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Abstract
We address the problem of Reliable Broadcast in asynchronous message-passing systems with n

nodes, of which up to t are malicious (faulty), in addition to a message adversary that can drop
some of the messages sent by correct (non-faulty) nodes. We present a Message-Adversary-Tolerant
Byzantine Reliable Broadcast (MBRB) algorithm that communicates an almost optimal amount
of O(|m| + n2κ) bits per node, where |m| represents the length of the application message and
κ = Ω(log n) is a security parameter. This improves upon the state-of-the-art MBRB solution
(Albouy, Frey, Raynal, and Taïani, TCS 2023), which incurs communication of O(n|m| + n2κ) bits
per node. Our solution sends at most 4n2 messages overall, which is asymptotically optimal. Reduced
communication is achieved by employing coding techniques that replace the need for all nodes to
(re-)broadcast the entire application message m. Instead, nodes forward authenticated fragments of
the encoding of m using an erasure-correcting code. Under the cryptographic assumptions of PKI
and collision-resistant hash, and assuming n > 3t+2d, where the adversary drops at most d messages
per broadcast, our algorithm allows at least ℓ = n − t − (1 + ϵ)d (for any ϵ > 0) correct nodes to
reconstruct m, despite missing fragments caused by the malicious nodes and the message adversary.
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1 Introduction

Byzantine Reliable Broadcast (BRB for short) allows n asynchronous nodes to agree eventually
on a message sent by a designated node, the sender, despite the possible malicious (Byzantine)
behavior by some nodes and the transmission network [4]. Byzantine reliable broadcast plays
a crucial role in several key applications, including consensus algorithms, replication, event
notification, and distributed file systems, among others. These systems sometimes require
broadcasting large messages or files (e.g., permissioned blockchains), and thus, reducing
the communication overhead to a minimum is an important aspect of achieving scalability.
In that vein, this work aims at providing communication efficient solutions for the task of
reliable broadcast in the presence of node and link faults.

A significant challenge to reliable broadcast algorithms arises when the message-passing
system is unreliable and possibly cooperates with the Byzantine nodes. Link faults [11, 12]
give Byzantine nodes (potentially limited) control over certain network links, enabling them to
omit or corrupt messages (an ability captured under the umbrella term message adversary [9]).
This work focuses on a specific type of message adversary [9] that can only omit messages
sent by correct nodes, but that cannot alter their content. This message adversary abstracts
cases related to silent churn, where nodes may voluntarily or involuntarily disconnect from
the network without explicitly notifying other nodes.

Problem overview. We assume n nodes over an asynchronous network, where a message
can be delayed for an arbitrary yet finite amount of time (unless omitted by the message
adversary). We assume the existence of t Byzantine nodes and a message adversary capable
of omitting up to d messages per node’s broadcast. To be more precise, a node communicates
through a comm primitive (or a similar multicast/unicast primitive that targets a dynamically
defined subset of processes), which results in the transmission of n messages, with each
node being sent one message, including the sender. The message adversary can choose
to omit messages in transit to a subset of at most d correct processes. The adversary is
only limited by the size of that subset. For instance, between different comm invocations,
the adversary has the freedom to modify the set of correct processes to which messages
are omitted. Furthermore, a designated sender node holds a message m that it wishes to
broadcast to all the nodes.

An algorithm that satisfies the requirements of reliable broadcast despite Byzantine nodes
and a message adversary is called a Message-adversary Byzantine Reliable Broadcast (MBRB)
algorithm. The detailed version of MBRB’s requirements was formulated in [2], see Section 2.

Background. Albouy, Frey, Raynal, and Taïani [2] recently proposed a Message-adversary
Byzantine Reliable Broadcast algorithm (which we denote AFRT for short) for asynchronous
networks that withstands the presence of t Byzantine nodes and a message adversary capable
of omitting up to d messages per node’s broadcast. AFRT guarantees the reliable delivery of
any message when n > 3t+2d. Moreover, they demonstrate the necessity of this bound on
the number of Byzantine nodes and omitted messages, as no reliable broadcast algorithm
exists otherwise.

One caveat of AFRT regards its communication efficiency. While it achieves an optimal
number of O(n2) messages, and an optimal delivery power ℓ = n − t − d, each node’s
communication requires O(n · (|m|+ nκ)) bits, where |m| represents the number of bits in
the broadcast message and κ is the length of the digital signatures used in their algorithm.
In the current work, we design an algorithm that significantly reduces the communication
cost per node while preserving the total number of messages communicated. Our solution
features at most 4n messages per correct node (corresponding to 4n2 messages overall), and
only O(|m|+ n2κ) bits per correct node. Overall, O(n|m|+ n3κ) bits are communicated by
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correct nodes. Reducing the second term to (n2 log n)κ can be done by employing standard
techniques of threshold signatures, which replace the need to communicate a quorum of
signatures; see, e.g., [3]. Note that Ω(n|m|+ n2κ) is a straightforward lower bound on the
overall communication for deterministic algorithms using signatures (up to the size of the
signature), see [5, 8], as every correct node must receive the message m, and as the reliable
broadcast of a single bit necessitates at least Ω(n2) messages [6].

Contributions. This work is the first to present an MBRB algorithm tolerating an hybrid
adversary combining t Byzantine nodes and a Message Adversary of power d, while providing
optimal Byzantine resilience, near-optimal communication, and near-optimal delivery power ℓ.

2 Preliminaries
General notations and conventions. For a positive integer n, let [n] denote the set {1, 2, . . . , n}.
A sequence of elements (x1, . . . , xn) is shorthanded as (xi)i∈[n]. We use the symbol ‘-’ to
indicate any possible value. That is, (h, -) means a tuple where the second index includes
any arbitrary value which we do not care about. All logarithms are base 2.

Nodes and Network. We focus on asynchronous message-passing systems that have no
guarantees of communication delay. Also, the algorithm cannot explicitly access the clock
or use timeouts. The system consists of a set, P = {p1, . . . , pn}, of n fail-prone nodes (or
processes). We identify party i with pi.
Communication means. Any ordered pair of nodes pi, pj ∈ P has access to a communication
channel, channeli,j . Each node can send messages to all nodes (possibly by sending a differ-
ent message to each node). That is, any node, pi ∈ P, can invoke the transmission macro,
comm(m1, . . . , mn), that communicates the message mj to pj over channeli,j . The mes-
sage mj can also be empty, in which case nothing will be sent to pj . However, in our algorithms,
all messages sent in a single comm activation will have the same length. Furthermore, when
a node sends the same message m to all nodes, we write broadcast(m) = comm(m, m, . . . , m)
for shorthand. We call each message mj transmitted by the protocol an implementation
message (or simply, a message) to distinguish such messages from the application-level
messages, i.e., the one the sender wishes to broadcast.
Byzantine nodes. Faulty nodes are called Byzantine and their adversarial behavior can
deviate from the proposed algorithm in any manner. They might perform any arbitrary
computation, and we assume their computing power is at least as strong as that of non-faulty
nodes, yet not as strong as to undermine the security of the cryptographic signatures we use
(see below). We assume that, at most, t nodes are faulty, where t is a value known to the
nodes. Non-faulty nodes are called correct nodes. The set of correct nodes contains c nodes
where n− t ≤ c ≤ n. The value of c is unknown.
Message adversary. This entity can remove implementation messages from the communi-
cation channels used by correct nodes when they invoke comm(·). More precisely, during
each comm(m1, . . . , mn) call, the adversary has the discretion to eliminate up to d messages
in the set {mi} from their corresponding communication channels where they were queued.
Similar to [2], we assume n > 3t+2d.

Error Correction Codes. A central tool used in our algorithm is an error-correction code
(ECC) [10]. Intuitively speaking, an ECC takes a message as input and adds redundancy to
create a codeword from which the original message can be recovered even when parts of the
codeword are corrupted. In this work, we focus on erasures, a corruption that replaces a
symbol of the codeword with a special erasure mark ⊥.

DISC 2024
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Cryptographic Primitives. Our algorithm relies on cryptographic assumptions. We assume
that the Byzantine nodes are computationally bounded with respect to the security parameter,
denoted by κ. That is, all cryptographic algorithms are polynomially bounded in the input 1κ.
We assume that κ = Ω(log n).
Hash functions. A collision-resistant hash is a function1 hash : {0, 1}∗ → {0, 1}κ that satisfies
the following collision resistance property: For any computationally bounded algorithm A

and any x ∈ {0, 1}∗, Pr[A(x) = x′ ∧ hash(x′) = hash(x)] < 2−Ω(κ). I.e., finding a pair x, x′

with the same hash is infeasible, except with negligible probability in the security parameter.
Signature schemes. A digital signature scheme is a pair of possibly randomized algorithms
SIG = (sign, Verify). The signing algorithm executed by node pi (denoted, signi) takes a
message m and implicitly a private key. It then produces a signature σ = signi(m). The
verifying algorithm takes a message, its corresponding signature, and the identity of the
signer (and implicitly a public key), and outputs a single bit, b = Verify(m, σ, i), which
indicates whether the signature is valid or not, b ∈ {valid, invalid}.
Merkle Trees [7]. These are means to commit to a message composed of several fragments
so that one can prove, for each fragment independently, that it belongs to the committed
message. This primitive is parameterized by a security parameter κ and consists of two
functions: MerkleTree(·) which generates the proofs for each fragment of the message, and
VerifyMerkle(·), which given a fragment along with its proof, verifies that the fragment indeed
belongs to the committed message.

Specification of the MBRB primitive. The Objective of MBRB is to guarantee a reliable
delivery of a message while upholding specific safety and liveness criteria, despite actions
taken by Byzantine nodes and the message adversary An MBRB algorithm contains the
MBRB-broadcast and MBRB-deliver operations.

Definition 1 specifies the safety and liveness properties. Safety ensures that messages
are delivered correctly without spurious messages, duplication, or duplicity. The liveness
guarantee that if a correct node broadcasts a message, it will eventually be delivered by at
least one correct node (MBRB-Local-delivery), and that if a correct node delivers a message
from any specific sender, that message will eventually be delivered by a sufficient number, ℓ,
of correct nodes (MBRB-Global-delivery), where ℓ is a measure of the delivery power of the
MBRB algorithm and might depend on the adversary’s power, i.e., on t and d.

▶ Definition 1. An MBRB is an algorithm that satisfies the following properties.
MBRB-Validity. Suppose ps is correct and a correct node, pi, MBRB-delivers an
application message m. Then, node ps has MBRB-broadcast m (before that MBRB-
delivery).
MBRB-No-duplication. A correct node pi MBRB-delivers at most one application
message m.
MBRB-No-duplicity. No two different correct nodes MBRB-deliver different applica-
tion messages from node ps.
MBRB-Local-delivery. Suppose ps is correct and MBRB-broadcasts an application
message m. At least one correct node, pj, eventually MBRB-delivers m from node ps.
MBRB-Global-delivery. Suppose a correct node, pi, MBRB-delivers an application
message m from ps. Then, at least ℓ correct nodes MBRB-deliver m from ps.

1 Formally speaking, a hash function must be chosen randomly from a family of possible hash functions.
Otherwise, an adversarial algorithm A exists. We avoid a formal treatment of this issue in our paper.
In practice, a fixed function is used (e.g., SHA2 or SHA3).
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3 The Coded-MBRB algorithm

The proposed solution, named Coded MBRB (Algorithm 2), allows a distinguished sender ps

to disseminate one specific application message m. In the description below, we assume there
is a single sender, ps, and all nodes know its identity ps. In the full version [1], we discuss
how to extend this algorithm so that it implements a general MBRB algorithm, allowing any
node to be the sender, as well as allowing multiple instances of the MBRB, either with the
same or different senders, to run concurrently.

Algorithm description. MBRB-broadcast(m) (line 6) allows the sender to start dissemi-
nating the application message, m. It is designed to be executed by the sender process, ps.
The initial step of the sender (line 7) invokes computeFragMerkleTree(m) (Algo-
rithm 1), which encodes the message m using an error-correction code, divides it into n

fragments and constructs a Merkle tree that includes the different fragments. The function
returns several essential values: the Merkle root hash h, and the fragment details (m̃j , πj , j),
which contains the fragment data itself m̃j (the j-th part of the codeword ECC(m)), a proof
of inclusion πj for that part, and the respective index j of each fragment.

The sender node, ps, is responsible for signing the computed Merkle root hash h and
generating a signature, denoted sigs (line 8). Notably, this signature includes ps’s identifier.
The sender then initiates m’s propagation by employing the operation comm (line 9), which
sends to each process pj the Merkle root hash h, the j-th fragment details (m̃j , πj , j), and the
signature sigs (line 8). When this message (or later messages communicated in the algorithm)
is received by some node pi, it first verifies that all the signatures and the Merkle proofs that
the message contains are valid, and that ps’s signature is included in the messages; otherwise,
the message is ignored. This action is encapsulated by IsValid() (lines 11, 17, and 33).

The rest of the algorithm progresses in two phases. The first phase is responsible for
message dissemination, which forwards message fragments received by the sender. The
other role of this phase is reaching a quorum of nodes that vouch for the same message.
A node vouches for a single message by signing its hash value. Nodes collect and store
signatures until it is evident that sufficiently many nodes agree on the same message. The
subsequent phase focuses on disseminating the quorum of signatures so that it is observed by
at least ℓ correct nodes, and on successfully terminating while ensuring the delivery of the
reconstructed message.

Algorithm 1 The computeFragMerkleTree(m) function.

1 Function computeFragMerkleTree(m) is
2 m̃← ECC(m) ▷Such that m is recoverable from k = Ω(n) fragments
3 let m̃1, . . . , m̃n be n equal size fragments of m̃

4 (h, π1, . . . , πn)← MerkleTree(m̃1, . . . , m̃n) ;
5 return

(
h, (m̃j , πj , j)j∈[n]

)
Analysis. The following theorem states that our algorithm is correct. Due to page limit,
the complete proof and discussion on the assumptions appear in the full version [1].

▶ Theorem 2 (Main). Assume n > 3t + 2d, k ≤ (n − t − 2d) and ε > 0. Algorithm 2
implements an MBRB solution with ℓ > n− t− (1 + ε)d. Any algorithm activation on the
input message m communicates 4n2 messages, where each node communicates O(|m|+ n2κ)
bits overall.

DISC 2024



Algorithm 2 The Coded MBRB Algorithm (code for pi, single-shot, single-sender).

6 Function MBRBbroadcast(m) is ▷only executed by the sender, ps

7
(
h, (m̃j , πj , j)j

)
← computeFragMerkleTree(m)

8 sigs ←
(
signs(h), s

)
9 comm(v1, . . . , vn) where vj = ⟨send, h, (m̃j , πj), sigs⟩

Phase I: Message dissemination

10 Upon ⟨send, h′, (m̃i, πi, i), sigs⟩ arrival from ps do
11 if ¬isValid

(
h′, {(m̃i, πi, i)}, {sigs}

)
then return ▷discard invalid messages

12 if pi already executed l. 15 or signed a msg from ps with hash h′′ ̸= h′ then return
13 store m̃i and sigs for h′

14 sigi ←
(
signi(h′), i

)
; store sigi for h′

15 broadcast ⟨forward, h′, (m̃i, πi, i), {sigs, sigi}⟩

16 Upon ⟨forward, h′, fragtuplej , sigsj = {sigs, sigj}⟩ arrival from pj do
17 if ¬isValid

(
h′, {fragtuplej}, sigsj

)
then return ▷discard invalid messages

18 if pi already signed a message from ps with hash h′′ ̸= h′ then return
19 store sigsj for h′

20 if fragtuplej ̸= ⊥ then
21 (m̃j , πj , j)← fragtuplej ; store m̃j for h′

22 if no forward message sent yet then
23 sigi ←

(
signi(h′), i

)
; store sigi for h′

24 broadcast ⟨forward, h′,⊥, {sigs, sigi}⟩

Phase II: Reaching Quorum and Termination

25 When
{
∃h′ :

∣∣{stored signatures for h′}
∣∣ > n+t

2 ∧
∣∣{stored m̃j for h′}

∣∣ ≥ k

∧ no message has been MBRB-delivered yet

}
do

26 mi ← ECC−1(m̃1, . . . , m̃n),
{

where m̃j are taken from line 25;
when a fragment is missing use ⊥.

27
(
h, (m̃′

j , π′
j , j)j

)
← computeFragMerkleTree(mi)

28 if h′ = h then
29 sigsh ← {all stored signatures for h}
30 comm(v1, . . . , vn) where vj = ⟨bundle, h, (m̃′

i, π′
i, i), (m̃′

j , π′
j , j), sigsh⟩

31 MBRBdeliver(mi)

32 Upon ⟨bundle, h′, (m̃′
j , π′

j , j), fragtuple′
i, sigs⟩ arrival from pj do

33 if ¬isValid
(
h′,

{
(m̃′

j , π′
j , j), fragtuple′

i

}
, sigs

)
then return ▷discard invalid msgs

34 if |sigs| ≤ n+t
2 then return ▷discard msgs with no quorum

35 store (m̃′
j , π′

j , j) and sigs for h′

36 if no bundle message has been sent yet ∧ fragtuple′
i ̸= ⊥ then

37 (m̃′
i, π′

i, i)← fragtuple′
i

38 store (m̃′
i, π′

i, i) for h′

39 broadcast ⟨bundle, h′, (m̃′
i, π′

i, i),⊥, sigs⟩
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