017). arXiv: 1705.10868.

[15] Jiaoyang Li et al. “Lifelong multi-agent path finding in large-
scale warehouses”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 35. 13. 2021, pp. 11272–
11281.

[16] Max Barer et al. “Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem”.
In: Proceedings of the International Symposium on Combi-
natorial Search. Vol. 5. 1. 2014, pp. 19–27.

[17] Hang Ma et al. “Lifelong path planning with kinematic con-
straints for multi-agent pickup and delivery”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33.
01. 2019, pp. 7651–7658.

[18] Hang Ma. “Graph-based multi-robot path finding and plan-
ning”. In: Current Robotics Reports 3.3 (2022), pp. 77–84.

[19] Oren Salzman and Roni Stern. “Research challenges and
opportunities in multi-agent path finding and multi-agent
pickup and delivery problems”. In: Proceedings of the 19th
International Conference on Autonomous Agents and Multi-
Agent Systems. 2020, pp. 1711–1715.

[20] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient
SMT solver”. In: International conference on Tools and
Algorithms for the Construction and Analysis of Systems.
Springer. 2008, pp. 337–340.

[21] Edsger W Dijkstra. “A note on two problems in connex-
ion with graphs”. In: Numerische mathematik 1.1 (1959),
pp. 269–271.

[22] Minghua Liu et al. “Task and path planning for multi-agent
pickup and delivery”. In: Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS). 2019, pp. 1152–1160.

3068

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 09,2024 at 17:37:43 UTC from IEEE Xplore. Restrictions apply.

