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The dynamic provisioning of optical network services requires algorithms to find a suitable solution given
the specific service requirements and the current network state. These algorithms are usually evaluated
using a software simulator developed ad hoc, which may require different levels of detail depending
on the problem addressed and how realistic the evaluation needs to be. Moreover, to demonstrate they
are a significant contribution to the field, these new algorithms must be benchmarked against the best-
performing previously-proposed solutions. Due to the large set of parameters and their wide range of
possible values, benchmarking algorithms from the literature is not straightforward and can quickly
become challenging and time-consuming. This work introduces the Optical Networking Gym, an open-
source toolkit that simplifies implementing optical resource assignment simulations and benchmarking
new solutions against previously-published algorithms. The toolkit provides environments modeling
relevant optical networking scenarios, common algorithms for solving problems related to these scenarios,
and a set of scripts to prepare and execute simulations for various use cases. Currently, four environments
are available, with the possibility of increasing this number through contributions from the co-authors
and the community. This paper describes the architecture, interface, environments, and scripts included
with the toolkit. We adopt the Quality of Transmission (QoT)-aware dynamic resource allocation of optical
services as the network scenario under exam. Three use cases highlight the toolkit’s modularity, flexibility,
and performance. The toolkit allows researchers to streamline the process of developing simulation
scenarios and algorithms, enhancing their ability to benchmark their algorithms.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Resource assignment problems in optical networks have been
studied for several decades. In particular, the dynamic pro-
visioning of optical services has been studied since the dawn
of wavelength division multiplexing (WDM) optical networks
[1]. Despite this, as new optical technologies and architectures
are developed, the research on resource assignment in optical
networks shows no signs of slowing down or diminishing rele-
vance.

Currently, research on optical network resource allocation
problems is increasingly relevant, but also challenging and time
consuming due to a number of factors. Firstly, optical networks
are widely adopted in various scenarios, e.g., core, metro, edge,
datacenter, and access networks. Secondly, with the growing
relevance of physical layer impairments, a plethora of different
analytical models for QoT estimation are available depending

on the specific assumptions of the physical characteristics of the
network. Thirdly, building a new simulator requires a number
of critical decisions, such as the programming language, archi-
tecture, and libraries to use. Finally, this problem is aggravated
by the numerous solutions in the literature that are potentially
suitable for being benchmarked against the newly-proposed so-
lution. As a result, new solutions are usually evaluated against
a few arbitrary baseline works.

Several tools that address part of these complexities have
been published over the past years. For instance, network de-
sign tools have been made available [2, 3], but they focus on
the static planning, not suitable for the dynamic simulation
of optical networks. Simulators focusing on resource assign-
ment problems have been published [4, 5], but these are not
open source, limiting its applicability. A similar observation
can be made about digital twins [6], where the great majority
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is not open source. Open-source models focusing on physical
layer impairment computation have been published [7, 8], but
the simulation of a dynamic optical network is outside of their
scope due to the substantially different business logic and con-
cerns involved in discrete event simulation. Optical network
emulators such as [9] focus on the software-defined networking
(SDN) aspects of operating optical networks, but incur a sub-
stantial signaling overhead that does not add value to certain
use cases. Two of the co-authors of this paper proposed the
Optical RL-Gym [10], a toolkit inspired by the OpenAI Gym for
facilitating the application of reinforcement learning (RL) and
deep reinforcement learning (DRL) to solve resource assignment
problems. The tool has influenced research related to routing
and wavelength assignment (RWA) algorithms [11], and other
related tools [12]. The tool has been extended for multi-band
[13, 14] and defragmentation [15] problems. Other approaches to
take advantage of graphic processing units (GPUs) for executing
such environments have also been proposed [16]. The popu-
larity reached by RL-focused tools indicates that the approach
of following well-known interfaces from the machine learning
community is promising. However, RL-focused tools do not
cover the use cases where traditional heuristics are involved.

Another important research topic over the past few years has
been the application of artificial intelligence & machine learning
(AI/ML) models for the estimation of QoT of unestablished
lightpaths [17, 18]. This research requires a substantial and
accurately collected dataset, which can be very challenging and
expensive to collect. To address this issue, open datasets have
been published recently [19, 20]. However, these datasets have
a set number of lightpath information included, limiting the
possibilities to innovate by adopting other pieces of information.
Ideally, researchers should be able to generate their own datasets,
selecting from a wide range of information that can be included,
and controlling the network scenario such as topology, load, and
resource assignment algorithm.

In this paper, we introduce the Optical Networking Gym
(ONG), an open-source toolkit that takes advantage of well-
known RL interfaces while extending them for use in a wide
set of use cases in optical networks. This results in a flexible
and extensible toolkit that lowers the barrier of entry for new
researchers in the field, and makes it more feasible to benchmark
the performance of new algorithms against a wide range of solu-
tions from the literature. The toolkit includes a set of interfaces,
environments, and scripts that streamline the development and
execution of new optical network resource assignment scenarios
and use cases. More specifically, the ONG takes inspiration from
Optical RL-Gym [10], and extends it in the following ways:

• The architecture is updated with the latest developments
from the RL research community, as described in Sec. 2;

• The updated interface makes it more modular, simplifying
the development of new environments and algorithms, as
described in Sec. 2;

• The standard Python implementation is combined with
Cython, allowing for critical parts of the source-code to be
compiled and speeding up the execution of simulations, as
described in Sec. 2;

• The use of ONG with standard (non-RL) algorithms is sim-
plified, as described in Sec. 3;

• A new environment for the QoT-aware dynamic routing,
modulation format, and spectrum assignment (RMSA)

problem is provided, implementing an state-of-the-art phys-
ical layer impairment model, as described in Sec. 3.

In addition to describing the properties and contributions of
the ONG, this paper analyzes its use in three relevant use cases.
The first use case analyzes the use of ONG for global launch
power optimization, where we aim to find the launch power
that results in the highest number of optical services deployed
in the network. This use case is essential for QoT-aware RMSA
studies, due to the strong influence of the launch power on the
QoT, and its dependency on physical layer parameters such as
span length. The second use case is related to the assessment
and benchmarking of QoT-aware RMSA algorithms. This use
case represents one of the most typical benchmarking needed
when proposing a new resource allocation algorithm. The third
use case illustrates how ONG can be used to create custom
datasets for AI/ML QoT estimation research. This use case
allows researchers to expand the set of information analyzed,
and easily include the generated datasets as complementary
material to their papers. The results show that the proposed
ONG can properly tackle the use cases, enabling the detailed
analysis of network performance and optical parameters.

The rest of the paper is organized as follows. Sec. 2 intro-
duces the ONG toolkit, discussing its architecture and common
interface. Sec. 3 discusses the scenario and environment selected
to showcase the functionalities and use cases of ONG. The use
cases are described in detail, and a few performance metrics are
illustrated in Sec. 4. A few open challenges and for future work
are discussed in Sec. 5 Sec. 6 concludes the paper.

2. THE OPTICAL NETWORKING GYM (ONG)

The ONG is a toolkit whose main contribution is the definition
of a common set of software interfaces that enable the modular
development of scenarios and use cases. Due to its modular
interfaces, the toolkit enables researchers to focus on the specific
challenge while taking advantage of standard implementations
and algorithms from the literature. The toolkit builds upon the
Optical RL-Gym [10], updating and enhancing its functionalities.
The toolkit is implemented using modern Python, making it suit-
able for integrating popular frameworks and other languages
such as C/C++/MatLab. One of the improvements compared
to the Optical RL-Gym is the reduction of inheritance in favor of
composition, which generally improves the clarity and locality
of the code, simplifying its understanding and extension.

Another critical change compared to the Optical RL-Gym is
related to the adoption of the Cython language, which works
as an extension of Python. Cython has a syntax that resembles
Python, and can have files that mix Python and Cython. The
code is compiled to obtain more performance, but runs well in
conjunction with Python as a compiled module. In this way,
parts of the code where performance is critical can be seamlessly
integrated with other parts of the code where the simplicity of
Python is preferred. Moreover, researchers that use ONG can
select in which language they prefer to write their extensions.
The source code of the ONG can be found in [21].

A. Environments
In the context of RL, an environment represents a real-world sys-
tem from which an intelligent agent needs to learn from. ONG
defines a set of environments that correspond to network sce-
narios where common resource assignment problems arise. The
defined environments can be used to train RL agents. However,
this paper highlights the fact that these environments can also
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be useful for benchmarking strategies and algorithms that not
necessarily are built using RL.

An environment is commonly comprised of a topology, a set
of supported modulation formats, a traffic generator, a list of
current and past services served by the network, and a random
number generator (RNG). The topology represents the inventory
of nodes, edges, spans, paths, and spectrum resources. The
current occupation state of each resource is also tracked by the
environment.

In its current version, the ONG provides the following four
environments:

• Routing and wavelength assignment (RWA): Environment
that models a WDM optical network where each service has
one wavelength of fixed bandwidth which needs to meet
the spectrum continuity constraint.

• Routing, modulation format, and spectrum assignment
(RMSA): Environment that models an elastic optical net-
work (EON) where each service uses an arbitrary number
of subcarriers, i.e., the bandwidth of a channel may vary,
and the channel needs to meet the spectrum continuity and
contiguity constraints.

• Routing, core, modulation format, and spectrum assign-
ment (RCMSA): Environment that models a multi-core EON
where the fiber core also needs to be selected for the pro-
visioning service, and such core may be fixed or variable
along the path, respecting the spectrum continuity and con-
tiguity constraints.

• DeepRMSA: Similar to the RMSA environment, but adopt-
ing the state, action, and reward representation defined in
[22].

B. Interfaces
The ONG defines the interface meant for facilitating the inter-

action between the environment and the algorithm (e.g., heuris-
tic, DRL) that will solve the problem. Listing 1 shows a sim-
plified view of the interface of an ONG environment using a
simplified Python syntax. The environment follows the same
interface and inherits from the generic environment as in the
gymnasium library [23], which is a maintained successor to the
initial OpenAI Gym [24]. While the Open AI Gym interface was
initially developed for the training of RL agents, it has proven to
be suitable in non-RL simulations too. The environment divides
a sequence of interactions as episodes. The initialization method
receives the environment configuration parameters as an ar-
gument, where the topology, modulation formats, and traffic
generation variables are commonly defined.

The step method is the main method, where an action is re-
ceived from the solution algorithm, implemented in the optical
network representation, and its result is returned. For instance,
in the case of an RMSA problem, the action represents a partic-
ular route, modulation format, and spectrum to provision the
path. In the case of a spectrum defragmentation problem, the
action determines which lightpath to defragment and how to do
it. Once the action is received, the step method prepares the envi-
ronment for the next action by advancing the network state until
the point where an action is needed. Then, the method returns
a tuple with five elements. The first element is the observation,
which exposes the current network state to the algorithm used
to solve the problem. The reward is a numerical quantification
of the quality of the received action, helpful in DRL algorithms,

but that can be useful for other algorithms. The next element
specifies whether or not the current episode has terminated,
e.g., if a pre-defined number of requests have been processed.
The fourth element specifies whether or not the current episode
has been truncated, i.e., it cannot continue and has not reached
the desired number of interactions. This is useful, for instance,
in scenarios where incremental traffic is generated, i.e., optical
network services do not leave the network and the episode fin-
ishes when traffic can no longer be accommodated [11]. Finally,
the last element is a dictionary containing custom information
defined by the environment, providing flexibility for various
scenarios. For instance, in the RMSA scenario described in the
next section, relevant information are the request and bit rate
blocking ratios, overall and in the current episode. In general,
metrics such as spectrum usage, spectrum efficiency, among
others can also be returned from the environment through this
dictionary.

The reset method is used when starting to run the simulations
or when running a new episode. It allows the specification of
a (new) seed for the random number generator. The method
returns the current environment state and the dictionary with
custom information. The render method generates a graphical
representation of the current state of the environment. In the
current implementation, it generates a matrix visualization for
the spectrum usage of the spectral resources versus the links in
the network. Finally, the close method releases any resources
that might be used by the environment, such as a file to write
intermediate or final results. Note that the environment is meant
to be executed in a single central processing unit (CPU). How-
ever, multiple environment instances can be executed in parallel
using various CPUs with near-to-linear performance scaling.

Listing 2 shows a simple use of the environment interface to
execute a series of actions governed by a hypothetical algorithm.
The environment is initialized with a set of keyword arguments
(line 1). Usual arguments that can be mentioned are: network
topology, traffic generator parameters, per-step results file, and
number of steps per episode. The algorithm to be used to solve
the environment is initialized with a set of keyword arguments
(line 2). Simple heuristics such as the ones discussed in Sec.
3.B do not have configuration parameters, but more elaborated
ones may require for instance the setting of thresholds. The
environment has its seed for random number generation reset
(line 3). Then, the environment is executed for a pre-defined
number of episodes (line 4). Episodes are a well-known concept
in the RL field, where the RL agent is trained at the end of each
episode [25]. However, using episodes to divide the simulation
into blocks is also interesting in optical networking simulations.
At the end of each episode, preliminary/intermediate statistics
can be extracted from the environment through, e.g., the info
dictionary, and used to build a time-series of relevant metrics.
One example is the analysis of how the blocking ratio evolves
over time. Another example enabled by episodes is the imple-
mentation of changes in the traffic characteristics (e.g., uniform
vs. non-uniform) during a simulation [15, 22].

Within each episode, the algorithm is invoked, receiving the
current environment state, and returning the action to be taken
(line 6). The environment is invoked receiving the action selected
by the algorithm, and returning a tuple with the five elements
discussed before (line 7–8). The steps in lines 6–8 are repeated
until the episode is terminated or truncated (line 5). Once an
episode is finished, the environment is reset (line 9). The envi-
ronment is closed once the pre-defined number of episodes is
reached (line 10). Note that listing 2 defines a clear interface for
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Listing 1. Interface of an Optical Networking Gym (ONG) environment.
from typing import Any, SupportsFloat

import gymnasium as gym

class OpticalEnv(gym.Env[ObsType, ActType]):

def __init__(self, **kwargs):
# initialization

def step(self, action: ActType) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]:
# implementation
return observation, reward, terminated, truncated, info

def reset(self,
*,
seed: int | None = None,
options: dict[str, Any] | None = None,

) -> tuple[ObsType, dict[str, Any]]:
# implementation
return observation, info

def render(self) -> RenderFrame | list[RenderFrame] | None:
# implementation

def close(self) -> None:
# implementation

Listing 2. Illustrative use of the adopted environment inter-
face.

1 env = OpticalEnv(env_kwargs)
2 algo = Algorithm(alg_kwargs)
3 obs, info = env.reset(seed=42)
4 for episode in range(1000):
5 while not (term or trunc):
6 action = algo.solution(obs)
7 obs, rew, term, trunc, info \
8 = env.step(action)
9 obs, info = env.reset()

10 env.close()

the algorithms to be used, which receive the environment state
and return the action to be taken.

C. Functionalities
The ONG implements a set of functionalities that simplify the
execution of optical resource assignment problems. For instance,
the ONG implements a topology creation script that enables
researchers to load network topologies from popular datasets
such as SNDlib [26], Topology Zoo [27], or simple ASCII files.
Such script also allows the user to control how fiber spans are
calculated within an optical link, and their individual physical
layer parameters. Finally, a set of scripts shows examples of
popular use cases for which the ONG is suitable.

The ONG toolkit provides several other artifacts that are not
detailed in this section due to space constraints, but are worth
being briefly mentioned in the following. The ONG toolkit:

• takes advantage of a modern Python implementation using
the latest developments and best practices in the language;

• integrates a set of relevant libraries relevant to the tasks
involved in simulating optical networks, taking advantage
of developments by the open-source community;

• provides comprehensive documentation, not only through
detailed comments in the open-source code, but also with
tutorials;

• provides a set of scripts that can be used to execute simu-
lations using the provided environments and algorithms,
including the ones shown in Sec. 4;

• provides a set of scripts for performing statistical analysis
over the results obtained from simulations;

• establishes good practices on how to perform simulations,
extract statistics in the network, and persist them in inter-
operable file formats;

• accepts contributions from the community through the
usual open-source process, i.e., discussion about potential
functionalities followed by pull request.

3. QOT-AWARE DYNAMIC RMSA ENVIRONMENT

This section describes the QoT-aware dynamic RMSA environ-
ment available within ONG. The environment models the QoT-
aware dynamic provisioning of optical network service requests,
hereinafter called requests. Upon the request provisioning, the
associated optical network service is realized by a lightpath in an
EON. Before provisioning a request, the RMSA problem needs
to be solved.

Fig. 1 illustrates the architecture of the QoT-aware dy-
namic RMSA environment. In this environment, a network
topology comprises an optical line system composed of optical
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Fig. 1. General architecture of the QoT-aware dynamic RMSA
environment.

nodes equipped with reconfigurable optical add-drop multiplex-
ers (ROADMs) and optical terminals, and optical fiber links
equipped with in-line amplifiers. The optical spectrum is di-
vided into frequency slots. Optical terminals are bandwidth-
variable transceivers (BVTs) used at the communicating node
pairs, enabling the establishment of lightpaths that use mul-
tiple frequency slots. Each lightpath uses a modulation for-
mat characterized by two main parameters: spectral efficiency
and minimum QoT level. The spectral efficiency, measured in
b/Hz/s, defines how much data a lightpath using a modula-
tion format can transmit per unit of bandwidth and time. The
minimum QoT level guarantees that the modulation format will
work under a pre-defined bit error rate, given a forward error
correction scheme, usually measured in terms of generalized
signal-to-noise ratio (GSNR) [dB].

In the dynamic RMSA problem considered in this environ-
ment, an optical service request specifies the node pair that needs
to be connected and the bit rate of the lightpath to be created.
The intensity of the traffic is governed by the load, measured
in Erlangs. This load, in turn, defines the inter-arrival time and
holding time of the requests, following a Poisson process. The
node pairs related to the requests can be selected uniformly (i.e.,
each node has the same probability of originating/terminating
traffic) or non-uniformly (each node has an independent proba-
bility of originating/terminating traffic).

Then, the RMSA solution needs to find a route (sequence of
fiber links), a modulation format, and a spectrum slice that ac-
commodates the requested bit rate under two constraints. Firstly,
the selected modulation format requires a minimum QoT level,
and its spectral efficiency will define the necessary bandwidth
(i.e., the number of frequency slots) given the bit rate requested.
Depending on the technology used by the optical devices, the
number of frequency slots may be bound by a minimum and
maximum value. The QoT level of an unestablished optical ser-
vice can be estimated, for instance, by using analytical models
such as the one detailed in Sec. 3.A. Secondly, the spectrum slice
must be continuous (along all fiber links), contiguous (across the
spectrum), and not overlapping with any other lightpath.

In the following, we discuss the physical layer model adopted
to compute the QoT of lightpaths in the environment, character-
ized by their GSNR. Then, we detail heuristic solutions to the
problem that can be used as a benchmark in future studies. In
the remainder of this paper, we adopt the following variable
definitions:

G(V , E) Undirected network graph where V is a set of
optical nodes, and E is a set of optical fibers that
interconnect optical nodes.

P e Set of fiber spans of link e ∈ E .

M Set of modulation formats, where each m ∈ M
have ms [b/Hz/s] representing its spectral effi-
ciency, and mth representing the minimum QoT
required for the modulation format to work.

K Set of k-shortest-paths between all node pairs,
where each k ∈ K contains its length klen and
set of links klinks.

Kn1,n2 represent the k-shortest-paths between nodes n1
and n2, with n1, n2 ∈ V and |Kn1,n2| = k.

L Set of lightpaths currently running in the network,
where each l ∈ L specifies its source lsrc and des-
tination ldst nodes, its bit rate lbr, and the route
lr : lr ∈ Klsrc ,ldst .

o service request between nodes osrc ∈ V and odst ∈
V requiring bit rate obr.

A. Physical Layer Model
The ONG enables the use of physical layer models that consider
the linear and non-linear impairments of lightpaths and their
mutual impact. Generally, a hypothetical function implements
a physical layer model to estimate the QoT of an unestablished
lightpath under test (LUT) l traversing route r and occupying w
frequency slots. Such models require the knowledge of the net-
work graph G(V , E). Moreover, the co-propagating lightpaths
can be found within the set of lightpaths currently running in
the network L. Finally, the function returns the QoT of the LUT.

In the specific environment analyzed in this paper, we adopt
the enhanced Gaussian noise (EGN) analytical model described
in [28]. This analytical model was selected due to its wide ac-
ceptance in the literature, its ability to consider partially-loaded
networks, and its arbitrary lightpath bandwidth. Note that the
ONG provides interfaces for implementing virtually any physi-
cal layer model, including closed-form analytical models such
as those in [28], as well as semi-analytical models like the one
implemented in GNPy [8], or machine learning (ML). The ONG
also has the potential for customization in multi-band and/or
space division multiplexing scenarios.

In the EGN model, the GSNR of a LUT that uses path k can
be calculated as a function of the set of spans P along the path,
where P =

⋃
e∈klinks

P e:

GSNRLUT
−1 = ∑

p∈P

(
Pp

LUT

Pp
ASE + Pp

NLI

)−1

, (1)

where, for each span p ∈ P , Pp
CUT is the launch power, Pp

ASE is
the amplified spontaneous emission (ASE) noise power incurred
by doped fiber amplifiers, and Pp

NLI is the noise incurred by non-
linearity. The complete formulation of the Pp

ASE and Pp
NLI terms
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can be found in [28]. In the environment, we also measure the
signal-to-noise ratio (SNR) considering only the ASE and the
SNR considering only the non-linear (NLI), enabling the analysis
of the trade-offs between these two components of the GSNR.

B. Heuristic Solutions

This section discusses frequently used algorithms for solving the
dynamic RMSA problem. The algorithms follow the common
interface defined in Listing 2. These algorithms are included
within the ONG, can serve as a benchmark for new proposals,
and can be easily extended to include newly-published solu-
tions. In this paper, we focus on four heuristic solutions that
are frequently used as benchmarks, i.e., the ones prioritizing the
best possible modulation format, the lowest frequency slot, or
load balancing. We refer the reader to [29] for a more in-depth
discussion of the algorithms. Given the open-source nature of
ONG, other heuristics and DRL-based solutions can be easily
added by the research community as contribution to the project.

All the heuristics in this section have access to the current
request o, the set of pre-computed k-shortest paths K (sorted
from the shortest to the longest), the set of currently running
services L, and the set of modulation formatsM (sorted from
the highest to the lowest spectral efficiency). If the request is
accepted, the algorithm outputs the tuple < r, m, s > represent-
ing the route, modulation format, and initial frequency slot to
be used by the request, respectively. If the request cannot be
accommodated, the heuristic returns ∅. In general, we adopted
a naming convention that specifies the sequence of priorities of
each heuristic.

Algorithm 1. Pseudocode of the k-shortest-path best-
modulation first-fit (KSP-BM-FF) heuristic.

1: for r ∈ Kosrc ,odst do
2: available_slots← get_available_slots(r)
3: for m ∈ M do
4: number_slots← get_number_slots(obr, m)
5: s← f irst_ f it(available_slots, number_slots)
6: if s = null then
7: continue to next route
8: qot← calculate_qot(L, o, r, s, number_slots)
9: if qot ≥ mth then

10: return r, m, s
11: return ∅

The k-shortest-path best-modulation first-fit (KSP-BM-FF)
heuristic is illustrated in Alg. 1. This heuristic finds the shortest
route, most spectrally efficient modulation format, and lowest
spectrum that meets the problem’s constraints. We start by
iterating over the set of pre-computed shortest-paths (line 1),
and obtaining the continuous available slots in such a route
(line 2). Then, for each modulation format (line 3), we obtain
the number of frequency slots necessary to accommodate the
requested bit rate (line 4). The heuristic finds the first frequency
slot of a contiguous spectrum block able to accommodate the
necessary number of frequency slots (line 5), returning a null
value if such a block cannot be found. If a free spectrum block
cannot be found (line 6), we can continue to the next route since
evaluating the next (less efficient) modulation format would
require a larger spectrum block than the current one (line 7).
The QoT of the current solution is computed (line 8). If the QoT
meets the requirements of the modulation format (line 9), the

solution tuple is returned (line 10). If no solution is found, the
heuristic returns an empty tuple (line 11).

Algorithm 2. Pseudocode of the best-modulation lowest-
spectrum k-shortest-path (BM-LS-KSP) heuristic.

1: solution← ∅ ▷ solution tuple
2: l f s← ∞ ▷ current lowest initial frequency slot
3: for m ∈ M do
4: number_slots← get_number_slots(obr, m)
5: for r ∈ Kosrc ,odst do
6: available_slots← get_available_slots(r)
7: s← f irst_ f it(available_slots, number_slots)
8: if s ̸= null ∧ s < l f s then
9: qot← calculate_qot(L, o, r, s, number_slots)

10: if qot ≥ mth then
11: l f s← s
12: solution← r, m, s
13: if solution ̸= ∅ then
14: return solution
15: return ∅

Alg. 2 illustrates the best-modulation lowest-spectrum k-
shortest-path (BM-LS-KSP) heuristic. This heuristic finds the
best modulation format possible for the current request, selecting
the route that allows the use of the lowest spectrum, i.e., the
lowest initial frequency slot. The heuristic starts by initializing
its state variables (lines 1–2). For each modulation format (line 3),
we find the number of frequency slots necessary to accommodate
the requested bit rate (line 4). Then, we evaluate all routes (lines
5–7) and store the one that has the lowest initial frequency slot
(lines 8) and that meets the QoT requirements of the modulation
format (lines 9–12). Suppose a solution is found for the current
(most spectrally efficient) modulation format (line 13). In that
case, the heuristic returns the solution (line 14) since evaluating
other (less efficient) modulation formats is unnecessary. If no
solution is found, the heuristic returns an empty tuple (line 15).

Algorithm 3. Pseudocode of the best-modulation load-
balancing k-shortest-path (BM-LB-KSP) heuristic.

1: solution← ∅ ▷ solution tuple
2: war ← 0 ▷ current highest weighted available resources
3: for m ∈ M do
4: number_slots← get_number_slots(obr, m)
5: for r ∈ Kosrc ,odst do
6: available_slots← get_available_slots(r)
7: if sum(available_slots)/|rlinks|2 > war then
8: s← f irst_ f it(available_slots, number_slots)
9: if s = null then

10: continue
11: qot← calculate_qot(L, o, r, s, number_slots)
12: if qot ≥ mth then
13: war ← sum(available_slots)/|rlinks|2
14: solution← r, m, s
15: if solution ̸= ∅ then
16: return solution
17: return ∅

Alg. 3 details the best-modulation load-balancing k-shortest-
path (BM-LB-KSP) heuristic. This heuristic finds the best modu-
lation format possible for the current request, selecting the route
with the highest weighted available resources and, conversely,
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the lowest weighted resource usage. The weighted available
resources, which follows the inverse intuition of the traffic load
balancing (TLB) factor in [30], is computed as the number of con-
tinuous available frequency slots in a given route divided by the
squared number of hops in the route. The heuristic defines two
state variables (lines 1–2), iterates over the modulation formats
(line 3), and computes the number of frequency slots required to
fulfill the requested bit rate (line 4). For each route (line 5), the
available slots are computed (line 6), and the weighted available
resources are compared to the previous best one found (line 7).
The heuristic only evaluates the route if it has a higher weighted
factor. If a spectrum block is not found for the current route, the
heuristic continues to the next route (lines 8–10). Otherwise, the
QoT of the current solution is evaluated (lines 11–12) and stored
in the state variables if the modulation format QoT threshold is
met (lines 12–14). Suppose a solution is found for the current
(most spectrally efficient) modulation format (line 15). In that
case, the heuristic returns the solution (line 16) since evaluating
other (less efficient) modulation formats is unnecessary. If no
solution is found, the heuristic returns an empty tuple (line 17).

Algorithm 4. Pseudocode of the load-balancing best-
modulation k-shortest-path (LB-BM-KSP) heuristic.

1: solution← ∅ ▷ solution tuple
2: war ← 0 ▷ current highest weighted available resources
3: for r ∈ Kosrc ,odst do
4: available_slots← get_available_slots(r)
5: if sum(available_slots)/|rlinks|2 > war then
6: for m ∈ M do
7: number_slots← get_number_slots(obr, m)
8: s← f irst_ f it(available_slots, number_slots)
9: if s = null then

10: continue to next route
11: qot← calculate_qot(L, o, r, s, number_slots)
12: if qot ≥ mth then
13: war ← sum(available_slots)/|rlinks|2
14: solution← r, m, s
15: break
16: return solution

Alg. 4 illustrates the load-balancing best-modulation k-
shortest-path (LB-BM-KSP) heuristic. This heuristic follows a
similar intuition to the previous one. Still, unlike the previous
one, it selects the route with the highest weighted available re-
sources regardless of the modulation format to be used. State
variables are initialized (lines 1–2). For each route, the avail-
able slots are computed (lines 3–4). If the weighted resources
available are higher than the previous best one (line 5), the mod-
ulation formats are evaluated (lines 6–15). When a modulation
format in the current route has its QoT threshold met, it is saved
as the best one (lines 12–14), and the heuristic follows to evaluate
the next route. Finally, the heuristic returns the solution found
(line 16), an empty tuple in case no feasible solution was found.

4. USE CASES

This section demonstrates three potential use cases for the dy-
namic RMSA environment described in the previous section,
highlighting the analysis that can be performed using its func-
tionalities. Since use cases related to DRL have already been
explored in the literature, we focus on the ones that highlight
other aspects of the analysis enabled by the ONG. In particular,

the three use cases presented take advantage of the EGN model
and heuristic implementation described in the previous section.

For the results in this section, we use the European network
topology shown in Fig. 2, identified as nobel-eu in SNDlib [26].
This topology was selected because it has a wide range of link
lengths, resulting in a good ground for analysis of the dynamic
RMSA problem under realistic modeling of physical layer im-
pairments. Fig. 2 also shows that the path length distribution
contains a wide range of values, being a representative topol-
ogy for core networks where the dynamic QoT-aware RMSA is
more relevant. The topology has 28 nodes and 41 links. Spans
within a link have equal length with a maximum of 80 km. We
compute the 5 shortest paths for each node pair. Source and
destination nodes are uniformly selected, and the bit rate is
chosen uniformly among {10, 40, 100, 400} Gbps [31]. Request
arrivals follow a Poisson process, where the service holding time
is exponentially distributed with an average of 60 time units.
The holding time is exponentially distributed, whose mean is
defined by the specific load value under exam. The environment
is configured to run episodes of 1,000 request arrivals.

In the simulations, we consider the C-band with 4 THz of
bandwidth divided into 320 frequency slots of 12.5 GHz. A
guardband of one frequency slot is required between two neigh-
boring lightpaths. All spans have an attenuation coefficient
equal to 0.2 dB/km, equipped with an Erbium-dopped fiber
amplifier (EDFA) with a noise figure of 4.5 dB. We consider six
modulation formats: BPSK, QPSK, 8-, 16-, 32-, and 64-QAM,
with their GSNR threshold set to {3.71, 6.72, 10.84, 13.24, 16.16,
19.01} dB, respectively [32].

In the following use cases, we assess the performance of
a solution using the following metrics. The request blocking
ratio represents the ratio between blocked requests and the total
number of requests. Similarly, the bit rate blocking ratio is the
ratio between the total bit rate of the blocked requests and the
total bit rate of all requests. The SNR is measured for the linear
(ASE) and non-linear (NLI) components, as well as the GSNR.
Finally, the request processing time measures the total time taken
to process, on average, each optical service request in the ONG
environment. The time measurements were collected using a
workstation equipped with an AMD Ryzen Threadripper 3960X
24-core processor with 128 GB of RAM running Ubuntu 22.04
and Python 3.12.

A. Margin optimization
The margin optimization use case studied in this paper focuses
on finding one single flat launch power that, when used by all
lightpaths in the network, yields the lowest request blocking
ratio. This is an essential step when benchmarking RMSA algo-
rithms due to the impact that the launch power has on the GSNR
profile obtained in the network. This is also a relevant problem
in the literature, analyzed in various contexts, and that needs
to be revisited for new optical architectures and technologies
[33–35]. Moreover, the launch power selection is impacted by
several physical layer properties such as the span length, attenu-
ation, and noise figure. Therefore, a launch power optimization
campaign is necessary whenever QoT-aware algorithms are to
be benchmarked in a given network. We analyze the blocking
probability in different scenarios by varying the launch power in
the range of (-8, 8) dBm, with steps of 2 dBm. For each scenario,
we run 1 million request arrivals, i.e., 1,000 episodes of 1,000 ar-
rivals, resulting in an average standard deviation that represents
less than 1% of the average request blocking ratio value.

Fig. 3 shows the average simulation results. Fig. 3a shows
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Fig. 2. The European network topology with link and path length distributions.
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Fig. 3. Impact of the launch power on the overall request blocking rate for the European topology considering a load of 210 Erlang.

the average request blocking ratio, which indicates that -4 dBm
yields the lowest blocking over the simulated launch power
values. Fig. 3b shows the average SNR of all the accepted
requests in terms of the overall GSNR and its linear and non-
linear components. We can see that the best GSNR is achieved
when adopting -4 dBm as the launch power, which coincides
with and explains the blocking ratio results in Fig. 3a. Moreover,
we can confirm and measure the intuition that in the lower
launch power range, the GSNR is limited by the ASE, while in
the higher launch power, the GSNR is limited by the NLI. Fig. 3c
shows the GSNR achieved by lightpaths according to their path
length for the first 100,000 accepted requests, assuming the best
launch power found (-4 dBm). We can observe that there is a
large range within which the same modulation format is selected,
indicating that distance-based modulation format selection is
not ideal. ONG makes the analysis in Fig. 3 accessible, since it
can be performed for any topology and physical layer parameter
configuration without the need of any modifications to the code.
Finally, the simulations generating the results reported in Fig. 3
took approximately 2 hours to complete, using 9 CPU cores.

B. Benchmarking QoT-Aware Dynamic RMSA Algorithms
Evaluating and benchmarking algorithms that solve the QoT-
aware dynamic RMSA problem is one of the most common use
cases in the literature [1, 5, 22]. In this use case, the algorithm
needs to find a solution for the RMSA problem upon the ar-
rival of an optical service request. This evaluation is usually
performed by assessing the performance of various algorithms
while varying the load in the network. Although common in the

literature, these analysis usually include only a few algorithms,
since implementing previous algorithms from the literature and
integrating them into custom simulators is laborious. Moreover,
if QoT is considered, this assessment needs to be preceded by a
launch power optimization as the one previously presented.

Fig. 4 shows the simulation results for the heuristic algo-
rithms presented in Sec. 3.B. Each data point in the figure is
obtained by averaging the results over 1 million arrivals, using -
4 dBm launch power as obtained in the previous use case. Fig. 4a
shows that the best-modulation lowest-spectrum k-shortest-path
(BM-LS-KSP) achieves the lowest request blocking ratio. More-
over, we can observe that the k-shortest-path best-modulation
first-fit (KSP-BM-FF), commonly used in the literature as the
benchmark for new algorithms, closely follows the performance
of the best strategy with only a 5% gap. The load-balancing
heuristics achieve the highest blocking ratio. Fig. 4b shows that
the bit rate blocking ratio follows a similar trend as the request
blocking ratio.

Fig. 4c shows the average processing time taken to simulate
the processing of each optical service request. The KSP-BM-FF
has the lowest processing time, with a maximum of 7.5 ms, due
to its simple implementation that considers the first feasible so-
lution found. This means that one million request arrivals can
be processed in around 2 hours, similar to the results obtained
in [16] for a different scenario. Note that this time represents the
time taken by one CPU core, i.e., no parallelism is used. More im-
portantly, it shows that the code optimizations in ONG make its
GSNR estimation execution quite fast. Using multiple CPU cores
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Fig. 4. Analysis of the RMSA heuristics over the offered load for the European topology with -8 dBm as the launch power.

yields close-to-linear performance scaling. The other heuristics
require a similar processing time and have a typical behavior of
increasing time with the load up to a point at which further in-
creasing the load decreases the processing time. This behavior is
explained by the fact that as the network load increases, so does
the number of co-propagating channels, slightly increasing the
processing time of the physical layer model. Further increases
in load result in less available resources, which results in the
heuristics performing an early stop due to the lack of resources,
not requiring the computation of the GSNR.

C. Generation of datasets for AI/ML-based QoT Estimation
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Fig. 5. Statistical analysis of the dataset generated by the ONG
for the European topology with 210 Erlang load and -8 dBm as
the launch power.

This use case illustrates the possibility of leveraging ONG
to collect QoT datasets suitable for use in AI/ML QoT estima-
tion studies [17, 18]. Previous works in the literature sharing
analytical or experimental datasets have been essential for the
progress of AI/ML QoT estimation studies [19, 20]. However,
these datasets contain a fixed information set related to each
lightpath, which may not always be relevant to the problem
[36], or not always contain all the relevant information. For
instance, the [37] considers link-level formulation where a vec-
tor specifies which links are traversed by a lightpath. Another
example is [38], where the GSNR of all lightpaths is calculated
for every new network state. Naturally, pre-defined datasets are
not able to include any possible relevant information about the
network and lightpaths. ONG adopts a different approach by
enabling researchers to generate their own dataset, including
any information that is deemed relevant, or whose relevance
will be studied. Examples of such information are the specific
links and/or spans traversed by the lightpath, and their details
such as length, attenuation coefficient, and amplifier noise. An-
other example are the detailed information of co-propagating
channels, such as bandwidth, bit rate, and modulation format.
This flexibility enables researchers to generate accurate datasets
for any network topology and physical layer parameters using
new (never-used-before) information, as well as compare with
previous setups, datasets, and dataset information.

To illustrate the dataset generation capabilities of ONG, we
select two heuristics with the most divergent request blocking
ratio performance, i.e., BM-LS-KSP and load-balancing best-
modulation k-shortest-path (LB-BM-KSP) from Fig. 4. For
each heuristic, we process 100,000 service request arrivals and
save the information of the accepted lightpaths in the dataset.
Fig. 5 shows a statistical analysis of the GSNR and modulation
format usage of the two datasets generated by ONG. Fig. 5a
shows a significant difference in the GSNR of the accepted light-
paths between the two heuristics. Nearly 20% of the lightpaths
provisioned using BM-LS-KSP achieve a GSNR higher than 20
dB. Meanwhile, most lightpaths provisioned using LB-BM-KSP
achieve a maximum of 20 dB. The impact of the GSNR difference
can be observed in Fig. 5b. While more than 50% of the light-
paths provisioned using BM-LS-KSP have modulation formats
32- or 64-QAM, 70% of the lightpaths provisioned using LB-BM-
KSP use 16-QAM. Besides enabling the generation of custom
datasets for training AI/ML models, these details improve the
understanding of the differences of the heuristics in terms of
blocking ratio.
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One important consideration when generating datasets is
related to bias and fairness. The adopted RMSA solution will
define the distribution of several features in the dataset, such as
the modulation format illustrated in Fig. 5a. A few works have
shown that biased datasets may impact the accuracy distribution
of trained ML models [39, 40]. However, in real-world network
it is unlikely that datasets will be completely balanced and fair,
so techniques to tackle such imbalances need to be developed
[40].

It is important to also highlight that, although we only show
two pieces of information of the dataset, a wide range of infor-
mation can be included on the dataset if needed. Finally, the
ONG script made available to generate the results in Fig. 5 can
be used to save the collected dataset in an interoperable format,
ready to be shared with the community.

5. OPEN CHALLENGES AND FUTURE WORK

The ONG aims to represent a reference architecture for evalu-
ating optical resource assignment problems. This objective is
approached by defining interfaces that enable the toolkit to be
easily extended, and a set of scripts that exemplify its key func-
tionalities. With the rapid research and development of new
technologies, several studies can be performed by extending the
ONG toolkit.

One of these areas is the study of the dynamic operation of
multi-band optical networks. This problem has already been
studied in the literature [13], but with limited modeling of the
physical layer impairments. More recently, studies using the
generalized Gaussian model (GGN) model (implemented in
GNPy [8]) have analyzed the performance of RL and DRL [14,
41]. Moreover, [42] studies how DRL can be used for multi-
band networks using the EGN model assuming a fixed-grid
scenario. However, considering a QoT-aware flexi-grid scenario,
which has been considered for the C+L-band in [43], is essential
to fully understand the potential of beyond C+L-band optical
networks, and how ML and DRL can be leveraged to take the
most advantage of it.

Among the future works is implementing physical layer mod-
els that consider the specific characteristics of these networks [44–
46], which will enable a more realistic performance assessment
of resource assignment algorithms for multi-band networks.

The extension of the environments with multi-core fiber tech-
nologies is another future work. This scenario is already a good
fit for DRL [47, 48], but could also benefit from the realistic mod-
eling of physical layer impairments [49]. More interestingly,
combining multi-core and multi-band optical network transmis-
sion technologies represents a futuristic and relevant use case
whose study can benefit from the artifacts provided by ONG.

Another area that can benefit from the ONG toolkit is the
study of spectrum defragmentation algorithms. There are al-
ready works in the literature leveraging DRL to solve the spec-
trum defragmentation problems [50] including one using the
previous version of ONG [15]. However, ONG enables the study
of QoT-aware defragmentation algorithms, which pose new and
more realistic challenges for their implementation in real deploy-
ments.

In terms of more realistic modeling of the physical layer im-
pairments in the QoT-aware dynamic RMSA environment dis-
cussed in this paper, including the amplifier tilt can represent
another interesting step [51]. The analytical model implemented
in the ONG also allows per-span specification of physical layer
parameters, making it possible to generate datasets that contain

anomalies such as soft failures, which are an important use case
for the use of AI/ML [52]. Analyzing which heuristics to use to
generate balanced and fair datasets can be an interesting way to
mitigate the impact of these imbalances in future ML-based QoT
estimators. Extending ONG to support multicasting scenarios
also represents an interesting future direction. Finally, develop-
ing environments for quantum key distribution scenarios can
also enable further studies of how to operate networks with this
technology [53].

6. FINAL REMARKS

This paper introduced the ONGs, a new open-source toolkit that
builds upon a previous toolkit, improving and expanding its
functionalities. The toolkit extends well-known interfaces from
the RL research, making it suitable for a large range of use cases
due to the modularity of the interfaces. The toolkit proposes a
series of interfaces that simplify and streamline the development
of new optical networking environments and/or respective so-
lution algorithms. One of the available environments that model
the QoT-aware dynamic RMSA problem is discussed in detail.
This environment is particularly important for combining the
resource assignment problem and an analytical model physical
layer impairment estimation into a single environment. Three
use cases demonstrate the toolkit’s versatility, flexibility, and
broad applicability. In the first use case, launch power optimiza-
tion was performed, indicating which launch power is most
suitable for the network scenario at hand. In the second use
case, four different heuristics were analyzed, revealing their re-
quest blocking and processing time performance. In the third
use case, two datasets were generated. The datasets are suitable
for studies related to the AI/ML-based QoT estimation. We
believe this toolkit represents a suitable benchmarking tool, en-
abling researchers to compare their proposed algorithms more
easily with previous ones from the literature. In this regard, a
few relevant and timely open challenges and potential future
work were discussed. The toolkit also lowers the barrier of entry
for new researchers in the field of optical networking resource
assignment.
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