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Abstract: Lattice gauge theories are lattice approximations of the Yang–Mills theory in
physics. The abelian lattice Higgs model is one of the simplest examples of a lattice gauge
theory interacting with an external field. In a previous paper (Forsström et al. in Math
Phys 4(2):257–329, 2023), we calculated the leading order term of the expected value
of Wilson loop observables in the low-temperature regime of the abelian lattice Higgs
model on Z

4, with structure group G = Zn for some n ≥ 2. In the absence of a Higgs
field, these are important observables since they exhibit a phase transition which can
be interpreted as distinguishing between regions with and without quark confinement.
However, in the presence of a Higgs field, this is no longer the case, and a more relevant
family of observables are so-called open Wilson lines. In this paper, we extend and refine
the ideas introduced in Forsström et al. (Math Phys 4(2):257–329, 2023) to calculate the
leading order term of the expected value of the more general Wilson line observables.
Using our main result, we then calculate the leading order term of several natural ratios
of expected values and confirm the behavior predicted by physicists.

1. Introduction

1.1. Background. Lattice gauge theories are spin models which describe the interaction
of elementary particles. These were first introduced by Wilson [32] as lattice approx-
imations of the quantum field theories that appear in the standard model, known as
Yang-Mills theory. Since then, lattice gauge theories have been successfully used to
understand the corresponding continuous models, and several of the predictions made
using these lattice approximations have been verified experimentally. At about the same
time as lattice gauge theories were introduced in the physics literature by Wilson, Weg-
ner [31] introduced what he then called generalized Ising models as an example of a
family of models with a phase transition without a local order parameter. In special
cases, these generalized Ising models are lattice gauge theories, and as such, they have
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been used extensively as toy models for the lattice gauge theories that are more relevant
for physics.

In the last couple of years, there has been a renewed interest in the rigorous analysis
of four-dimensional lattice gauge theories in the mathematical community, see, e.g., [7–
9,16,17,21]. Most relevant for this work are the papers [7,9,17], in which the leading
order term for the expectation of Wilson loop observables was computed for lattice gauge
theories with Wilson action and finite structure groups.

Pure gauge theories model only the gauge field itself, and to advance towards phys-
ically relevant theories; it is necessary also to understand models that include external
fields interacting with the gauge field, see, e.g., [19,30]. In this paper, we consider a lat-
tice gauge theory that models a gauge field coupled to a scalar Bosonic field with a quartic
Higgs potential. The resulting model is called the lattice Higgs model. This model has
received significant attention in the physics community. Some examples are the works
[1–3], where calculations to obtain critical parameters of these models were performed,
and [27,28], in which phase diagrams were sketched. For further background, as well
as more references, we refer the reader to [19] and [30].

In a recent paper [18], we extended the theory developed in [7,9,17] in order to
describe the leading order term for the expectation of Wilson loop observables in the fixed
length and low-temperature regime of the abelian Higgs model. Wilson loop expectations
are natural observables in lattice gauge theories and were introduced by Wilson as a
means to detect whether quark confinement occurs, see [32]. In lattice gauge theories
without matter fields, one can show that the expected value of large Wilson loops undergo
a phase transition, where it changes from following a so-called area law to following
a so-called perimeter law. However, as discussed in, e.g., [29], in gauge theories with
matter fields, the Wilson loop observable obeys a perimeter law for all parameters, and
hence one cannot see a relevant phase transition using only the Wilson loop observable.
For this reason, alternative observables have been suggested for studying the lattice
Higgs model. One such observable is the open Wilson line observable, in which the
loop in the Wilson loop observable is replaced by an open path that is saturated at the
end-points by the Higgs field. This type of observable has been relatively well studied
in the physics literature (see, e.g., [5,6,13,15,23,24,29,30]). Moreover, the asymptotic
behavior of such observables has been argued to be related to, e.g., the absence of bound
states of the charged particle in the presence of an external source [13], confinement
versus deconfinement in lattice gauge theories with matter fields [6], and binding versus
unbinding of dynamical quarks in the field of a static color source [6]. Hence the Wilson
line observables are of physical relevance.

1.2. Preliminary notation. For m ≥ 2, the graph naturally associated to Z
m has a vertex

at each point x ∈ Z
m with integer coordinates and a non-oriented edge between nearest

neighbors. We will work with oriented edges throughout this paper, and for this reason
we associate to each non-oriented edge ē two oriented edges e1 and e2 = −e1 with the
same endpoints as ē and opposite orientations.

Let de1 := (1, 0, 0, . . . , 0), de2 := (0, 1, 0, . . . , 0), …, dem := (0, . . . , 0, 1) be ori-
ented edges corresponding to the unit vectors in Z

m . We say that an oriented edge e is
positively oriented if it is equal to a translation of one of these unit vectors, i.e., if there
is a v ∈ Z

m and a j ∈ {1, 2, . . . ,m} such that e = v + de j . If v ∈ Z
m and j1 < j2,

then p = (v + de j1) ∧ (v + de j2) is a positively oriented 2-cell, also known as a posi-
tively oriented plaquette. We let C0(Z

4), C1(Z
4), and C2(Z

4) denote the sets of oriented
vertices, edges, and plaquettes. Next, we let BN denote the set [−N , N ]m ⊆ Z

m , and



Wilson Lines in the Abelian lattice Higgs Model Page 3 of 70 275

we let C0(BN ), C1(BN ), and C2(BN ) denote the sets of oriented vertices, edges, and
plaquettes, respectively, whose end-points are all in BN .

Whenever we talk about a lattice gauge theory we do so with respect to some (abelian)
group (G, +), referred to as the structure group. We also fix a unitary and faithful
representation ρ of (G, +). In this paper, we will always assume that G = Zn for some
n ≥ 2 with the group operation + given by standard addition modulo n. Also, we will
assume that ρ is a one-dimensional representation of G. We note that a natural such
representation is given by j �→ e j ·2π i/n .

Now assume that a structure group (G, +), a one-dimensional unitary representation
ρ of (G, +), and an integer N ≥ 1 are given. We let �1(BN ,G) denote the set of all
G-valued 1-forms σ on C1(BN ), i.e., the set of all G-valued functions σ : e �→ σ(e) on
C1(BN ) such that σ(e) = −σ(−e) for all e ∈ C1(BN ). Similarly, we let �0(BN ,G)

denote the set of all G-valued functions φ : x �→ φ(x) on C0(BN ) which are such that
φ(x) = −φ(−x) for all x ∈ C1(BN ). When σ ∈ �1(BN ,G) and p ∈ C2(BN ), we let
∂p denote the formal sum of the four edges e1, e2, e3, and e4 in the oriented boundary
of p (see Sect. 2.1.5), and define

dσ(p) := σ(∂p) :=
∑

e∈∂p

σ(e) := σ(e1) + σ(e2) + σ(e3) + σ(e4).

Similarly, when φ ∈ �0(BN ,G) and e ∈ C1(BN ) is an edge from x1 to x2, we let ∂e
denote the formal sum x2 − x1, and define dφ(e) := φ(∂e) := φ(x2) − φ(x1).

1.3. The abelian lattice Higgs model. Given β, κ, ζ ≥ 0, the action SN ,β,κ,ζ for lattice
gauge theory with Wilson action coupled to a Higgs field on BN is, for σ ∈ �1(EN ,G),

φ ∈ �0(BN ,G), and a symmetric function r : C0(BN ) → R+, defined by

SN ,β,κ,ζ (σ, φ, r) := − β
∑

p∈C2(BN )

ρ
(
dσ(p)

) − κ
∑

e∈C1(BN ) :
∂e=y−x

r(x)r(y)ρ
(
σ(e) − φ(∂e)

)

+ ζ
∑

x∈C0(BN )

(
r(x)2 − 1

)2 +
∑

x∈C0(BN )

r(x)2.

(1.1)

The first term on the right hand side of (1.1) is referred to as the Wilson action functional
for pure gauge theory (see, e.g., [32]), the second term on the right hand side of (1.1)
is referred to as the interaction term, and the third and fourth term on the right hand
side of (1.1) together are referred to as a sombrero potential. Since φ ∈ �0(BN ,G)

and σ ∈ �1(BN ,G), the action SN ,β,κ,ζ (σ, φ, r) is real for all σ, φ, and r . Elements
σ ∈ �1(BN ,G) will be referred to as gauge field configurations, and pairs (φ, r), with
ψ ∈ �0(BN ,G) and r : C0(BN ) → R+ symmetric, will be referred to as Higgs field
configurations. The quantity β is known as the gauge coupling constant, κ is known as
the hopping parameter, and ζ is known as the quartic Higgs self coupling.

The Gibbs measure corresponding to the action SN ,β,κ,ζ is given by

dμN ,β,κ,ζ (σ, φ, r) = Z−1
N ,β,κ,ζ e

−SN ,β,κ,ζ (σ,φ,r)
∏

e∈C1(BN )+

dμG
(
σ(e)

)

∏

x∈C0(BN )+

dμG
(
φ(x)

)
dμR+

(
r(x)

)
,
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where C1(BN )+ denotes the set of positively oriented edges in C1(BN ), dμG is the
uniform measure on G, and μR+ is the Lebesgue measure on R+. We refer to this lattice
gauge theory as the abelian lattice Higgs model.

We will work with the model obtained from this action in the fixed length limit
ζ → ∞, in which the radial component of the Higgs field concentrates at one. In the
physics literature, this is sometimes called the London limit. We do not discuss the limit
of the Gibbs measure corresponding to SN ,β,κ,ζ as ζ → ∞ here, but simply from the
outset adopt the action resulting from only considering r : C0(BN ) → R+ with r(x) = 1
for all x ∈ C0(BN ). In this case, for σ ∈ �1(BN ,G), and φ ∈ �0(BN ,G), we obtain
the action

SN ,β,κ,∞(σ, φ) := − β
∑

p∈C2(BN )

ρ
(
dσ(p)

) − κ
∑

e∈C1(BN ) :
∂e=y−x

ρ
(
σ(e) − φ(∂e)

)
.

We then consider a corresponding probability measure μN ,β,κ,∞ on �1(BN ,G) ×
�0(BN ,G) given by

μN ,β,κ,∞(σ, φ) := Z−1
N ,β,κ,∞e−SN ,β,κ,∞(σ,φ), σ ∈ �1(BN ,G), φ ∈ �0(BN ,G),

where ZN ,β,κ,∞ is a normalizing constant. This is the fixed length lattice Higgs model.
We let EN ,β,κ,∞ denote the corresponding expectation. Whenever f : �1(BM ,G) ×
�0(BM ,G) → R for some M ≥ 1, then, as a consequence of the Ginibre inequalities
(see Sect. 2.6), the infinite volume limit

〈
f (σ, φ)

〉
β,κ,∞ := lim

N→∞ EN ,β,κ,∞
[
f (σ, φ)

]

exists, and it is this limit that we will use in our main result.

1.4. Wilson loops and Wilson lines. For k ∈ {0, 1, . . . ,m, a k-chain is a formal sum of
positively oriented k-cells with integer coefficients, see Sect. 2.1.4 below. The support
of a 1-chain γ , written supp γ , is the set of directed edges with non-zero coefficient in
γ. We say that a 1-chain with finite support is a generalized loop if it has coefficients
in {−1, 0, 1} and empty boundary, see Definition 2.13. Roughly speaking, this means
that a generalized loop is a disjoint union of a finite number of closed loops, where each
closed loop is a nearest-neighbor path in the graph Z

4 starting and ending at the same
vertex. For example, any rectangular loop, as well as any finite disjoint union of such
loops, is a generalized loop. We say that a 1-chain with finite support is an open path
from x1 ∈ �+

0(BN ) to x2 ∈ �+
2(BN ) if it has coefficients in {−1, 0, 1} and boundary

∂γ := x2 − x1. If γ is either an open path or a generalized loop, we refer to γ as a path.
Given a path γ , the Wilson line observable Lγ (σ, φ) is defined by

Lγ (σ, φ) := ρ
(
σ(γ ) − φ(∂γ )

)
, σ ∈ �1(BN ,G), φ ∈ �0(BN ,G),

where σ(γ ) := ∑
e∈γ σ (e), and φ(∂γ ) = φ(x2) − φ(x1) if γ is an open path from x1

to x2, and φ(∂γ ) = 0 if the boundary of γ is empty. If γ is a generalized loop, then
Wγ (σ ) := Lγ (σ, φ) is referred to as a Wilson loop observable.
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1.5. Main results.

Theorem 1.1. Consider the fixed length lattice Higgs model on Z
4, with structure group

G = Z2, and representation ρ : G → C given by ρ(0) = 1 and ρ(1) = −1.
Let β, κ ≥ 0 be such that 182e−4κ(2 + e−4κ) < 1 and 6β > κ. Further, let γ be a

path along the boundary of a rectangle with side lengths 1, 2 ≥ 8, and assume that
| supp γ | ≥ 24. Finally, let e ∈ C1(Z

4) be arbitrary.
Then

∣∣∣
〈
Lγ (σ, φ)

〉
β,κ,∞ − �′

β,κ (γ )Hκ(γ )
∣∣∣ ≤ K0

(
e−4(β+κ/6) + | supp γ |−1/2

) 1
4 , (1.2)

where

�′
β,κ (γ ) := e−2| supp γ |e−24β−4κ

(
1+(e8κ−1)〈Le(σ,φ)〉∞,κ,∞

)
,

Hκ(γ ) := 〈
Lγ (σ, φ)

〉
∞,κ,∞,

and K0 = K0(κ, β, 1, 2, γ ) is a non-negative function with

K0 ≤ 2 · 183 + | supp γ |1/2e−4κ
(
182(2 + e−4κ)

)min(1,2) + oκ(1).

An exact expression for K0 is given in (10.42).

Remark 1.2. We later show, in Corollary 2.18, that if γ is an open path, then the function
Hκ(γ ) is exactly equal to the spin-spin-correlation of the spins at the endpoints of γ in the
Ising model with coupling parameter κ. By the same argument, the term 〈Le(σ, φ)〉∞,κ,∞
in the function �′

β,κ (γ ) will be equal to the spin-spin-correlation of the spins at the end-
points of the (arbitrary) edge e.

It is well known (see, e.g., [12]) that when κ is larger than the critical parameter for
the Ising model, then Hκ(γ ) is uniformly bounded from below for all γ. At the same
time, by standard arguments, we have

〈
Le(σ, φ)

〉
∞,κ,∞ = e−4·8κ + oκ(1).

Remark 1.3. Using the previous remark, we now interpret our main theorem. To this,
end, assume that γ is a loop along the boundary of a rectangle R. Assume further
that the two sides of R are of the same order, so that K0 is bounded from above, and
that β and | supp γ | are both very large. Then, by Theorem 1.1, the following holds.

If | supp γ |e−24β−4κ is very large, then 〈Lγ (σ, φ)〉β,κ,∞ is very close to zero, and if
| supp γ |e−24β−4κ is bounded from above, then 〈Lγ (σ, φ)〉β,κ,∞ will be non-trivial.

Remark 1.4. The assumption that 182e−4κ0(2 + e−4κ0) < 1 guarantees that the clusters
formed by the edges in unitary gauge (see Sect. 2.5) are finite almost surely, and this is
one of the main properties of the model which we use in the proof of Theorem 1.1. The
assumptions that 6β ≥ κ and that the path γ is along the boundary of a rectangle is used
only to simplify �′

β,κ (γ ) and K0, and is not needed for any of the main ideas of the
proof. In particular, the strategy used to do this also works for more general classes of
loops, as long as their shape is not too rough.

Remark 1.5. If γ is a generalized loop, then Hκ(γ ) = 1, and hence, in this case, we
essentially recover Theorem 1.1 [18].

In Sect. 10, we state a more general version of Theorem 1.1 (Theorem 10.1). While
this result is stated for cyclic groups, with minor changes, this paper’s arguments should
also work in a more general setting. In particular, the proof strategy should work for
all finite abelian groups. Finally, we also mention that alternative versions of our main
result, with different error bounds, are given by Proposition 7.1 and Proposition 10.18.
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1.6. Applications. We now apply our main result to a few different Wilson lines, and
ratios of Wilson lines, which has been considered in the physics literature. In all of these
examples, we will work under the assumptions of Theorem 1.1. We note that, when
these hold, if γ is a loop along a rectangle with side lengths of the same order, then, by
Theorem 1.1, we have

〈
Lγ (σ, φ)

〉
β,κ,∞ = �′

β,κ (γ )Hκ(γ ) + oβ(1) + o| supp γ |(1).

Example 1.6. In [5], Bricmont and Frölich consider Wilson line observables Lγ (σ, φ)

for axis parallel paths γ which are a shortest path between two points x1 and x2 (see
Fig. 1).

The authors argue that the expectation 〈Lγ (σ, φ)〉β,κ should exhibit a phase transition,
corresponding to binding versus unbinding of dynamical quarks in the field of a static
colour source.

In detail, they argue that 〈Lγ (σ, φ)〉β,κ,∞ should have exponential decay with poly-
nomial corrections if β is large and κ is small, and exponential decay if either β is large
and κ is not too small.

Since, under assumption 3, Hκ(γ ) is uniformly bounded from below for all γ , and
�′

β,κ (γ ) has exponential decay in | supp γ |, we see that 〈Lγ (σ, φ)〉β,κ,∞ indeed has
exponential decay in | supp γ | when β is large and κ is not too small.

Example 1.7 [The Marcu-Fredenhagen parameter].
Let γ and γ ′ be as in Fig. 2. In [15,29], they consider the ratio

〈Lγ ′(σ, φ)〉β,κ,∞〈Lγ−γ ′(σ, φ)〉β,κ,∞
〈Wγ (σ )〉β,κ,∞

. (1.3)

Fig. 1. The open path γ . Note that for any 1 ≥ |x2 − x1| and 2 ≥ 0 there is a rectangle R with side lengths
1 and 2 so that γ is a path along the boundary of R, and hence γ satisfies the assumptions of Theorem 1.1

Fig. 2. The open path γ ′ and the generalized loop γ considered in Example 1.7
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The limit of this ratio, when |x2 − x1| is proportional to h and h → ∞, is often
referred to as the Marcu-Fredenhagen order parameter.

If this limit is zero, the model in argued to have charged states, and no confinement,
whereas if the limit is non-zero, then there should be no charged states and confinement.

We mention that this ratio is also studied in, e.g., [6,20,25,29,30].
As an immediate consequence of our Theorem 1.1, if κ is not too small and β, κ,

and γ are such that | supp γ |e−24β−4κ is bounded away from infinity, then the right hand
side of (1.3) is equal to Hκ(γ ′)2 + o| supp γ |(1) + oβ(1).

However, since letting | supp γ | tend to infinity while keeping β and κ fixed violates
that assumption that | supp γ |e−24β−4κ is bounded away from infinity, we cannot use
this approximate equation to make conclusions about the Marcu-Fredenhagen parameter
itself.

Example 1.8. Let γ and γ ′ be as in Fig. 3.
In [23], Gliozzi considers the ratio

〈Lγ ′(σ, φ)〉β,κ,∞Lγ−γ ′(σ, φ)〉β,κ,∞
〈Wγ (σ )〉β,κ,∞

, (1.4)

and note that it, asymptotically, seem to only depend on the distance |x2 − x1|. Indeed,
from Theorem 1.1, it follows that if | supp γ |e−24β−4κ is bounded away from infinity and
κ is not too small, then the expression in (1.8) is equal to Hκ(γ ′)2 + o| supp γ |(1) + oβ(1).

Using Remark 1.2 to recognise Hκ(γ ′) as the spin-spin-correlation function for the Ising
model, evaluated at the end-points of γ ′, this confirms the observation made in [23].

Example 1.9 [Almost closed Wilson lines]. Let γ and γ ′ be as in Fig. 4, and let r be the
distance between the endpoints of γ ′. In [23], when r is much smaller that | supp γ |, the
path γ ′ is referred to as an almost closedWilson line, and it was argued that the following
functional equation should hold.

〈
Lγ ′(σ, φ)

〉
β,κ,∞

〈
Lγ−γ ′(σ, φ)

〉
β,κ,∞  〈

Wγ (σ )
〉
β,κ,∞ f (r) (1.5)

for some function f (r) that should neither depend on γ nor on the placement of the
open path γ − γ ′ on γ.

Using our main result, it indeed see that if κ is not too small, then (assuming that the
side lengths of the rectangle are proportional to | supp γ | is large), we have
〈
Lγ ′(σ, φ)

〉
β,κ,∞

〈
Lγ−γ ′(σ, φ)

〉
β,κ,∞ = 〈

Wγ (σ )
〉
β,κ,∞Hκ(γ ′)2 + o| supp γ |(1) + oβ+6κ(1).

Fig. 3. The open path γ ′ and generalized loop γ considered in Example 1.8



275 Page 8 of 70 M. P. Forsström

Fig. 4. The open path γ ′ and the loop γ considered considered in Example 1.9

In particular, using Remark 1.2, this shows that the functional equation in (1.5) indeed
hold when | supp γ | and β are both large, and with f (r) given by the spin-spin-correlation
function evaluated at the endpoints of γ ′.

1.7. Relation to other work. Many of the ideas used in this paper are refined versions of
analogue ideas used in [18], which in turn build upon the works [7,9,17]. However, since
this paper deals with general paths γ, and not only generalized loops as in [7,9,17,18],
the first main idea in these papers, which is to pass from a generalized loop to an oriented
surface, does not work. One of the main contributions of this paper thus consists in dealing
with this obstacle. Even in the case when the path γ in Theorem 1.1 is a generalized
loop, our proof is different from that in [18], and we hence provides an alternative proof
in this case. In addition, when γ is a generalized loop, we express the leading-order term
in a more transparent way than in [18].

We mention that although the recent paper [21] also calculate the first order term of
Wilson loop observables in an abelian lattice gauge theory, they work with a continuous
structure group, and thus their methods are fundamentally different from the ideas used
here.

1.8. Structure of paper. In Sect. 2, we give a brief introduction to the cell complex of
Z
m and the discrete exterior calculus on this cell complex. We also define vortices and

recall some of their properties from [17] to [18]. Moreover, we recall the definition
of generalized loops and oriented surfaces from [18], explain unitary gauge and de-
fine a corresponding measure, and discuss the existence of the infinite volume limit
Eβ,κ,∞[Lγ (σ, φ)]. In Sect. 3, we introduce additional notation which will be useful
throughout the paper. In Sect. 4, we recall the notion of activity of gauge field configura-
tions from [18]. In Sect. 5, we describe a useful edge graph, and introduce two couplings,
one between the abelian lattice Higgs model and a Zn-model, and one between two Zn-
models. These will be important in the proof of our main result. In Sect. 6, using the edge
graph from Sect. 5, we give upper bounds on a number of events related to the couplings
introduced in Sect. 5. Next, in Sect. 7, we show how one of the couplings introduced
in Sect. 5 can be used to obtain a first version of our main result, which is useful when
| supp γ |e−4(κ+6β) is small. This result is not needed for the proof of Theorem 1.1, but
illustrates the usefulness of the coupling. In Sect. 8, we introduce a spin decomposition
of two coupled configurations. In Sect. 9, we describe how different 1-forms affect the
Wilson line observable. Finally, in Sect. 10, we use the setup from the earlier sections to
give a proof of our main result.
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2. Preliminaries

2.1. The cell complex. In this section, we introduce notation for the cell complexes of
the lattices Z

m and BN := [−N , N ]m ∩ Z
m for m, N ≥ 1. This section will closely

follow the corresponding section in [17], where we refer the reader for further details.
To simplify notation, we define e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), …, em :=

(0, . . . , 0, 1).

2.1.1. Boxes and cubes. A set B of the form
([a1, b1] × · · · × [am, bm]) ∩ Z

m where,
for each j ∈ {1, 2, . . . ,m}, {a j , b j } ⊂ Z satisfies a j < b j , will be referred to as
a box. If all the intervals [a j , b j ], 1 ≤ j ≤ m, have the same length, then the set([a1, b1] × · · · × [am, bm]) ∩ Z

m will be referred to as a cube.

2.1.2. Non-oriented cells. When a ∈ Z
m , k ∈ {0, 1, . . . ,m}, and { j1, . . . , jk}

⊆ {1, 2, . . . ,m}, we say that the set

(a; e j1 , . . . , e jk ) := {
x ∈ R

m : ∃b1, . . . , bk ∈ [0, 1] such that x = a +
k∑

i=1

bi e ji
}

is a non-oriented k-cell. Note that if σ is a permutation, then (a; e j1 , . . . , e jk ) and
(a; σ(e j1 , . . . , e jk )) represent the same non-oriented k-cell.

2.1.3. Oriented cells. To each non-oriented k-cell (a; e j1 , . . . , e jk ) with a ∈ Z
m , k ≥ 1,

and 1 ≤ j1 < · · · < jk ≤ m, we associate two oriented k-cells, denoted ∂

∂x j1

∣∣
a ∧

· · · ∧ ∂

∂x jk

∣∣
a and − ∂

∂x j1

∣∣
a ∧ · · · ∧ ∂

∂x jk

∣∣
a , with opposite orientation. When a ∈ Z

m ,
1 ≤ j1 < · · · < jk ≤ m, and σ is a permutation of {1, 2, . . . , k}, we define

∂

∂x jσ(1)

∣∣∣∣
a

∧ · · · ∧ ∂

∂x jσ(k)

∣∣∣∣
a
:= sgn(σ )

∂

∂x j1

∣∣∣∣
a

∧ · · · ∧ ∂

∂x jk

∣∣∣∣
a

If sgn(σ ) = 1, then ∂

∂x jσ(1)

∣∣
a ∧ · · · ∧ ∂

∂x jσ(k)

∣∣
a is said to be positively oriented, and if

sgn(σ ) = −1, then ∂

∂x jσ(1)

∣∣
a ∧ · · · ∧ ∂

∂x jσ(k)

∣∣
a is said to be negatively oriented. Analo-

gously, we define

− ∂

∂x jσ(1)

∣∣∣∣
a

∧ · · · ∧ ∂

∂x jσ(k)

∣∣∣∣
a
:= − sgn(σ )

∂

∂x j1

∣∣∣∣
a

∧ · · · ∧ ∂

∂x jk

∣∣∣∣
a
,

and say that − ∂

∂x jσ(1)

∣∣∣∣
a

∧ · · · ∧ ∂

∂x jσ(k)

∣∣∣∣
a

is positively oriented if − sgn(σ ) = 1, and

negatively oriented if − sgn(σ ) = −1.

Let L = Z
m or L = BN ⊆ Z

m . An oriented cell ∂

∂x j1

∣∣
a ∧ · · · ∧ ∂

∂x jk

∣∣
a is said to be in

L if all corners of (a; e j1 , . . . , e jk ) belong to L; otherwise it is said to be outside L. The
set of all oriented k-cells in L will be denoted by Ck(L). The set of all positively and
negatively oriented cells in Ck(L) will be denoted by C+

k (L) and C−
k (L), respectively.

A set C ⊆ Ck(L) is said to be symmetric if for each c ∈ C we have −c ∈ C .
A non-oriented 0-cell a ∈ Z

m is simply a point, and to each point we associate two
oriented 0-cells a+ and a− with opposite orientation. We let C0(L) denote the set of all
oriented 0-cells.

Oriented 1-cells will be referred to as edges, and oriented 2-cells will be referred to
as plaquettes.
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2.1.4. k-chains. The space of finite formal sums of positively oriented k-cells with
integer coefficients will be denoted by Ck(L, Z). Elements of Ck(L, Z) will be referred
to as k-chains. If q ∈ Ck(L, Z) and c ∈ C+

k (L), we let q[c] denote the coefficient of c
in q. If c ∈ C−

k (L), we let q[c] := − q[−c]. For q, q ′ ∈ Ck(L, Z), we define

q + q ′ :=
∑

c∈C+
k (L)

(
q[c] + q ′[c])c.

Using this operation, Ck(L, Z) becomes a group.
When q ∈ Ck(L,G), we let the support of q be defined by

supp q := {
c ∈ C+

k (L) : q[c] �= 0
}
.

To simplify notation, when q ∈ Ck(L,G) and c ∈ Ck(L), we write c ∈ q if either

(1) c ∈ C+
k (L) and q[c] > 0, or

(2) c ∈ C−
k (L) and q[−c] < 0.

2.1.5. The boundary of a cell When k ≥ 2, we define the boundary ∂c ∈ Ck−1(L, Z)

of c = ∂

∂x j1

∣∣
a ∧ · · · ∧ ∂

∂x jk

∣∣
a ∈ Ck(L) by

∂c :=
∑

k′∈{1,...,k}

(
(−1)k

′ ∂

∂x j1

∣∣∣∣
a

∧ · · · ∧ ∂

∂x jk′−1

∣∣∣∣
a

∧ ∂

∂x jk′+1

∣∣∣∣
a

∧ · · · ∧ ∂

∂x jk

∣∣∣∣
a

+ (−1)k
′+1 ∂

∂x j1

∣∣∣∣
a+e jk′

∧ · · · ∧ ∂

∂x jk′−1

∣∣∣∣
a+e jk′

∧ ∂

∂x jk′+1

∣∣∣∣
a+e jk′

∧ · · · ∧ ∂

∂x jk

∣∣∣∣
a+e jk′

)
.

(2.1)

When c := ∂

∂x j1

∣∣
a ∈ C1(L) we define the boundary ∂c ∈ C0(L, Z) by

∂c = (−1)1a+ + (−1)1+1(a + e j1)
+ = (a + e j1)

+ − a+.

We extend the definition of ∂ to k-chains q ∈ Ck(L, Z) by linearity. One verifies, as
an immediate consequence of this definition, that if k ∈ {2, 3, . . . ,m}, then ∂∂c = 0 for
any c ∈ �k(L).

2.1.6. The coboundary of an oriented cell If k ∈ {0, 1, . . . , n − 1} and c ∈ Ck(L) is an
oriented k-cell, we define the coboundary ∂̂c ∈ Ck+1(L) of c as the (k + 1)-chain

∂̂c :=
∑

c′∈Ck+1(L)

(
∂c′[c])c′.

Note in particular that if c′ ∈ Ck+1(L), then ∂̂c[c′] = ∂c′[c]. We extend the definition
of ∂̂ to k-chains q ∈ Ck(L, Z) by linearity.

2.1.7. The boundary of a box An oriented k-cell c = ∂

∂x j1

∣∣
a ∧ · · · ∧ ∂

∂x jk

∣∣
a ∈ Ck(BN )

is said to be a boundary cell of a box B = ([a1, b1] × · · · × [am, bm]) ∩ Z
m ⊆ BN ,

or equivalently to be in the boundary of B, if the non-oriented cell (a; e j1 , . . . , e jk ) is a
subset of the boundary of [a1, b1] × · · · × [am, bm].

When k ∈ Ck(BN ), we let ∂Ck(BN ) denote the set cells in Ck(BN ) which are
boundary cells of BN .
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2.2. Discrete exterior calculus. In what follows, we give a brief overview of discrete
exterior calculus on the cell complexes of Z

m and B = [a1, b1]×· · ·×[am, bm]∩Z
m for

m ≥ 1. As with the previous section, this section will closely follow the corresponding
section in [17], where we refer the reader for further details and proofs.

All of the results in this subsection are obtained under the assumption that an abelian
group G, which is not necessarily finite, has been given. In particular, they all hold for
both G = Zn and G = Z.

2.2.1. Discrete differential forms A homomorphism from the group Ck(L, Z) to the
group G is called a k-form. The set of all such k-forms will be denoted by �k(L,G).
This set becomes an abelian group if we add two homomorphisms by adding their values
in G.

The set C+
k (L) of positively oriented k-cells is naturally embedded in Ck(L, Z) via

the map c �→ 1 ·c, and we will frequently identify c ∈ C+
k (L) with the k-chain 1 ·c using

this embedding. Similarly, we will identify a negatively oriented k-cell c ∈ C−
k (L)

with the k-chain (−1) · (−c). In this way, a k-form ω can be viewed as a G-valued
function on Ck(L) with the property that ω(c) = −ω(−c) for all c ∈ Ck(L). Indeed, if
ω ∈ �k(L,G) and q = ∑

ai ci ∈ Ck(L, Z), we have

ω(q) = ω
(∑

ai ci
) =

∑
aiω(ci ),

and hence a k-form is uniquely determined by its values on positively oriented k-cells.
If ω is a k-form, it is useful to represent it by the formal expression

∑

1≤ j1<···< jk≤m

ω j1... jk dx
j1 ∧ · · · ∧ dx jk .

where ω j1... jk is a G-valued function on the set of all a ∈ Z
m such that ∂

∂x j1

∣∣
a ∧ · · · ∧

∂

∂x jk

∣∣
a ∈ Ck(L), defined by

ω j1... jk (a) = ω

(
∂

∂x j1

∣∣∣∣
a

∧ · · · ∧ ∂

∂x jk

∣∣∣∣
a

)
.

If 1 ≤ j1 < · · · < jk ≤ m and σ is a permutation of {1, 2, . . . , k}, we define

dx jσ(1) ∧ · · · ∧ dx jσ(k) := sgn(σ ) dx j1 ∧ · · · ∧ dx jk ,

and if 1 ≤ j1, . . . , jk ≤ n are such that ji = ji ′ for some 1 ≤ i < i ′ ≤ k, then we let

dx j1 ∧ · · · ∧ dx jk := 0.

Given a k-form ω, we let supp ω denote the support of ω, i.e., the set of all oriented
k-cells c such that ω(c) �= 0. Note that supp ω always contains an even number of
elements.
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2.2.2. The exterior derivative Given h : Z
m → G, a ∈ Z

m , and i ∈ {1, 2, . . . ,m}, we
let

∂i h(a) := h(a + ei ) − h(a).

If k ∈ {0, 1, 2, . . . ,m} and ω ∈ �k(L,G), we define the (k + 1)-form dω ∈ �k+1(L,G)

by

dω =
∑

1≤ j1<···< jk≤m

m∑

i=1

∂iω j1,..., jk dx
i ∧ (dx j1 ∧ · · · ∧ dx jk ).

The operator d is called the exterior derivative. Using (2.1), one can show that ω ∈
�k(L,G) and c ∈ Ck(L, Z), we have dω(c) = ω(∂c). This equality is known as the
discrete Stokes’ theorem. Recalling that when k ∈ {2, 3, . . . ,m − 2} and c ∈ Ck+2(L),
then ∂∂c = 0, it follows from the discrete Stokes theorem that for any ω ∈ �k(L,G),

we have ddω = 0.

2.2.3. Closed forms and the Poincaré lemma For k ∈ {0, . . . ,m}, we say that a k-form
ω ∈ �k(L,G) is closed if dω(c) = 0 for all c ∈ Ck+1(L). The set of all closed forms
in �k(L,G) will be denoted by �k

0(L,G).

Lemma 2.1 [The Poincaré lemma, Lemma 2.2 in [9]]. Let k ∈ {1, . . . ,m} and let
B be a box in Z

m. Then the exterior derivative d is a surjective map from the set
�k−1(B ∩ Z

m,G) to �k
0(B ∩ Z

m,G). Moreover, if G is finite, then this map is an∣∣�k−1
0 (B ∩ Z

m,G)
∣∣-to-1 correspondence.

Lastly, if k ∈ {1, 2, . . . ,m − 1} and ω ∈ �k
0(B ∩ Z

m,G) vanishes on the boundary
of B, then there is a (k − 1)-form ω′ ∈ �k−1(B ∩ Z

m,G) that also vanishes on the
boundary of B and satisfies dω′ = ω.

2.2.4. Non-trivial forms. We say that a k-form ω ∈ �k(L,G) is non-trivial if there is
at least one k-cell c ∈ Ck(L) such that ω(c) �= 0.

2.2.5. Restrictions of forms. If ω ∈ �k(L,G), C ⊆ Ck(L) is symmetric, and c ∈ C ,
we define

ω|C (c) :=
{

ω(c) if c ∈ C,

0 else.

2.2.6. A partial ordering of�k(L,G). We now recall the partial ordering on differential
forms, which was introduced in [18].

Definition 2.2 [Definition 2.6 in [18]]. When k ∈ {0, 1, . . . ,m} and ω,ω′ ∈ �k(L,G),
we write ω′ ≤ ω if

(i) ω′ = ω|supp ω′ , and
(ii) dω′ = (dω)|supp dω′ .

If ω′ �= ω and ω′ ≤ ω, we write ω′ < ω.

The following lemma from [18] collects some basic facts about the relation ≤ on
�k(L,G), and shows that ≤ is a partial order on �k(L,G).
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Lemma 2.3 [Lemma 2.7 in [18]]. Let k ∈ {0, 1, . . . ,m} and ω,ω′, ω′′ ∈ �k(L,G).
The relation ≤ on �k(L,G) has the following properties.

(i) Reflexivity: ω ≤ ω.
(i) Antisymmetry: If ω′ ≤ ω and ω ≤ ω′, then ω = ω′.

(iii) Transitivity: If ω′′ ≤ ω′ and ω′ ≤ ω, then ω′′ ≤ ω.
(iv) If ω′ ≤ ω, then ω − ω′ = ω|C1(BN )�(supp ω′) ≤ ω.
(v) If ω′ ≤ ω, then supp dω′ and supp d(ω − ω′) are disjoint.

The next lemma guarantees the existence of minimal elements satisfying certain
constraints.

Lemma 2.4 [Lemma 2.8 in [18]]. Let k ∈ {0, 1, . . . ,m}, let � ⊆ �k(L,G), and let
ω ∈ �. Then there is ω′ ≤ ω such that

(i) ω′ ∈ �, and
(ii) There is no ω′′ < ω′ such that ω′′ ∈ �.

2.2.7. Irreducible forms The partial ordering given in Definition 2.2 allows us to intro-
duce a notion of irreducibility.

Definition 2.5 [Definition 2.9 in [18]]. When k ∈ {0, 1, . . . ,m − 1}, a k-form ω ∈
�k(L,G) is said to be irreducible if there is no non-trivial k-form ω′ ∈ �k(L,G) such
that ω′ < ω.

Equivalently, ω ∈ �k(L,G) is irreducible if there is no non-empty set S � supp ω

such that supp d(ω|S) and supp d(ω|Sc ) are disjoint. Note that if ω ∈ �k(L,G) satisfies
dω = 0, then ω is irreducible if and only if there is no non-empty set S � supp ω such
that d(ω|S) = d(ω|Sc ) = 0.

Lemma 2.6 [Lemma 2.10 in [18]]. Let k ∈ {0, 1, . . . ,m − 1}, and let ω ∈ �k(L,G) be
non-trivial and have finite support.

Then there is an integer j ≥ 1 and k-forms ω1, . . . , ω j ∈ �k(L,G) such that

(i) For each i ∈ {1, 2, . . . , j}, ωi is non-trivial and irreducible,
(ii) For each i ∈ {1, 2, . . . , j}, ωi ≤ ω,
(iii) ω1, . . . , ω j have disjoint supports,
(iv) ω = ω1 + · · · + ω j , and
(v) dω1, . . . , dω j have disjoint supports.

A set � := {ω1, . . . , ω j } ⊆ �k(L,G) such that ω1, . . . , ω j satisfies (2.6) –(2.6) of
Lemma 2.6 will be referred to as a decomposition of ω ∈ �k(L,G).

We note that as an immediate consequence of the previous lemma, if ω ∈ �2
0(L,G)

has finite support, then there is a set � ⊆ �2
0(L,G) which is a decomposition of ω (see

also Lemma 2.12 in [18]).

2.2.8. Minimal forms. In this section, we recall three lemmas from [18] which gives
lower bounds on the size of the support of differential forms. Throughout this section,
we assume that m = 4. In other words, we assume that we are working on the Z

4-lattice.

Lemma 2.7 [Lemma 2.16 in [18]]. Let σ ∈ �1(L,G). Then

| supp σ | ≥ | supp dσ |/6.
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Lemma 2.8. Let ω ∈ �2
0(L,G) be non-trivial and have finite support, and assume that

there is a plaquette p ∈ supp ω such that supp ∂p contains no boundary edges of BN .

Then |(supp ω)+| ≥ 6, and if |(supp ω)+| = 6, then there is an edge e0 ∈ C1(BN )

such that supp ν = supp ∂̂e0 ∪ supp ∂̂(−e0).

For a proof of Lemma 2.8, see, e.g., Lemma 3.4.6 in [7].

Lemma 2.9 [Lemma 2.19 in [18]]. Let σ ∈ �1
0(BN ,G) be non-trivial, and assume that

there is an edge e ∈ supp σ such that the support of ∂̂e contains no boundary cells of
BN . Then |(supp σ)+| ≥ 8.

2.3. Vortices. In this section, we use the notion of irreducibility introduced in Sect. 2.2.7
to define what we refer to as vortices. We mention that the definition of a vortex given
in Definition 2.10 below is identical to the definitions used in [17,18], but is different
from the corresponding definitions in [7,9].

Definition 2.10 [Vortex]. Let σ ∈ �1(BN ,G). A non-trivial and irreducible 2-form
ν ∈ �2

0(BN ,G) is said to be a vortex in σ if ν ≤ dσ , i.e., if dσ(p) = ν(p) for all
p ∈ supp ν.

We say that σ ∈ �1(BN ,G) has a vortex at V ⊆ C2(BN ) if (dσ)|V is a vortex in σ .

Lemma 2.11 [Lemma 3.6 in [18]]. Let σ ′, σ ∈ �1(BN ,G) be such that σ ′ ≤ σ , and
let ν ∈ �2

0(BN ,G) be a vortex in σ ′. Then ν is a vortex in σ .

With Lemma 2.8 in mind, we say that a vortex ν such that no plaquette in supp ν is
a boundary plaquette of L is a minimal vortex if | supp ν| = 12.

Lemma 2.12 [Lemma 3.2 in [18]]. Let σ ∈ �1(BN ,G), and let ν ∈ �2
0(BN ,G) be

a minimal vortex in σ . Then there is an edge ∂x j ∈ C1(BN ) and a group element
g ∈ G � {0} such that

ν = d
(
g dx j

)
. (2.2)

In particular, dσ(p) = ν(p) = g whenever p ∈ ∂̂e0.

If σ ∈ �1(BN ,G) and ν ∈ �2
0(BN ,G) is a minimal vortex in σ which can be written

as in (2.2) for some e0 ∈ C1(BN ) and g ∈ G\{0}, then we say that ν is a minimal vortex
centered at e0.

2.4. Generalized loops and oriented surfaces. In this section, we recall the definitions
of generalized loops and oriented surfaces from [17], and outline their connection.

Definition 2.13 [Definition 2.6 in [17]]. A 1-chain γ ∈ C1(L, Z) with finite support is
a generalized loop if

(1) for all e ∈ �1(L), we have γ [e] ∈ {−1, 0, 1}, and
(2) ∂γ = 0.

Definition 2.14 [Definition 2.7 in [17]]. Let γ ∈ C1(L, Z) be a generalized loop. A
2-chain q ∈ C2(L, Z) is an oriented surface with boundary γ if ∂q = γ.
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We recall that by Stokes’ theorem (see Sect. 2.2.2), for any q ∈ C2(L,G) and any
σ ∈ �1(L,G), we have

σ(∂q) = dσ(q).

The following lemma gives a connection between generalized loops and oriented
surfaces.

Lemma 2.15 [Lemma 2.8 in [17]]. Let γ ∈ C1(L, Z) be a generalized loop, and let
B ⊆ L be a box containing the support of γ . Then there is an oriented surface q ∈
C2(L, Z) with support contained in B such that γ is the boundary of q.

2.5. Unitary gauge. In this section, we introduce gauge transforms, and the describe
how these can be used to rewrite the Wilson line expectation as an expectation with
respect to a slightly simpler probability measure.

Before we can state the main results of this section, we need to briefly discuss gauge
transformations. To this end, for η ∈ �0(BN ,G), consider the bijection τ := τη := τ

(1)
η ×

τ
(2)
η : �1(BN ,G) × �0(BN ,G) → �1(BN ,G) × �0(BN ,G), defined by

{
σ(e) �→ −η(x) + σ(e) + η(y), e = (x, y) ∈ C1(BN ),

φ(x) �→ φ(x) + η(x), x ∈ C0(BN ).
(2.3)

Any mapping τ of this form is called a gauge transformation. Any mapping τ of this
form is called a gauge transformation, and functions f : �1(BN ,G)×�0(BN ,G) → C

which are invariant under such mappings in the sense that f = f ◦τ are said to be gauge
invariant.

For β, κ ≥ 0 and σ ∈ �1(BN ,G), define

μN ,β,κ (σ ) := Z−1
N ,β,κ exp

(
β

∑

p∈C2(BN )

ρ
(
dσ(p)

)
+ κ

∑

e∈C1(BN )

ρ
(
σ(e)

))
, (2.4)

where Z−1
N ,β,κ is a normalizing constant which ensures that μN ,β,κ is a probability mea-

sure. We let EN ,β,κ denote the corresponding expectation.
The main reason that gauge transformations are useful to us is the following result.

Proposition 2.16 [Proposition 2.21 in [18]]. Let β, κ ≥ 0, and let and assume that the
function f : �1(BN ,G) × �0(BN ,G) → C is gauge invariant. Then

EN ,β,κ,∞
[
f (σ, φ)

] = EN ,β,κ

[
f (σ, 1)

]
.

The main idea of the proof of Proposition 2.16 is to perform a change of variables,
where we for each pair (σ, φ) apply the gauge transformation τ−φ, thus mapping φ to
0. After having applied this gauge transformation, we are said to be working in unitary
gauge.

Noting that for any path γ , the function (σ, φ) �→ Lγ (σ, φ) is gauge invariant, we
obtain the following result as an immediate corollary of Proposition 2.16.

Corollary 2.17. Let β ∈ [0,∞], κ ≥ 0, and let γ be a path in C1(BN ). Then

EN ,β,κ,∞
[
Lγ (σ, φ)

] = EN ,β,κ

[
Lγ (σ, 1)

] = EN ,β,κ

[
ρ
(
σ(γ )

)]
.
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Results analogous to Proposition 2.16 are considered well-known in the physics
literature.

By combining the previous result with Lemma 2.1, we obtain the following result,
which will help us interpret our main result.

Corollary 2.18. Let κ ≥ 0, and let γ be an open path from x1 ∈ C0(BN ) to x2 ∈
C0(BN ). Then

Hκ(γ ) = lim
N→∞ Z−1

N ,κ

∑

η∈�0(BN ,G)

ρ
(
η(−x1)

)
ρ
(
η(x2)

)
e−κ

∑
e∈C1(BN ) ρ(η(∂e))

,

where

ZN ,κ :=
∑

η∈�0(BN ,G)

eκ
∑

e∈C1(BN ) ρ(η(∂e))
.

If particular, if G = Z2, then Hκ(γ ) is the spin-spin-correlation between for the spins
at the endpoints of γ for the Ising model on BN with coupling constant κ.

Proof. By Corollary 2.17, we have

Hκ(γ ) = 〈
Lγ (σ, φ)

〉
∞,κ,∞ = lim

N→∞
〈
Lγ (σ, φ)

〉
N ,∞,κ,∞

= lim
N→∞ EN ,∞,κ,∞

[
Lγ (σ, φ)

] = lim
N→∞ EN ,∞,κ

[
Lγ (σ, 1)

]

= lim
N→∞ Z−1

N ,∞,κ,∞
∑

σ∈�1
0(BN ,G)

ρ(σ (γ ))eκ
∑

e∈C1(BN ) ρ(σ (e))
.

Since β = ∞, we only need to sum over σ ∈ �1
0(BN ,G). Now recall that by Lemma 2.1,

for each σ ∈ �1
0(BN ,G) there is η ∈ �0(BN ,G) such that dη = σ. Moreover, the map-

ping η �→ dη is a |�0
0(BN ,G)|-to-1 correspondence. From this the desired conclusion

immediately follows. ��
With the current section in mind, we will work with σ ∼ μN ,β,κ rather than (σ, φ) ∼
μN ,β,κ,∞ throughout the rest of this paper, together with the observable

Lγ (σ ) := Lγ (σ, 1) =
∏

e∈γ

ρ
(
σ(e)

) = ρ(σ(γ )).

2.6. Existence of the infinite volume limit. In this section, we recall a result which shows
existence and translation invariance of the infinite volume limit 〈Lγ (σ, φ)〉β,κ defined
in the introduction. This result is well-known, and is often mentioned in the literature
as a direct consequence of the Ginibre inequalities. A full proof of this result in the
special case κ = 0 was included in [17], and the general case can be proven completely
analogously, hence we omit the proof here.

Proposition 2.19. Let G = Zn, M ≥ 1, and let f : �1(BM ,G) → R.
For M ′ ≥ M, we abuse notation and let f denote the natural extension of f

to C1(BM ′), i.e., the unique function such that f (σ ) = f (σ |C1(BM )) for all σ ∈
�1(BM ′ ,G).

Further, let β ∈ [0,∞] and κ ≥ 0. Then the following hold.
(i) The limit limN→∞ EN ,β,κ

[
f (σ )

]
exists.

(ii) For any translation τ of Z
m, we have limN→∞ EN ,β,κ

[
f ◦ τ(σ )

] =
limN→∞ EN ,β,κ

[
f (σ )

]
.
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3. Additional Notation and Standing Assumptions

Throughout the rest of this paper, we will assume that N ≥ 1 is given, and that G = Zn
for some n ≥ 2.

To simplify the notation, we now introduce some additional notation.
For r ≥ 0 and g ∈ G, we define

ϕr (g) := er�(ρ(g)−ρ(0)). (3.1)

We extend this notation to r = ∞ by letting

ϕ∞(g) :=
{

1 if g = 0,

0 if g ∈ G � {0}.
Next, for ĝ ∈ G and β, κ ≥ 0, we define

θβ,κ (ĝ) :=
∑

g∈G ρ(g)ϕβ(g)12ϕκ(g + ĝ)2

∑
g∈G ϕβ(g)12ϕκ(g + ĝ)2 . (3.2)

When γ is a path, or when E ⊆ C1(BN ) is a finite set, we define

�N ,β,κ (γ ) := EN ,∞,κ

[∏

e∈γ

θβ,κ

(
σ(e)

)]
and �N ,β,κ (E) := EN ,∞,κ

[∏

e∈E
θβ,κ

(
σ(e)

)]
.

(3.3)

We next define a number of functions which will be used as error bounds. To this
end, for r ≥ 0, let

α0(r) :=
∑

g∈G�{0}
ϕr (g)

2 and α1(r) := max
g∈G�{0} ϕr (g)

2. (3.4)

Next, for β, κ ≥ 0, define

α2(β, κ) := α0(β)α0(κ)1/6, α3(β, κ) := ∣∣1 − θβ,κ (0)
∣∣, α4(β, κ)

:= max
g∈G

∣∣θβ,κ (g) − θβ,κ (0)
∣∣, (3.5)

α5(β, κ) := min
g1,g2,...,g6∈G

(
1 −

∣∣∣∣

∑
g∈G ρ(g)

(∏6
k=1 ϕβ(g + gk)2

)
ϕκ(g)2

∑
g∈G

(∏6
k=1 ϕβ(g + gk)2

)
ϕκ(g)2

∣∣∣∣

)

(3.6)

and

α6(β, κ) := max
g∈G

∣∣1 − θβ,κ (g)
∣∣. (3.7)

When γ is a path, an edge e ∈ supp γ is said to be a corner edge in γ if there is
another edge e′ ∈ γ and a plaquette p ∈ ∂̂e such that p ∈ ±∂̂e′. We define the 1-form
γc ∈ C1(L, Z) for c′ ∈ C1(BN ) by

γc[c′] :=
{

γ [c′] if c′ is a corner edge of γ,

0 else.
(3.8)

In the rest of this paper, we will often work under the following assumption.
[A] 182α0(κ)(2 + α0(κ)) < 1.

In essence, the purpose of this assumption is to guarantee that we are in the sub-critical
regime of the model, where certain edge clusters are finite almost surely.
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4. Activity of Gauge Field Configurations

In this section, we recall the useful notion of the activity of a gauge field configurations
from [18]. To this end, recall the definition of ϕr from the previous section. Since ρ

is a unitary representation of G, for any g ∈ G we have ρ(g) = ρ(−g), and hence
�ρ(g) = �ρ(−g). In particular, this implies that for any g ∈ G and any r ≥ 0, we
have

ϕr (g) = er(�ρ(g)−ρ(0)) = erβ(�ρ(−g)−ρ(0)) = ϕr (−g). (4.1)

Clearly, we also have ϕ∞(g) = ϕ∞(−g) for all g ∈ G. Moreover, if a ≥ 0 and r ≥ 0,
then

ϕr (g)
a = ϕar (g).

Abusing notation, for σ ∈ �1(BN ,G) and r ∈ [0,∞], we define

ϕr (σ ) :=
∏

e∈C1(BN )

ϕr
(
σ(e)

)
,

and for ω ∈ �2
0(BN ,G), we define

ϕr (ω) :=
∏

p∈C2(BN )

ϕr
(
ω(p)

)
.

For β ∈ [0,∞] and κ ≥ 0, we define the activity of σ ∈ �1(BN ,G) by

ϕβ,κ(σ ) := ϕκ(σ )ϕβ(dσ).

Note that with this notation, for σ ∈ �1(BN ,G), β ∈ [0,∞], and κ ≥ 0, we have

μN ,β,κ (σ ) = ϕβ,κ(σ )∑
σ ′∈�1(BN ,G) ϕβ,κ (σ ′)

. (4.2)

Before ending this section, we recall two results from [18] about the activity of gauge
field configurations, which will be useful to us.

Lemma 4.1 [Lemma 4.1 in [18]]. Let σ, σ ′ ∈ �1(BN ,G) be such that σ ′ ≤ σ , let
β ∈ [0,∞], and let κ ≥ 0. Then

ϕβ,κ (σ ) = ϕβ,κ (σ ′)ϕβ,κ (σ − σ ′). (4.3)

Proposition 4.2 [Proposition 5.1 in [18]]. Let σ ′ ∈ �1(BN ,G), let β ∈ [0,∞], and let
κ ≥ 0. Then

μN ,β,κ

({
σ ∈ �1(BN ,G) : σ ′ ≤ σ

}) ≤ ϕβ,κ(σ ′).

5. Two Couplings

The main purpose of this section is to introduce two couplings which will be useful to us
throughout this paper. Both of these couplings use ideas from disagreement percolation,
and will be constructed so that the two coupled configurations agree as often as possible,
given certain constraints. Before we introduce the two couplings, we will recall the
definition of a certain edge graph from [16], and state and prove some of its properties,
and introduce a set EE0,σ̂ ,σ̂ ′ which will be used for the definitions of the two couplings.
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5.1. A useful edge graph.

Definition 5.1. Given σ, σ ′ ∈ �1(BN ,G), let G(σ, σ ′) be the graph with vertex set
C1(BN ), and with an edge between two distinct vertices e, e′ ∈ C1(BN ) if either

(i) e′ = −e, or
(ii) e, e′ ∈ supp σ∪supp σ ′, and either supp ∂̂e∩supp ∂̂e′ �= ∅or supp ∂̂e∩supp ∂̂(−e′) �=

∅.

Given σ ∈ �1(BN ), we let G(σ ) :=G(σ, 0).

Given σ, σ ′ ∈ �1(BN ), G :=G(σ, σ ′), and e ∈ C1(BN ), we let CG(e) be set of
all edges e′ ∈ C1(BN ) which belong to the same connected component as e in G. For
E ⊆ C1(BN ), we let CG(E) := ⋃

e∈E CG(e).

We now state and prove a number of lemmas, which describe different properties of
the sets CG(σ̂ ,σ̂ ′)(E).

Lemma 5.2 [Lemma 7.2 in [18]]. Let σ, σ ′ ∈ �1(BN ,G), E ⊆ C1(BN ), and E ′ :=
CG(σ,σ ′)(E). Then

(i) σ |E ′ ≤ σ ,
(ii) σ |C1(BN )�E ′ ≤ σ ,

(iii) σ ′|E ′ ≤ σ ′, and
(iv) σ ′|C1(BN )�E ′ ≤ σ ′.

Lemma 5.3. Let σ ∈ �1(BN ,G) be nontrivial and irreducible. Then the support of σ

is a connected set in G(σ ).

Proof. Let e ∈ supp σ , and define σ ′ := σ |CG(σ )(e). Then, by definition, σ ′ is non-trivial,
and by Lemma 5.2, we have σ ′ ≤ σ. Since σ is irreducible, it follows that σ = σ ′, and
hence the desired conclusion follows. ��
Lemma 5.4. Let σ, σ ′ ∈ �1(BN ,G). Assume that σ ′′ ≤ σ is nontrivial and irreducible,
and let e ∈ supp σ ′′. Then

σ ′′ ≤ σ |CG(σ,σ ′)(e). (5.1)

Proof. Since σ ′′ is irreducible, by Lemma 5.3, the support of σ ′′ is a connected set
G(σ ′′, 0).

Since σ ′′ ≤ σ , we have σ |supp σ ′′ = σ ′′, and hence it follows that the support of σ ′′
is a connected set in G(σ, σ ′).

Consequently, since e ∈ supp σ ′′, we have

supp σ ′′ ⊆ CG(σ,σ ′)(e), (5.2)

and thus, since σ |supp σ ′′ = σ ′′, it follows that

(σ |CG(σ,σ ′)(e))|supp σ ′′ = σ |supp σ ′′ = σ ′′.

For (5.1) to follow, it thus remains to show that
(
d(σ |CG(σ,σ ′)(e))

)∣∣∣
supp dσ ′′ = dσ ′′. (5.3)

If dσ ′′ = 0, then this immediately follows. Hence, assume that dσ ′′ �= 0, and let p ∈
supp dσ ′′. Since p ∈ supp dσ ′′, there must exist at least one e′ ∈ ∂p with σ ′′(e′) �= 0.
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Since e′ ∈ supp σ ′′, it follows from (5.2) that e′ ∈ CG(σ,σ ′)(e). Since e′ ∈ ∂p, it
follows from the definition of CG(σ,σ ′)(e) that any edge e′′ ∈ ∂p with σ(e′′) �= 0 is also
a member of CG(σ,σ ′)(e). Consequently, we must have σ(e′′) = σ |CG(σ,σ ′)(e)(e

′′) for all
e′′ ∈ ∂p, and hence

dσ |CG(σ,σ ′)(e)(p) = dσ(p).

Since σ ′′ ≤ σ and p ∈ supp dσ ′′, we also have dσ ′′(p) = dσ(p), and hence we
conclude that

dσ |CG(σ,σ ′)(e)(p) = dσ ′′(p).

Since this holds for any p ∈ supp dσ ′′, we obtain (5.3).
This concludes the proof. ��

Lemma 5.5. Let σ, σ ′ ∈ �1(BN ,G), and let E ⊆ C1(BN ). Assume that σ ′′ ≤ σ is non-
trivial and irreducible, and that supp σ ′′ ∩ CG(σ,σ ′)(E) �= ∅. Then σ ′′ ≤ σ |CG(σ,σ ′)(E).

Proof. Fix some e ∈ supp σ ′′ ∩ CG(σ,σ ′)(E).

Since σ ′′ is irreducible and e ∈ supp σ ′′, it follows from Lemma 5.4 that σ ′′ ≤
σ |CG(σ,σ ′)(e).

Next, since e ∈ CG(σ,σ ′)(E), we have CG(σ,σ ′)(e) ⊆ CG(σ,σ ′)(E), and hence, by
Lemma 5.2, it follows that

σ |CG(σ,σ ′)(e) = (σ |CG(σ,σ ′)(E))|CG(σ,σ ′)(e) ≤ σ |CG(σ,σ ′)(E).

Since σ ′′ ≤ σ |CG(σ,σ ′)(e), using Lemma 2.3 (2.3), we thus conclude that
σ ′′ ≤ σ |CG(σ,σ ′)(E). ��
Lemma 5.6. Let σ, σ ′ ∈ �1(BN ,G), let E ⊆ C1(BN ), and assume that σ ′′ ≤ σ is non-
trivial and irreducible. Then either σ ′′ ≤ σ |CG(σ,σ ′)(E), or σ ′′ ≤ σ |C1(BN )�CG(σ,σ ′)(E).

Proof. If supp σ ′′ ∩ CG(σ,σ ′)(E) �= ∅, then, by Lemma 5.5, we have σ ′′ ≤ σ |CG(σ,σ ′)(E),
and hence the desired conclusion holds in this case.

Now instead assume that supp σ ′′ ∩ CG(σ,σ ′)(E) = ∅, and note that this implies that
supp σ ′′ ⊆ C1(BN ) � CG(σ,σ ′)(E).

Define

E ′ := supp σ |C1(BN )�CG(σ,σ ′)(E) ∪ supp σ ′|C1(BN )�CG(σ,σ ′)(E).

Then, since σ ′′ ≤ σ and supp σ ′′ ⊆ C1(BN ) � CG(σ,σ ′)(E), we have supp σ ′′ ⊆ E ′.
Consequently, by Lemma 5.5, we have σ ′′ ≤ σ |CG(σ,σ ′)(E ′). Since

σ |C1(BN )�CG(σ,σ ′)(E) = σ |CG(σ,σ ′)(E ′),

we obtain σ ′′ ≤ σ |C1(BN )�CG(σ,σ ′)(E), and hence the desired conclusion holds also in
this case.

This completes the proof. ��
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5.2. The set EE0,σ̂ ,σ̂ ′ . We now define a set which we will need for the definitions of the
couplings in Sects. 5.3 and 5.4

Definition 5.7. For σ, σ ′ ∈ �1(BN ,G) and E0 ⊆ C1(BN ), define

EE0,σ,σ ′ := CG(σ,σ ′)
(
E0 ∪ {e ∈ supp σ : dσ |± supp ∂̂e �= 0}
∪ {e ∈ supp σ ′ : dσ ′|± supp ∂̂e �= 0}). (5.4)

Lemma 5.8. Let σ, σ ′ ∈ �1(BN ,G), and let E0 ⊆ C1(BN ).

Then

(i) d(σ |EE0,σ,σ ′ ) = dσ, and
(ii) d(σ |C1(BN )�EE0,σ,σ ′ ) = 0.

Proof. To simplify notation, let E := EE0,σ,σ ′ .
By Lemma 5.2, applied with σ , σ ′, and E , we then have σ |E ≤ σ , σ ′|E ≤ σ ′,

σ |C1(BN )�E ≤ σ and σ ′|C1(BN )�E ≤ σ ′.
We now show thatd(σ |E ) = dσ . Sinceσ |E ≤ σ , it suffices to show thatd(σ |E )(p) �=

0 whenever dσ(p) �= 0. To this end, assume that dσ(p) �= 0. Then the set supp ∂p ∩
supp σ must be non-empty. Fix one edge e ∈ supp ∂p ∩ supp σ . Recalling the definition
of E , we see that e ∈ E , and hence any edge e′ ∈ supp ∂p � {e} must satisfy either
σ ′(e′) = σ(e′) = 0, or e′ ∈ E .

Consequently, σ |E (∂p) = σ(∂p), and hence

dσ |E (p) = σ |E (∂p) = σ(∂p) = dσ(p)

as desired. This concludes the proof of 5.8.
To see that (5.8) holds, note simply that, using 5.8, we have

d(σ |C1(BN )�E ) = d(σ − σ |E ) = dσ − d(σ |E ) = dσ − dσ = 0,

and hence (5.8) holds. This concludes the proof. ��
Lemma 5.9. Let σ̂ , σ̂ ′ ∈ �1(BN ,G), and let E0 ⊆ C1(BN ).

Further, either let
{

σ := σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′
σ ′ := σ̂ ′.

or let
{

σ := σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′
σ ′ := σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ .

Then EE0,σ,σ ′ = EE0,σ̂ ,σ̂ ′ .

Proof. By Lemma 5.8, we have dσ̂ |EE0,σ,σ ′ = dσ̂ , and dσ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = 0 and
hence

dσ = d(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ,σ ′ ) = d(σ̂ |EE0,σ̂ ,σ̂ ′ ) + d(σ̂ ′|C1(BN )�EE0,σ,σ ′ )

= dσ̂ + 0 = dσ̂ .
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If e ∈ supp σ̂ is such that dσ̂ |± supp ∂̂e �= 0, then e ∈ EE0,σ̂ ,σ̂ ′ , and thus σ(e) = σ̂ (e),
implying in particular that e ∈ supp σ. Since dσ = dσ̂ , it follows that dσ |± supp ∂̂e �= 0,

and hence

{e ∈ supp σ̂ : dσ̂ |± supp ∂̂e �= 0} ⊆ {e ∈ supp σ : dσ |± supp ∂̂e �= 0}.
Analogously, we obtain

{e ∈ supp σ̂ ′ : dσ̂ ′|± supp ∂̂e �= 0} ⊆ {e ∈ supp σ ′ : dσ ′|± supp ∂̂e �= 0}.
Noting that G(σ̂ , σ̂ ′) = G(σ, σ ′), we thus obtain

EE0,σ̂ ,σ̂ ′ = CG(σ̂ ,σ̂ ′)
(
E0 ∪ {e ∈ supp σ̂ : dσ̂ |± supp ∂e �= 0} ∪ {e ∈ supp σ̂ ′ : dσ̂ ′|± supp ∂e �= 0})

⊆ CG(σ,σ ′)
(
E0 ∪ {e ∈ supp σ : dσ |± supp ∂e �= 0}∪

{e ∈ supp σ ′ : dσ ′|± supp ∂e �= 0}) = EE0,σ,σ ′ .

For the other direction, assume that e ∈ supp σ is such that dσ |± supp ∂̂e �= 0. Then

σ(e) �= 0, and there must exist p ∈ ∂̂e such that dσ(p) �= 0.
Since dσ̂ = dσ , it follows that dσ̂ (p) �= 0. Consequently, there must exist e′ ∈ ∂p

such that σ̂ (e′) �= 0. For any such edge e′, we have dσ̂ |± supp ∂̂e′ �= 0, and hence
e′ ∈ EE0,σ̂ ,σ̂ ′ . In particular, this implies that σ(e′) = σ̂ (e′) �= 0, and hence e ∈ EE0,σ̂ ,σ̂ ′ .
Consequently,

{e ∈ supp σ : dσ |± supp ∂̂e �= 0} ⊆ EE0,σ̂ ,σ̂ ′ .

Analogously, we also obtain

{e ∈ supp σ ′ : dσ ′|± supp ∂̂e �= 0} ⊆ EE0,σ̂ ,σ̂ ′ .

Again recalling that G(σ̂ , σ̂ ′) = G(σ, σ ′), we thus obtain

EE0,σ,σ ′ = CG(σ,σ ′)
(
E0 ∪ {e ∈ supp σ : dσ |± supp ∂e �= 0}

∪ {e ∈ supp σ ′ : dσ ′|± supp ∂e �= 0})

⊆ CG(σ̂ ,σ̂ ′)
(
E0 ∪ EE0,σ̂ ,σ̂ ′ ∪ {e ∈ supp σ̂ ′ : dσ̂ ′|± supp ∂e �= 0}) = EE0,σ̂ ,σ̂ ′ .

This concludes the proof. ��
Lemma 5.10. Let σ, σ ′ ∈ �1(BN ,G), let E0 ⊆ C1(BN ), and let e ∈ C1(BN ). Then
e ∈ EE0,σ,σ ′ if and only if one of the following holds.

(i) d(σ |CG(σ,σ ′)(e)) �= 0
(ii) d(σ ′|CG(σ,σ ′)(e)) �= 0
(iii) CG(σ,σ ′)(e) ∩ E0 �= ∅
Proof. Suppose first that e ∈ EE0,σ,σ ′ .

By the definition of CG(σ,σ ′)(e), there exists an edge e′ ∈ CG(σ,σ ′)(e) such that

e′ ∈ E0 ∪ {e′′ ∈ supp σ : dσ |± supp ∂̂e′′ �= 0} ∪ {e′′ ∈ supp σ ′ : dσ ′|± supp ∂̂e′′ �= 0}.
If e′ ∈ E0, then e′ ∈ CG(σ,σ ′)(e) ∩ E0, and hence CG(σ,σ ′)(e) ∩ E0 �= ∅. If e′ /∈

E0, then, by symmetry, we can assume that e′ ∈ {e′′ ∈ supp σ : dσ |± supp ∂̂e′′ �= 0}.
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In this case, we infer that there exists a plaquette p ∈ ∂̂e′ such that dσ(p) �= 0.
Since e′ ∈ CG(σ,σ ′)(e), we have supp σ ∩ supp ∂p ⊆ CG(σ,σ ′)(e), and so d(σ |CG(σ,σ ′)(e))
(p) = dσ(p) �= 0.

For the other direction, assume first that CG(σ,σ ′)(e) ∩ E0 �= ∅. Then there is
e′ ∈ E0 such that e′ ∈ CG(σ,σ ′)(e). Since e′ ∈ CG(σ,σ ′)(e) we must also have e ∈
CG(σ,σ ′)(e′), which is a subset of EE0,σ,σ ′ since e′ ∈ E0. Next, assume instead that
there is a plaquette p ∈ C2(BN ) such that d(σ |CG(σ,σ ′)(e))(p) �= 0. Then there exists
an edge e′ ∈ ∂p with σ(e′) �= 0 and e′ ∈ CG(σ,σ ′)(e). Thus supp σ ∩ supp ∂p ⊆
CG(σ,σ ′)(e), and so dσ(p) = d(σ |CG(σ,σ ′)(e))(p) �= 0. In particular, it follows that
e′ ∈ supp ∂p ⊆ {e′′ ∈ supp σ : dσ |± supp ∂̂e′′ �= 0}. Consequently, we must have
e′ ∈ {e′′ ∈ supp σ : dσ |± supp ∂̂e′′ �= 0}, and hence e′ ∈ Eσ,σ ′ . Since e′ ∈ CGσ,σ ′ (e),
we thus have e ∈ CGσ,σ ′ (e′) ⊆ EE0,σ,σ ′ as desired. Using symmetry, this concludes the
proof. ��
Lemma 5.11. Let β1, β2 ∈ [0,∞], κ ≥ 0, E0 ⊆ C1(BN ), and σ, σ̂ , σ̂ ′ ∈ �1(BN ,G).

Then

ϕβ1,κ (σ̂ )ϕβ2,κ (σ̂ ′) · 1(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ
)

= ϕβ1,κ (σ )
∑

σ ′∈�1(BN ,G)

ϕβ2,κ (σ ′) · 1(σ̂ = σ |EE0,σ,σ ′ + σ ′|C1(BN )�EE0,σ,σ ′
)

· 1(σ̂ ′ = σ ′|EE0,σ,σ ′ + σ |C1(BN )�EE0,σ,σ ′
)
.

(5.5)

Proof. By Lemma 5.2, we have σ̂ |EE0,σ̂ ,σ̂ ′ ≤ σ̂ and σ̂ ′|EE0,σ̂ ,σ̂ ′ ≤ σ̂ ′ and hence, by
Lemma 4.1,

ϕβ1,κ (σ̂ ) = ϕβ1,κ

(
σ̂ |EE0,σ̂ ,σ̂ ′

)
ϕβ1,κ

(
σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′

)
(5.6)

and

ϕβ2,κ (σ̂ ′) = ϕβ2,κ

(
σ̂ ′|EE0,σ̂ ,σ̂ ′

)
ϕβ2,κ

(
σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′

)
. (5.7)

Next, by Lemma 5.8, we have

d(σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ ) = 0,

and hence

ϕβ1,κ

(
σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′

) = ϕκ

(
σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′

) = ϕβ2,κ

(
σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′

)
.

Since σ̂ ′|EE0,σ̂ ,σ̂ ′ and σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ have disjoint supports, it also follows that

σ̂ ′|EE0,σ̂ ,σ̂ ′ ≤ σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ .

Thus, by Lemma 4.1, it follows that

ϕβ2,κ

(
σ̂ ′|EE0,σ̂ ,σ̂ ′

)
ϕβ1,κ

(
σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′

) = ϕβ2,κ

(
σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′

)
.

(5.8)

By symmetry, we also have

ϕβ1,κ

(
σ̂ |EE0,σ̂ ,σ̂ ′

)
ϕβ2,κ

(
σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′

) = ϕβ1,κ

(
σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′

)
.
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(5.9)

Combining (5.6), (5.7), (5.8), and (5.9), it follows that

ϕβ1,κ (σ̂ )ϕβ2,κ (σ̂ ′) · 1(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ
)

= ϕβ1,κ

(
σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′

)
ϕβ2,κ

(
σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′

)

· 1(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ
)

= ϕβ1,κ (σ )ϕβ2,κ

(
σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′

) · 1(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ
)

= ϕβ1,κ (σ )
∑

σ ′∈�1(BN ,G)

ϕβ2,κ (σ ′) · 1(σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ = σ ′)

· 1(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ
)
. (5.10)

Now fix σ ′ ∈ �1(BN ,G) and assume that
{

σ = σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′
σ ′ = σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ .

By Lemma 5.9, we have EE0,σ̂ ,σ̂ ′ = EE0,σ,σ ′ . Since σ |EE0,σ̂ ,σ̂ ′ = σ̂ |EE0,σ̂ ,σ̂ ′
and σ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ , it follows that

σ̂ = σ |EE0,σ̂ ,σ̂ ′ + σ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ |EE0,σ,σ ′ + σ ′|C1(BN )�EE0,σ,σ ′ .

Analogously, since σ ′|EE0,σ̂ ,σ̂ ′ = σ̂ ′|EE0,σ̂ ,σ̂ ′ and σ |C1(BN )�EE0,σ̂ ,σ̂ ′ = σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ ,
it follows that

σ̂ ′ = σ ′|EE0,σ̂ ,σ̂ ′ + σ |C1(BN )�EE0,σ̂ ,σ̂ ′ = σ ′|EE0,σ,σ ′ + σ |C1(BN )�EE0,σ,σ ′ .

This shows that for any σ ′ ∈ �1(BN ,G), we have

1
(
σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ = σ ′) · 1(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ

)

= 1
(
σ̂ = σ |EE0,σ,σ ′ + σ ′|C1(BN )�EE0,σ,σ ′

) · 1(σ̂ ′ = σ ′|EE0,σ,σ ′ + σ |C1(BN )�EE0,σ,σ ′
)
.

(5.11)

Combining (5.10) and (5.11), we obtain (5.5) as desired. ��

5.3. A coupling between two Zn-models . In this section, we define a coupling between
two copies of μN ,∞,κ , constructed to always agree on a given set E0 ⊆ C1(BN )

Definition 5.12 [A coupling of two Zn-models]. For κ ≥ 0, σ, σ ′ ∈ �1
0(BN ,G), E0 ⊆

C1(BN ), and EE0,σ,σ ′ = CGσ,σ ′ (E0), we define

μ
E0
N ,(∞,κ),(∞,κ)(σ, σ ′) := μN ,∞,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1

0(BN ,G) × �1
0(BN ,G) :

σ = σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ and σ ′ = σ̂ ′}).

We let E
E0
N ,(∞,κ),(∞,κ) denote the corresponding expectation.
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Fig. 5. Illustration of the coupling (σ, σ ′) ∼ μ
E0
N ,(∞,β),(∞,β)

defined in Definition 5.18, simulated on a
2-dimensional lattice, with G = Z2, and with E0 = C1(BN/4).

Remark 5.13. When σ, σ ′ ∈ �1
0(BN ,G), then dσ = dσ ′ = 0, and hence the definition

of EE0,σ,σ ′ in Definition 5.12 in consistent with (5.4).

Remark 5.14. By definition, if σ̂ , σ̂ ′ ∼ μN ,∞,κ are independent, and we letσ := σ̂ |EE0,σ̂ ,σ̂ ′ +

σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ and σ ′ := σ̂ ′, then (σ, σ ′) ∼ μ
E0
N ,(∞,κ),(∞,κ).

The next result shows that the measure introduced in Definition 5.12 is indeed a
coupling.

Proposition 5.15. Let κ ≥ 0, and let E0 ⊆ C1(BN ). Then μ
E0
N ,(∞,κ),(∞,κ) is a coupling

of μN ,∞,κ and μN ,∞,κ .

Proof. It is immediate from the definition that if (σ, σ ′) ∼ μ
E0
N ,(∞,κ),(∞,κ), then σ ′ ∼

μN ,∞,κ , and it is hence sufficient to show that σ ∼ μN ,∞,κ .
To this end, fix some σ ∈ �1

0(BN ). We need to show that

μN ,∞,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1

0(BN ) × �1
0(BN ) : σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′

= σ
}) = μN ,∞,κ (σ ),
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or equivalently, that

∑

σ̂∈�1
0(BN ,G),

σ̂ ′∈�1
0(BN ,G)

ϕκ(σ̂ )ϕκ(σ̂ ′) · 1(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ
)

= ϕκ(σ )
∑

σ ′∈�1
0(BN ,G)

ϕκ(σ ′). (5.12)

We now rewrite the left-hand side of (5.12) in order to see that this equality indeed holds.
To this end, note first that by Lemma 5.11, applied with β1 = β2 = ∞, we have

∑

σ̂∈�1
0(BN ,G),

σ̂ ′∈�1
0(BN ,G)

ϕκ(σ̂ )ϕκ(σ̂ ′)1
(
σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ = σ

)

= ϕκ(σ )
∑

σ ′∈�1
0(BN ,G)

ϕκ(σ ′) ·
∑

σ̂∈�1
0(BN ,G),

σ̂ ′∈�1
0(BN ,G)

1
(
σ̂ = σ ′|EE0,σ,σ ′ + σ |C1(BN )�EE0,σ,σ ′

)

· 1(σ̂ ′ = σ |EE0,σ,σ ′ + σ ′|C1(BN )�EE0,σ,σ ′
)
.

(5.13)

Since σ, σ ′ ∈ �1
0(BN ), we can apply Lemma 5.8 to see that σ |EE0,σ,σ ′ +

σ ′|C1(BN )�EE0,σ,σ ′ ∈ �1
0(BN ,G) and σ ′|EE0,σ,σ ′ + σ |C1(BN )�EE0,σ,σ ′ ∈ �1

0(BN ,G).

From this it follows that the double sum on the right-hand side of (5.13) is equal to
1, and hence we obtain (5.12) as desired. This completes the proof. ��
Lemma 5.16. Let β, κ ≥ 0, let E0 ⊆ C1(BN ), and let (σ, σ ′) ∈ �1

0(BN ,G) ×
�1

0(BN ,G) be such that μ
E0
N ,(∞,κ),(∞,κ)(σ, σ ′) �= 0. Then σ(e) = σ ′(e) for all e ∈

C1(BN ) � EE0,σ,σ ′ .

Proof. Since μ
E0
N ,(∞,κ),(∞,κ)(σ, σ ′) �= 0, by definition, there is (σ̂ , σ̂ ′) ∈ �1

0(BN ,G) ×
�1

0(BN ,G) such that σ = σ̂ |EE0,σ̂ ,σ̂ ′ +σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ and σ ′ = σ̂ ′. Using Lemma 5.9,
we immediately obtain the desired conclusion. ��

One application of the coupling introduced in Definition 5.12, which will be partic-
ularly useful to us, is the following proposition.

Proposition 5.17. Let κ ≥ 0, and let E0, E1 ⊆ C1(BN , Z) have disjoint supports.
Further, let f0, f1 : �1(BN ,G) → R be such that f0(σ ) = f (σ |E0) and f1(σ ) =
f1(σ |E1) for all σ ∈ �1(BN ).

Then
∣∣∣EN ,∞,κ

[
f0(σ ) f1(σ )

] − EN ,∞,κ

[
f0(σ )

]
EN ,∞,κ

[
f1(σ )

]∣∣∣

≤ 2‖ f0‖∞‖ f1‖∞
∑

e∈E1

μ
E0
N ,(∞,κ),(∞,κ)

({
(σ̂ , σ̂ ′) ∈ �1

0(BN ,G) × �1
0(BN ,G)

: e ∈ EE0,σ̂ ,σ̂ ′
})

. (5.14)

We provide an upper bound on the right hand side of (5.14) in Proposition 6.4.
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Proof of Proposition 5.17. To simplify notation, for σ ∈ �1(BN ,G), let F(σ ) :=
f1(σ ) f2(σ ). Let σ̂ , σ̂ ′ ∼ μN ,∞,κ . Note that when dσ̂ = dσ̂ ′ = 0, we have EE0,σ̂ ,σ̂ ′ =
CG(σ̂ ,σ̂ ′)(E0).

Define
{

σ := σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ .

σ ′ := σ̂ ′.

Then (σ, σ ′) ∼ μ
E0
N ,(∞,κ),(∞,κ), and hence σ, σ ′ ∼ μN ,∞,κ . Consequently, we have

EN ,∞,κ

[
F(σ )

] = E
E0
N ,(∞,κ),(∞,κ)

[
F(σ )

]

= EN ,∞,κ × EN ,∞,κ

[
F(σ̂ |EE0,σ̂ ,σ̂ ′

+ σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ )
]

= EN ,∞,κ × EN ,∞,κ

[
F(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ )·

1(E1 ∩ EE0,σ̂ ,σ̂ ′) = ∅)
]

+ EN ,∞,κ × EN ,∞,κ

[
F(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ )·

1(E1 ∩ EE0,σ̂ ,σ̂ ′) �= ∅)
]
. (5.15)

Since EE0,σ̂ ,σ̂ ′ = CG(σ̂ ,σ̂ ′)(E0), we have (supp σ̂ ∪ supp σ̂ ′) ∩ E0 ⊆ EE0,σ̂ ,σ̂ ′ . This
implies in particular that

(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ )|E0 = (σ̂ |EE0,σ̂ ,σ̂ ′ )|E0 + (σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ )|E0 = σ̂ |E0 ,

and hence

f0(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ ) = f0(σ̂ ).

At the same time, on the event E1 ∩ EE0,σ̂ ,σ̂ ′ = ∅, for all e ∈ E1 we have

(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ )|E1 = (σ̂ |EE0,σ̂ ,σ̂ ′ )|E1 + (σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ )|E1

= 0 + σ̂ ′|E1,

and hence

f1(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ ) = f1(σ̂
′).

Consequently, on the event E1 ∩ EE0,σ,σ ′ = ∅, we have

F(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ ) = f0
(
σ̂
)
f1
(
σ̂ ′),

and hence

EN ,∞,κ × EN ,∞,κ

[
F(σ̂ |EE0,σ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�EE0,σ̂ ,σ̂ ′ ) · 1(E1 ∩ EE0,σ̂ ,σ̂ ′ = ∅)

]

= EN ,∞,κ × EN ,∞,κ

[
f0(σ̂ ) f1(σ̂

′) · 1(E1 ∩ EE0,σ̂ ,σ̂ ′ = ∅)
]

= EN ,∞,κ × EN ,∞,κ

[
f0(σ̂ ) f1(σ̂

′)
] − EN ,∞,κ × EN ,∞,κ

[
f0(σ̂ ) f1(σ̂

′)
· 1(E1 ∩ EE0,σ̂ ,σ̂ ′ �= ∅)

]

= EN ,∞,κ

[
f0(σ̂ )

]
EN ,∞,κ

[
f1(σ̂

′)
] − EN ,∞,κ × EN ,∞,κ

[
f0(σ̂ ) f1(σ̂

′)
· 1(E1 ∩ EE0,σ̂ ,σ̂ ′ �= ∅)

]
.
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Inserting this into (5.15), we see that

EN ,∞,κ

[
f0(σ ) f1(σ )

]

= EN ,∞,κ

[
f0(σ̂ )

]
EN ,∞,κ

[
f1(σ̂

′)
] − EN ,∞,κ × EN ,∞,κ

[
f0(σ̂ ) f1(σ̂

′)
· 1(E1 ∩ EE0,σ̂ ,σ̂ ′) �= ∅)

]

+ EN ,∞,κ × EN ,∞,κ

[
F(σ̂ ′|EE0,σ̂ ,σ̂ ′ + σ̂ |C1(BN )�EE0,σ̂ ,σ̂ ′ ) · 1(E1 ∩ EE0,σ̂ ,σ̂ ′ �= ∅)

]
.

In particular, this implies that
∣∣∣EN ,∞,κ

[
f0(σ ) f1(σ )

] − EN ,∞,κ

[
f0(σ̂ )

]
EN ,∞,κ

[
f1(σ̂

′)
]∣∣∣

≤ 2‖ f0‖∞‖ f1‖∞μN ,∞,κ × μN ,∞,κ

(
E1 ∩ EE0,σ̂ ,σ̂ ′ �= ∅)

≤ 2‖ f0‖∞‖ f1‖∞
∑

e∈E1

μN ,∞,κ × μN ,∞,κ

(
e ∈ EE0,σ̂ ,σ̂ ′ �= ∅).

To obtain the desired conclusion, we note that by Lemma 5.9, we have EE0,σ̂ ,σ̂ ′ =
EE0,σ,σ ′ . This concludes the proof. ��

5.4. A coupling between the Abelian Higgs model and the Zn-model. In this section,
we recall the coupling between μN ,β,κ and μN ,∞,κ introduced in [18].

Definition 5.18 [The coupling to the Zn model]. For β, κ ≥ 0, σ ∈ �1(BN ,G), and
σ ′ ∈ �1

0(BN ,G), let let

Eσ,σ ′ := E∅,σ,σ ′ = CG(σ,σ ′)
({e ∈ supp σ : dσ |± supp ∂̂e �= 0}). (5.16)

and define

μN ,(β,κ),(∞,κ)(σ, σ ′) := μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :
σ = σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ and σ ′ = σ̂ ′}).

We let EN ,(β,κ),(∞,κ) denote the corresponding expectation.

Remark 5.19. If [18], the measure μN ,(β,κ),(∞,κ) in Definition 5.18 above was defined
slightly differently, but using the Proposition 5.20 below, one easily shows that they are
equivalent.

The next result shows that this is indeed a coupling.

Proposition 5.20. Letβ, κ ≥ 0. ThenμN ,(β,κ),(∞,κ) is a coupling ofμN ,β,κ andμN ,∞,κ .

Proof. It is immediate from the definition that if (σ, σ ′) ∼ μN ,(β,κ),(∞,κ), then σ ′ ∼
μN ,∞,κ , and it is hence sufficient to show that σ ∼ μN ,β,κ . This is exactly equivalent
to, for each σ ∈ �1(BN ,G), showing that

μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ) × �1

0(BN ) : σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ = σ
})

= μN ,β,κ (σ ).
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Fig. 6. Illustration of the coupling (σ, σ ′) ∼ μN ,(β,κ),(∞,κ) defined in Definition 5.18 (simulated on a
2-dimensional lattice, with G = Z2)

or, equivalently, that

∑

σ̂∈�1(BN ,G),

σ̂ ′∈�1
0(BN ,G)

ϕβ,κ (σ̂ )ϕκ(σ̂ ′) · 1(σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′

= σ
) = ϕβ,κ(σ )

∑

σ ′∈�1
0(BN ,G)

ϕκ(σ ′). (5.17)

We now show that (5.17) holds. To this end, fix some σ ∈ �1(BN ,G).
By Lemma 5.11, applied with β1 = β and β2 = ∞, we have

∑

σ̂∈�1(BN ,G),

σ̂ ′∈�1
0(BN ,G)

ϕβ,κ (σ )ϕκ(σ ′)1
(
σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ = σ

)
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= ϕκ(σ )
∑

σ ′∈�1(BN ,G)

ϕβ,κ (σ ′)
∑

σ̂∈�1(BN ,G),

σ̂ ′∈�1
0(BN ,G)

1
(
σ̂ = σ |Eσ,σ ′ + σ ′|C1(BN )�Eσ,σ ′

)

· 1(σ̂ ′ = σ ′|Eσ,σ ′ + σ |C1(BN )�Eσ,σ ′
)

= ϕκ(σ )
∑

σ ′∈�1(BN ,G)

ϕβ,κ (σ ′)1
(
σ ′|Eσ,σ ′ + σ |C1(BN )�Eσ,σ ′ ∈ �1

0(BN ,G)
)

= ϕκ(σ )
∑

σ ′∈�1(BN ,G)

ϕβ,κ (σ ′)1
(
d
(
σ ′|Eσ,σ ′ + σ |C1(BN )�Eσ,σ ′

) = 0
)
. (5.18)

By Lemma 5.8, we have

d
(
σ ′|Eσ,σ ′ + σ |C1(BN )�Eσ,σ ′

) = d
(
σ ′|Eσ,σ ′

)
+ d

(
σ |C1(BN )�Eσ,σ ′

) = d
(
σ ′|Eσ,σ ′

)
+ 0

= dσ ′,

and hence

ϕκ(σ )
∑

σ ′∈�1(BN ,G)

ϕβ,κ (σ ′)1
(
d
(
σ ′|Eσ,σ ′ + σ |C1(BN )�Eσ,σ ′

) = 0
)

= ϕκ(σ )
∑

σ ′∈�1(BN ,G)

ϕβ,κ (σ ′)1(dσ ′ = 0) = ϕκ(σ )
∑

σ ′∈�1
0(BN ,G)

ϕβ,κ (σ ′).

(5.19)

Combining (5.18) and (5.19), we obtain (5.17) as desired. This concludes the proof. ��
Lemma 5.21. Let β, κ ≥ 0, let E0 ⊆ C1(BN ), and let (σ, σ ′) ∈ �1(BN ,G) ×
�1

0(BN ,G) be such that μN ,(β,κ),(∞,κ)(σ, σ ′) �= 0. Then σ(e) = σ ′(e) for all e ∈
C1(BN ) � Eσ,σ ′ .

Proof. Since μN ,(β,κ),(∞,κ)(σ, σ ′) �= 0, by definition, there is (σ̂ , σ̂ ′) ∈ �1(BN ,G) ×
�1

0(BN ,G) such that σ = σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ and σ ′ = σ̂ ′. Using Lemma 5.9,
we immediately obtain the desired conclusion. ��

6. Distribution of Vortices and Edge Configurations

In this section, we use the edge graph defined in Sect. 5.1 to give upper bounds on several
useful events. Throughout this section, constants K1, K2, . . . , K15 will be introduced.
We use distinct names for these to make it possible to find explicit upper bounds, but
stress that under the assumptions of the main results these are all bounded from above,
and will thus not affect the decay rate of the upper bounds obtained throughout this
section.

For E0 ⊆ C1(BN ) and e ∈ C1(BN ), we define

dist1(e, E0) := 1

2
min

{∣∣CGσ̂ ,σ̂ ′ (e)
∣∣ : σ, σ ′ ∈ �1(BN ,G), CGσ̂ ,σ̂ ′ (e) ∩ E0 �= ∅

}

= 1

2
min

{∣∣CGσ̂
(e)

∣∣ : σ ∈ �1(BN ,G), CGσ̂
(e) ∩ E0 �= ∅

}
, e ∈ C1(BN ),
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and

dist0(e, E0) := 1

2
min

{∣∣CGσ̂ ,σ̂ ′ (e)
∣∣ : σ, σ ′ ∈ �1

0(BN ,G), CGσ̂ ,σ̂ ′ (e) ∩ E0 �= ∅
}
,

e ∈ C1(BN ).

Note that, by Lemma 2.9, if e /∈ E, then dist0(e, E) ≥ 8. We extend this definition to sets
E ⊆ C1(BN )by letting dist1(E, E0) := mine∈E dist1(e, E0) and dist0(E, E0) := mine∈E
dist0(e, E0).

In this section, we will state and prove the following three propositions.

Proposition 6.1. Letβ, κ1, κ2 ∈ [0,∞]be such that182
(
α0(κ1)+α0(κ2)+α0(κ1)α0(κ2)

)

< 1, let e ∈ C1(BN ) be such that dist0
(
e, ∂C1(BN )

) ≥ 8, and let M ≥ 1 and M ′ ≥ 0.

Then

μN ,β,κ1 × μN ,∞,κ2

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :
|CG(σ̂ ,σ̂ ′)(e)| ≥ 2M, and

∣∣supp d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

)∣∣≥ 2M ′})

≤ 1M ′>0 · 1M=1 ·
(
182(α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

))
α1(β)max(6,M ′)

+ 1M ′>0 · K1

(
182(α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

))max(M,2)
α1(β)max(6,M ′)

+ 1M ′∈{1,2,3,4,5} · K1

(
182(α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

))dist1(e,∂C1(BN ))
α1(β)

+ 1M ′=0 · K1

(
182(α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

))max(M,8)
,

(6.1)

where

K1 = K1(κ1, κ2) := 18−3
(
1 − 182(α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

))−1
. (6.2)

Remark 6.2. If κ1 = κ2 =: κ , then the assumption on κ1 and κ2 in Proposition (6.1) is
equivalent to 3.

Proposition 6.3. Let β, κ ≥ 0 be such that 3 holds, and assume that p ∈ C2(BN ) is
such that dist0(supp ∂e, ∂C1(BN ))) ≥ 8. Then

μN ,β,κ

({
σ̂ ∈ �1(BN ,G) : dσ̂ (p) �= 0

})
≤ K2α2(β, κ), (6.3)

where

K2 := 4
(
182 + 18α0(κ)

(
1 − 182α0(κ)

)−1)α1(β)6

α0(β)6 . (6.4)

Proposition 6.4. Let κ ≥ 0 be such that 3 holds, let E0 ⊆ C1(BN ) be non-empty, and
let e ∈ C1(BN ) be such that dist0(e, ∂C1(BN ))) ≥ 8.

Then

μ
E0
N ,(∞,κ),(∞,κ)

({
(σ, σ ′) ∈ �1

0(BN ,G) × �1
0(BN ,G) : e ∈ EE0,σ,σ ′

})

≤ K3

(
K4α0(κ)

)dist0(e,E0)

(6.5)

where

K3 := 18−3(1 − 182(2 + α0(κ)
)
α0(κ))−1, and K4 := 182(2 + α0(κ)

)
. (6.6)
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Proposition 6.5. Let β, κ ≥ 0 be such that 3 hold, let e ∈ C1(BN ) be such that for all
p ∈ ∂̂e we have dist0(supp ∂p, ∂C1(BN )) ≥ 8, and let E0 := {e′ ∈ C1(BN ) : ∂̂e′ ∩ ∂̂e �=
∅}. Then

μN ,β,κ

({
σ ∈ �1(BN ,G) : |CG(σ )(E0)| ≥ 2M and

∣∣supp d(σ |CG(σ )(E0))
∣∣ ≥ 2M ′})

≤ K5
(
182α0(κ)

)M
α1(β)M

′
.

where

K5 := (18−3 + 18−1)(1 − 182α0(κ))−1. (6.7)

Before we give proofs of the above propositions, we introduce some additional nota-
tion and prove two useful lemmas. To this end, we first define a graph Ḡ as follows. Fix
some g ∈ G � {0} and define σ̄ ∈ �1(BN ,G) by letting σ(e) = g for all e ∈ C1(BN )+.
Let Ḡ :=G(σ̄ , 0) and note that Ḡ does not depend on the choice of g. Note also that if
σ, σ ′ ∈ �1(BN ,G), then G(σ, σ ′) is a subgraph of Ḡ.

Lemma 6.6. [See also Lemma 7.15 and Lemma 7.16 in [18]] Let e ∈ C+
1 (BN ), and let

m ≥ 1. Then

∣∣∣
{
E ⊆ C+

1 (BN ) : e ∈ E, |E | = m, and Ḡ|E is connected
}∣∣ ≤ 18max(0,2m−3).

Proof. Since the case m = 1 is trivial, we can assume that m ≥ 2.

Fix some set E ⊆ C+
1 (BN ) such that e ∈ E, |E | = m, and Ḡ|E is connected.

Since the graph Ḡ|E is connected, it has a spanning tree. Let T be such a spanning
tree. By definition, T must contain exactly m − 1 edges. Since any spanning tree is
connected, T must have a spanning walk which uses each edge in T exactly twice, and
starts and ends at the same vertex. This walk must have length 2(m − 1) = 2m − 2. By
removing one of the edges adjacent to the vertex e, we obtain a spanning walk of Ḡ|E
which has length 2m − 3, starts at the vertex e and visits every vertex of Ḡ|E at least
once.

Since for each e′ ∈ EN , we have
∣∣{e′′ ∈ C1(BN )�{e′} : ∂̂e′′∩∂̂e′ �= ∅}∣∣ = 6·3 = 18,

there can exists at most 182m−3 walks in Ḡ which starts at e and has length 2m − 3, and
hence the desired conclusion follows. ��
Lemma 6.7. Let κ1, κ2 ≥ 0, and let E ⊆ C+

1 (BN ). Then

∑

ˆ̂σ∈�1(BN ,G), ˆ̂σ ′∈�1(BN ,G) :
(supp ˆ̂σ∪supp ˆ̂σ ′)+=E

ϕκ1

( ˆ̂σ )ϕκ2

( ˆ̂σ ′) ≤ (
α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

)|E |
.

(6.8)

Proof. If ˆ̂σ ∈ �1(BN ,G) and e′ /∈ supp ˆ̂σ , then, for any κ ≥ 0, we have ϕκ

( ˆ̂σ(e′)
) =

ϕκ(0) = 1. Also, if ˆ̂σ, ˆ̂σ ′ ∈ �1(BN ,G) and e′ ∈ (supp ˆ̂σ ∪ supp ˆ̂σ ′)+ = E , then either
ˆ̂σ(e′) �= 0 and ˆ̂σ ′(e′) = 0, ˆ̂σ(e′) = 0 and ˆ̂σ ′(e′) �= 0, or ˆ̂σ(e′), ˆ̂σ ′(e′) �= 0.
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Combining these observations, we find that
∑

ˆ̂σ∈�1(BN ,G), ˆ̂σ ′∈�1(BN ,G) :
(supp ˆ̂σ∪supp ˆ̂σ ′)+=E

∏

e′∈C1(BN )+

ϕκ1

( ˆ̂σ(e′)
)2 ∏

e′′∈C1(BN )+

ϕκ2

( ˆ̂σ ′(e′′)
)

≤
∏

e′∈E

{
ϕκ1(0)2

( ∑

ˆ̂σ ′(e′)∈G�{0}
ϕκ2(

ˆ̂σ ′(e′))2
)

+

( ∑

ˆ̂σ(e′)∈G�{0}
ϕκ1

( ˆ̂σ(e′)
)2
)

ϕκ2(0)2

+

( ∑

ˆ̂σ(e′)∈G�{0}
ϕκ1

( ˆ̂σ(e′)
)2
)( ∑

ˆ̂σ ′(e′)∈G�{0}
ϕκ2

( ˆ̂σ ′(e′)
)2
)}

=
∏

e′∈E

(
α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

) = (
α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

)|E |
.

This concludes the proof. ��
Proof of Proposition 6.1. Since CG(σ̂ ,σ̂ ′)(e) is symmetric, induces a connected subgraph
in Ḡ, and contains e if it non-empty, we have

μN ,β,κ1 × μN ,∞,κ2

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :
|CG(σ̂ ,σ̂ ′)(e)| ≥ 2M, and

∣∣supp d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

)∣∣ ≥ 2M ′})

=
∑

E⊆C+
1 (BN ) :

e∈E, |E |≥M,

Ḡ|E is connected

μN ,β,κ1 × μN ,∞,κ2

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :

CG(σ̂ ,σ̂ ′)(e)
+ = E, and

∣∣supp d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

)∣∣ ≥ 2M ′}) (6.9)

Given (σ̂ , σ̂ ′)∈�1(BN ,G)×�1
0(BN ,G), if we let ˆ̂σ := σ̂ |CG(σ̂ ,σ̂ ′)(e) and ˆ̂σ ′ := σ̂ ′|CG(σ̂ ,σ̂ ′)(e),

then the following statements hold.

(1) By Lemma 5.8, we have ˆ̂σ ′ ∈ �1
0(BN ,G).

(2) If
∣∣supp d(σ̂ |CG(σ̂ ,σ̂ ′)(e))

∣∣ ≥ 2 M ′, then, by definition,
∣∣supp d ˆ̂σ ∣∣ ≥ 2 M ′.

(3) If |CG(σ̂ ,σ̂ ′)(e)| ≥ 2, then we have e ∈ supp σ̂ ∪ supp σ̂ ′, and thus (CG(σ̂ ,σ̂ ′)(e))
+ =

(supp ˆ̂σ ∪ supp ˆ̂σ ′)+. Consequently, (CG(σ̂ ,σ̂ ′)(e))
+ = E if and only if (supp ˆ̂σ ∪

supp ˆ̂σ ′)+ = E .

As a consequence, (6.9) can be bounded from above by

∑

E⊆C+
1 (BN ) :

e∈E, |E |≥M,

Ḡ|E is connected

∑

ˆ̂σ∈�1(BN ,G), ˆ̂σ ′∈�1
0(BN ,G) :

(supp ˆ̂σ∪supp ˆ̂σ ′)+=E,

| supp d ˆ̂σ |≥2M ′

μN ,β,κ1 × μN ,∞,κ2

({(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1
0(BN ,G) :

σ̂ |CG(σ̂ ,σ̂ ′)(e) = ˆ̂σ, and σ̂ ′|CG(σ̂ ,σ̂ ′ (e) = ˆ̂σ ′}).
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For any ˆ̂σ , and ˆ̂σ ′ as in the sum above, by Lemma 5.2, we have

μN ,β,κ1 × μN ,∞,κ2

({(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1
0(BN ,G) : σ̂ |CG(σ̂ ,σ̂ ′)(e)

= ˆ̂σ and σ̂ ′|CG(σ̂ ,σ̂ ′ (e) = ˆ̂σ ′})

≤μN ,β,κ1×μN ,∞,κ2

({(σ̂ , σ̂ ′) ∈ �1(BN ,G)×�1
0(BN ,G) : ˆ̂σ ≤ σ̂ and ˆ̂σ ′ ≤ σ̂ ′})

= μN ,β,κ1

({σ̂ ∈ �1(BN ,G) : ˆ̂σ ≤ σ̂ })μN ,∞,κ2

({σ̂ ′ ∈ �1
0(BN ,G) : ˆ̂σ ′ ≤ σ̂ ′})

≤ ϕβ,κ1(
ˆ̂σ)ϕ∞,κ2(

ˆ̂σ ′),

where the last inequality follows by applying Proposition 4.2 twice.
Taken together, the above equations thus show that

μN ,β,κ1 × μN ,∞,κ2

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :
|CG(σ̂ ,σ̂ ′)(e)| ≥ 2M and

∣∣supp d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

)∣∣ ≥ 2M ′})

≤
∑

E⊆C+
1 (BN ) :

e∈E, |E |≥M,

Ḡ|E is connected

Jβ,κ1,κ2(E),

(6.10)

where

Jβ,κ1,κ2(E) :=
∑

ˆ̂σ∈�1(BN ,G), ˆ̂σ ′∈�1
0(BN ,G) :

(supp ˆ̂σ∪supp ˆ̂σ ′)+=E,∣∣supp dσ

∣∣≥2M ′

ϕβ,κ1(
ˆ̂σ) ϕ∞,κ2(

ˆ̂σ ′).

Fix some set E ⊆ C+
1 (BN ). Then

Jβ,κ1,κ2(E) =
∑

ˆ̂σ∈�1(BN ,G), ˆ̂σ ′∈�1
0(BN ,G) :

(supp ˆ̂σ∪supp ˆ̂σ ′)+=E,

| supp d ˆ̂σ |≥2M ′

ϕκ1

( ˆ̂σ )ϕκ2

( ˆ̂σ ′) ∏

p∈C2(BN )

ϕβ

(
d ˆ̂σ(p)

)
.

Now recall that for any r ≥ 0 and g ∈ G, we have ϕr (0) = 1 and ϕr (g) =
er�(ρ(g)−1) ∈ (0, 1]. If g �= 0, then ϕr (g) < 1 and hence ϕβ(g)2 ≤ α1(β) < 1.

If ˆ̂σ, ˆ̂σ ′ and E are as above, then we must be in one of the following three cases.

(1) If |(supp d ˆ̂σ)+| ≥ 6, then

∏

p∈C2(BN )

ϕβ

(
d ˆ̂σ(p)

) =
∏

p∈C2(BN ,G)+

ϕβ

(
(d ˆ̂σ)p

)2 ≤ α1(β)max(M ′,6).

(2) If |(supp d ˆ̂σ)+| ∈ {1, 2, 3, 4, 5}, by Lemma 2.8, ˆ̂σ must support a vortex with
support at the boundary of BN , and hence we must have |E | ≥ dist1(e, ∂C1(BN )).

At the same time, by definition, we also have
∏

p∈C1(BN ,G) ϕβ

(
d ˆ̂σ(p)

) ≤ α1(β).
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(3) If |(supp d ˆ̂σ)+| = 0, then ˆ̂σ ∈ �1
0(BN ,G). Since | supp( ˆ̂σ)+ ∪ supp( ˆ̂σ ′)+| > 0, it

follows from Lemma 2.9 that |E | ≥ min(M, 8, dist0(e, ∂C1(BN ))). Moreover, we
have

∏
p∈C1(BN ,G) ϕβ

(
d ˆ̂σ(p)

) = 1.

Consequently, we have

Jβ,κ1,κ2(E) ≤ (
α1(β)max(6,M ′) + 1M ′∈{1,2,3,4,5}, |E |≥dist1(e,∂C1(BN )) · α1(β)

+ 1M ′=0, |E |≥max(M,min(8,dist0(e,∂C1(BN ))))

)
∑

ˆ̂σ∈�1(BN ,G), ˆ̂σ ′∈�1
0(BN ,G) :

(supp ˆ̂σ∪supp ˆ̂σ ′)+=E,

| supp d ˆ̂σ |≥2M ′

ϕκ1

( ˆ̂σ )ϕκ2

( ˆ̂σ ′).

By dropping the condition
∣∣supp d ˆ̂σ ∣∣ ≥ 2 M ′, and replacing the condition ˆ̂σ ′ ∈

�1
0(BN ,G) with the condition that ˆ̂σ ′ ∈ �1(BN ,G), we make the sum larger.

Hence
∑

ˆ̂σ∈�1(BN ,G), ˆ̂σ ′∈�1
0(BN ,G) :

(supp ˆ̂σ∪supp ˆ̂σ ′)+=E,

| supp d ˆ̂σ |≥2M ′

ϕκ1

( ˆ̂σ )ϕκ2

( ˆ̂σ ′) ≤
∑

ˆ̂σ∈�1(BN ,G), ˆ̂σ ′∈�1(BN ,G) :
(supp ˆ̂σ∪supp ˆ̂σ ′)+=E

ϕκ1

( ˆ̂σ )ϕκ2

( ˆ̂σ ′).

Using Lemma 6.7, we thus obtain

Jβ,κ1,κ2(E) ≤ (
α1(β)max(6,M ′) + 1M ′∈{1,2,3,4,5}, |E |≥dist1(e,∂C1(BN )) · α1(β)

+ 1M ′=0, |E |≥max(M,min(8,dist0(e,∂C1(BN ))))

)

·
((

α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)
)|E |)

.

(6.11)

Combining (6.10) and (6.11) and applying Lemma 6.6, we now finally obtain

μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :
|CG(σ̂ ,σ̂ ′)(e)| ≥ 2M and

∣∣supp d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

)∣∣ ≥ 2M ′})

≤
∞∑

m=M

18max(0,2m−3)
(
α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

)m
α1(β)max(6,M ′)

+ 1M ′∈{1,2,3,4,5}
∞∑

m=dist1(e,∂C1(BN ))

18max(0,2m−3)
(
α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

)m
α1(β)

+ 1M ′=0

∞∑

m=max(M,min(8,dist0(e,∂C1(BN ))))

18max(0,2m−3)
(
α0(κ1) + α0(κ2) + α0(κ1)α0(κ2)

)m
.

Computing the above geometric sums, we obtain (6.3) as desired. ��
Proof of Proposition 6.3. If σ̂ ∈ �1(BN ,G) satisfies dσ̂ (p) �= 0, then there must
exist e ∈ ∂p such that σ(e) �= 0. For any such e, we must have |(CG(σ̂ ,0)(e))

+| ≥ 1.
Moreover, since σ(e) �= 0, for any e′ ∈ ∂p such that σ(e′) �= 0, by definition, we have
e′ ∈ CG(σ̂ ,0)(e). Consequently, we must have d(σ̂ |CG(σ̂ ,0)(e))(p) = dσ̂ (p) �= 0. Using
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Lemma 2.8, it follows that |(supp d(σ̂ |CG(σ̂ ,0)(e)))
+| ≥ 6. Combining these observations

with a union bound, it follows that

μN ,β,κ

({
σ̂ ∈ �1(BN ,G) : dσ̂ (p) �= 0

})

≤
∑

e∈∂p

μN ,β,κ

({
σ̂ ∈ �1(BN ,G) : |(CG(σ̂ )(e))

+| ≥ 1 and |(supp d(σ̂ |CG(σ̂ )(e)
))+| ≥ 6

})
.

Applying Proposition 6.1 with κ1 = κ, κ2 = ∞, M = 1, and M ′ = 6, we obtain (6.3)
as desired. ��
Proof of Proposition 6.4. Recall first that by the definition of μ

E0
N ,(∞,κ),(∞,κ), using

Lemma 5.9, we have

μ
E0
N ,(∞,κ),(∞,κ)

({
(σ, σ ′) ∈ �1

0(BN ,G) × �1
0(BN ,G) : e ∈ EE0,σ,σ ′

})

= μN ,∞,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1

0(BN ,G) × �1
0(BN ,G) : e ∈ Eσ̂ ,σ̂ ′

})
.

Next, since σ̂ , σ̂ ′ ∈ �1
0(BN ,G), we have dσ̂ = dσ̂ ′ = 0. Consequently,

e ∈ EE0,σ̂ ,σ̂ ′ ⇔ e ∈ CG(σ̂ ,σ̂ ′)(E0) ⇔ E0 ∩ CG(σ̂ ,σ̂ ′)(e) �= ∅.

Finally, note that if E0∩CG(σ̂ ,σ̂ ′)(e) �= ∅, then, by definition, we must have |(CG(σ̂ ,σ̂ ′)(e))
+| ≥

dist0(e, E0).

Combining these observations, it follows that

μ
E0
N ,(∞,κ),(∞,κ)

({
(σ, σ ′) ∈ �1

0(BN ,G) × �1
0(BN ,G) : e ∈ EE0,σ,σ ′

})

≤ μN ,∞,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1

0(BN ,G) × �1
0(BN ,G) : |CG(σ̂ ,σ̂ ′)(e)|

≥ dist0(e, E0)
})

.

Applying Proposition 6.1 with κ1 = κ2 = κ, β = ∞, M = dist0(e, E0), and M ′ = 0,
we obtain (6.5) as desired. ��
Proof of Proposition 6.5. Without loss of generality, we can assume that e ∈ C1(BN )+.
To simplify notation, let

E := {
σ ∈ �1(BN ,G) : |CG(σ )(E0)| ≥ 2M, and

∣∣supp d
(
σ |CG(σ )(E0)

)∣∣ ≥ 2M ′}.

Now note that CG(σ̂ ,σ̂ ′)(E0) is symmetric, and that the set CG(σ̂ ,σ̂ ′)(E0) ∪ {e,−e}
induces a connected set in Ḡ. Consequently, we have

μN ,β,κ (E)

=
∑

E⊆C+
1 (BN ) : |E |≥M,

Ḡ|E∪{e} is connected

μN ,β,κ

({
σ ∈ �1(BN ,G) : CG(σ )(E0)

+

= E,
∣∣supp d

(
σ |CG(σ )(E0)

)∣∣ ≥ 2M ′}).

Given σ ∈ �1(BN ,G), if we let ˆ̂σ := σ |CG(σ )(E0), then the following statements hold.

(1) If
∣∣supp d(σ |CG(σ,0)(E0))

∣∣ ≥ 2 M ′, then, by definition,
∣∣supp d ˆ̂σ ∣∣ ≥ 2 M ′.
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(2) If d(σ |CG(σ,0)(E0)) �= 0, then E0 ∩ supp σ �= ∅ and thus (CG(σ )(E0))
+ = (supp ˆ̂σ)+.

As a consequence, the expression in the previous equation is bounded from above
by

∑

E⊆C+
1 (BN ) : |E |≥M,

Ḡ|E∪{e} is connected

∑

ˆ̂σ∈�1(BN ,G) :
(supp ˆ̂σ)+=E,

| supp d ˆ̂σ |≥2M ′

μN ,β,κ

({
σ ∈ �1(BN ,G) : σ̂ |CG(σ̂ ,0)(E0) = ˆ̂σ

})
.

(6.12)

For any ˆ̂σ as in the sum above, by applying first Lemma 5.2, and then Proposition 4.2,
we have

μN ,β,κ

({σ̂ ∈ �1(BN ,G) : σ̂ |CG(σ̂ ,0)(E0) = ˆ̂σ }) ≤ μN ,β,κ

({σ̂ ∈ �1(BN ,G) : ˆ̂σ ≤ σ̂ })

≤ ϕβ,κ( ˆ̂σ).

Taken together, the above equations show that

μN ,β,κ (E) ≤
∑

E⊆C+
1 (BN ) :

e∈E, |E |≥M,

Ḡ|E is connected

Jβ,κ (E),

(6.13)

where

Jβ,κ (E) :=
∑

ˆ̂σ∈�1(BN ,G) :
(supp ˆ̂σ)+=supp E,

| supp d ˆ̂σ |≥2M ′

ϕβ,κ( ˆ̂σ).

Now recall that

ϕβ,κ ( ˆ̂σ) =
∏

e′∈C1(BN )

ϕκ

( ˆ̂σ(e′)
) ∏

p∈C2(BN )

ϕβ

(
d ˆ̂σ(p)

)
.

Also, recall that for any r ≥ 0 and g ∈ G, we have ϕr (0) = 1 and ϕr (g) = er�(ρ(g)−1) ∈
(0, 1]. If g �= 0, then ϕr (g) < 1 and hence ϕβ(g)2 ≤ α1(β) < 1.

If ˆ̂σ is as above, then | supp d ˆ̂σ | ≥ 2 M ′, and hence

∏

p∈C2(BN ,G)+

ϕβ

(
(d ˆ̂σ)p

)2 ≤ α1(β)M
′
.

Consequently, if E is as above, then

Jβ,κ (E) ≤ α1(β)M
′ ∑

ˆ̂σ∈�1(BN ,G) :
(supp ˆ̂σ)+=E,

| supp d ˆ̂σ |≥2M ′

∏

e′∈C1(BN )+

ϕκ

( ˆ̂σ(e′)
)2

.
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By dropping the condition
∣∣supp d ˆ̂σ ∣∣ ≥ 2 M ′ we make the sum larger. Hence

Jβ,κ (E) ≤ α1(β)M
′ ∑

ˆ̂σ∈�1(BN ,G) :
(supp ˆ̂σ)+=supp W

∏

e′∈C1(BN )+

ϕκ

( ˆ̂σ(e′)
)2

.

If ˆ̂σ ∈ �1(BN ,G) and e′ /∈ supp ˆ̂σ , then ϕκ

( ˆ̂σ(e′)
) = ϕκ(0) = 1. Also, if ˆ̂σ ∈

�1(BN ,G) and e′ ∈ (supp ˆ̂σ)+, then ˆ̂σ(e′) �= 0.

Using this observation, we obtain
∑

ˆ̂σ∈�1(BN ,G) :
(supp ˆ̂σ ′)+=E

∏

e′∈C1(BN )+

ϕκ

( ˆ̂σ(e′)
)2 ≤

∏

e′∈E

∑

ˆ̂σ ′(e′)∈G�{0}
ϕκ( ˆ̂σ ′(e′))2 =

∏

e′∈E
α0(κ)

= α0(κ)|E |,
(6.14)

We thus have

Jβ,κ (E) ≤ α1(β)M
′
α0(κ)|E |. (6.15)

Now note that, by Lemma 6.6, for any m ≥ M, we have
∣∣∣
{
E ⊆ C+

1 (BN ) : |E | = m, Ḡ|E∪{e} is connected
}∣∣∣

=
∣∣∣
{
E ⊆ C+

1 (BN ) : |E | = m, e ∈ E, Ḡ|E is connected
}∣∣∣

+
∣∣∣
{
E ⊆ C+

1 (BN ) : |E | = m + 1, e ∈ E, Ḡ|E is connected
}∣∣∣

≤ 182m−3 + 182(m+1)−3.

Combining this with (6.13) and (6.11), we thus find that

μN ,β,κ (E) ≤
∞∑

m=M

(182m−3 + 182(m+1)−3)α0(κ)mα1(β)M
′
.

Computing the above geometric sum, we obtain (6.3). ��

7. A First Version of Our Main Result

In this section, we present a first application of the coupling introduced in Sect. 5.4, by
giving a first version of Theorem 10.1. This result provides an upper bound on 〈Lγ (σ, φ)〉
which is good when the probability is small that there is a cluster in G(σ̂ , σ̂ ′) which both
intersects supp γ and supports a vortex. We later present a strengthening of this result
in Proposition 10.18.

Proposition 7.1. Let β, κ ≥ 0 be such that 3 holds, and let γ be a path with finite
support. Then
∣∣∣
〈
Lγ (σ, φ)

〉
β,κ,∞ − 〈

Lγ (σ, φ)
〉
∞,κ,∞

∣∣∣ ≤ 2K4
(
1 + K3K4α0(κ)

)| supp γ |α0(κ)α1(β)6,

(7.1)

where K3 and K4 are defined by (6.6).
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Proof. Let N ≥ 1 be large enough so that supp γ ⊆ C1(BN ) and dist0(supp γ, ∂C1(BN )))

≥ 8.

Then, by definition, we have

EN ,β,κ

[
Lγ (σ )

] = EN ,(β,κ),(∞,κ)

[
Lγ (σ )

] = μN ,β,κ × μN ,∞,κ

[
Lγ (σ̂ |Eσ̂ ,σ̂ ′

+ σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ )
]
.

On the event supp γ ∩ Eσ̂ ,σ̂ ′ = ∅,

we have

Lγ (σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ ) = Lγ (0 + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ ) = Lγ (σ̂ ′|Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ )

= Lγ (σ̂ ′).

As a consequence,

μN ,β,κ × μN ,∞,κ

[
Lγ (σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ )

]

= μN ,β,κ × μN ,∞,κ

[
Lγ (σ̂ ′) · 1supp γ∩Eσ̂ ,σ̂ ′=∅

]

+ μN ,β,κ × μN ,∞,κ

[
Lγ (σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ ) · 1supp γ∩Eσ̂ ,σ̂ ′ �=∅

]

= μN ,β,κ × μN ,∞,κ

[
Lγ (σ̂ ′)

] − μN ,β,κ × μN ,∞,κ

[
Lγ (σ̂ ′) · 1supp γ∩Eσ̂ ,σ̂ ′ �=∅

]

+ μN ,β,κ × μN ,∞,κ

[
Lγ (σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ ) · 1supp γ∩Eσ̂ ,σ̂ ′ �=∅

]

Since ρ is unitary and Lγ (σ ) = ρ(σ(γ )) for any σ ∈ �1(BN ,G), it follows that

∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ̂ ′)

]∣∣∣

≤ 2μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : supp γ ∩ Eσ̂ ,σ̂ ′ �= ∅}
)

≤ 2
∑

e∈γ

μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : e ∈ Eσ̂ ,σ̂ ′ �= ∅}
)

By Lemma 5.10, if e ∈ C1(BN ), σ̂ ∈ �1(BN ,G) and σ̂ ′ ∈ �1
0(BN ,G), then e ∈

Eσ̂ ,σ̂ ′ if and only if d(σ̂ |CG(σ̂ ,σ̂ ′)(e)) �= 0. On the other hand, if d(σ̂ |CG(σ̂ ,σ̂ ′)(e)) �= 0, then
we must have e ∈ supp σ̂ |CG(σ̂ ,σ̂ ′)(e), implying in particular that −e ∈ CG(σ̂ ,σ̂ ′)(e), and
hence |CG(σ̂ ,σ̂ ′)(e)| ≥ 2. Applying Proposition 6.1 with M = M ′ = 1 and κ1 = κ2 = κ,

we thus obtain

μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : e ∈ Eσ̂ ,σ̂ ′
})

≤ K4
(
1 + K3K4α0(κ)

)
α0(κ)α1(β)6 + K3

(
K4α0(κ)

)dist1(e,∂C1(BN ))
α1(β).

Combining the above equations and letting N → ∞ (using Proposition 2.19 and Corol-
lary 2.17), we obtain (7.1) as desired. ��
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8. A Decomposition of the Coupled Spin Configuration

The main result in this section is the following proposition, which gives a decomposition
of σ := σ̂ |Eσ,σ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ in terms of decompositions of σ̂ and σ̂ ′.

Proposition 8.1. Let σ̂ ∈ �1(BN ,G) and σ̂ ′ ∈ �1
0(BN ,G), let �̂ be a decomposition

of σ̂ and �̂′ be a decomposition of σ̂ ′ (these are guaranteed to exist by Lemma 2.6), and
define

� := { ˆ̂σ ∈ �̂ : supp ˆ̂σ ⊆ Eσ̂ ,σ̂ ′
}

and

�′ := { ˆ̂σ ∈ �̂′ : supp ˆ̂σ ⊆ C1(BN ) � Eσ̂ ,σ̂ ′
}
.

Then � ∪ �′ is a decomposition of σ := σ̂ |Eσ,σ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ .

Proof. We need to show that (2.6)–(2.6) of Lemma 2.6 holds, i.e. that

(i) If ˆ̂σ ∈ � ∪ �′, then ˆ̂σ is non-trivial and irreducible,
(ii) If ˆ̂σ ∈ � ∪ �′, then ˆ̂σ ≤ σ ,

(iii) If ˆ̂σ 1, ˆ̂σ 2 ∈ � ∪ �′, then ˆ̂σ 1 and ˆ̂σ 2 have disjoint supports,
(iv) σ = ∑

ˆ̂σ∈�∪�′ ˆ̂σ , and
(v) if ˆ̂σ 1, ˆ̂σ 2 ∈ � ∪ �′, then d ˆ̂σ 1 and d ˆ̂σ 2 have disjoint supports,

We now show that (i)–(v) holds.

(i) Since �̂ and �̂′ are decompositions of σ̂ and σ̂ ′ respectively, (8) holds with �̂∪�̂′
replaced with � ∪ �′. Since � ∪ �′ ⊆ �̂ ∪ �̂′, the desired conclusion follows.

(ii) Fix some ˆ̂σ ∈ �. By the definition of �, we have supp ˆ̂σ ⊆ Eσ̂ ,σ̂ ′ , and hence
ˆ̂σ = ˆ̂σ |Eσ̂ ,σ̂ ′ . At the same time, since � ⊆ �̂ and �̂ is a decomposition of σ̂ ,

we have ˆ̂σ ≤ σ̂ . Finally, note that, by Lemma 5.9, we have Eσ̂ ,σ̂ ′ = Eσ,σ̂ ′ . By
applying Lemma 5.2 twice, we obtain

ˆ̂σ = ˆ̂σ |Eσ̂ ,σ̂ ′ ≤ σ̂ |Eσ̂ ,σ̂ ′ = σ |Eσ̂ ,σ̂ ′ = σ |Eσ,σ̂ ′ ≤ σ,

and hence ˆ̂σ ≤ σ. Since proof in the case ˆ̂σ ∈ �′ is analogous, we omit it here.
(iii) Since �̂ is a decomposition of σ̂ , for any distinct ˆ̂σ 1, ˆ̂σ 2 ∈ � ⊆ �̂, ˆ̂σ 1 and ˆ̂σ 2

have disjoint supports. Analogously, since �̂′ is a decomposition of σ̂ ′, for any
distinct ˆ̂σ 1, ˆ̂σ 2 ∈ �′ ⊆ �̂′, ˆ̂σ 1 and ˆ̂σ 2 have disjoint supports. Finally, if ˆ̂σ 1 ∈ �

and ˆ̂σ 2 ∈ �′′, then, since supp ˆ̂σ 1 ⊆ Eσ,σ ′ , supp ˆ̂σ 2 ⊆ C1(BN ) � Eσ,σ ′ , and the
sets Eσ,σ ′ and C1(BN ) � Eσ,σ ′ are disjoint, it follows that ˆ̂σ 1 and ˆ̂σ 2 have disjoint
supports. This concludes the proof of (8).

(iv) Since �̂ is a spin decomposition of σ̂ , each ˆ̂σ ∈ �̂ is non-trivial and irreducible.
Consequently, using Lemma 5.6, it follows that for each ˆ̂σ ∈ �̂, we have either
supp ˆ̂σ ⊆ Eσ̂ ,σ̂ ′ or supp ˆ̂σ ⊆ C1(BN ) � Eσ̂ ,σ̂ ′ , and hence

σ̂ |Eσ̂ ,σ̂ ′ =
(∑

ˆ̂σ∈�̂

ˆ̂σ
)∣∣∣

Eσ̂ ,σ̂ ′
=

∑

ˆ̂σ∈�̂

ˆ̂σ |Eσ̂ ,σ̂ ′ =
∑

ˆ̂σ∈�

ˆ̂σ .
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Completely analogously, we find that

σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ =
( ∑

ˆ̂σ∈�̂′
ˆ̂σ
)∣∣∣

C1(BN )�Eσ̂ ,σ̂ ′
=

∑

ˆ̂σ∈�̂′
ˆ̂σ |Eσ̂ ,σ̂ ′ =

∑

ˆ̂σ∈�′
ˆ̂σ .

Combining the previous equations and using the definition of σ , we obtain (8).
(v) If ˆ̂σ ∈ �′, then, since �′ ⊆ �̂′ and �̂′ is a decomposition of σ̂ ′, we have ˆ̂σ ≤ σ̂ ′.

Since σ̂ ′ ∈ �1
0(BN ,G), we have dσ̂ ′ = 0, and hence d ˆ̂σ = 0. Consequently, the

desired conclusion will follow if we can show that (8) holds with � ∪ �′ replaced
with �. To see that this holds, let ˆ̂σ 1, ˆ̂σ 2 ∈ �. Then, since � ⊆ �̂, we also have
ˆ̂σ 1, ˆ̂σ 2 ∈ �̂. Since �̂ is a decomposition of σ̂ , the 2-forms d ˆ̂σ 1 and d ˆ̂σ 2 must have
disjoint support. This concludes the proof of (8).

��

9. Disturbing 1-Forms

The main purpose of this section is to introduce the following definition.

Definition 9.1. Let σ ∈ �1(BN ,G), and let γ ∈ C1(BN ) be a path. If there is no path
γ̂ ∈ C1(BN ) with ∂γ̂ = −∂γ and 1-form ˆ̂σ ∈ �1(BN ,G) such that

(i) d ˆ̂σ ≤ dσ

(ii) σ(γ̂ ) = 0,
(iii) ˆ̂σ(γ + γ̂ ) = 0,
(iv) Any vortex ν in σ − ˆ̂σ is a minimal vortex centered around an edge in γ − γc

(see (3.8) for a definition of γc), and
(v) If dσ(p) = dσ(p′) for all p, p′ ∈ ∂̂e, then d ˆ̂σ(p) = 0 for all p ∈ ∂̂e,

then we say that σ disturbs γ .

Note that if γ ∈ C1(BN ) is a generalized loop and σ ∈ �1(BN ,G), then we can
pick γ̂ = 0 in Definition 9.1, and hence, in this case, (ii) automatically holds.

The main reason for introducing the previous definition is Lemma 9.2 below. To
simplify the notation in this lemma, we define

γ ′[e] := (γ − γc)[e] · 1(∃p, p′ ∈ ∂̂e : dσ(p) �= dσ(p′)
)
, e ∈ C+

1 (BN ). (9.1)

Lemma 9.2. Let σ ∈ �1(BN ,G) and let γ ∈ C1(BN ) be a path. For each e ∈ γ , fix
one plaquette pe ∈ ∂̂e.

Then, if σ does not disturb γ , we have

σ(γ ) =
∑

e∈(γ−γc)−γ ′
dσ(pe).

Proof. Assume that σ does not disturb γ . Then, by definition, there is γ̂ and ˆ̂σ which
satisfies (9.1)–(9.1) of Definition 9.1.

To simplify notation, define σ̄ := σ − ˆ̂σ . Then

σ(γ ) = σ(γ ) + 0
(9.1)= σ(γ ) + σ(γ̂ )

= σ(γ + γ̂ ) = (σ − ˆ̂σ + ˆ̂σ)(γ + γ̂ ) = (σ − ˆ̂σ)(γ + γ̂ ) + ˆ̂σ(γ + γ̂ )

(9.1)= (σ − ˆ̂σ)(γ + γ̂ ) + 0 = (σ − ˆ̂σ)(γ + γ̂ ) = σ̄ (γ + γ̂ ).
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Since ∂(γ + γ̂ ) = ∂γ + ∂γ̂ = ∂γ − ∂γ = 0, γ + γ̂ is a generalized loop. Let B be
a cube of width | supp(γ + γ̂ )| which contains γ + γ̂ . Since γ + γ̂ ⊆ C1(BN ), such a
cube exists. Next, let q be an oriented surface inside B such that γ + γ̂ is the boundary
of q. The existence of such a surface is guaranteed by Lemma 2.15.

By Lemma 2.6, there is a set � ⊆ �0
2(BN ,G) which is a decomposition of dσ̄ . Fix

such a set �, and note that, by definition, each ω ∈ � is a vortex in σ̄ . Let �q be the set
of all ω ∈ � with ω(q) �= 0. Then, by the discrete Stokes’ theorem, we have

σ̄ (γ + γ̂ ) = dσ̄ (q) =
∑

ω∈�q

ω(q).

Now fix some ω ∈ �q . Since ω(q) �= 0, by (9.1) and Lemma 2.12, there must exist
e := ∂

∂x j

∣∣
a ∈ �+

1(BN ) and g ∈ G � {0} such that γ [e] = 1 and ω = d(g1a dx j ).
Then, by definition, we have ω(pe) = g, and since ω ≤ dσ̄ and g �= 0, it follows that
dσ̄ (pe) = ω(pe) = g. Since q is an oriented surface with boundary γ , we thus have

ω(q) = d(g1a dx j )(q) = (g1a dx j )(γ ) = g = ω(pe) = dσ̄ (pe).

Define

γ5[e] := (γ − γc)[e] · 1(∃ω ∈ �q such that supp ω = ∂̂e ∪ ∂̂(−e)
)
, e ∈ C+

1 (BN ).

Then, since minimal vortices around distinct edges in γ − γc have disjoint supports, it
follows that

∑

ω∈�q

ω(q) =
∑

e∈γ5

dσ̄ (pe).

Since, by assumption, we have d ˆ̂σ ≤ dσ , and dσ̄ = dσ − d ˆ̂σ , it follows from
Lemma 2.3 (2.3) that dσ̄ ≤ dσ .

Using the definition of γ5, it follows that for any e ∈ γ5, we have dσ̄ (pe) = dσ(pe).
Consequently,

∑

e∈γ5

dσ̄ (pe) =
∑

e∈γ5

dσ(pe).

Now note that by the definition of γ ′, we have

(
(γ − γc) − γ ′)[e] = (γ − γc)[e] · 1(dσ(p) = dσ(p′) for all p, p′ ∈ ∂̂e

)
,

e ∈ C+
1 (BN ).

Since dσ̄ ≤ dσ , it follows that if e ∈ γ5 then e ∈ (γ − γc) − γ ′. Finally, we note
that if e ∈ (γ − γc) − γ ′, then d ˆ̂σ(pe) = 0, and hence dσ̄ (pe) = dσ(pe) = 0. As a
consequence,

∑

e∈γ5

dσ(pe) =
∑

e∈(γ−γc)−γ ′
dσ(pe).

By combining the previous equations, we obtain the desired conclusion. ��
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10. Proof of the Main Result

In this section, we will first give a proof of the following result, which is more general
that Theorem 1.1, and then show how this proof, with very small adjustments, implies
Theorem 1.1.

Theorem 10.1. Let G = Zn for some n ≥ 2, let β, κ ≥ 0 satisfy 3, let γ be a path, and
let γ0 ∈ C1(BN ) be any path with ∂γ0 = −∂γ. Then

∣∣∣
〈
Lγ (σ, φ)

〉
β,κ,∞ − �β,κ(γ )Hκ(γ )

∣∣∣

≤ K6

(
α2(β, κ) +

√
max(1, | supp γc|)

| supp γ |
)| supp(γ−γc)|/(| supp(γ−γc)|+2| supp γ |)

,

(10.1)

where

�β,κ (γ ) :=
〈∏

e∈γ

θβ,κ

(
σ(e) − φ(∂e)

)〉
∞,κ,∞,

Hκ (γ ) :=
〈
Lγ (σ, φ)

〉

∞,κ,∞,

K6 := 22| supp γ |/(2| supp γ |+| supp(γ−γc)|)

·
[
1(∂γ �= 0) · 2K3K

8
4 α0(κ)7

∑

e∈γ

(
182(2 + α0(κ)

)
α0(κ)

)max(0,dist0(e,supp γ0)−8)

·
(

α1(β)

α0(β)

)6

· α2(β, κ)6

α5(β, κ)

+ K2 · α2(β, κ)6

α5(β, κ)
+ K3K

2
4 α0(κ)5/6 ·

(
α1(β)

α0(β)

)7

· α2(β, κ)6

α5(β, κ)

+
184K5α2(β, κ)5

2
·
(α1(β)

α0(β)

)12 · α2(β, κ)6

α5(β, κ)

+

√
2K8 α0(κ)5α4(β, κ) max

(
α0(κ), α1(β)6

)

α5(β, κ)
·
√(

α1(β)

α0(β)

)6

·
√

α2(β, κ)6

α5(β, κ)

+ 2

√
2K7 α0(κ)8α4(β, κ)

α5(β, κ)
·
√(

α1(β)

α0(β)

)6

·
√

α2(β, κ)6

α5(β, κ)

+
√

12K2 ·
√

α2(β, κ)6

α5(β, κ)
·
√

α3(β, κ)

α5(β, κ)
+

√
K10 α0(κ)8α4(β, κ)

α5(β, κ)

+

√
α3(β, κ)

α5(β, κ)

]| supp(γ−γc)|/(| supp(γ−γc)|+2| supp γ |)
, (10.2)

where K2 is given by (6.4), where K3 and K4 are given by (6.6), K5 is given by (6.7),
K7 is given by (10.21), K8 is given by (10.22), and K10 is given by (10.24).
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Remark 10.2. Using the equations in the beginning of Sect. 10.9, together with (10.39),
one easily shows that if G = Z2, then

K6 = 22| supp γ |/(2| supp γ |+| supp(γ−γc)|)

·
[

2K3K
8
4 α0(κ)7

∑

e∈γ

(
K4α0(κ)

)max(0,dist0(e,γ0)−8)

+ K2 + K3K
2
4 +

√
K7 +

√
K8 +

√
K10 +

√
12K2 + 1

]| supp(γ−γc)|/(| supp(γ−γc)|+2| supp γ |)
,

10.1. A first application of the coupling. In this section, we split the expected value we
are interested in into two parts, later corresponding to the two functions �β,κ(γ ) and
Hκ(γ ) in Theorem 10.1. In order to do this, we first define three useful events;

E1 := {
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃ irreducible σ̄ ≤ σ̂ ′|Eσ̂ ,σ̂ ′

that disturbs γ
}
, (10.3)

E2 := {
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃ irreducible σ̄ ≤ σ̂ |Eσ̂ ,σ̂ ′

that disturbs γ
}
, (10.4)

and

E3 := {
σ ∈ �1(BN ,G) : ∃e ∈ γ, σ̃ ≤ σ, σ̃ ′ ≤ σ − σ̃ s.t. dσ̃ |± supp ∂̂e �= 0

and dσ̃ ′|± supp ∂̂e �= 0
}
.

(10.5)

We provide upper bounds of the probabilities of these events occurring in Sect. 10.4.
Using this notation, we have the following result, which is the main result of this

section.

Proposition 10.3. Let β, κ ≥ 0, and let γ ∈ C1(BN ) be a path. For each e ∈ γ , let
pe ∈ ∂̂e. Then

∣∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
ρ
(
dσ(pe)

)]∣∣∣∣

≤ 2μN ,(β,κ),(∞,κ)(E1) + 2μN ,(β,κ),(∞,κ)(E2) + 2μN ,(β,κ),(∞,κ)(E3).

Proof. Let σ̂ ∈ �1(BN ,G) and σ̂ ′ ∈ �1
0(BN ,G), and let

σ := σ̂ |Eσ̂ ,σ̂ ′ + σ̂ ′|C1(BN )�Eσ̂ ,σ̂ ′ .

Let �̂ be a decomposition of σ̂ ,

let �̂′ be a decomposition of σ̂ ′, and define

� := { ˆ̂σ ∈ �̂ : supp ˆ̂σ ⊆ Eσ̂ ,σ̂ ′ },
�′ := { ˆ̂σ ∈ �̂′ : supp ˆ̂σ ⊆ C1(BN ) � Eσ̂ ,σ̂ ′ },

�̂bad := { ˆ̂σ ∈ �̂ : ˆ̂σ disturbs γ },
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and

�̂′
bad := { ˆ̂σ ∈ �̂′ : ˆ̂σ disturbs γ }.

Note that these sets depend on σ̂ and σ̂ ′. Note also that if (�̂′
��′)∩ �̂′

bad �= ∅, then
(σ̂ , σ̂ ′) ∈ E1, and if � ∩ �̂bad = ∅, then (σ̂ , σ̂ ′) ∈ E2. By Proposition 8.1, � ∪ �′ is a
decomposition of σ. This implies in particular that the 1-forms in � ∪ �′ have disjoint
supports, and hence

Lγ (σ ) = Lγ

(∑

ˆ̂σ∈�

ˆ̂σ +
∑

ˆ̂σ ′∈�′
ˆ̂σ ′) = Lγ

(∑

ˆ̂σ∈�

ˆ̂σ
)
Lγ

( ∑

ˆ̂σ ′∈�′
ˆ̂σ ′). (10.6)

If (σ̂ , σ̂ ′) /∈ E1, then (�̂′
� �′) ∩ �̂′

bad = ∅. Since d ˆ̂σ = 0 for all ˆ̂σ ∈ �̂′, and
hence, using Lemma 9.2, it follows that, on this event, we have

Lγ

( ∑

ˆ̂σ∈�̂′��′
ˆ̂σ
)

= ρ

(( ∑

ˆ̂σ∈�̂′��′
ˆ̂σ
)
(γ )

)
= ρ

( ∑

ˆ̂σ∈�̂′��′
ˆ̂σ(γ )

)
= ρ

( ∑

ˆ̂σ∈�̂′��′
0
)

= 1,

and hence

Lγ

( ∑

ˆ̂σ∈�′
ˆ̂σ
)

= Lγ

( ∑

ˆ̂σ∈�′
ˆ̂σ
)

· Lγ

( ∑

ˆ̂σ∈�̂′��′
ˆ̂σ
)

= Lγ

( ∑

ˆ̂σ∈�′
ˆ̂σ +

∑

ˆ̂σ∈�̂′��′
ˆ̂σ
)

= Lγ (σ̂ ′).

In particular, this shows that

EN ,(β,κ),(∞,κ)

(∣∣∣∣Lγ

( ∑

ˆ̂σ∈�′
ˆ̂σ
)

− Lγ (σ̂ ′)
∣∣∣∣

)
≤ 2μN ,(β,κ),(∞,κ)(E1). (10.7)

Next, note that since the 1-forms in � have disjoint supports, we have

Lγ

(∑

ˆ̂σ∈�

ˆ̂σ
)

= ρ

((∑

ˆ̂σ∈�

ˆ̂σ
)
(γ )

)
= ρ

(∑

ˆ̂σ∈�

ˆ̂σ(γ )
)

=
∏

ˆ̂σ∈�

ρ
( ˆ̂σ(γ )

)
.

For ˆ̂σ ∈ �1(BN ,G), define

γ ′
ˆ̂σ [e] := (γ − γc)[e] · 1(∃p, p′ ∈ ∂̂e : d ˆ̂σ(p) �= d ˆ̂σ(p′)

)
, e ∈ C+

1 (BN ).

If (σ̂ , σ̂ ′) /∈ E2, then we have � ∩ �̂bad = ∅. Consequently, for any ˆ̂σ ∈ � we can
apply Lemma 9.2 to obtain

ρ
( ˆ̂σ(γ )

) =
∏

e∈(γ−γc)−γ ′
ˆ̂σ

ρ
(
d ˆ̂σ(pe)

)
.

If ˆ̂σ ∈ �̂ � �, then d ˆ̂σ = 0. Consequently, if (σ̂ , σ̂ ′) /∈ E2, then
∏

ˆ̂σ∈�

ρ
( ˆ̂σ(γ )

) =
∏

ˆ̂σ∈�

∏

e∈(γ−γc)−γ ′
ˆ̂σ

ρ
(
d ˆ̂σ(pe)

) =
∏

ˆ̂σ∈�̂

∏

e∈(γ−γc)−γ ′
ˆ̂σ

ρ
(
d ˆ̂σ(pe)

)
.

We now make a few observations.
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• If ˆ̂σ ∈ �̂ satisfies d ˆ̂σ(p) �= 0 for some e ∈ (γ − γc) − γ ′
ˆ̂σ and p ∈ ∂̂e, then, since

�̂ is a decomposition of σ̂ , we must have d ˆ̂σ ′(p) = 0 for all ˆ̂σ ′ ∈ �̂ � { ˆ̂σ }.
• If ˆ̂σ ∈ �̂, then, since �̂ is a decomposition of σ̂ , we must have ˆ̂σ ≤ σ̂ . Consequently,

if d ˆ̂σ(p) �= 0 for some p ∈ C2(BN ), then d ˆ̂σ(p) = dσ̂ (p).
• If ˆ̂σ , ˆ̂σ ′ ∈ �̂ are distinct and e ∈ γ ′

ˆ̂σ , then either e ∈ γ ′
ˆ̂σ ′ or d ˆ̂σ(p) = 0 for all

p ∈ ∂̂e.

Define

γ ′′′[e] := (γ − γc)[e] · 1(∃p, p′ ∈ ∂̂e, ˆ̂σ ∈ �̂ : d ˆ̂σ(p) �= d ˆ̂σ(p′)
)
, e ∈ C+

1 (BN ).

Combining these observations, it follows that

∏

ˆ̂σ∈�̂

∏

e∈(γ−γc)−γ ′
ˆ̂σ

ρ
(
d ˆ̂σ(pe)

) =
∏

ˆ̂σ∈�̂

∏

e∈(γ−γc)−γ ′
ˆ̂σ :

d ˆ̂σ(pe) �=0

ρ
(
d ˆ̂σ(pe)

)

=
∏

ˆ̂σ∈�̂

∏

e∈(γ−γc)−γ ′
ˆ̂σ :

d ˆ̂σ(pe) �=0

ρ
(
dσ̂ (pe)

) =
∏

e∈(γ−γc)−γ ′′′
ρ
(
dσ̂ (pe)

)
.

Combining the previous equations, it follows that if (σ̂ , σ̂ ′) /∈ E2, we have

Lγ

(∑

ˆ̂σ∈�

ˆ̂σ
)

=
∏

e∈(γ−γc)−γ ′′′
ρ
(
dσ̂ (pe)

)
,

and hence

EN ,(β,κ),(∞,κ)

(∣∣∣∣Lγ

(∑

ˆ̂σ∈�

ˆ̂σ
)

−
∏

e∈(γ−γc)−γ ′′′
ρ
(
dσ̂ (pe)

)∣∣∣∣

)
≤ 2μN ,(β,κ),(∞,κ)(E2).

(10.8)

We now argue that if γ ′
σ̂

�= γ ′′′, then the event E3 must happen. To this end, first

assume that e ∈ γ ′
σ̂
. Then there is p, p′ ∈ ∂̂e with σ̂ (p) �= σ̂ (p′). Without loss of

generality, we can assume that σ̂ (p) �= 0. Since �̂ is a decomposition of σ̂ , there is
ˆ̂σ ∈ �̂ with ˆ̂σ ≤ σ̂ such that d ˆ̂σ(p) = dσ̂ (p). Since ˆ̂σ ≤ σ̂ , we must have either
d ˆ̂σ(p′) = dσ̂ (p′) or d ˆ̂σ(p′) = 0. Using the assumption that dσ̂ (p) �= 0, it follows that
d ˆ̂σ(p) �= d ˆ̂σ(p′), and hence e ∈ γ ′′′.

Now, instead assume that e ∈ γ ′′′ − γ ′. Then, since e ∈ γ ′′′, there must exist
p, p′ ∈ ∂̂e and ˆ̂σ ∈ �̂ such that d ˆ̂σ(p) �= d ˆ̂σ(p′). Without loss of generality, we can
assume that d ˆ̂σ(p) �= 0. Since ˆ̂σ ∈ �̂, we have ˆ̂σ ≤ σ̂ , and hence, since d ˆ̂σ(p) �= 0, it
follows that d ˆ̂σ(p) = dσ̂ (p) �= 0.

Since ˆ̂σ ≤ σ̂ , we must have either ˆ̂σ(p′) = σ̂ (p′) or ˆ̂σ(p′) = 0. Since e ∈ γ ′, we
have dσ̂ (p) = dσ̂ (p′), and hence, since dσ̂ (p) = d ˆ̂σ(p) and d ˆ̂σ(p) �= d ˆ̂σ(p′), we
conclude that d ˆ̂σ(p′) = 0.

Since dσ̂ (p′) �= 0 and d ˆ̂σ(p′) = 0, there must exist ˆ̂σ ′ ∈ �̂ � { ˆ̂σ } such that
d ˆ̂σ ′(p′) = dσ̂ (p′) �= 0.
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To sum up, we have showed that if e ∈ γ ′′′ − γ, then there are distinct ˆ̂σ , ˆ̂σ ′ ∈ �̂

such that ˆ̂σ(p) �= 0 and ˆ̂σ ′(p′) �= 0. Since ˆ̂σ , ˆ̂σ ′ ∈ �̂ are distinct, using Lemma 2.8 we
conclude that if γ ′

σ̂
�= γ ′′′, then E3 holds.

Consequently,

EN ,(β,κ),(∞,κ)

(∣∣∣∣
∏

e∈(γ−γc)−γ ′′′
ρ
(
dσ̂ (pe)

) −
∏

e∈(γ−γc)−γ ′
ρ
(
dσ̂ (pe)

)∣∣∣∣

)
≤ 2μN ,β,κ (E3).

(10.9)

Combining (10.6), (10.7), (10.8), and 10.9 we obtain
∣∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
ρ
(
dσ(pe)

)]∣∣∣∣

=
∣∣∣∣EN ,(β,κ),(∞,κ)

[
Lγ

( ∑

ˆ̂σ ′∈�′
ˆ̂σ ′)Lγ

( ∑

ˆ̂σ∈�

ˆ̂σ
)

− Lγ (σ̂ ′)
∏

e∈(γ−γc)−γ ′
ρ
(
dσ̂ (pe)

)]∣∣∣∣

≤ EN ,(β,κ),(∞,κ)

[∣∣∣Lγ

( ∑

ˆ̂σ ′∈�′
ˆ̂σ ′)Lγ

( ∑

ˆ̂σ∈�

ˆ̂σ
)

− Lγ (σ̂ ′)
∏

e∈(γ−γc)−γ ′′′
ρ
(
dσ̂ (pe)

)∣∣∣
]

≤ EN ,(β,κ),(∞,κ)

[∣∣∣Lγ

( ∑

ˆ̂σ ′∈�′
ˆ̂σ ′) − Lγ (σ̂ ′)

∣∣∣
]

+ EN ,(β,κ),(∞,κ)

[∣∣∣Lγ

( ∑

ˆ̂σ∈�

ˆ̂σ
)

−
∏

e∈(γ−γc)−γ ′′′
ρ
(
dσ̂ (pe)

)∣∣∣
]

+ EN ,(β,κ),(∞,κ)

[∣∣∣
∏

e∈(γ−γc)−γ ′′′
ρ
(
dσ̂ (pe)

) −
∏

e∈(γ−γc)−γ ′
ρ
(
dσ̂ (pe)

)∣∣∣
]

≤ 2μN ,(β,κ),(∞,κ)(E1) + 2μN ,(β,κ),(∞,κ)(E2) + 2μN ,β,κ (E3).

This concludes the proof. ��

10.2. A resampling trick. Recall that given a path γ and σ ∈ �1(BN ,G), we have let

γ ′[e] = (γ − γc)[e] · 1(∃p, p′ ∈ ∂̂e : dσ(p) �= dσ(p′)
)
, e ∈ C1(BN ),

In this section, we describe a resampling trick, first introduced (in a different setting) in
[9].

Proposition 10.4 [Proposition 10.1 in [18]]. Let β, κ ≥ 0, and let γ ∈ C1(BN ) be a
path such that dist0(γ, ∂C1(BN )) ≥ 8. For each e ∈ γ , fix one plaquette pe ∈ ∂̂e. Then

EN ,β,κ

[
ρ
( ∑

e∈(γ−γc)−γ ′
dσ(pe)

)]
= EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)]
.

(10.10)

For a proof of Proposition 10.4, we refer the reader to [18, Proposition 10.1]. In
[18, Proposition 10.1], γ is assumed to be a generalized loop rather than a path as in
Proposition 10.4. However, since the proofs in the two cases are identical, we do not
include a proof here.
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10.3. A second application of the coupling. In this section, we take the next step towards
the proof of Theorem 10.1, by giving an upper bound on the distance between the right
hand side of (10.10) and �′

N ,β,κ (γ ). To this end, using the notation of Sect. 5, we now
introduce a few additional useful events which will be used to express the upper bound
in the Proposition 10.5 below.

Given an edge e ∈ C1(BN ), let

E4(e) := {
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : e ∈ Eσ,σ ′ and σ ′(e) �= 0
}
, (10.11)

E5(e) := {
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃e′ ∈ Eσ,σ ′ s.t. ∂̂e′ ∩ ∂̂e �= ∅
and ∃g ∈ G � {0} s.t. σ(e) − dσ(p) = g ∀p ∈ ∂̂e

}
, (10.12)

E6(e) := {
σ ′ ∈ �1

0(BN ,G) : σ ′(e) �= 0
}
, (10.13)

E7(e) := {
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃p, p′ ∈ ∂̂e s.t. dσ(p) �= dσ(p′)}.
(10.14)

Proposition 10.5. Let β, κ ≥ 0, and let γ ∈ C1(BN ) be a path such that for all e ∈ γ ,
p ∈ ∂̂e and p′ ∈ ∂C2(BN ), we have supp ∂p ∩ supp ∂̂ p′ = ∅.

Then
∣∣∣∣EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)] − �N ,β,κ (γ )

∣∣∣∣

≤ 2
√

2α4(β, κ)
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E5(e)

)
+ 4

√
2α4(β, κ)

∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E4(e)

)

+ 2
√

2α4(β, κ)
∑

e∈γc

μN ,∞,κ

(
E6(e)

)
+ 2

√
2| supp γc|α3(β, κ)

+ 2
√

2α3(β, κ)
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E7(e)

)
.

(10.15)

For the proof of Proposition 10.5 we need a two lemmas from [18], which we now
recall.

Lemma 10.6 [Lemma 11.2 in [18]]. Assume that z1, z2, z′1, z′2 ∈ C are such that
|z1|, |z2|, |z′1|, |z′2| ≤ 1. Then

|z1z2 − z′1z′2| ≤ |z1 − z′1| + |z2 − z′2|.
Lemma 10.7 [Lemma 11.3 in [18]]. Let a, b > 0. Assume that A ⊆ C1(BN ) is a random
set with E[|A|] ≤ a, and that

(i) Xe ∈ C and |Xe| ≤ 1 for all e ∈ C1(BN ), and
(ii) there exists a c ∈ [−1, 1] such that |Xe − c| ≤ b for all e ∈ C1(BN ).

Then

E

[∣∣∣
∏

e∈A

c −
∏

e∈A

Xe

∣∣∣
]

≤ 2
√

2ab.
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Proof of Proposition 10.5. Recall the coupling (σ, σ ′) ∼ μN ,(β,κ),(∞,κ) between σ ∼
μN ,β,κ and σ ′ ∼ μN ,∞,κ described in Sect. 5.4, and the set Eσ,σ ′ defined in (5.16). Since
μN ,(β,κ),(∞,κ) is a coupling of μN ,β,κ and μN ,∞,κ , we have

EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)] − EN ,∞,κ

[∏

e∈γ

θβ,κ

(
σ(e)

)]

= EN ,(β,κ),(∞,κ)

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

) −
∏

e∈γ

θβ,κ

(
σ ′(e)

)]
.

Given (σ, σ ′) ∈ �1(BN ,G) × �1
0(BN ,G), define

γ ′′[e] := (γ − γc)[e] · 1(∃e′ ∈ Eσ,σ ′ : ∂̂e′ ∩ ∂̂e �= ∅), e ∈ C1(BN )+.

In other words, γ ′ is the indicator function for all edges is γ −γc that is adjacent to some
edge in Eσ,σ ′ . By Lemma 5.21, if e ∈ (γ − γc) − γ ′′, then σ(e′) = σ ′(e′) whenever
e′ ∈ ∂p for some p ∈ ∂̂e, and hence dσ(pe) = dσ ′(pe) = 0. In particular, this implies
that if e ∈ (γ − γc) − γ ′′, then

σ(e) − dσ(pe) = σ ′(e) − dσ ′(pe) = σ ′(e) − 0 = σ ′(e). (10.16)

By the definition of γ ′, if e′ ∈ γ ′ then there exists p′ ∈ ∂̂e′ and e′′ ∈ ∂p′ such that
e′′ ∈ {e′′′ ∈ supp σ : dσ |± supp ∂̂e′′′ �= 0} ⊆ Eσ,σ ′ . Consequently, there is e′′ ∈ Eσ,σ ′

such that ∂̂e′′ ∩ ∂̂e �= ∅.

Hence, if e ∈ γ ′ then e ∈ γ ′′, and it follows that
∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

) =
∏

e∈(γ−γc)−γ ′′
θβ,κ

(
σ(e) − dσ(pe)

)

∏

e∈γ ′′−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)

(10.16)=
∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ ′(e)

) ∏

e∈γ ′′−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)
.

Consequently, using Lemma 5.21, we have
∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

) −
∏

e∈γ

θβ,κ

(
σ ′(e)

)

=
∏

e∈(γ−γc)−γ ′′
θβ,κ

(
σ(e)

) ∏

e∈γ ′′−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)

−
∏

e∈(γ−γc)−γ ′′
θβ,κ

(
σ ′(e)

) ∏

e∈γ ′′−γ ′
θβ,κ (σ ′(e))

∏

e∈γc+γ ′
θβ,κ (σ ′(e))

=
∏

e∈(γ−γc)−γ ′′
θβ,κ (σ ′(e))

( ∏

e∈γ ′′−γ ′
θβ,κ

(
σ(e) − dσ(pe)

) −
∏

e∈γ ′′−γ ′
θβ,κ (σ ′(e))

)

+
∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ ′(e)

)(
1 −

∏

e∈γc

θβ,κ (σ ′(e))
)
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+
∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ ′(e)

) ∏

e∈γc

θβ,κ

(
σ ′(e)

)(
1 −

∏

e∈γ ′
θβ,κ

(
σ ′(e)

))
.

Combining the above equations, we find that

EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)] − EN ,∞,κ

[∏

e∈γ

θβ,κ

(
σ(e)

)]

= EN ,(β,κ),(∞,κ)

[ ∏

e∈(γ−γc)−γ ′′
θβ,κ (σ ′(e))

( ∏

e∈γ ′′−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)

−
∏

e∈γ ′′−γ ′
θβ,κ (σ ′(e))

)]

+ EN ,(β,κ),(∞,κ)

[ ∏

e∈(γ−γc)−γ ′
θβ,κ (σ ′(e))

(
1 −

∏

e∈γc

θβ,κ (σ ′(e))
)]

+ EN ,(β,κ),(∞,κ)

[ ∏

e∈(γ−γc)−γ ′
θβ,κ (σ ′

e)
∏

e∈γc

θβ,κ (σ ′(e))
(

1 −
∏

e∈γ ′
θβ,κ (σ ′(e))

)]
.

Now note that
∏

e∈γ ′′−γ ′
θβ,κ

(
σ(e) − dσ(pe)

) −
∏

e∈γ ′′−γ ′
θβ,κ (σ ′(e))

=
∏

e∈γ ′′−γ ′ :
σ(e)−dσ(pe)=0

θβ,κ (0)

( ∏

e∈γ ′′−γ ′ :
σ(e)−dσ(pe) �=0

θβ,κ

(
σ(e) − dσ(pe)

) −
∏

e∈γ ′′−γ ′ :
σ(e)−dσ(pe) �=0

θβ,κ (0)

)

+
∏

e∈γ ′′−γ ′ :
σ ′(e)=0

θβ,κ (0)

( ∏

e∈γ ′′−γ ′ :
σ ′(e) �=0

θβ,κ (0) −
∏

e∈γ ′′−γ ′ :
σ ′(e) �=0

θβ,κ (σ ′(e))
)

,

and similarly, that

1 −
∏

e∈γc

θβ,κ (σ ′(e)) = (
1 − θβ,κ (0)| supp γc|) +

∏

e∈γc :
σ ′(e)=0

θβ,κ (0)

( ∏

e∈γc :
σ ′(e) �=0

θβ,κ (0)

−
∏

e∈γc :
σ ′(e) �=0

θβ,κ (σ ′(e))
)

and

1 −
∏

e∈γ ′
θβ,κ (σ ′(e)) = (

1 − θβ,κ (0)| supp γ ′|) +
∏

e∈γ ′ :σ ′(e)=0

θβ,κ (0)

( ∏

e∈γ ′ :σ ′(e) �=0

θβ,κ (0)

−
∏

e∈γ ′ :σ ′(e) �=0

θβ,κ (σ ′(e))
)

.
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Consequently, by applying the triangle inequality and noting that, since ρ is unitary,
we have |θβ,κ (g)| ≤ 1 for all g ∈ G, we obtain

∣∣∣∣EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)] − EN ,∞,κ

[∏

e∈γ

θβ,κ

(
σ(e)

)]∣∣∣∣

≤ EN ,(β,κ),(∞,κ)

[∣∣∣
∏

e∈γ ′′−γ ′ :
σ(e)−dσ(pe) �=0

θβ,κ

(
σ(e) − dσ(pe)

) −
∏

e∈γ ′′−γ ′ :
σ(e)−dσ(pe) �=0

θβ,κ (0)

∣∣∣
]

+ EN ,(β,κ),(∞,κ)

[∣∣∣
∏

e∈γ ′′
�γ ′ :

σ ′(e) �=0

θβ,κ (0) −
∏

e∈γ ′′
�γ ′ :

σ ′(e) �=0

θβ,κ

(
σ ′(e)

)∣∣∣
]

+ EN ,(β,κ),(∞,κ)

[∣∣∣
∏

e∈γc :
σ ′(e) �=0

θβ,κ (0) −
∏

e∈γc :
σ ′(e) �=0

θβ,κ

(
σ ′(e)

)∣∣∣
]

+
(
1 − θβ,κ (0)| supp γc |)

+ EN ,(β,κ),(∞,κ)

[∣∣∣
∏

e∈γ ′ :
σ ′(e) �=0

θβ,κ (0) −
∏

e∈γ ′ :
σ ′(e) �=0

θβ,κ

(
σ ′(e)

)∣∣∣
]

+
(
1 − θβ,κ (0)| supp γ ′ |).

(10.17)

We now use Lemma 10.7 to obtain upper bounds for each of the terms on the right-
hand side of the previous equation.

Claim 10.8.

EN ,(β,κ),(∞,κ)

[∣∣{e ∈ γ ′′ : σ ′(e) �= 0}∣∣
]

≤
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E4(e)

)
. (10.18)

Proof of claim. For any e ∈ γ ′′, by definition, there is at least one e′ ∈ Eσ,σ ′ such that
∂̂e′ ∩ ∂̂e �= ∅. Consequently, by the definition of Eσ,σ ′ , if σ ′(e) �= 0, we e ∈ Eσ,σ ′ .

From this it follows that

EN ,(β,κ),(∞,κ)

[∣∣{e ∈ γ ′′ : σ ′(e) �= 0}∣∣
]

=
∑

e∈γ ′′
μN ,(β,κ),(∞,κ)

({
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : σ ′(e) �= 0
})

=
∑

e∈γ ′′
μN ,(β,κ),(∞,κ)

({
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : e ∈ Eσ,σ ′

and σ ′(e) �= 0
})

=
∑

e∈γ ′′
μN ,(β,κ),(∞,κ)

(
E4(e)

) ≤
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E4(e)

)
,

which is the desired conclusion.

Claim 10.9.

EN ,(β,κ),(∞,κ)

[∣∣{e ∈ γ ′′ − γ ′ : σ(e) − dσ(pe) �= 0}∣∣
]

≤
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E5(e)

)
.

(10.19)
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Proof of claim. Note fist that by definition, for any e ∈ γ ′′ − γ ′, we have
{
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : σ(e) − dσ(pe) �= 0
} = E5(e).

Consequently,

EN ,(β,κ),(∞,κ)

[∣∣{e ∈ γ ′′ − γ ′ : σ(e) − dσ(pe) �= 0}∣∣
]

=
∑

e∈γ ′′−γ ′
μN ,(β,κ),(∞,κ)

({
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :

σ(e) − dσ(pe) �= 0
})

=
∑

e∈γ ′′−γ ′
μN ,(β,κ),(∞,κ)

(
E4

5

)
≤
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E5(e)

)
,

which is the desired conclusion. ��
Next, by definition, we have

EN ,(β,κ),(∞,κ)

[∣∣{e ∈ γc : σ ′(e) �= 0}∣∣
]

=
∑

e∈γc

μN ,∞,κ

(
E6(e)

)

and

EN ,β,κ

[| supp γ ′|]

=
∑

e∈γ �γc

μN ,(β,κ),(∞,κ)

({
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃p, p′ ∈ ∂̂e

s.t. dσ(p) �= dσ(p′)
})

=
∑

e∈γ �γc

μN ,(β,κ),(∞,κ)

(
E7(e)

) ≤
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E7(e)

)
.

Finally, since for any e ∈ γ ′ we also have e ∈ γ ′′, we have

EN ,(β,κ),(∞,κ)

[∣∣{e ∈ γ ′ : σ ′(e) �= 0}∣∣
]

≤ EN ,(β,κ),(∞,κ)

[∣∣{e ∈ γ ′′ : σ ′(e) �= 0}∣∣
]
,

the right-hand side of which we have given an upper bound for in (10.18),
Applying Lemma 10.7 to the terms in (10.17), we thus obtain
∣∣∣∣EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)] − EN ,∞,κ

[∏

e∈γ

θβ,κ

(
σ(e)

)]∣∣∣∣

≤ 2
√

2 max
g∈G

∣∣θβ,κ (g) − θβ,κ (0)
∣∣
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E5(e)

)

+ 4
√

2 max
g∈G

∣∣θβ,κ (g) − θβ,κ (0)
∣∣
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E4(e)

)

+ 2
√

2 max
g∈G

∣∣θβ,κ (g) − θβ,κ (0)
∣∣
∑

e∈γc

μN ,∞,κ

(
E6(e)

)

+ 2
√

2| supp γc|
∣∣1 − θβ,κ (0)

∣∣ + 2
√

2
∣∣1 − θβ,κ (0)|

∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E7(e)

)
.
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Recalling the definitions of α3(β, κ) and α4(β, κ), we obtain the desired conclusion. ��

10.4. Upper bounds on events. In this section we provide upper bounds on the events
E1, E2, and E3, defined in Sect. 10.1, and the events E4(e), E5(e), E6(e), and E7(e), from
Sect. 10.3.

Proposition 10.10. Let β, κ ≥ 0 be such that 3 hold, let γ ∈ C1(BN ) be a path with
dist0

(
supp γ, ∂C1(BN )

) ≥ 8, let γ0 ∈ C1(BN ) be any path such that ∂γ0 = −∂γ, and
let E1 be given by (10.3). Then

μN ,(β,κ),(∞,κ)(E1) ≤ 1(∂γ �= 0)
(
K3K

8
4α0(κ)8α1(β)6

∑

e∈γ

(
K4α0(κ)

)max(0,dist0(e,supp γ0)−8)

+ K3| supp γ |(K4α0(κ)
)dist1(supp γ,∂C1(BN ))

)
,

where K3 and K4 are given in (6.6).

Proposition 10.11. Let β, κ ≥ 0 be such that 3 hold, let γ ∈ C1(BN ) be a path such
that e ∈ γ and p ∈ ∂̂e we have dist0(supp ∂p, ∂C1(BN ))) ≥ 8, let γ0 ∈ C1(BN ) be
any path such that ∂γ0 = −∂γ, and let E2 be given by (10.4). Then

μN ,(β,κ),(∞,κ)(E2)

≤ 1(∂γ �= 0) · K3K
8
4α0(κ)8α1(β)6

∑

e∈γ

(
K4α0(κ)

)max(0,dist0(e,supp γ0)−8)

+ K2| supp γc|α2(β, κ)6 + K3K
2
4 | supp γ |α0(κ)2α1(β)7

+ 4K3| supp γ |(K4α0(κ)
)dist1(supp γ,∂C1(BN ))

,

where K2 is defined in (6.4), and K3 and K4 are given in (6.6).

Proposition 10.12. Let β, κ ≥ 0 be such that 3 hold, let γ ∈ C1(BN ) be a path such
for all e ∈ γ and p ∈ ∂̂e we have dist0(supp ∂p, ∂C1(BN )) ≥ 8, and let E3 be defined
by (10.5). Then

μN ,β,κ (E3) ≤ 184K5| supp γ |α0(κ)2α1(β)12 (10.20)

where K5 is given by (6.7).

Proposition 10.13 [Proposition 7.10 in [18]]. Let β, κ ≥ 0 be such that 3 holds, let
e ∈ C1(BN ) be such that the support of ∂̂e contains no boundary plaquettes of BN , and
let E4(e) be given by (10.11).

Then

μN ,(β,κ),(∞,κ)

(
E4(e)

) ≤ K7α0(κ)9α1(β)6 + K3
(
K4α0(κ)

)dist1(e,∂C1(BN ))
,

where

K7 := 1810K3

(
28α0(κ)−1

((
1 + α0(κ)/2

)8 − 1
)

+ 28K4

)
, (10.21)

and K3 and K4 are given by (6.6).
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Proposition 10.14 [Proposition 7.12 in [18]]. Let β, κ ≥ 0 be such that 3 holds. Next,
let e ∈ C1(BN ) be such that the support of ∂̂e contains no boundary plaquettes of BN ,

and let E5(e) be given by (10.12).
Then

μN ,(β,κ),(∞,κ)

(
E5(e)

) ≤ K8α1(β)6α0(κ)6 max
(
α0(κ), α1(β)6)

+K9
(
K4α0(κ)

)dist1(e,∂C1(BN ))
,

where

K8:= 2K3 · 188(182 + 1)
(
2 + α0(κ)

)7
, K9 := K3

(
1 +

((
2 + α0(κ)

)
α0(κ)

)−1)
,

(10.22)

and K3 and K4 are given by (6.6).

Proposition 10.15 [Proposition 7.14 in [18]]. Let β, κ ≥ 0 be such that 3 holds, let
e ∈ C1(BN ) be such that dist0(supp ∂p, ∂C1(BN )) ≥ 8 for all p ∈ ∂̂e, and let E6(e) be
given by (10.13).

Then

μN ,∞,κ

(
E6(e)

) ≤ K10α0(κ)8, (10.23)

where

K10 := 1813(1 − 182α0(κ)
)−1

. (10.24)

Proposition 10.16. Let β, κ ≥ 0 be such that 3 holds, let e ∈ C1(BN ) be such that for
all p ∈ ∂̂e, the support of ∂p contains no boundary edges of BN , and let E7(e) be given
by (10.14). Then

μN ,(β,κ),(∞,κ)

(
E7(e)

) ≤ 6K2 α2(β, κ)6,

where K2 is given by (6.4).

Before we provide proofs of Propositions 10.10, 10.11, 10.12, and 10.16, we state
and prove the following lemma, which will be useful in these proofs.

Lemma 10.17. Let γ ∈ C1(BN ) be a path with ∂γ �= 0 and dist0(supp γ, ∂C1(BN ))) ≥
8, let σ ∈ �1

0(BN ,G) be such that the support of any path γ̂ ∈ C1(BN )with ∂γ̂ = −∂γ

intersects supp σ. Then, for any e ∈ supp σ and any path γ0 ∈ C1(BN ) such that
∂γ0 = −∂γ, we have

∣∣(supp σ)+
∣∣ ≥ max

(
dist0(e, supp γ0), 8

)
.

Proof. Since ∂γ �= 0 and the support of any path γ̂ ∈ C1(BN ) with ∂γ̂ = −∂γ

intersects supp σ, we must have supp σ �= ∅. Since σ ∈ �1
0(BN ,G), it thus follows

from Lemma 2.9 that
∣∣(supp σ)+

∣∣ ≥ 8.

Using the definition of γ0, the desired conclusion now follows. ��
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Proof of Proposition 10.10. Assume first that (σ̂ , σ̂ ′) ∈ E1. Then there exists an irre-
ducible 1-form ˆ̂σ ′ ≤ σ̂ ′|Eσ̂ ,σ̂ ′ that disturbs γ.

By Lemma 5.2, we have σ̂ ′|Eσ̂ ,σ̂ ′ ≤ σ̂ ′, and hence, since ˆ̂σ ′ ≤ σ̂ ′|Eσ̂ ,σ̂ ′ , it follows

from Lemma 2.3 (2.3) that ˆ̂σ ′ ≤ σ̂ ′. Since σ̂ ′ ∈ �1
0(BN ,G), we have dσ̂ ′ = 0, and

hence we conclude that d ˆ̂σ ′ = 0.

Since ˆ̂σ ′ disturbs γ, the set supp γ ∩supp ˆ̂σ ′ must be non-empty (since otherwise, we
could let γ̂ = −γ and σ̄ = ˆ̂σ ′ in Definition 9.1). Fix some edge e ∈ supp γ ∩ supp ˆ̂σ ′.

Since ˆ̂σ ′ ≤ σ̂ ′|Eσ̂ ,σ̂ ′ , we have supp ˆ̂σ ′ ⊆ Eσ̂ ,σ̂ ′ . Using the definition of Eσ̂ ,σ̂ ′ ,

we conclude that d
(
σ̂ |CG(σ̂ ,σ̂ ′)(supp ˆ̂σ ′)

) �= 0. Since ˆ̂σ ′ is irreducible and e ∈ supp ˆ̂σ ′,
Lemma 5.3 implies that CG(σ̂ ,σ̂ ′)(supp ˆ̂σ ′) = CG(σ̂ ,σ̂ ′)(e), and hence d

(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

) �= 0.

Since ˆ̂σ ′ is irreducible, satisfies d ˆ̂σ ′ = 0, and disturbs γ , the support of any path
γ̂ ∈ C1(BN ) with ∂γ̂ = −∂γ must intersect the support of ˆ̂σ ′. This implies in particu-
lar that we must have ∂γ �= 0. Applying Lemma 10.17, we thus obtain

∣∣(supp ˆ̂σ ′)+
∣∣ ≥

max
(
dist0(e, supp γ0), 8

)
, and consequently

∣∣GG(σ̂ ,σ̂ ′)(e)
∣∣ ≥ 2 max

(
dist0(e, supp γ0), 8

)
.

To sum up, we have showed that

μN ,(β,κ),((∞,κ))(E1)

≤ 1(∂γ �= 0) μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :
∃e ∈ γ such that

d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

) �= 0 and |CG(σ̂ ,σ̂ ′)(e)| ≥ 2 max
(
dist0(e, supp γ0), 8

)})

≤ 1(∂γ �= 0)
∑

e∈γ

μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) :

d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

) �= 0 and |CG(σ̂ ,σ̂ ′)(e)| ≥ 2 max
(
dist0(e, supp γ0), 8

)})

Applying Proposition 6.1 with M = max
(
dist0(e, supp γ0), 8

)
and M ′ = 1 for each

e ∈ γ , we obtain (10.10) as desired. ��
Proof of Proposition 10.11. Assume first that (σ̂ , σ̂ ′) ∈ E2. Then there exists an irre-
ducible 1-form ˆ̂σ ′ ≤ σ̂ |Eσ̂ ,σ̂ ′ that disturbs γ . Since ˆ̂σ ′ disturbs γ, the set supp γ ∩supp ˆ̂σ ′

must be non-empty (since otherwise, we could let γ̂ = −γ and σ̄ = ˆ̂σ ′ in Definition 9.1).
Fix some edge e ∈ supp γ ∩ supp ˆ̂σ ′.

By definition, we must have supp ˆ̂σ ′ ⊆ Eσ̂ ,σ̂ ′ . Using the definition of Eσ̂ ,σ̂ ′ , we see
that d

(
σ̂ |CG(σ̂ ,σ̂ ′)(supp ˆ̂σ ′)

) �= 0. Since e ∈ supp ˆ̂σ ′ and ˆ̂σ ′ is irreducible, it follows from

Lemma 5.3 that CG(σ̂ ,σ̂ ′)(supp ˆ̂σ ′) = CG(σ̂ ,σ̂ ′)(e), and hence d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

) �= 0.

Since ˆ̂σ ′ is irreducible and disturbs γ , we must be in one of the following four cases.

(1) ∂γ �= 0, and all paths γ̂ ∈ C1(BN ) with ∂γ̂ = −∂γ intersects the support of ˆ̂σ ′. In
this case, by Lemma 10.17, we must have | supp ˆ̂σ ′| ≥ 2 max

(
dist0(e, supp γ0), 8

)
,

and consequently,
∣∣GG(σ̂ ,σ̂ ′)(e)

∣∣ ≥ 2 max
(
dist0(e, supp γ0), 8

)
.

(2) ˆ̂σ ′ contains a minimal vortex centered around some edge e′ ∈ γc. Since ˆ̂σ ′ ≤
σ̂ |Eσ̂ ,σ̂ ′ by definition, and σ̂ |Eσ̂ ,σ̂ ′ ≤ σ̂ by Lemma 5.2, is follows from Lemma 2.11,
applied twice, that σ̂ also contains a minimal vortex centered around some edge
e′ ∈ γc.
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(3) |(supp d ˆ̂σ ′)+| > 6. In this case, by the same argument as above, we must have
both

∣∣supp dσ̂ |CG(σ̂ ,σ̂ ′)(e) ≥ 2 · 7 and |CG(σ̂ ,σ̂ ′)(e)| ≥ 2 · 2.

(4) ˆ̂σ ′ supports a vortex ν with support at the boundary of BN . In this case, by the
same argument as above, we must have

∣∣CG(σ̂ ,σ̂ ′)(e)
∣∣ ≥ 2 · dist1(e, ∂C1(BN )).

Consequently, we have showed that

μN ,(β,κ),(∞,κ)(E1)

≤ 1(∂γ �= 0) μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃e ∈ γ such that

d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

) �= 0 and |CG(σ̂ ,σ̂ ′)(e)| ≥ 2 max
(
dist0(e, supp γ0), 8

)})

+ μN ,β,κ

({
σ̂ ∈ �1(BN ,G) : ∃e′ ∈ γc and ν ≤ σ̂ s.t. ν is a minimal vortex arounde′})

+ μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃e ∈ γ such that

∣∣d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

)∣∣ ≥ 2 · 7 and |CG(σ̂ ,σ̂ ′)(e)| ≥ 2 · 2
})

+ μN ,β,κ × μN ,∞,κ

({
(σ̂ , σ̂ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃e ∈ γ such that

d
(
σ̂ |CG(σ̂ ,σ̂ ′)(e)

) �= 0 and |CG(σ̂ ,σ̂ ′)(e)| ≥ 2 dist1(e, ∂C1(BN ))
})

.

By first applying union bounds to all terms, and then using Proposition 6.1 to upper
bound the first, third, and fourth term and Proposition 6.3 to upper bound the second
term, we obtain

μN ,(β,κ),(∞,κ)(E2)

≤ 1(∂γ �= 0) · K3K
8
4α0(κ)8α1(β)6

∑

e∈γ

(
K4α0(κ)

)max(0,dist0(e,supp γ0)−8)

+ K3| supp γ |(K4α0(κ)
)dist0(supp γ,∂C1(BN )) + K2| supp γc|α2(β, κ)6

+ K3K
2
4 | supp γ |α0(κ)2α1(β)7

+ K3| supp γ |(K4α0(κ)
)dist1(supp γ,∂C1(BN ))

α1(β)6

+ 2K3| supp γ |(K4α0(κ)
)dist1(supp γ,∂C1(BN ))

.

Simplifying this expression, and noting that by definition, we have α1(β) ≤ 1, we
obtain (10.11) as desired. This concludes the proof. ��
Proof of Proposition 10.12. Assume first that σ ∈ E3, and let � be a decomposition of
σ. Further, let e ∈ γ, p, p′ ∈ ∂̂e, and ˆ̂σ , ˆ̂σ ′ ∈ � be such that ˆ̂σ �= ˆ̂σ ′, d ˆ̂σ(p) �= 0,

and d ˆ̂σ ′(p′) �= 0. Without loss of generality we can assume that e ∈ C1(BN )+. By
Lemma 2.8, we must then have

∣∣(supp d ˆ̂σ)+
∣∣ ≥ 6 and

∣∣(supp d ˆ̂σ ′)+
∣∣ ≥ 6, and hence∣∣(supp d( ˆ̂σ + ˆ̂σ ′)

)+∣∣ ≥ 12.

Define Ee := {
e′ ∈ C1(BN ) : ∂̂e′ ∩ ∂̂e �= ∅}.

Since d ˆ̂σ(p) �= 0, there must exist e′ ∈ ∂p such that ˆ̂σ(e′) �= 0. Since ˆ̂σ ≤ σ ,
it follows that σ(e′) �= 0. Since e′ ∈ ∂p ⊆ Ee, it follows that CG(σ,0)(Ee) is non-
empty. Moreover, since ˆ̂σ is irreducible, using Lemma 5.5, it follows that supp ˆ̂σ ⊆
CG(σ,0)(Ee). Completely analogously, we also obtain supp ˆ̂σ ′ ⊆ CG(σ,0)(Ee). Since
d ˆ̂σ(p), d ˆ̂σ ′(p′) �= 0, by Lemma (2.8), we must have

∣∣(supp d ˆ̂σ)+
∣∣,
∣∣(supp d ˆ̂σ ′)+

∣∣ ≥ 6,
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and hence | supp dσ |CG(σ,0)(Ee))
+| ≥ 2 · 6 = 12. Using Lemma 2.7, it follows that∣∣(CG(σ,0)(Ee))

+
∣∣ ≥ 12/6 = 2.

Combining these observations and using a union bound, we see that

μN ,β,κ (E3)

≤
∑

e∈γ

μN ,β,κ

({
σ ∈ �1(BN ,G) : |CG(σ,0)(Ee)| ≥ 2 · 2, and

∣∣supp d
(
σ |CG(σ,0)(Ee)

)∣∣

≥ 2 · 12
})

.

Applying Proposition 6.5 with M = 2 and M ′ = 12, we obtain (10.20) as desired. ��
Proof of Proposition 10.16. Recall that

E7(e) = {
(σ, σ ′) ∈ �1(BN ,G) × �1

0(BN ,G) : ∃p, p′ ∈ ∂̂e s.t. dσ(p) �= dσ(p′)}.

On this event, there must exist some p ∈ ∂̂e with dσ(p) �= 0. Since |∂̂e| = 6, together
with a union bound, the desired conclusion follows from Proposition 6.3. ��

10.5. A second version of our main result. In this section, we prove a second version
of our main result, by giving a refinement of Proposition 7.1. While the error term in
Proposition 7.1 corresponds to the probability of the event that no cluster inG(σ̂ , σ̂ ′) both
intersects γ and at the same time supports a vortex, the error term in Proposition 10.18
below essentially corresponds to the probability that no cluster inG(σ̂ , σ̂ ′) both intersects
γ and at the same time supports a non-minimal vortex.

Proposition 10.18. Let β, κ ≥ 0 be such that 3 hold, let γ ∈ C1(BN ) be a path such that
dist0(supp γ, ∂C1(BN )) ≥ 8 and such that for each e ∈ γ the support of ∂̂e contains no
boundary plaquettes of BN , and let γ0 ∈ C1(BN ) be any path such that ∂γ0 = −∂γ.

Then
∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
�N ,β,κ (γ )

∣∣∣

≤ 2K11| supp γ |α2(β, κ)6 + 2K12

√
2| supp γ |α2(β, κ)6,

(10.25)

where

K11 := 1(∂γ �= 0) · 2K3K 8
4α0(κ)8α1(β)6 ∑

e∈γ

(
K4α0(κ)

)max(0,dist0(e,supp γ0)−8)

| supp γ |α2(β, κ)6

+
4K3

(
K4α0(κ)

)dist1(supp γ,∂C1(BN ))

α2(β, κ)6

+
K2 | supp γc|

| supp γ | +
K3K 2

4 α0(κ)2α1(β)7

α2(β, κ)6 +
184K5α0(κ)2α1(β)12

2α2(β, κ)6

+

√
2K8 α0(κ)6α1(β)6α4(β, κ) max

(
α0(κ), α1(β)6

)

| supp γ |α2(β, κ)12
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+

√
2K9 α4(β, κ)

(
K3α0(κ)

)dist1(supp γ,∂C1(BN ))

| supp γ |α2(β, κ)12

+ 2

√
2K7 α0(κ)9α1(β)6α4(β, κ)

| supp γ |α2(β, κ)12

+ 2

√
2K3 α4(β, κ)

(
K4α0(κ)

)dist1(supp γ,∂C1(BN ))

| supp γ |α2(β, κ)12

+

√
12K2 α2(β, κ)6α3(β, κ)

| supp γ |α2(β, κ)12 , (10.26)

K12:=
√

K10 | supp γc|α0(κ)8α4(β, κ)

| supp γ |α2(β, κ)6 +

√
| supp γc|α3(β, κ)

| supp γ |α2(β, κ)6 . (10.27)

K2 is given by (6.4), K3 and K4 are given by (6.6), K5 is given by (6.7), K7 is given
by (10.21), K8 and K9 are given by (10.22), and K10 is given by (10.24).

Proof. By using first the definition of �N ,β,κ (γ ), and then the triangle inequality, we
see that

∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
�N ,β,κ (γ )

∣∣∣

=
∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
EN ,∞,κ

[∏

e∈γ

θβ,κ (σe)
]∣∣∣

≤
∣∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
ρ
(
dσ(pe)

)]∣∣∣∣

+
∣∣∣EN ,∞,κ

[
Lγ (σ )

]∣∣∣ ·
∣∣∣∣EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
ρ
(
dσ(pe)

)]

− EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)]∣∣∣∣

+
∣∣∣EN ,∞,κ

[
Lγ (σ )

]∣∣∣ ·
∣∣∣∣EN ,β,κ

[ ∏

e∈(γ−γc)−γ ′
θβ,κ

(
σ(e) − dσ(pe)

)]

− EN ,∞,κ

[∏

e∈γ

θβ,κ

(
σ(e)

)]∣∣∣∣.

Since |Lγ (σ )| ≤ 1,we can apply Proposition 10.3, Proposition 10.4 and Proposition 10.5
in order to obtain
∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
EN ,∞,κ

[∏

e∈γ

θβ,κ (σe)
]∣∣∣

≤ 2μN ,(β,κ),(∞,κ)(E1) + 2μN ,(β,κ),(∞,κ)(E2) + 2μN ,β,κ (E3)

+ 2
√

2α4(β, κ)
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E5(e)

)
+ 4

√
2α4(β, κ)

∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E4(e)

)
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+ 2
√

2α4(β, κ)
∑

e∈γc

μN ,∞,κ

(
E6(e)

)
+ 2

√
2| supp γc|α3(β, κ)

+ 2
√

2α3(β, κ)
∑

e∈γ

μN ,(β,κ),(∞,κ)

(
E7(e)

)
.

Inserting the upper bounds from Proposition 10.10, Proposition 10.11, Proposition 10.12,
Proposition 10.13, Proposition 10.14, Proposition 10.15, and Proposition 10.16, and
using the inequality

√
a + b ≤ √

a +
√
b, we obtain (10.25) as desired. ��

10.6. An upper bound. The following result generalizes [9, Lemma 7.12] and [17,
Lemma 3.3], and is completely analogous to Lemma 12.3 in [18].

Proposition 10.19 [Lemma 12.3 in [18]]. Let β, κ ≥ 0, and let γ ∈ C1(BN ) be a path
such that no edge in γ is in the boundary of BN . Then

∣∣∣EN ,β,κ

[
Lγ (σ )

]∣∣∣ ≤ exp
(−| supp(γ − γc)| α5(β, κ)

)
.

Remark 10.20. In Lemma 12.3 in [18], γ is assumed to be a generalized loop, rather
than a path. However, since the proof is identical in the two cases, we do not include a
proof here.

10.7. A proof of Theorem 10.1. In this section, we give a proof of Theorem 10.1. Before
we give this proof, we recall the following lemma from [18].

Lemma 10.21 [Lemma 8.2 in [18]]. Let β, κ ≥ 0, and for each g ∈ G, let jg > 0 be
given. Further, let j := ∑

g∈G jg. Then

∣∣∣
∏

g∈G
θβ,κ (g) jg

∣∣∣ ≤ e− jα5(β,κ).

Proof of Theorem 10.1. Let N be sufficiently large, so that dist0(supp γ, ∂C1(BN )) ≥
8, and so that for each e ∈ γ, the support of ∂̂e contains no boundary plaquettes of BN .

Then the assumptions of Proposition 10.18 holds, and hence
∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
�N ,β,κ (γ )

∣∣∣

≤ B · 2| supp γ |α5(β, κ) + B ′ · 2
√

2| supp γ |α5(β, κ)

where

B:= K11α2(β, κ)6/α5(β, κ) and B ′:=K12

√
α2(β, κ)6/α5(β, κ), (10.28)

where K11 and K12 are given in (10.26) and (10.26) respectively.
Using that for x > 0, we have x ≤ ex , and 2

√
x ≤ ex , it follows that

∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
�N ,β,κ (γ )

∣∣∣ ≤ (B + B ′)e2| supp γ |α5(β,κ).

(10.29)
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Now recall that, by Proposition 10.19, we have
∣∣∣EN ,β,κ

[
Lγ (σ )

]∣∣∣ ≤ e−| supp γ−γc|α5(β,κ).

By using the triangle inequality and applying Lemma 10.21, it follows that
∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
�N ,β,κ (γ )

∣∣∣

≤
∣∣∣EN ,β,κ

[
Lγ (σ )

]∣∣∣+
∣∣∣EN ,∞,κ

[
Lγ (σ )

]∣∣∣ · ∣∣�N ,β,κ (γ )
∣∣

≤ e−| supp γ−γc|α5(β,κ) + 1 · e−| supp γ |α5(β,κ) ≤ 2e−| supp γ−γc|α5(β,κ).

(10.30)

Combining (10.29) and (10.30), we obtain

∣∣∣EN ,β,κ [Lγ (σ )] − EN ,∞,κ [Lγ (σ )]�N ,β,κ (γ )

∣∣∣
1+2| supp γ |/| supp(γ−γc)|

≤ 22| supp γ |/| supp(γ−γc)|(B + B ′).
(10.31)

Recalling Proposition 2.16 and Proposition 2.19, and letting N → ∞, the desired
conclusion thus follows from (10.31) after simplification. ��

10.8. Simplifications for rectangular paths and G = Z2. The purpose of this section
is to establish the tools we need in order make the small adjustments to the proof of
Theorem 10.1 needed to instead obtain Theorem 1.1.

In order to simplify notations, for β, κ ≥ 0 and a path γ, we define

�′
N ,β,κ (γ ):=e−2| supp γ |e−24β−4κ

(
1+(e8κ−1)| supp γ |−1 ∑

e∈γ EN ,∞,κ [1σ(e)=1]
)
.

The main result in this section is the following proposition.

Proposition 10.22. Let β, κ ≥ 0 be such that 3 and 6β > κ both hold, let γ be a
path along the boundary of a rectangle with side lengths 1 and 2 which is such that
dist0(supp γ, ∂C1(BN )) ≥ 8, and let G = Z2.

Then

∣∣∣�N ,β,κ (γ ) − �′
N ,β,κ (γ )

∣∣∣ ≤ 2 3

√
K13α2(β, κ)

| supp γ | + K14| supp γ |α2(β, κ)12, (10.32)

where

K13 :=
(

4 + 4K1K
8
4α0(κ)4 + 4K3K

4
4 α2(β, κ)6 · | supp γ |(K4α0(κ))min(1,2)−4

+ 4K3K
4
4 α2(β, κ)6 · 32(K4α0(κ))4 + 4K3K

4
4 α2(β, κ)6 · 4(K4α0(κ))5

1 − K4α0(κ)

)
,

(10.33)

K14 := 4
(
1 + K1(∞, κ)K 8

4

(
α0(κ)

)4)
, (10.34)

K1 is given by (6.2), K3 and K4 are given by (6.6).

The second result which we will state and prove in this section is the following
proposition, which will be used to simplify the error term in the proof of Theorem 1.1.
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Proposition 10.23. Letβ, κ ≥ 0 be such that 3 holds, and let γ be an open path along the
boundary of a rectangle with side lengths 1 and 2. Then there is a path γ0 ∈ C1(BN )

such that ∂γ0 = −∂γ and

∑

e∈γ

(
K4α0(κ)

)max(0,dist0(e,supp γ0)−8) ≤ 16 +
2K4α0(κ)

1 − K4α0(κ)

+
| supp γ |

2

(
K4α0(κ)

)max(0,min(1,2)−7)
,

where K4 is given by (6.6).

Before we give a proofs of Proposition 10.22 and Proposition 10.23, we will state
and prove a few useful lemmas. For these lemmas, it will be useful to note that when
G = Z2 and ρ(G) = {1,−1}, then

θβ,κ (0) = 1 − e−24β−4κ

1 + e−24β−4κ
and θβ,κ (1) = 1 − e−24β+4κ

1 + e−24β+4κ
. (10.35)

From this, it in particular follows that when 6β > κ, then θβ,κ (0), θβ,κ > 0. Next, we
recall from Section 12.2 in [18], that when G = Z2 and ρ(G) = {1,−1}, we have

α0(r) = α1(r) = ϕr (1)2 = e−4r , α2(β, κ) = e−4(β+κ/6),

α3(β, κ) = 1 − θβ,κ (0) = 2e−24β−4κ

1 + e−24β−4κ
, α5(β, κ) = 1 − θβ,κ (0)

= 2e−24β−4κ

1 + e−24β−4κ
,

α4(β, κ) = θβ,κ (0) − θβ,κ (1) = 2e−24β(e4κ − e−4κ)

(1 + e−24β−4κ)(1 + e−24β+4κ)
.

(10.36)

Proof of Proposition 10.23. Choose γ0 so that γ + γ0 is a generalized loop along the
boundary of a rectangle with side lengths 1, 2 ≥ 2.

Let e1, e2, . . . , e| supp γ | be the edges in γ, labelled according to their order in the path
γ. Then, for any j ∈ {1, 2, . . . , | supp γ |}, one verifies that (see Fig. 7)

dist0(e, supp γ0) ≥ max(8, dist1(e, supp γ0)) ≥ max
(
8, min

(
j, | supp γ | − j

+1, 1, 2
)

+ 1
)
.

Using this inequality, we obtain

∑

e∈γ

(
K4α0(κ)

)max(0,dist0(e,supp γ0)−8) ≤
∑

e∈γ

(
K4α0(κ)

)max(0,min( j,| supp γ |− j+1,1,2)+1−8)

≤ 16 + 2
∞∑

j=9

(
K4α0(κ)

) j−8
+

| supp γ |
2

(
K4α0(κ)

)max(0,min(1,2)−7)
.

Evaluating the geometric sum above, we obtain the desired conclusion. ��
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Fig. 7. In the figures above, we illustrate the setting of the proof of Proposition 10.23. Note in particular that
for the edge e j in 7a, we have dist1(e j , supp γ0) = | supp γ | − j + 2, and for the edge e j ′ in 7b, we have
dist1(e j ′ , supp γ0) = min(1, 2) + 1

We now proceed to the proof of Proposition 10.22. Before we give this proof, we will
state and prove a few lemmas. To simplify the notation in these lemmas, when 6β > κ

and σ ∼ μN ,∞,κ , we define the following random variable.

ϒβ,κ(γ ) := | supp γ |−1
∑

e∈γ

log θβ,κ

(
σ(e)

)
. (10.37)

Lemma 10.24. Let β, κ ≥ 0 be such that 3 and 6β > κ both hold, let γ be path along
a rectangle with side lengths 1 and 2 and such that dist0(γ, ∂C1(BN )) ≥ 8, and let
G = Z2.

Then, for any ε > 0, we have

μN ,∞,κ

(∣∣∣ϒβ,κ(γ ) − EN ,∞,κ

[
ϒβ,κ(γ )

]∣∣∣ ≥ ε
)

≤ K13α2(β, κ)

ε2| supp γ | ,

where K13 is given by (10.33).

Remark 10.25. The idea of the proof of Lemma 10.24 is essentially to use the weak
law of large numbers for correlated random variables with exponential decay. For this to
approach to work, we need the loop to be "smooth" enough for the sum of the covariances
of all pairs of edges in γ to be finite. The reason for working with rectangular loops
is that in this case, it is relatively easy to show that this holds. However, with small
modifications, the conclusion of this lemma holds for more general classes of loops as
well, as long as the path γ do not have too many corners.

Proof of Lemma 10.24. Fix some ε > 0.
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By Chebyshev’s inequality, we have

ε2μN ,∞,κ

(∣∣∣ϒβ,κ(γ ) − EN ,∞,κ

[
ϒβ,κ(γ )

]∣∣∣ ≥ ε
)

≤ VarN ,∞,κ

[
ϒβ,κ(γ )

]

=
∑

e,e′∈γ

CovN ,∞,κ

(
ϒβ,κ(e), ϒβ,κ (e′)

)

= | supp γ |−2
∑

e,e′∈γ

CovN ,∞,κ

(
log θβ,κ

(
σ(e)

)
, log θβ,κ

(
σ(e′)

))
.

By combining Proposition 5.17, applied with f0 = log θβ,κ(
σ(e)

)
and f1 = log θβ,κ

(
σ(e′)

)
, and Proposition 6.4, it follows that

∑

e,e′∈γ

CovN ,∞,κ

(
log θβ,κ

(
σ(e)

)
, log θβ,κ

(
σ(e′)

))

≤
∑

e∈supp γ

VarN ,β,κ

(
log θβ,κ

(
σ(e)

))
+ 2

∥∥log θβ,κ

∥∥2
∞

∑

e,e′∈supp γ : e �=e′
K3(K4α0(κ))dist0(e,e′).

Since 0 ≤ θβ,κ (1) ≤ θβ,κ (0) ≤ 1 for all β, κ ≥ 0, we have

∥∥log θβ,κ

∥∥∞ ≤ ∣∣log θβ,κ (1)
∣∣ ≤ ∣∣log

1 − ϕβ(1)12ϕκ(1)−2

1 + ϕβ(1)12ϕκ(1)−2

∣∣ ≤ ∣∣log e−2ϕβ(1)12ϕκ (1)−2 ∣∣

≤ 2ϕβ(1)12ϕκ(1)−2.

Next, recall that, by Proposition (6.1), applied with M = 1, M ′ = 0, β = κ1 = ∞,

and κ2 = κ, for any edge e ∈ γ, we have

μN ,∞,κ

({
σ̂ ∈ �1

0(BN ,G) : σ(e) �= 0
}) ≤ K1(∞, κ)

(
K4α0(κ)

)8
.

Consequently, for any e ∈ γ, we have

VarN ,∞,κ

(
log θβ,κ

(
σ(e)

)) ≤ EN ,∞,κ

[(
log θβ,κ

(
σ(e)

))2]

≤
(
log θβ,κ

(
0
))2

+ K1
(
K4α0(κ)

)8(log θβ,κ

(
1
))2

≤ 4ϕβ(1)24ϕκ(1)4 + K1
(
K4α0(κ)

)8 · 4ϕβ(1)24ϕκ(1)−4

≤ ϕβ(1)12ϕκ(1)2(4 + 4K1K
8
4α0(κ)4).

Finally, note that
∑

e,e′∈supp γ : e �=e′
(K4α0(κ))dist0(e,e′) ≤

∑

e,e′∈supp γR : e �=e′
(K4α0(κ))dist0(e,e′)

≤ | supp γ |
(
| supp γ |/2 · (K4α0(κ))min(1,2) + 2

∞∑

j=1

(K4α0(κ))min( j,8)
)

≤ | supp γ |
(
| supp γ |/2 · (K4α0(κ))min(1,2) + 16(K4α0(κ))8 +

2(K4α0(κ))9

1 − K4α0(κ)

)
.
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Combining the above equations and recalling that when G = Z2, we have α0(κ) =
ϕκ(1)2 and α2(β, κ)6 = α0(β)6α0(κ)6 = ϕβ(1)12ϕκ(1)2, we finally obtain

ε2| supp γ |μN ,∞,κ

(∣∣∣ϒβ,κ(γ ) − EN ,∞,κ

[
ϒβ,κ(γ )

]∣∣∣ ≥ ε
)

≤ α2(β, κ)6(4 + 4K1K
8
4 α0(κ)4)

+ 4K3K
4
4 α2(β, κ)12

(
| supp γ |(K4α0(κ))min(1,2)−4 + 32(K4α0(κ))4 +

4(K4α0(κ))5

1 − K4α0(κ)

)
.

Rearranging this equation, the desired conclusion now immediately follows. This con-
cludes the proof. ��
Lemma 10.26. Let β, κ ≥ 0 be such that 3 and 6β > κ both hold, let γ be path along
the boundary of a rectangle with side lengths 1 and 2, and let G = Z2.

Then

∣∣∣�N ,β,κ (γ ) − e| supp γ |EN ,∞,κ [ϒβ,κ (γ )]∣∣∣ ≤ 2 3

√
K13α2(β, κ)

| supp γ | ,

where K13 = K13(1, 2) is given by (10.33).

Proof. Recall the definition of ϒβ,κ(γ ) from (10.37), and note that

�N ,β,κ (γ ) = EN ,∞,κ

[∏

e∈γ

θβ,κ

(
σ(e)

)] = EN ,∞,κ

[
e
∑

e∈γ log θβ,κ

(
σ(e)

)]

= EN ,∞,κ

[
e| supp γ |ϒβ,κ (γ )

]
.

Consequently,
∣∣∣∣ThetaN ,β,κ (γ ) − e| supp γ |EN ,∞,κ [ϒβ,κ (γ )]

∣∣∣∣

=
∣∣∣∣EN ,∞,κ

[
e| supp γ |ϒβ,κ (γ ) − e| supp γ |EN ,∞,κ [ϒβ,κ (γ )]]

∣∣∣∣

≤ EN ,∞,κ

[∣∣∣e| supp γ |ϒβ,κ (γ ) − e| supp γ |EN ,∞,κ [ϒβ,κ (γ )]
∣∣∣
]
.

Next, note that since ρ is unitary, we have |θβ,κ (g)| ≤ 1 for all g ∈ G, and hence
ϒβ,κ(γ ) ≤ 0. Now fix some ε > 0.

On the event
∣∣ϒβ,κ(γ ) − EN ,β,κ [ϒβ,κ(γ )]∣∣ ≥ ε, since ϒβ,κ(γ ) ≤ 0, we must have

∣∣∣e| supp γ |ϒβ,κ (γ ) − e| supp γ |EN ,∞,κ [ϒβ,κ (γ )]
∣∣∣ ≤ 1.

On the other hand, on the event
∣∣ϒβ,κ(γ ) − EN ,β,κ [ϒβ,κ(γ )]∣∣ < ε, since ϒβ,κ(γ ) ≤ 0,

we have
∣∣∣e| supp γ |ϒβ,κ (γ ) − e| supp γ |EN ,∞,κ [ϒβ,κ (γ )]

∣∣∣ ≤
∣∣∣ϒβ,κ(γ ) − EN ,∞,κ [ϒβ,κ(γ )]

∣∣∣ < ε.

Using Lemma 10.24 with ε = (
K13α2(β, κ)| supp γ |−1

)1/3
, we obtain the desired

conclusion. ��
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Lemma 10.27. Let β, κ ≥ 0 be such that 6β > κ, and let G = Z2. Then

∣∣θβ,κ (0) − e−2e−24β−4κ ∣∣ ≤ 4
(
e−24β−4κ

)2
and

∣∣∣θβ,κ (1) − e−2e−24β+4κ ∣∣

≤ 4
(
e−24β+4κ

)2
.

Proof. For the first inequality, note that

∣∣θβ,κ (0) − e−2e−24β−4κ ∣∣ = ∣∣1 − e−24β−4κ

1 + e−24β−4κ
− e−2e−24β−4κ ∣∣

≤ ∣∣1 − e−24β−4κ

1 + e−24β−4κ
− (1 − 2e−24β−4κ)

∣∣ +
∣∣(1 − 2e−24β−4κ) − e−2e−24β−4κ )∣∣

≤ 2(e−24β−4κ)2 +
(
2e−24β−4κ)2/2 = 4(e−24β−4κ)2.

The second inequality follows analogously. ��
Proof of Proposition 10.22. By definition, we have

EN ,∞,κ [ϒβ,κ(γ )] = EN ,∞,κ

[
| supp γ |−1

∑

e∈γ

log θβ,κ

(
σ(e)

)]

= | supp γ |−1
∑

e∈γ

EN ,∞,κ

[
log θβ,κ

(
σ(e)

)]

= | supp γ |−1
∑

e∈γ

EN ,∞,κ

[∑

g∈G
log1σ(e)=gθβ,κ (g)

]
=

∑

g∈G
log θβ,κ (g)| supp γ |−1

∑

e∈γ

EN ,∞,κ

[
1σ(e)=g

]
.

Consequently, by Lemma 10.26,

∣∣∣�N ,β,κ (γ ) − θβ,κ (0)
∑

e∈γ EN ,∞,κ [1σ(e)=0]
θβ,κ (1)

∑
e∈γ EN ,∞,κ [1σ(e)=1]∣∣∣ ≤ 2 3

√
K13α2(β, κ)

| supp γ | .

Next, by Lemma 10.6, we have

∣∣∣θβ,κ (0)
∑

e∈γ EN ,∞,κ [1σ(e)=0]
θβ,κ (1)

∑
e∈γ EN ,∞,κ [1σ(e)=1]

− e−2e−24β−4κ
∑

e∈γ EN ,∞,κ [1σ(e)=0]−2e−24β+4κ
∑

e∈γ EN ,∞,κ [1σ(e)=1]
∣∣∣

≤
∑

e∈γ

EN ,∞,κ [1σ(e)=0] · ∣∣θβ,κ (0) − e−2e−24−4κ ∣∣ +
∑

e∈γ

EN ,∞,κ [1σ(e)=1] · ∣∣θβ,κ (1)

− e−2e−24+4κ ∣∣.

By combining Lemma 10.27 with Proposition 6.1, applied with M = 1, M ′ = 0,

β = κ1 = ∞, and κ2 = κ, we can bound the previous equation from above by

| supp γ | · 4(e−24β−4κ)2 + K1(∞, κ)
(
K4α0(κ)

)8| supp γ | · 4(e−24β+4κ)2.
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Combining the previous equations, we thus obtain
∣∣∣�N ,β,κ (γ ) − e−2e−24β−4κ

∑
e∈γ EN ,∞,κ [1σ(e)=0]−2e−24β+4κ

∑
e∈γ EN ,∞,κ [1σ(e)=1]∣∣∣

≤ 2 3

√
K13α2(β, κ)

| supp γ | + | supp γ | · 4(e−24β−4κ)2 + K1(∞, κ)
(
K4α0(κ)

)8| supp γ |

· 4(e−24β+4κ)2.

Rearranging this equation, and recalling from (10.36) that e−24β−4κ = α2(β, κ)6 and
α0(κ) = e−4κ , we obtain (10.32) as desired. ��

10.9. A proof of Theorem 1.1. We now provide a proof of Theorem 1.1. Since this proof
is very similar to the proof of Theorem 10.1, we will refer to this proof in order to avoid
repetition.

Proof of Theorem 1.1. Let N be sufficiently large so that dist0(γ, ∂BN ) ≥ 8 and so that
for each e ∈ γ, ∂̂e contains no boundary plaquettes of C2(BN ).

Using (10.35), it follows that if β and κ satisfy the assumptions of Theorem 1.1,
then 3 hold.

By combining Propositions 10.18 and 10.32, using that
∣∣∣EN ,∞,κ

[
Lγ (σ )

]∣∣∣ ≤ 1, we
obtain
∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
�′

N ,β,κ (γ )

∣∣∣

≤
∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
�N ,β,κ (γ )

∣∣∣ +
∣∣∣�N ,β,κ (γ ) − �′

N ,β,κ (γ )

∣∣∣

≤
(
B +

K14α2(β, κ)12

2α5(β, κ)

)
· 2| supp γ |α5(β, κ) + B ′ · 2

√
2| supp γ |α5(β, κ)

+ 3

√
K13α2(β, κ)

| supp γ |2α5(β, κ)
· 2 3
√| supp γ |α5(β, κ),

where B and B ′ are given in (10.28).
Using that for x > 0, we have x ≤ ex , 2

√
x ≤ ex , and 2 3

√
x ≤ ex , it follows that

∣∣∣EN ,β,κ

[
Lγ (σ )

] − EN ,∞,κ

[
Lγ (σ )

]
�′

N ,β,κ (γ )

∣∣∣

≤
(
B +

K14α2(β, κ)12

2α5(β, κ)
+ B ′ + 3

√
K13α2(β, κ)

| supp γ |2α5(β, κ)

)
e2| supp γ |α5(β,κ).

Combining this inequality with (10.30), we obtain

∣∣∣EN ,β,κ [Lγ (σ )] − EN ,∞,κ [Lγ (σ )]EN ,∞,κ

[∏

e∈γ

θβ,κ (σe)
]∣∣∣

1+2| supp γ |/| supp(γ−γc)|

≤ 22| supp γ |/| supp(γ−γc)|
(
K11 +

K14α2(β, κ)12

2α5(β, κ)
+ K12 + 3

√
K13α2(β, κ)

| supp γ |2α5(β, κ)

)
.

(10.38)
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Now recall (10.36), and note that these expression imply that

α2(β, κ)6

α5(β, κ)
≤ 1 and

α4(β, κ)α0(κ)2

α5(β, κ)
≤ 1. (10.39)

Using these equations and inequalities and Proposition 10.23, it follows that

B +
K14α2(β, κ)12

2α5(β, κ)
+ B ′ + 3

√
K13α2(β, κ)

| supp γ |2α5(β, κ)

≤ 1(∂γ �= 0) · 2K3K 8
4α0(κ)7

√| supp γ |

·
(
16 +

2K4α0(κ)

1 − K4α0(κ)
+

| supp γ |
2

(
K4α0(κ)

)max(0,max(0,min(1,2)−7))) ·
√

1

| supp γ |

+
4K3

(
K4α0(κ)

)dist1(supp γ,∂C1(BN ))

α5(β, κ)
+ K2 · | supp γc|

| supp γ |
+ K3K

2
4 α0(κ)5/6 · α2(β, κ) +

184K5α2(β, κ)5

2
· α2(β, κ)

+

√
2K9 α4(β, κ)

(
K4α0(κ)

)dist1(supp γ,∂C1(BN ))

| supp γ |α5(β, κ)2

+ 2

√
2K3 α4(β, κ)

(
K4α0(κ)

)dist1(supp γ,∂C1(BN ))

| supp γ |α5(β, κ)2

+

(√
2K8 α0(κ)3 max

(
α0(κ), α1(β)6

)
+ 2

√
2K7 α0(κ)6 +

√
12K2

)
·
√

1

| supp γ |

+ 2−1K14α2(β, κ)5 · α2(β, κ)+
(√

K10 α0(κ)6 + 1
) ·

√
| supp γc|
| supp γ |

+ 6

√
K 2

13

| supp γ | ·
√

1

| supp γ | .

Now note that since γ is a path along the boundary of a rectangle with side lengths
1, 2 ≥ 2, we must have | supp γc| ≤ 8. Since 3 holds, we must have 2α0(κ) ≤
K4α0(κ) ≤ 1, and since G = Z2, we have α2(β, κ), α0(β) ≤ 1.

Recalling Proposition 2.16 and Proposition 2.19, letting N → ∞, and simplifying,
we thus obtain

∣∣∣
〈
Lγ (σ, φ)

〉
β,κ,∞ − 〈

Lγ (σ, φ)
〉
∞,κ,∞�′

β,κ (γ )
∣∣1+2| supp γ |/| supp(γ−γc)|

≤ 22| supp γ |/| supp(γ−γc)|K15

(
α2(β, κ) + | supp γ |−1/2

)
,

where
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K15 :=1(∂γ �= 0) ·
(

32K3K4 +
4K3K 9

4 α0(κ)8

1 − K4α0(κ)
+ K3K4| supp γ |1/2

(
K4α0(κ)

)min(1,2)
)

+8K2 + K3K
2
4 + 184K5/2 +

√
K8 +

√
K7 +

√
12K2 + K14/2 +

√
8K10 +

√
8 + 3

√
K13.

(10.40)

Next, note that since γ is a path along the boundary of some rectangle with side lengths
1, 2 ≥ 2, we have | supp γc| ≤ 8. Since, by assumption, we have | supp γ | ≥ 24, , it
follows that | supp γc|/| supp γ | ≤ 1/3, and hence

1

4
≤ 1

1 + 2| supp γ |/(| supp γ | − | supp γc|) ≤ 1

3
.

If we in addition have α2(β, κ)+
√

max(1, | supp γc|)/| supp γ | ≤ 1, then it follows that

∣∣∣
〈
Lγ (σ, φ)

〉
β,κ,∞ − 〈

Lγ (σ, φ)
〉
∞,κ,∞�′

β,κ (γ )

∣∣∣ ≤ 21− 1
4 · K 1/3

15

·
(
α2(β, κ) +

√
1/| supp γ |

) 1
4
. (10.41)

Since |ρ(g)| = 1 for all g ∈ G, we always have

∣∣∣
〈
Lγ (σ, φ)

〉
β,κ,∞ − 〈

Lγ (σ, φ)
〉
∞,κ,∞�′

β,κ (γ )
∣∣∣ ≤ 2.

Consequently, if α2(β, κ)+
√| supp γc|/| supp γ | ≥ 1, then (10.41) automatically holds.

If we let

K0 := 2
3
4 K 1/3

15 , (10.42)

we thus obtain (1.2). This completes the proof of Theorem 1.1. ��
Acknowledgements The author is grateful to Jonatan Lenells and Fredrik Viklund for many useful discus-
sions.

Funding Open access funding provided by Chalmers University of Technology. The author acknowledges
support from the Knut and Alice Wallenberg Foundation, from the Swedish Research Council, Grant Agree-
ment No. 2015-05430, and from the European Research Council, Grant Agreement No. 682537.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://creativecommons.org/licenses/by/4.0/


Wilson Lines in the Abelian lattice Higgs Model Page 69 of 70 275

References

1. Balian, R., Drouffe, J.M., Itzykson, C.: Gauge fields on a lattice. I. General outlook. Phys. Rev. D 10(10),
3376–3395 (1974)

2. Balian, R., Drouffe, J.M., Itzykson, C.: Gauge fields on a lattice. II. Gauge-invariant Ising model. Phys.
Rev. D 11(8), 2098–2103 (1975)

3. Balian, R., Drouffe, J.M., Itzykson, C.: Gauge fields on a lattice. III. Strong-coupling expansions and
transition points. Phys. Rev. D 11(8), 2104–2119 (1975)

4. Borgs, C.: Translation symmetry breaking in four dimensional lattice gauge theories. Commun. Math.
Phys. 96, 251–284 (1984)

5. Bricmont, J., Frölich, J.: An order parameter distinguishing between different phases pf lattice gauge
theories with matter fields. Phys. Lett. B 122(1), 73–77 (1983)

6. Bricmont, J., Frölich, J.: Statistical mechanical methods in particle structure analysis of lattice field
theories (III). Confinement and bound states in gauge theories. Nucl. Phys. B280(FS18), 385–444 (1987)

7. Cao, S.: Wilson loop expectations in lattice gauge theories with finite gauge groups. Commun. Math.
Phys. 380, 1439–1505 (2020)

8. Chatterjee, S.: A probabilistic mechanism for quark confinement. Commun. Math. Phys. 385(2021),
1007–1039 (2021)

9. Chatterjee, S.: Wilson loop expectations in Ising lattice gauge theory. Commun. Math. Phys. 377, 307–340
(2020)

10. Chernodubab, M.N., Ilgenfritz, E., Schiller, A.: String breaking and monopoles: a case study in the 3D
abelian Higgs model. Phys. Lett. B 547(3–4), 269–277 (2002)

11. Creutz, M.: Phase diagrams for coupled spin-gauge system. Phys. Rev. D 21(4), 1106–1112 (1980)
12. Duminil-Copin, H.: Lectures on the ising and potts models on the hypercubic lattice. In: Random Graphs,

Phase Transitions, and the Gaussian Free Field. Springer Procedings in Mathematics & Statistics, Springer,
New York (2017)

13. Evertz, H.G., Grösch, V., Jansen, K., Jersak, J., Kastrup, H.A., Neuhaus, T.: Confined and free charges
in compact scalar QED. Neucl. Phys. B285(FS19), 559–589 (1987)

14. Evertz, H.G., Jansen, K., Jersák, J., Lang, C.B., Neuhaus, T.: Photon and Bosonium masses is scalar
lattice QED. Nucl. Phys. B 285, 590–605 (1987)

15. Filk, T., Marcu, M., Fredenhagen, K.: Line of second-order phase transitions in the four-dimensional Z2
gauge theory with matter fields. Phys. Lett. B 169(4), 405–412 (1986)

16. Forsström, M.P.: Decay of correlations in finite abelian lattice gauge theories. Commun. Math. Phys. 393,
1311–1346 (2022)

17. Forsström, M.P., Lenells, J., Viklund, F.: Wilson loops in finite abelian lattice gauge theories. Ann. Inst.
H. Poincaré Probab. Statist. 58(4), 2129–2164 (2022)

18. Forsström, M.P., Lenells, J., Viklund, F.: Wilson loops in the abelian lattice Higgs model. Probab. Math.
Phys. 4(2), 257–329 (2023)

19. Fradkin, E., Shenker, S.H.: Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D
19(12), 3682–3697 (1979)

20. Fredenhagen, K., Marcu, M.: Dual interpretation of order parameters for lattice gauge theories with matter
fields. Nucl. Phys. B (Proc. Suppl.) 4, 352–357 (1988)

21. Garban, C., Supelveda, A.: Improved spin-wave estimate for Wilson loops in U (1) lattice gauge gauge
theory. Int. Math. Res. Not 2023(21), 18142–18198 (2023)

22. Ginibre, J.: General formulation of Griffiths’ inequalities. Commun. Math. Phys. 16, 310–328 (1970)
23. Gliozzi, F.: The functional form of open Wilson lines in gauge theories coupled to matter. Nuclear Phys.

B Proc. Suppl. 153(1), 120–127 (2006)
24. Gliozzi, F., Rago, A.: Monopole clusters, center vortices, and confinement in a Z2 gauge-Higgs system.

Phys. Rev. D 66, 074511 (2002)
25. Gregor, K., Huse, D.A., Moessner, R., Sondhi, S.L.: Diagnosing deconfinement and topological order.

New J. Phys. 13, 025009 (2011)
26. Jaffe, A., Witten, E.: Quantum Yang–Mills Theory. https://www.claymath.org/sites/default/files/

yangmills.pdf
27. Jongeward, G.A., Stack, J.D., Jayaprakash, C.: Monte Carlo calculations on Z2 gauge-Higgs theories.

Phys. Rev. D 21(12), 3360–3368 (1980)
28. Kanaya, K., Sugiyama, Y.: Meanfield Study of Z2 Higgs model with radial excitations and mode corre-

lation problem. Prog. Theor. Phys. 72(6), 1158–1175 (1984)
29. Marcu, M.: (Uses of) An Order Parameter for Lattice Gauge Theories with Matter Fields
30. Shrock, E.: Lattice Higgs models. Nucl. Phys. B (Proc. Suppl.) 4, 373–389 (1988)

https://www.claymath.org/sites/default/files/yangmills.pdf
https://www.claymath.org/sites/default/files/yangmills.pdf


275 Page 70 of 70 M. P. Forsström

31. Wegner, F.J.: Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters.
J. Math. Phys. 12(10), 2259–2272 (1971)

32. Wilson, K.: Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

Communicated by S. Chatterjee


	Wilson Lines in the Abelian Lattice Higgs Model
	Abstract:
	1 Introduction
	1.1 Background
	1.2 Preliminary notation
	1.3 The abelian lattice Higgs model
	1.4 Wilson loops and Wilson lines
	1.5 Main results
	1.6 Applications
	1.7 Relation to other work
	1.8 Structure of paper

	2 Preliminaries
	2.1 The cell complex
	2.1.1 Boxes and cubes.
	2.1.2 Non-oriented cells.
	2.1.3 Oriented cells.
	2.1.4 k-chains.
	2.1.5 The boundary of a cell
	2.1.6 The coboundary of an oriented cell
	2.1.7 The boundary of a box

	2.2 Discrete exterior calculus
	2.2.1 Discrete differential forms
	2.2.2 The exterior derivative
	2.2.3 Closed forms and the Poincaré lemma
	2.2.4 Non-trivial forms.
	2.2.5 Restrictions of forms.
	2.2.6 A partial ordering of k-forms.
	2.2.7 Irreducible forms
	2.2.8 Minimal forms.

	2.3 Vortices
	2.4 Generalized loops and oriented surfaces
	2.5 Unitary gauge
	2.6 Existence of the infinite volume limit

	3 Additional Notation and Standing Assumptions
	4 Activity of Gauge Field Configurations
	5 Two Couplings
	5.1 A useful edge graph
	5.2 A useful set
	5.3 A coupling between two Zn-models 
	5.4 A coupling between the Abelian Higgs model and the Zn-model

	6 Distribution of Vortices and Edge Configurations
	7 A First Version of Our Main Result
	8 A Decomposition of the Coupled Spin Configuration
	9 Disturbing 1-Forms
	10 Proof of the Main Result
	10.1 A first application of the coupling
	10.2 A resampling trick
	10.3 A second application of the coupling
	10.4 Upper bounds on events
	10.5 A second version of our main result
	10.6 An upper bound
	10.7 A proof of Theorem 10.1
	10.8 Simplifications for rectangular paths and G = Z2
	10.9 A proof of Theorem 1.1

	Acknowledgements
	References




