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Abstract
Classical tests are available for the two-sample test of correspondence of distribu-
tion functions. From these, the Kolmogorov–Smirnov test provides also the graphi-
cal interpretation of the test results, in different forms. Here, we propose modifica-
tions of the Kolmogorov–Smirnov test with higher power. The proposed tests are 
based on the so-called global envelope test which allows for graphical interpreta-
tion, similarly as the Kolmogorov–Smirnov test. The tests are based on rank statis-
tics and are suitable also for the comparison of n samples, with n ≥ 2 . We compare 
the alternatives for the two-sample case through an extensive simulation study and 
discuss their interpretation. Finally, we apply the tests to real data. Specifically, we 
compare the height distributions between boys and girls at different ages, the sepal 
length distributions of different flower species, and distributions of standardized 
residuals from a time series model for different exchange courses using the proposed 
methodologies.

Keywords Distribution comparison · Global envelope test · Multiple comparison 
problem · Permutation test · Significance testing · Simultaneous testing

1 Introduction

In statistical theory, hypothesis testing has a central role. Often, statisticians need to 
address whether the distribution of a population follows a theoretical distribution. 
These types of tests are often referred to as goodness-of-fit tests in the literature. 
For instance, the Shapiro–Wilk test (Shaphiro and Wilk 1965) is a goodness-of-fit 
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test that tests for Gaussianity of the underlying population. However, the test lacks a 
graphical illustration of the test result. Alternatively, various graphical goodness-of-
fit procedures (Kolmogorov 1933; Warton 2022; Aldor-Noiman et al. 2013) for test-
ing the Gaussianity of the underlying population also provide graphical visualization 
of the test outcome. The graphical nature of the tests enables statisticians to investi-
gate how the data distribution deviates from the null distribution, which makes these 
tests extremely popular.

Goodness-of-fit tests can be extended to investigate whether distributions of two 
populations are different, and if they are, how they differ. Statistical tests for com-
paring the distributions of two samples can be constructed by considering test sta-
tistics defined as deviations between the empirical cumulative distribution functions 
of the two samples. Classical examples of such tests are the two-sample Kolmogo-
rov–Smirnov (KS) test (Kolmogorov 1933), Cramér von Mises test (Cramér 1928) 
and Anderson–Darling test (Anderson and Darling 1954). Among these tests, only 
the KS test can provide a graphical interpretation of the test results, i.e., a graphical 
illustration showing the reason for rejecting the null hypothesis. On the other hand, 
the KS test has some disadvantages. First and foremost, it is an asymptotic test, and 
hence it requires "large" sample sizes to be valid. Second, it is designed only for 
comparing two continuous distributions which limits its applicability. Third, it is 
more sensitive around the median of the two distributions and gives low statistical 
power when distributional differences lie in the tails (see e.g. Aldor-Noiman et al. 
2013). To deal with these issues, we propose graphical non-parametric tests based 
on data permutations. The proposed tests are valid for comparing n ≥ 2 samples of 
any sizes and achieve higher power than the KS test.

Statistical tests for the distribution comparison of two samples can be constructed 
using Monte Carlo methods. Such tests are non-parametric, based on data permu-
tations and evaluation of a test statistic expressing a distributional contrast. For 
instance, the R (R Core Team 2023) package twosamples (Dowd 2023) implements 
permutation tests with contrasts defined as deviations between the empirical cumu-
lative distribution functions (Dowd 2020). Among others, permutation tests based 
on the Kolmogorov–Smirnov, Kuiper (Kuiper 1960) and Wasserstein (Vaserstein 
1969) deviations are available. Permutation tests can also be constructed by consid-
ering deviation measures between the two probability density functions. A rigorous 
review of potential test statistics, i.e., deviation measures between two densities, is 
presented by Cha (2007), who categorized the measures into seven main families. 
The Minkowski Lp family, the L1 family, the intersection family, the inner product 
family, the fidelity family, the squared L2 family, and the Shannon’s entropy family. 
Finally, distances combining ideas from measures from the aforementioned families 
are also possible. Implementations of the aforementioned distances are available in 
the R package philentropy (Hajk-Georg 2018). However, similar to the classical Cra-
mér von Mises, Monte Carlo tests that are based on these other measures than the 
Kolmogorov–Smirnov measure do not provide any graphical interpretation of the 
test results and therefore are not considered in our analyses.

In this paper, we propose graphical tests for comparing the distributions of n sam-
ples, with n ≥ 2 . Graphical tests, such as tests based on the Kolmogorov–Smirnov 
statistic, are extremely popular in the literature but are known to have low statistical 



The power of visualizing distributional differences: formal…

power in certain scenarios. To this end, we propose graphical non-parametric tests 
based on data permutations achieving higher power than the Kolmogorov–Smirnov 
test. The graphical nature of the tests is necessary as it allows the user to study the 
reason for rejecting the null hypothesis. Thus, the test not only answers the question 
of whether the n ≥ 2 distributions are different but also explains how they differ. The 
proposed tests construct a 100(1 − �) % acceptance region for the test statistic under 
the null hypothesis. If the empirical test statistic falls outside this region at any point 
of the discretization, the null hypothesis is rejected. The reason of the rejection can 
then be identified by examining the specific values where the empirical statistic 
deviates from the envelope. As it is important to be able to explain the differences, 
we provide illustrations and a rigorous discussion on how the user should interpret 
the test results in different scenarios.

The proposed tests are non-parametric, permutation tests based on the global 
envelope testing framework proposed by Myllymäki et al. (2017). Global envelope 
tests provide a multiple testing adjustment procedure for testing statistical hypothe-
ses involving multivariate or functional test statistics. That is, given a d-dimensional 
discretization of a test statistic T and a significance level � , the multiple testing issue 
is solved by controlling the family-wise error rate. The tests are based on ranking 
the "extremeness" of the empirical test statistic among simulations produced under 
the null hypothesis, using a ranking measure. Thus, a prerequisite is that simulations 
of data under the null model are available. Generally, only one sample is available 
from each distribution, and hence null data are simulated using data permutations. 
For this purpose, a simple permutation of the data between the n samples is a valid 
procedure to obtain simulations under the null hypothesis of equal distributions. As 
the tests are based on non-parametric ranking of the empirical and simulated test 
statistics, they make no assumptions regarding the distributions of the test statis-
tics. Therefore, the user is flexible in choosing any set of test statistics for testing. 
The only assumption is that the test statistics must be exchangeable under the per-
mutation strategy. The exchangeability assumption guarantees that the test achieves 
the exact significance level � (see discussion in Myllymäki et al. 2017), given that 
the test statistics can be strictly ordered. The functional measures that we consider 
are designed to eliminate the ties between the test statistics. On the other hand, ties 
between the test statistics may still appear in some cases. In this case, the test is still 
valid but conservative. All permutation tests proposed in this study are based on 
the simple permutation scheme that satisfies exchangeability under the null hypoth-
esis of equal distributions (Lehmann et  al. 1986). For our analyses, the data are 
assumed to be realizations from independent and identically (iid) distributed random 
variables under the null hypothesis of equal distributions in the n groups. Hence, 
exchangeability is satisfied as it is a weaker assumption (Heath and Sudderth 1976).

Suggested tests are based on test statistics capturing different aspects of the distri-
butions under study. Examples of such test statistics include the empirical cumula-
tive distribution functions, kernel estimated density functions of the distributions, 
pairwise differences between the empirical cumulative distribution functions of two 
samples, pairwise comparisons of quantiles of two samples, as well as combina-
tions of the aforementioned statistics. The quantile regression can be used for our 
aim, too, if the categorical covariate distinguishing the n distributions is tested for 
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its significance for all quantiles simultaneously (Mrkvička et al. 2023). This leads 
to the test statistic, which can be called the quantile regression process. We con-
ducted a simulation study to compare the statistical power between the two-sample 
versions of the proposed graphical tests in different scenarios. As the focus is solely 
on comparing graphical tests, the power of the tests was compared with the KS test. 
According to our results, the proposed tests outperformed the classical KS test in 
terms of power in all studied settings. A brief discussion regarding the graphical 
interpretation of the tests in each scenario is presented. Finally, the proposed tests 
are applied to three real datasets.

The rest of the article is organized as follows. In Sect. 2, we briefly present the 
asymptotic and permutation KS tests for comparing the distributions of two samples 
and describe the global envelope testing framework. In Sect. 3, we describe how the 
suggested global envelope tests can be extended for comparison of the distributions 
of n samples, and in Sect. 4 we investigate the performance of the proposed tests 
concerning statistical power and graphical interpretation. Since various departures 
from the null model are investigated, this section can be treated as a dictionary of 
the visualizations obtained by different test statistics of those departures. In Sect. 5, 
we apply the proposed test to three real datasets. Our results are discussed in Sect. 6. 
The implementation of the proposed tests is available in the R package GET (Myl-
lymäki and Mrkvička 2023).

2  Two‑sample tests

Assume that X1, ...,Xm1
∼ F1 and Y1, ..., Ym2

∼ F2 , are two independently and identi-
cally distributed samples from two unknown distributions F1 and F2 , and that we 
wish to test the correspondence of the two distribution functions, i.e., the hypothesis

The equality sign "=" in Eq. (1) denotes that the two distributions, F1 and F2 , are 
equal almost everywhere. That is, F1 and F2 are the same on a set of probability 
measure 1, but might be different on a set of probability measure 0. A known class 
of tests for this two-sample case is based on a distance metric between the empirical 
cumulative distribution functions (ECDFs)

with 1(⋅) denoting an indicator function.

2.1  The asymptotic two‑sample Kolmogorov–Smirnov test

The asymptotic two-sample Kolmogorov–Smirnov test is based on the ‖ ⋅ ‖∞ norm 
of the difference between the two ECDFs. That is, the KS test statistic is given by

(1)H0 ∶ F1 = F2 vs. H1 ∶ F1 ≠ F2.

F̂1(x) =
1

m1

m1∑
i=1

1(Xi ≤ x) and F̂2(x) =
1

m2

m2∑
i=1

1(Yi ≤ x)
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where M = m1m2∕(m1 + m2) . The KS test statistic Dm1+m2
 is distribution free, that 

is the distribution of Dm under H0 is independent of F1 and F2 . Further, the asymp-
totic distribution of the test statistic (2) under H0 was characterized by Kolmogo-
rov (1933) and is known as the Kolmogorov distribution. For large sample sizes m1 
and m2 , and significance level � , the 100(1 − �) % KS envelope for the difference 
F1(x) − F2(x) is given by

where c(�) is the critical value for the chosen significance level � . Values of c(�) 
are listed in tables for different � (see Smirnov 1948). For instance, the value of 
c(�) for � = 0.05 is 1.36. The null hypothesis of the test is rejected if Dm1+m2

> c(a) . 
Equivalently, the test provides the following graphical interpretation: H0 is rejected 
if there exists an x such that the difference F̂1(x) − F̂2(x) lies outside the constant KS 
envelope.

Other visualizations of the KS test were presented by Doksum and Sievers 
(1976). These include visualizations for test statistics obtained by transformations 
of the KS statistic or visualizations of distributional contrasts other than the differ-
ence of the ECDFs. For instance, let F1(x) = F2(x + Δ(x)) , where Δ(x) is the amount 
of horizontal shift at x needed to bring the distribution of Y up to the distribution of 
X. Then, instead of visualizing the test result for the difference F1(x) − F2(x) , it is 
possible to visualize it for the shift Δ(x) . That is, a simultaneous 100(1 − �) % confi-
dence band for Δ(x) based on the KS statistic Dm1+m2

 is given by

Similarly, a simultaneous 100(1 − �) % confidence band for Δ(x) + x is given by

The band in Eq. (4) corresponds to a confidence band for the quantile-quantile (QQ) 
plot, i.e., a graphical method where the quantiles of the two samples are plotted 
against each other. Similarly, the band in Eq. (3) corresponds to a confidence band 
for the shift plot, i.e., the detrended QQ plot. On the other hand, they represent con-
fidence regions around the empirical statistic, rather than acceptance regions around 
the statistic under the null hypothesis. For instance, H0 is rejected if there exists an x 
such that the band (3) does not include zero. The graphical tests for the QQ plot are 
available in the R package extRemes (Gilleland and Katz 2016).

Unfortunately, tests based on the KS statistic are asymptotic tests and suitable 
only for comparing two samples coming from continuous distributions. Moreover, 

(2)Dm1+m2
=
√
M sup

x

�F̂1(x) − F̂2(x)�

�
−
c(�)√
M
,
c(�)√
M

�

(3)

�
F̂−1
2

�
F̂1(x) −

c(�)√
M

�
− x, F̂−1

2

�
F̂1(x) +

c(�)√
M

�
− x

�

(4)

�
F̂−1
2

�
F̂1(x) −

c(�)√
M

�
, F̂−1

2

�
F̂1(x) +

c(�)√
M

��
.
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the tests are the most sensitive to deviations close to the median of the distribution. 
Therefore, they have low power when the distributional differences between the two 
distributions lie in the tails (Anderson and Darling 1954; Aldor-Noiman et al. 2013).

2.2  The permutation two‑sample Kolmogorov–Smirnov test

Another version of the two-sample KS test is based on permutations, rather than 
asymptotics (Praestgaard 1995). As the permutation-based two-sample KS test is a 
Monte Carlo test, it is also applicable when m1 and m2 are small, and for non-contin-
uous distributions. Firstly, the empirical KS statistic D0

m1+m2
 (see Eq. (2)) is com-

puted using the data. Then, the following permutation scheme is used to construct 
simulated statistics D∗

m1+m2
 under the null model (1). Let

be the combined vector of the two samples. Then, X∗ = (X∗
1
,… ,X∗

m1
) is obtained by 

independently and randomly sampling m1 elements from Z without replacement. 
Similarly, let Y∗ = (Y∗

1
,… , Y∗

m2
) denote the elements of Z not included in X∗ . This 

procedure creates two samples X∗ and Y∗ under the null model. Therefore, the distri-
bution of Dm1+m2

 under H0 can be obtained from s permutations of the data, by com-
puting Di

m1+m2
 from each of the permutations i = 1,… , s . Finally, the Monte Carlo 

p-value of the test is obtained by ranking D0
m1+m2

 among all test statistics 
D0

m1+m2
,D1

m1+m2
,… ,Ds

m1+m2
 . Graphical interpretation of this test can be obtained by 

considering the �(s + 1) th most extreme Dm1+m2
 as the critical c(�) . This global 

envelope corresponds to the ones proposed by Ripley (1981), having constant width. 
This method was improved by the global envelope tests proposed by Myllymäki 
et al. (2017).

2.3  Global envelope tests

The global envelope tests introduced in Myllymäki et al. (2017) are non-parametric 
tests for functional or multivariate statistics initially developed to solve the multi-
ple testing problem in spatial statistics, but extended to various other applications 
since then (Myllymäki and Mrkvička 2023). Let x = (x1,… , xd) be a discretization 
of the domain where the functional test statistic of interest T = (T(x1),… , T(xd)) 
is evaluated. Similarly to the permutation KS test, global envelope tests are Monte 
Carlo tests and therefore they require the simulation of s test statistics under the null 
model. In this work, simulated data under the null model are obtained using the sim-
ple permutation scheme detailed in Sect. 2.2.

Now let the empirical test statistic be denoted by 
T0 = (T0(x1),… , T0(xd)) = (T01,… , T0d) and the simulated statistics under the null 
model be denoted by T1,… ,Ts . Initially, a ranking measure E needs to be chosen. 
Examples of such measures are the extreme rank length (ERL) measure (Nari-
setty and Nair 2016; Myllymäki et al. 2017), the continuous rank measure (Hahn 
2015) and the area measure (Mrkvička et al. 2022). Moreover, for i = 0,… , s , let 

Z = (Z1,… , Zm1+m2
) = (X1,… ,Xm1

, Y1,… , Ym2
)
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Ei denote the resulting measures of the test statistics Ti . Further, let ≺ be an order-
ing with the following interpretation: Ei ≺ Ej if Ti is more extreme than Tj with 
respect to the measure E. Therefore given a significance level � , we can identify 
the critical value E(�) , i.e., the largest Ei such that

and consequently the index set I(�) of the vectors which are less or as extreme as E(�) . 
Then, a 100(1 − �)% global envelope is the band given by two vectors 
T
(�)

low
= (T

(�)

low 1
,… , T

(�)

low d
) and T(�)

upp
= (T

(�)

upp 1
,… , T

(�)

upp d
) with

Global envelope tests not only produce a Monte Carlo p-value (based on the rank of 
E0 among all Ei ) but also provide the following graphical interpretation: If T0 goes 
outside the envelope (T(�)

low
,T(�)

upp
 ) at any xk , the null hypothesis is rejected and the 

p-value is less than � . Furthermore, as the test is based on ranks it does not make 
any assumptions on the distribution of the test statistic T and hence is valid for any 
test statistic. The only assumption of the test is the exchangeability of the test vec-
tors T0,… ,Ts under the permutation strategy. It is important to note, that the simple 
permutation strategy employed here satisfies the exchangeability assumption under 
the null hypothesis of equal distributions and hence, under the assumption that test 
vectors Ti , i = 0,… , s , can be strictly ordered, the test achieves the desired nominal 
level.

For the comparison of distributions, we are interested in test statistics, which 
both lead to relatively high power and to an intuitive interpretation of the test 
results. A basic test statistic resembles the test statistic of the KS test, but instead 
of summarizing the differences F̂1(x) − F̂2(x) for all values of x ∈ {x1,… , xd} to 
a single number through Eq. (2), the test statistic (vector) is defined to consist of 
the differences of the two distributions for x1,… , xd,

Another alternative is to choose the test statistic corresponding to the interpretation 
of the QQ plot (see Eq. (4)). That is

In Sect. 4, we compare two further alternatives consisting of the ECDFs or kernel 
estimates of the probability density functions of all groups (see Table 1), using the 
one-step combining procedure explained in Myllymäki and Mrkvička (2023, Appen-
dixB). That is,

(5)
s∑

i=0

(Ei ⪯ E(�)) ≤ �(s + 1)

(6)T
(�)

low k
= min

i∈I(�)
Tik and T

(�)

upp k
= max

i∈I(�)
Tik for k = 1,… , d.

(7)T
diff =

(
F̂1(x1) − F̂2(x1),… , F̂1(xd) − F̂2(xd)

)
.

(8)T
qq =

(
F̂−1
2
(F̂1(x1)),… , F̂−1

2
(F̂1(xd))

)
.
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and

where f̂l , l = 1, 2 , are the kernel density estimates of the probability density func-
tions with bandwidths bl . These statistics generalize directly to comparisons of n 
groups by adding the ECDF/density values of the further groups to the test vector 
(9) (see Sect. 3). A pseudocode of the proposed tests is presented in Algorithm 1. 

Algorithm 1 Global permutation test for comparing distributions.

1. Compute the test vector T0 for the observed data.
2. Simulate s replicates of data under the null hypothesis by permuting the data.
3. Compute the test vectors for the s simulated data, and obtain T1,… ,T

s
.

4. Apply a global envelope test to T0,T1,… ,T
s
.

The global envelope test is exact, i.e., the prescribed significance level is achieved 
exactly, if the probability of test vector ties (i.e., the measure E does not distinguish 
between the two test vectors) is equal to 0. See Myllymäki et  al. (2017) for details. 
However, the probability of test vector ties for the test described in Algorithm 1 with 
one of the test vectors in Eqs. (7)–(10) can be greater than 0. Thus, the test is conserva-
tive up to the level equal to �+ the probability of test vector ties for any distributions F1 , 
F2 , and any test vector T . This probability is rather small for the measures E used for 
global envelope testing. Furthermore, the tests are conservative for any number of dis-
crete values d chosen for the discretization of the test statistic T, for any number of sam-
ples n, and for any dimension of x. Note that also pointwise ties among T0,T1,… ,Ts 
are likely for small or large values of x in the test described in Algorithm 1 for the 
above test statistics (7)-(10). To eliminate the influence of such argument values on 
the test, Myllymäki et al. (2017) used the pointwise mid-ranks when constructing the 

(9)T
ecdf =

((
F̂1(x1),… , F̂1(xd)

)
,
(
F̂2(x1),… , F̂2(xd)

))
,

(10)T
den =

((
f̂
b1
1
(x1),… , f̂

b1
1
(xd)

)
,
(
f̂
b2
2
(x1),… , f̂

b2
2
(xd)

))
,

Table 1  Description of the tests examined in the simulation study

For the specifications of the test statistics, see the referred equations, which were used with d = 100

Test description Abbreviation

Global envelope test with Tecdf (see Eq. (9)) ECDF

Global envelope test with Tden (see Eq. (10)) DEN

Global envelope test with Tdiff (see Eq. (7)) DIFF

Global envelope test with Tqq (see Eq. (8)) QQ
Global envelope test with Tqr (see Eq. (13)) QR

Combined global envelope test with Tqq and Tden C2

Combined global envelope test with Tqq , Tdiff , Tecdf and Tden C4

Asymptotic Kolmogorov Smirnov test KS
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ranking measure. This means that the test will not reject the null hypothesis due to the 
behavior of T0 at a specific x where T0 obtains the most extreme value together with 
other Ti . Such pointwise ties can influence the graphical interpretation of the global 
envelope test, and therefore, we may in a rare case see a significant output where T0 lies 
on the edge of the envelope and not outside of the envelope.

2.4  Quantile regression

Quantile regression (Koenker and Bassett Jr 1978) is a statistical model that allows the 
study of covariate effects on the conditional quantile distribution of the response given 
a set of covariates. That is, given a response variable Y = (Y1,… , Ym) and set of covar-
iates X = (X1,… ,Xm) , the � - quantile of the conditional distribution Yi ∣ Xi for any 
quantile � ∈ [0, 1] is modelled by

where FYi∣Xi
 is the conditional cumulative distribution function of Yi given �

�
 and the 

coefficient �(�) gives the effect of X on the �-quantile of the conditional response 
distribution. Here Xi and �(�) are p-dimensional vectors.

Recently, we proposed a statistical framework for performing simultaneous (global) 
inference for the quantile regression process �(�) for any discrete set of quantiles 
� ∈ T = {�1,… , �d} even in the presence of nuisance covariates (Mrkvička et  al. 
2023). The framework is based on global permutation-based envelope tests (Myllymäki 
et al. 2017) and allows for testing the following null hypothesis

for any l = 1,… , p . In this paper, we consider the special case of testing the effect of 
one categorical covariate with n levels and no nuisance covariates. In this case, each 
level of the categorical covariate assigns every observation to the corresponding 
sample index, allowing us to study the effects of the categorical variable on the con-
ditional quantile distribution of the response, i.e. whether the distributions of the n 
samples are the same. Further, as the aim of this paper is to identify the best graphi-
cal test for comparing n distributions, we did not consider any nuisance covariates. 
Therefore, we used a simple permutation scheme to simulate under the null model. 
On the other hand, the test can be extended to include nuisance covariates through 
the permutation strategies discussed in Mrkvička et al. (2023). The test statistic is

where �1,… , �d ∈ [0, 1] are d quantiles and �̂(�k) is the estimated effect the categori-
cal covariate X on the �k-quantile of the conditional response distribution.

(11)QYi∣Xi
(�) = inf{y ∶ FYi∣Xi

(y) ≥ �} = X
T
i
�(�), i = 1,… ,m,

(12)H0 ∶ �l(�) = 0 for all � ∈ T vs. H1 ∶ ∃ � ∈ T such that �l(�) ≠ 0

(13)T
qr =

(
�̂(�1),… , �̂(�d)

)
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2.5  Combining two or more test statistics

Global envelope tests can be extended to the case with more than one test statistic. 
Assume that G vectors of test statistics

are available and we are interested in performing a test of the hypothesis (1) using 
all these G statistics. To give equal importance for each test statistic even when their 
dimensions dj differ, we used the following two-step combining procedure (Myl-
lymäki and Mrkvička 2023, Appendix B) for joint testing: 

1. For each j = 1,… ,G , rank the s statistics Tj

i
 , i = 1,… , s , using a ranking measure 

M, as described in Sect. 2.3. Let mj

i
 denote the measure associated with Tj

i
.

2. Rank the test vectors T∗
i
= (m1

i
,… ,mG

i
) , i = 1,… , s , using the one-sided ERL 

measure. Let Ei denote the resulting measure for each T∗
i
.

Now let � be the significance level, E(�) be the largest Ei satisfying Eq. (5), and the 
index set I(�) consist of the vectors less or as extreme as E(�) . Then the combined 
100(1 − �)% global envelopes are

For a more detailed explanation of the two-step combining procedure, the reader is 
referred to Myllymäki and Mrkvička (2023) and references therein.

3  Comparing the distributions of n samples

The two-sample tests of comparison of distribution functions introduced earlier can 
be generalized for comparison of n samples. Assume that Xl = (Xl

1
,… ,Xl

ml
) with 

l = 1,… , n , are independently and identically distributed samples from n distribu-
tions Fl , and that we are interested in testing the null hypothesis

The hypothesis (16) can be tested using classical methods, for example employing 
multiple two-sample tests such as the KS test and then applying a multiple testing 
correction such as the Holm-Bonferroni correction (Holm 1979). Unfortunately, this 
procedure is known to be conservative for large number of comparisons and depend-
ent tests (Abdi 2010), which results in a loss of statistical power. Further, this proce-
dure does not provide a graphical interpretation of the test results.

The proposed global test for the ECDF/density values, e.g., the test vector of Eq. 
(9), can be extended for the case of n samples by considering test vectors of the form

(14)T
j

i
= (T

j

i1
,… , T

j

idj
), j = 1,… ,G, i = 1,… , s, dj ≥ 1

(15)

T
(�),j

low k
= min

i∈I(�)
T
j

ik
, and T

(�),j

upp k
= max

i∈I(�)
T
j

ik
for k = 1,… dj, j = 1,… ,G.

(16)H0 ∶ F1 = F2 = … = Fn vs H1 ∶ ∃ i, j ∈ {1,… , n} such that Fi ≠ Fj.
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where Tl = (Tl(xi),… , Tl(xd)) is the lth test vector evaluated at (x1,… , xd) . The test 
can indicate the values of x and also the samples l which are the reasons for the pos-
sible rejection of the null hypothesis. Alternative specifications of the test statistics, 
can also allow identification of which of the pairs of the samples differ from each 
other, in a similar manner as in functional analysis of variance and linear model set-
ups used in Mrkvička et al. (2020, 2021). For instance, the test statistics of Eqs. (8) 
and (7) can be straightforwardly extended to the case of three or more groups. That 
is, let

and take

with the number of QQ-statistics equal to n(n − 1)∕2 , i.e. the number of distinct 
pairs of samples. The above test statistics can also be used jointly by means of a 
combined global envelope test similar to that of Sect. 2.5.

4  Simulation study to compare different test statistics

We conducted a simulation study to investigate the performance of the proposed 
global envelope tests in terms of power under different scenarios. All global enve-
lope tests achieve correct nominal levels when the test statistics can be strictly 
ordered and are exchangeable under the permutation strategy, and they have been 
explored in several simulation setups earlier. To ensure that the possible ties of the 
test statistics do not have any prominent effect on the significance level of the tests, 
we explored the empirical significance level for the case of normally distributed 
samples. The significance levels were fine (see “Appendix”). Then we compared the 
power of the global envelope tests with the power of the KS test.

All tests included in the simulation study are listed in Table 1. The test statistic 
T
qr was evaluated at 100 discrete values of � = ( �1,… , �100 ). The rest of the test sta-

tistics were evaluated at x = (x1,… , x100) . The test statistic Tden requires the choice 
of the bandwidths bl for the kernel density estimation of the probability density 
functions fl , l = 1, 2 (see Eq. (10)). In this study, we did not consider the problem 
of optimally choosing the bandwidth and rather used Silverman’s rule of thumb (Sil-
verman 2018). All global envelope tests examined in the simulation were based on 
5000 permutations and the ERL measure.

We considered five experiments with a different distributional difference between 
the underlying distributions in each of them. More specifically, we performed two-
sample comparisons of distribution tests with differences in the mean, variance, and 
skewness of the underlying distributions. Also, we investigated the case where one 

(17)T =
(
T1,… ,Tn

)
,

(18)T
qq

lk
=
(
F̂−1
k
(F̂l(x1)),… , F̂−1

k
(F̂l(xd))

)
,

(19)T
qq =

(
T
qq

12
,T

qq
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,… ,T
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(n−1)n

)
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of the samples came from mixtures of distributions. In all experiments, the perfor-
mance of the tests was evaluated with regard to statistical power, based on 1000 
independent samples of size N, with N = 10, 50, 100, and 200.

In addition to the power comparison results, in each simulation experiment setup, 
we present a detailed discussion regarding the graphical interpretation of the global 
tests. For illustration purposes, we show in figures only the last 100 components of 
the Tecdf and Tden statistics, i.e., how the second group differs from the mean of the 
groups (in the case of two groups, the first group has the opposite deviance from the 
mean). In the QR test, we always considered the first sample as our reference cat-
egory. The resulting plots were obtained with 5000 permutations and sample sizes 
of 1000. This sample size is that large that all tests considered reject the null hypoth-
esis in all setups: the empirical statistic goes outside the global envelope for some 
values of � or x. The sample size was chosen this large for these illustrations, to con-
centrate on how different test statistics show the different types of deviances of the 
empirical statistic from the distribution under the null hypothesis (1).

4.1  Difference in the tails

In Experiment (I), we investigated the performance of the tests, in the case where 
the two distributions differ in the tails. For this purpose, we considered the following 
simulation setup:

where df = 2, 3, 4 are the degrees of freedom of the student t-distribution. In such a 
case, it is well established that the asymptotic KS test is inefficient in detecting dis-
tribution differences in the tails, which translates to low statistical power (Anderson 
and Darling 1954). Indeed, as seen in Fig. 1, the KS test has extremely low power 
compared to the proposed global envelope tests. Further, the power of the tests is 
negatively correlated with the number of degrees of freedom of the t distribution. 
This is because decreasing the number of degrees of freedom increases the deviation 

(I)
{

Xi ∼ N(0, 1) for i = 1,… ,N

Yi ∼ tdf for i = 1,… ,N

df=2 df=3 df=4
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Fig. 1  Power of the tests in Experiment (I) among 1000 simulated samples of different sizes (x-axis) for 
the different tests of Table 1 (colors). Each column represents the result for different degrees of freedom 
df = 2, 3, 4 of the t distribution
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between the underlying distributions. Regarding the global envelope tests, the QQ 
test had the highest power while the DEN test had the lowest power.

The graphical interpretation of the global tests for df = 3 and different test sta-
tistics are shown in Fig. 2. The corresponding results for df = 2 and df = 4 are 
similar and hence are not shown. The QR test rejects the null hypothesis due to 
differences between the two distributions in extreme quantiles indicating distribu-
tional differences in the tails for 𝜏 < 0.2 and 𝜏 > 0.7 . In this test, the first sample, 
i.e., the sample from the normal distribution is used as a reference category, and 
hence the empirical statistic corresponds to the coefficient of the second sample, 
i.e., the student-t distributed sample. The test indicates that the smallest values 
in the second sample are significantly smaller than the expected values under the 
reference category, while the largest values in the second sample are larger than 
the expected values under the reference category. The QQ test rejects the null 
hypothesis for ∣ x ∣> 1 . The small quantiles ( x < −1 ) of the t-distributed sample 
are significantly smaller than the quantiles expected under the null hypothesis (1). 
Similarly, the large quantiles ( x > 1 ) of the t-distributed sample are significantly 
larger than the quantiles expected under the null hypothesis. These observations 
indicate that the distribution of the second sample has heavier tails than the dis-
tribution of the first sample.

The DIFF test also rejects the null hypothesis for ∣ x ∣> 1 . Here, the test statis-
tic Tdiff is negative, i.e., �F2(x) > �F1(x) for x < −1 , and positive, i.e., �F2(x) < �F1(x) 
for x > 1 . The same observation can be established from the ECDF test, where 
the second element of Tecdf is shown. Thus, both test outputs indicate that the 
proportion of data with small values ( x < −1 ) in the second sample is larger than 
the proportion of small values under the null hypothesis and there are more data 
in the second sample with large values ( x > 1 ) than what is expected under the 
null hypothesis. The DEN test shows that the second sample has higher density 
for ∣ x ∣> 2 , as well as lower density for some ∣ x ∣< 1 . These observations indicate 
that the distribution of the second sample has heavier tails than what is expected 
under the null hypothesis.
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Fig. 2  Graphical interpretation of the global tests in Experiment (I) with N = 1000 . The solid curve rep-
resents the empirical test statistic T

0
 while the dashed line shows the expected values of the test statistic 

under the null hypothesis (see Eq. (1)). The shaded areas are the 95% global envelopes constructed from 
5000 permutations using the ERL measure. The points where T

0
 goes outside the global envelope are 

shown in red color. Each column shows the result of the global tests for the test statistic indicated in the 
titles (see Table 1). For the ECDF and DEN tests, only the second element of the test statistic is shown 
(colour figure online)
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4.2  Mean shift

In Experiment (II), we studied the performance of the tests, when the two distribu-
tions differ only in the mean. In this case, the two samples are obtained as follows

In such a case, it is well known that the asymptotic KS test is powerful. On the 
other hand, the KS test was outperformed by the majority of the global tests (Fig. 3). 
Overall, the QR test was the most powerful. As in Experiment (I), the DEN test had 
the lowest power.

The graphical interpretation of the tests for different test statistics is displayed 
in Fig. 4. Due to large sample size, all tests clearly reject the null hypotheses (the 
empirical test statistic is outside the 95% global envelope for any value of x or � ), 
but with different reasoning. In the QR test we observe a significant (almost) con-
stant positive quantile effect, i.e., �̂(�) = 0.3 for most of the � considered. Similarly, 
the QQ test rejects the null hypothesis for all x considered. The empirical statistic is 
shifted uniformly from the line y = x , indicating that all values of the second sample 
are larger than the expected values under the null hypothesis. These observations, 
indicate that the two distributions differ by a location shift.

(II)
{

Xi ∼ N(0, 1) for i = 1,… ,N

Yi ∼ N(0.3, 1) for i = 1,… ,N
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Fig. 3  Power of the tests in Experiment (II) among 1000 simulated samples of different sizes (x-axis) for 
the different tests of Table 1 (colors)
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The DIFF test also rejects the null hypothesis for all x considered. The test 
statistic is positive for all x and therefore �F2(x) < �F1(x) for all x. The same con-
clusion is derived from investigating the results of the ECDF test. According to 
the Fig. 4, the ECDF of the second sample is shifted to the right compared to the 
mean ECDF of the two samples under the null hypothesis. This indicates that 
for a given x ∈ [−2, 2] we observe fewer data points smaller than x than what is 
expected to be observed if the null hypothesis is true. Similarly, the DEN test 
shows that the second sample has a density that is shifted to the right compared 
to the expected mean density under the null hypothesis.

4.3  Variance shift

In Experiment (III), we studied the performance of the tests, when the two distributions 
differ only in the variance. In this case, the two samples are obtained as follows

As seen in Fig. 5, the asymptotic KS test had lower power than the proposed global 
envelope tests. The QQ test had the highest power while the ECDF test had the low-
est power. Overall, the differences between the global tests with different test statis-
tics were rather small.

The graphical interpretation of the tests for different test statistics is displayed in 
Fig. 6. The graphical interpretation of the variance shift is rather similar to the differ-
ence in the tails case, except for the fact that the variance shift shows the departures 
from the null hypothesis on longer domains.
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Xi ∼ N(0, 1) for i = 1,… ,N

Yi ∼ N(0, 1.3) for i = 1,… ,N
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Fig. 4  Graphical interpretation of the global tests in Experiment (II) with N = 1000 . The solid curve rep-
resents the empirical test statistic T

0
 while the dashed line shows the expected values of the test statistic 

under the null hypothesis (see Eq. (1)). The shaded areas are the 95% global envelopes constructed from 
5000 permutations using the ERL measure. The points where T

0
 goes outside the global envelope are 

shown in red color. Each column shows the result of the global tests for the test statistic indicated in the 
titles (see Table 1). For the ECDF and DEN tests, only the second element of the test statistic is shown 
(colour figure online)
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4.4  Mixture of normals

In Experiment (IV), we studied the performance of the tests when one of the distri-
butions is given as a mixture of two normal distributions and the other is the stand-
ard normal distribution. In this case, the two samples are obtained as follows
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Fig. 5  Power of the tests in Experiment (III) among 1000 simulated samples of different sizes (x-axis) 
for the different tests of Table 1 (colors)
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Fig. 6  Graphical interpretation of the global tests in Experiment (III) with N = 1000 . The solid curve 
represents the empirical test statistic T

0
 while the dashed line shows the expected values of the test sta-

tistic under the null hypothesis (see Eq. (1)). The shaded areas are the 95% global envelopes constructed 
from 5000 permutations using the ERL measure. The points where T

0
 goes outside the global envelope 

are shown in red color. Each column shows the result of the global tests for the test statistic indicated 
in the titles (see Table 1). For the ECDF and DEN tests, only the second element of the test statistic is 
shown (colour figure online)
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Unlike the results in the earlier sections, the DEN test was the most powerful test 
(see Fig.  7). However, it is worth mentioning that the combined global envelope 
tests that consider the Tden statistic have similar performance. On the other hand, the 
QQ test had the lowest statistical power.

The graphical interpretation of the tests for different test statistics is displayed 
in Fig. 8. In the QR test, we observe an S-shaped empirical statistic. This indicates 
that the quantile effect of the group covariate varies across the whole distribution. 
In particular, there is a significant negative quantile effect for � ∈ [0.1, 0.4] , indi-
cating that the �-quantiles of the second sample for � ∈ [0.1, 0.4] are smaller than 
the respective �-quantiles of the first sample. Further, there is a significant positive 
quantile effect for � ∈ [0.6, 0.9] , indicating that the �-quantiles of the second sam-
ple for � ∈ [0.6, 0.9] are larger than the respective �-quantiles of the first sample. 
The graphical interpretation of the QQ test shows an S-shaped pattern as well. The 
second sample’s quantiles x ∈ [−1, 0] are smaller and the second sample’s quantiles 
x ∈ [0, 1] are larger than the quantiles expected under the null hypothesis.

(IV)
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⎪⎨⎪⎩

Xi ∼ N(0, 1) for i = 1,… ,N

Zi ∼ Bernoulli(0.5) for i = 1,… ,N

Yi = Zi ⋅N(1, 0.5) + (1 − Zi) ⋅N(−1, 0.5) for i = 1,… ,N
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Fig. 7  Power of the tests in Experiment (IV) among 1000 simulated samples of different sizes (x-axis) 
for the different tests of Table 1 (colors)
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For the DIFF test, we observe an S-shape pattern indicating that �F2(x) > �F1(x) 
for x ∈ [−1.5, 0) , and �F2(x) < �F1(x) for x ∈ (0, 1.5] . The results are also similar for 
the ECDF test. Finally, the DEN test provides a straightforward interpretation, that 
is the distribution of the second sample is a bimodal distribution (second plot of 
Fig. 8) and the distribution of the first sample is symmetric around 0 (third plot), and 
both of them are completely different than the mean behavior of the two samples 
under the null hypothesis of equal distributions.

4.5  Skewness

In Experiment (V), we studied the performance of the tests when comparing a sym-
metrical distribution with a right-skewed distribution. In this case, the two samples 
were obtained as follows

As seen in Fig. 9, the proposed global envelope tests outperformed the asymptotic 
KS test in terms of power. The DEN test was the most powerful test for N ≤ 100 , 
while the QQ test was the most powerful for N = 200 . Overall, the combined global 
envelope tests performed quite well, even though they were outperformed by the 
aforementioned tests.

The QR test rejects the null hypothesis for extreme quantiles 𝜏 < 0.1 and 𝜏 > 0.9 
as well as for intermediate quantiles � ∈ [0.35, 0.75] . There is a negative effect at the 
extreme quantiles indicating that the smallest and largest values of the log-normal 
sample are smaller than under the reference category of the quantile model, i.e., the 
first sample stemming from the normal distribution. Moreover, the quantile effect for 
� ∈ [0.35, 0.75] is positive indicating that the �-quantiles of the log-normal sample 
are larger than the respective �-quantiles under the reference category. Similarly, the 
QQ test rejects the null hypothesis for extreme quantiles x < 5 and x > 15 as well as 
for intermediate quantiles x ∈ [7, 10].

(V)
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Xi ∼ N(8, 3.34) for i = 1,… ,N

Yi ∼ log-normal(2,0.4) for i = 1,… ,N
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Fig. 8  Graphical interpretation of the global tests in Experiment (IV) with N = 1000 . The solid curve 
represents the empirical test statistic T

0
 while the dashed line shows the expected values of the test sta-

tistic under the null hypothesis (see Eq. (1)). The shaded areas are the 95% global envelopes constructed 
from 5000 permutations using the ERL measure. The points where T

0
 goes outside the global envelope 

are shown in red color. Each column shows the result of the global tests for the test statistic indicated in 
the titles (see Table 1). The second and third column together correspond to the two elements of the DEN 
test. For the ECDF test, only the second element of the test statistic is shown (colour figure online)
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The DIFF test, indicates that �F2(x) > �F1(x) for x ∈ [0, 5] ∪ [13, 16] and that 
�F2(x) < �F1(x) for x ∈ [7, 10] . The same conclusion can be established from the 
ECDF plot. The former result, suggests that the proportion of data with small 
( x < 5 ) and large ( x > 13 ) values in the second sample is larger than the proportion 
expected under the null hypothesis. The latter suggests that in the second sample, 
there is a larger proportion of values in the interval [7,10] than what is expected 
under the null hypothesis. Last but not least, the DEN test shows that the distri-
bution of the first sample is symmetric (third plot of Fig.  10) while the distribu-
tion of the second sample is a right skewed distribution (second plot), and that both 
distributions are different from the distribution under the null hypothesis of equal 
distributions.

4.6  Recommendations

The results from the simulation study indicated that the DEN test was slightly worse 
than the other tests in Experiments (I) and (II). On the other hand, in Experiment 
(IV) the DEN, C2, and C4 tests were the most powerful. Finally, all proposed tests 
achieved similar performance in Experiments (III) and (V). The combined tests 
performed quite well in all examined cases, even though they were slightly outper-
formed by the best single test statistic-based tests in each scenario. As we typically 

0.00

0.25

0.50

0.75

50 100 150 200
Sample size

Po
w

er

C2

C4

DEN

DIFF

ECDF

KS

QQ

QR

Fig. 9  Power of the tests in Experiment (V) among 1000 simulated samples of different sizes (x-axis) for 
the different tests (colors)
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do not know apriori how the distributions differ, we suggest using a combined test. 
Especially, we suggest using the C2 test as in most cases either the DEN or the QQ 
test was the most powerful. Moreover, this test provides a helpful graphical interpre-
tation in each case as differences in the tails, location, or variances are well captured 
by the QQ test, and differences in the number of modes and location of the mode 
(skewness) are well captured by the DEN test. However, for n-sample comparisons 
with large n, we recommend using either the DEN, the QR, or the ECDF tests as 
their graphical interpretation includes only n plots, while for the other tests the num-
ber of plots scale with O(n2).

5  Data examples

5.1  Berkeley growth data

The Berkeley growth dataset consists of height measurements from 39 California 
boys and from 54 California girls in centimeters. The height of each child was fol-
lowed and measured at multiple points over time, from the first year of their life until 
adulthood. In particular, for the first year, the children were measured every three 
months, then once a year until the age of 8, and finally every 6 months until the age 
of 18. The data were initially collected to understand the factors influencing human 
growth (Tuddenham 1954). The densities of the heights in centimeters for the two 
genders at the ages of 10 and 14 are presented in Fig. 11. The plot indicates that 
boys are generally taller than girls, but still unclear if this difference is significant. 
The dataset is available in the R package fda (Ramsay 2023).

Here, we are interested in investigating the hypothesis of equality between the 
height distributions of the two genders at different ages. For this purpose, we used 
the C2 test, i.e., a combined global envelope test with test statistics Tqq and Tden . 
Regarding the height distributions of the two genders at the age of 10 the test sug-
gests that there is not enough evidence to reject the null hypothesis of equality of 
the two distributions ( p = 0.348 ). A graphical interpretation of the test result is pre-
sented in Fig.  12. The empirical test statistics are fully contained within the 95% 
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Fig. 10  Graphical interpretation of the global tests in Experiment (V) with N = 1000 . The solid curve 
represents the empirical test statistic T

0
 while the dashed line shows the expected values of the test sta-

tistic under the null hypothesis (see Eq. (1)). The shaded areas are the 95% global envelopes constructed 
from 5000 permutations using the ERL measure. The points where T

0
 goes outside the global envelope 

are shown in red color. Each column shows the result of the global tests for the test statistic indicated in 
the titles (see Table 1). The second and third column together correspond to the two elements of the DEN 
test. For the ECDF, only the second element of the test statistic is shown (colour figure online)
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global envelopes indicating that the height distributions of boys and girls at the age 
of 10 are the same.

Further, we applied the same test to compare the height distributions of the two 
genders at the age of 14. According to our results, the height distributions of the 
two genders are different ( p = 0.02 , Fig. 13). The graphical interpretation of the test 
allows us to characterize this difference: There is a significantly higher proportion of 
boys with a height higher than 175 cm and a significantly lower proportion of girls 
with a height higher than 175 cm than what is expected under the null hypothesis. 
This is proven both by Tqq and Tden . This indicates that at the age of 14, there are 
more tall boys than tall girls.
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Fig. 11  Density plots for the heights in cm of boys and girls at the age of 10 (left) and at the age of 14 
(right)
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Fig. 12  Graphical interpretation of the combined global envelope test for height distributions of boys and 
girls at the age of 10. The test was based on 1000 permutations
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5.2  Iris data

The iris dataset consists of 150 measurements from iris flowers growing together 
in the same colony. The data were collected by Dr. Edgar Anderson (Anderson 
1935) and were originally studied by the famous statistician Ronald Fisher (Fisher 
1936) as a means of introducing discriminant analysis. The dataset includes 
flower characteristics from 50 flowers from three flower species. Flower species 
under study are iris setosa, iris virginica, and iris versicolor. For each flower, 
measurements of the sepal length, sepal width, petal length, and petal width in 
centimeters are available. The measurements from the iris setosa flowers are gen-
erally smaller, the measurements from the iris versicolor are intermediate in size, 
and the iris virginica are larger in size (see Fig. 14). The dataset is publicly avail-
able as an R dataset (R Core Team 2023).

Here, we investigated distributional differences in the sepal length distribu-
tions between the three flower species (top left of Fig. 14). For this purpose, we 
used the C2 test with n = 3 , i.e., the combined global envelope test with test sta-
tistics Tqq (see Eqs. (18) and (19)) and Tden (see Eqs. (10) and (17)) and n = 3 . 
Then, a combined test (see Sect. 2.5) was constructed based on the test vector

The test rejects the null hypothesis of equality of the sepal length distributions of the 
three groups ( p < 0.001 , Fig. 15). Moreover, the test provides a graphical interpre-
tation of the result which can be used to characterize the distributional differences 
between each pair of groups (see Sect. 3). All deviation patterns are similar to the 
one shown in Figs. 4 and 6. Thus we can conclude that the differences are mostly in 
the mean and the variance.

T = (Tqq,Tden).
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Fig. 13  Graphical interpretation of the combined global envelope test for height distributions of boys and 
girls at the age of 14. The test was based on 1000 permutations
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5.3  Log‑returns for exchange courses

Exchange rates are the rates for which a currency can be exchanged for another cur-
rency. Here, we considered the log returns of the EUR/USD and EUR/TRY courses 
between 2017 and 2019. This choice was made to avoid the highly volatile period dur-
ing the Covid-19 pandemic. In this time-series example, the tests are not directly appli-
cable as the assumption of iid samples is not valid due to the temporal dependence of 
the data. Therefore, we applied the test to the standardized residuals of a specific time 
series model.

We considered a standard generalized autoregression conditional heteroscedastic 
model (GARCH) of orders 1 and 1 for the variance (Bollerslev 2008), and an autore-
gressive moving average model (ARMA) of order p and q model for the mean. That is, 
we assumed the following model for the time series of the log-returns yt at time t

where the conditional mean �t is modeled by an ARMA(p,q) model

yt ∼ N(�t, �
2
t
)
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for the three iris flower species



 K. Konstantinou et al.

where �k ∼ N(0, �2
k
) for k = t − 1,… , t − p , and the conditional variance is modeled 

as

with w > 0, a1, b1 ≥ 0 and a1 + b1 < 1 . To fit the Garch model we used the rugarch 
package in R (Galanos 2023).

According to the literature, if the model is sufficient in describing the data, the 
standardized residuals zt =

�t

�t
 should be an iid sequence from a white noise process, 

here the N(0, 1) distribution. To this end, we used the QQ test to compare the distri-
bution of the standardized residuals of two Garch(1,1) models fitted to the log 

�t =

p∑
i=1

�i�t−p +

q∑
i=1

�i�t−p,

�2
t
= w + a1�

2
t−1

+ b1�
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t−1
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returns of the EUR/USD exchange courses against the distribution of a random sam-
ple of the same size from the N(0, 1) distribution. As seen from Fig. 16, the stand-
ardized residuals of the model are indistinguishable from iid realizations from a 
standard Normal distribution (p = 0.346) indicating that the model is adequate at 
modeling the log returns for the EUR/USD course.

Furthermore, we fitted the previously mentioned time series model to the log-
returns of the EUR/TRY course. Figure 17 compares the standardized residuals of 
the model against iid realizations from a standard Normal distribution. According to 
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Fig. 16  Comparison between the standardized residuals of a Garch(1,1) model with an ARMA(p,q) 
model for the conditional mean fitted to the log-returns of the EUR/USD course, with a sample of the 
same size from the N(0,1) distribution. The test was based on 1000 simulations
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Fig. 17  Comparison between the standardized residuals of a Garch(1,1) model with an ARMA(p,q) 
model for the conditional mean fitted to the log-returns of the EUR/TRY course and a sample of the 
same size from the N(0, 1) distribution. The test was based on 1000 permutations
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the results, the standardized residual distribution is different than the standard Nor-
mal distribution (p < 0.001) , indicating that the model is inadequate at modeling the 
log returns for the EUR/TRY course. In particular, the standardized residuals have a 
distribution with heavier tails than the N(0,1) distribution.

6  Discussion

In this paper, we proposed non-parametric, permutation-based tests for comparing 
the distribution of n samples. The tests are based on the global envelope testing pro-
cedure which was introduced by Myllymäki et al. (2017) to solve the multiple test-
ing problem in spatial statistics. The tests not only provide a Monte Carlo p-value 
but also provide a graphical interpretation of the test result. This allows the user to 
investigate the reason for rejecting the null hypothesis and get useful insights into 
the data at hand. The test is global in the sense that the test is performed simultane-
ously for all discrete values of the discretization of the test statistic, as well as all 
test statistics (the case of combined tests) and all group comparisons (the case of 
n samples). That is, given a prespecified global significance level � , a global enve-
lope test constructs an acceptance region by controlling the family-wise error rate. 
Recently, methods for constructing the acceptance region by controlling the false 
discovery rate instead of the family-wise error rate were proposed by Mrkvička and 
Myllymäki (2023). It is useful for identifying all differences between the distribu-
tions since it is designed for local testing under the control of the expected number 
of false discoveries.

The proposed framework is generic and can be applied to any functional or mul-
tivariate test statistic T as the tests are based on ranks. That is, the test achieves the 
correct nominal level independently of the distribution of the test statistics, as long 
as the test statistics can be strictly ordered; in the case of ties in the test statistics, the 
test is slightly conservative. These ties tend to be rather rare, but they are possible 
in a practical situation. The only assumption needed is the exchangeability of the 
test statistics under the method used to simulate data under the null model. Here, 
we used a simple permutation scheme to simulate new data; that is, the observations 
of the variable of interest were permuted between the samples. The exchangeability 
assumption is satisfied for this permutation strategy.

We conducted a simulation study where we investigated the power of the pro-
posed testing procedure with different test statistics capturing different aspects of the 
underlying distributions. We considered five test statistics as well as some combina-
tions of them. The tests were applied to the two-sample cases under different simu-
lated scenarios. In each scenario, a different distributional difference was investi-
gated. Moreover, in each simulated experiment, we provided guidelines on how one 
should interpret the test results for the different proposed test statistics.

The statistical power of the global tests was compared to the power of the asymp-
totic Kolmogorov–Smirnov test, as this test also provides a graphical interpretation 
of the test result. Overall, the proposed tests outperformed the classical Kolmogo-
rov–Smirnov test as they achieved higher statistical power in all studied settings. 
Even though the combined tests performed quite well in all simulated experiments, 
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they were slightly outperformed by the best global tests based on single statistics. 
However, usually in real applications, distributional differences are a priori non-
characterized, and therefore, using a combined test is suggested. The combined test 
also brings a wider graphical interpretation.

Last but not least, we demonstrated how the proposed tests can be applied to real 
data examples. For this purpose, we considered three data examples, the Berkeley 
growth dataset, the iris dataset, and an exchange course example. For the Berke-
ley growth data, we applied a combined global envelope test and compared the 
height distributions between the boys and girls at different ages. For the iris data, 
we applied a combined global envelope test and investigated whether there are dis-
tributional differences between the sepal length distributions of three flower species. 
In the exchange rates example, we investigated the distributions of the standard-
ized residuals from a time series conditional heteroscedastic model fitted to the log 
returns of specific courses. In the future, we aim to investigate whether the proposed 
tests can be generalized to the case in which nuisance covariates are present with 
influence on the distribution of the variable under study. This problem is already 
solved for the quantile regression test statistic using the framework suggested by 
Mrkvička et  al. (2023), but remains unsolved for a generic test statistic. The sug-
gested procedure utilizes more sophisticated permutation strategies to remove the 
nuisance effects from the response distribution.

Appendix A: Type I errors

See Fig. 18.
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