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Abstract: Lattice gauge theories are lattice approximations of the Yang—Mills theory in
physics. The abelian lattice Higgs model is one of the simplest examples of a lattice gauge
theory interacting with an external field. In a previous paper (Forsstrom et al. in Math
Phys 4(2):257-329, 2023), we calculated the leading order term of the expected value
of Wilson loop observables in the low-temperature regime of the abelian lattice Higgs
model on Z*, with structure group G = Z, for some n > 2. In the absence of a Higgs
field, these are important observables since they exhibit a phase transition which can
be interpreted as distinguishing between regions with and without quark confinement.
However, in the presence of a Higgs field, this is no longer the case, and a more relevant
family of observables are so-called open Wilson lines. In this paper, we extend and refine
the ideas introduced in Forsstrom et al. (Math Phys 4(2):257-329, 2023) to calculate the
leading order term of the expected value of the more general Wilson line observables.
Using our main result, we then calculate the leading order term of several natural ratios
of expected values and confirm the behavior predicted by physicists.

1. Introduction

1.1. Background. Lattice gauge theories are spin models which describe the interaction
of elementary particles. These were first introduced by Wilson [32] as lattice approx-
imations of the quantum field theories that appear in the standard model, known as
Yang-Mills theory. Since then, lattice gauge theories have been successfully used to
understand the corresponding continuous models, and several of the predictions made
using these lattice approximations have been verified experimentally. At about the same
time as lattice gauge theories were introduced in the physics literature by Wilson, Weg-
ner [31] introduced what he then called generalized Ising models as an example of a
family of models with a phase transition without a local order parameter. In special
cases, these generalized Ising models are lattice gauge theories, and as such, they have
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been used extensively as toy models for the lattice gauge theories that are more relevant
for physics.

In the last couple of years, there has been a renewed interest in the rigorous analysis
of four-dimensional lattice gauge theories in the mathematical community, see, e.g., [7—
9,16,17,21]. Most relevant for this work are the papers [7,9,17], in which the leading
order term for the expectation of Wilson loop observables was computed for lattice gauge
theories with Wilson action and finite structure groups.

Pure gauge theories model only the gauge field itself, and to advance towards phys-
ically relevant theories; it is necessary also to understand models that include external
fields interacting with the gauge field, see, e.g., [19,30]. In this paper, we consider a lat-
tice gauge theory that models a gauge field coupled to a scalar Bosonic field with a quartic
Higgs potential. The resulting model is called the lattice Higgs model. This model has
received significant attention in the physics community. Some examples are the works
[1-3], where calculations to obtain critical parameters of these models were performed,
and [27,28], in which phase diagrams were sketched. For further background, as well
as more references, we refer the reader to [19] and [30].

In a recent paper [18], we extended the theory developed in [7,9,17] in order to
describe the leading order term for the expectation of Wilson loop observables in the fixed
length and low-temperature regime of the abelian Higgs model. Wilson loop expectations
are natural observables in lattice gauge theories and were introduced by Wilson as a
means to detect whether quark confinement occurs, see [32]. In lattice gauge theories
without matter fields, one can show that the expected value of large Wilson loops undergo
a phase transition, where it changes from following a so-called area law to following
a so-called perimeter law. However, as discussed in, e.g., [29], in gauge theories with
matter fields, the Wilson loop observable obeys a perimeter law for all parameters, and
hence one cannot see a relevant phase transition using only the Wilson loop observable.
For this reason, alternative observables have been suggested for studying the lattice
Higgs model. One such observable is the open Wilson line observable, in which the
loop in the Wilson loop observable is replaced by an open path that is saturated at the
end-points by the Higgs field. This type of observable has been relatively well studied
in the physics literature (see, e.g., [5,6,13,15,23,24,29,30]). Moreover, the asymptotic
behavior of such observables has been argued to be related to, e.g., the absence of bound
states of the charged particle in the presence of an external source [13], confinement
versus deconfinement in lattice gauge theories with matter fields [6], and binding versus
unbinding of dynamical quarks in the field of a static color source [6]. Hence the Wilson
line observables are of physical relevance.

1.2. Preliminary notation. Form > 2, the graph naturally associated to Z™ has a vertex
at each point x € Z™ with integer coordinates and a non-oriented edge between nearest
neighbors. We will work with oriented edges throughout this paper, and for this reason
we associate to each non-oriented edge e two oriented edges e and e = —e; with the
same endpoints as e and opposite orientations.

Let de; :=(1,0,0,...,0), dex:=(0,1,0,...,0), ..., dey :=(0,...,0, 1) be ori-
ented edges corresponding to the unit vectors in Z". We say that an oriented edge e is
positively oriented if it is equal to a translation of one of these unit vectors, i.e., if there
isaveZ"andaj € {l,2,...,m}such thate = v +de;. If v € Z™ and j; < 2,
then p = (v +dej;) A (v +dej,) is a positively oriented 2-cell, also known as a posi-
tively oriented plaquette. We let Co(Z*), C1(Z*), and C»(Z*) denote the sets of oriented
vertices, edges, and plaquettes. Next, we let By denote the set [—N, N]" C Z™, and
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we let Co(Bn), C1(By), and C>(By) denote the sets of oriented vertices, edges, and
plaquettes, respectively, whose end-points are all in By .

Whenever we talk about a lattice gauge theory we do so with respect to some (abelian)
group (G, +), referred to as the structure group. We also fix a unitary and faithful
representation p of (G, +). In this paper, we will always assume that G = Z,, for some
n > 2 with the group operation + given by standard addition modulo n. Also, we will
assume that p is a one-dimensional representation of G. We note that a natural such
representation is given by j > e/27i/",

Now assume that a structure group (G, +), a one-dimensional unitary representation
p of (G,+), and an integer N > 1 are given. We let QY (By, G) denote the set of all
G-valued 1-forms o on C(By), i.e., the set of all G-valued functions o : ¢ — o (¢) on
C1(By) such that o(¢) = —o(—e) for all e € C{(By). Similarly, we let Q%By, G)
denote the set of all G-valued functions ¢: x — ¢ (x) on Co(By) which are such that
¢(x) = —¢p(—x) forall x € C{(By). When o € Q(By, G) and p € C2(By), we let
ap denote the formal sum of the four edges ej, ez, e3, and e4 in the oriented boundary
of p (see Sect.2.1.5), and define

do(p):=0(p):= Z o(e):=0c(e1) +o(ex) +o(e3) +o(eq).
ecdp

Similarly, when ¢ € QO(BN, G) and e € C1(By) is an edge from x; to xp, we let de
denote the formal sum x; — x, and define d¢ (e) := P (de) ;=P (x2) — P (x1).

1.3. The abelian lattice Higgs model. Given B, k, ¢ > 0, the action Sy g « ¢ for lattice
gauge theory with Wilson action coupled to a Higgs field on By is, foro € Q' (Ey, G),
¢ € Q%By, G), and a symmetric function r: Co(By) — R, defined by

SNpuco g r)i=—B Y pldo(p)—k Y r@rye(ole) —p@e)

peCr(BN) ecCi(By):
de=y—x (1.1
o Y @ =1)t Y rw?
xeCo(By) xeCo(By)

The first term on the right hand side of (1.1) is referred to as the Wilson action functional
for pure gauge theory (see, e.g., [32]), the second term on the right hand side of (1.1)
is referred to as the interaction term, and the third and fourth term on the right hand
side of (1.1) together are referred to as a sombrero potential. Since ¢ € Q(By, G)
and o € Q(By, G), the action SN.g.x,c (0,9, r) is real for all o, ¢, and r. Elements
o € QY(By, G) will be referred to as gauge field configurations, and pairs (¢, ), with
v oe QO(BN, G) and r: Co(By) — Ry symmetric, will be referred to as Higgs field
configurations. The quantity § is known as the gauge coupling constant, k is known as
the hopping parameter, and ¢ is known as the quartic Higgs self coupling.
The Gibbs measure corresponding to the action Sy g .. is given by

dun prc(0,¢,r) = Zy'y e Noxc@2D T dpug(o(e)
ecCy(Bn)*

[T duc@w)duz(rw).

xeCo(By)*
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where C{(By)* denotes the set of positively oriented edges in C{(By), dug is the
uniform measure on G, and pup, is the Lebesgue measure on R,. We refer to this lattice
gauge theory as the abelian lattice Higgs model.

We will work with the model obtained from this action in the fixed length limit
¢ — o0, in which the radial component of the Higgs field concentrates at one. In the
physics literature, this is sometimes called the London limit. We do not discuss the limit
of the Gibbs measure corresponding to Sy g, as { — oo here, but simply from the
outset adopt the action resulting from only considering 7 : Co(By) — Ry withr(x) =1
for all x € Co(By). In this case, for o € QI(BN, G), and ¢ € QO(BN, G), we obtain
the action

SNpaoo(0 @) :=—B Y pldo(p)—k Y plole) —¢(e)).
peCr(BN) eaeCl(BN):
e=y—x

We then consider a corresponding probability measure (y, g 00 O Ql(By,G) x
QO(By, G) given by

N Bcoo 0, §) =2y e W@ g e Ql(By, G), ¢ € Q(By, G),

where Zy g .00 1S @ normalizing constant. This is the fixed length lattice Higgs model.
We let Ey g.«,00 denote the corresponding expectation. Whenever f: QY (By, G) x
SZO(BM, G) — R for some M > 1, then, as a consequence of the Ginibre inequalities
(see Sect.2.6), the infinite volume limit

(£©@ D) 000 = lim Enpcoo[f (o )]

exists, and it is this limit that we will use in our main result.

1.4. Wilson loops and Wilson lines. Fork € {0, 1, ..., m, a k-chain is a formal sum of
positively oriented k-cells with integer coefficients, see Sect.2.1.4 below. The support
of a 1-chain y, written supp y, is the set of directed edges with non-zero coefficient in
y. We say that a 1-chain with finite support is a generalized loop if it has coefficients
in {—1, 0, 1} and empty boundary, see Definition 2.13. Roughly speaking, this means
that a generalized loop is a disjoint union of a finite number of closed loops, where each
closed loop is a nearest-neighbor path in the graph Z* starting and ending at the same
vertex. For example, any rectangular loop, as well as any finite disjoint union of such
loops, is a generalized loop. We say that a 1-chain with finite support is an open path
from x; € Q{(By) to x2 € Q5 (By) if it has coefficients in {—1, 0, 1} and boundary
dy :=xp — x1. If y is either an open path or a generalized loop, we refer to y as a path.
Given a path y, the Wilson line observable L, (o, ¢) is defined by

Ly(0,¢):=p(c(y) —$dy)), o cQ By, G), ¢cQBy,G),

where o (y) := Zeey o(e), and ¢(dy) = ¢p(x2) — ¢ (xy) if y is an open path from x|
to x2, and ¢ (dy) = 0 if the boundary of y is empty. If y is a generalized loop, then
W, (o) :=Ly (0, ¢) is referred to as a Wilson loop observable.
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1.5. Main results.

Theorem 1.1. Consider the fixed length lattice Higgs model on Z.*, with structure group
G = 7, and representation p: G — C given by p(0) = 1 and p(1) = —1.

Let B,k > 0 be such that 182~ * 2+ e %) < 1 and 68 > k. Further, let y be a
path along the boundary of a rectangle with side lengths ¢1, {>» > 8, and assume that
| supp y| > 24. Finally, let e € C{(Z*) be arbitrary.

Then

1
Ly @ 95000 = O NV He)| < Ko(e P/ 4 [suppy|72) . (1.2)
where

813&()/) = eizlSUPPV|6724ﬁ74,((1+(e8K71)(Le(‘7»¢))oo,;(,oo)s

He(y) = (Ly(©0. ), or
and Ko = Ko(k, B, £1, €2, y) is a non-negative function with
Ko <218+ |suppy|"2e ™ (1822 +¢*)) ™2 4 o, (1),
An exact expression for Ky is given in (10.42).

Remark 1.2. We later show, in Corollary 2.18, that if y is an open path, then the function
H, (y) is exactly equal to the spin-spin-correlation of the spins at the endpoints of y in the
Ising model with coupling parameter «. By the same argument, the term (L, (0, ¢)) 0o.x.00
in the function @:9’ () will be equal to the spin-spin-correlation of the spins at the end-
points of the (arbitrary) edge e.

It is well known (see, e.g., [12]) that when « is larger than the critical parameter for
the Ising model, then H, (y) is uniformly bounded from below for all y. At the same

time, by standard arguments, we have (L. (0, ¢))_ . = e ** +0,(1).

Remark 1.3. Using the previous remark, we now interpret our main theorem. To this,
end, assume that y is a loop along the boundary of a rectangle R. Assume further
that the two sides of R are of the same order, so that K is bounded from above, and
that B and |supp y| are both very large. Then, by Theorem 1.1, the following holds.

If |suppy |e‘24ﬂ_4"
| supp y [e=24h—4

Remark 1.4. The assumption that 18240 (2 + ¢=%0) < | guarantees that the clusters
formed by the edges in unitary gauge (see Sect.2.5) are finite almost surely, and this is
one of the main properties of the model which we use in the proof of Theorem 1.1. The
assumptions that 68 > « and that the path y is along the boundary of a rectangle is used
only to simplify ®’ «(y) and Ko, and is not needed for any of the main ideas of the
proof. In particular, the strategy used to do this also works for more general classes of
loops, as long as their shape is not too rough.

is very large, then (L, (0, ¢))g.«,00 15 very close to zero, and if
is bounded from above, then (L, (o, ¢)).«,00 Will be non-trivial.

Remark 1.5. If y is a generalized loop, then H,(y) = 1, and hence, in this case, we
essentially recover Theorem 1.1 [18].

In Sect. 10, we state a more general version of Theorem 1.1 (Theorem 10.1). While
this result is stated for cyclic groups, with minor changes, this paper’s arguments should
also work in a more general setting. In particular, the proof strategy should work for
all finite abelian groups. Finally, we also mention that alternative versions of our main
result, with different error bounds, are given by Proposition 7.1 and Proposition 10.18.
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1.6. Applications. We now apply our main result to a few different Wilson lines, and
ratios of Wilson lines, which has been considered in the physics literature. In all of these
examples, we will work under the assumptions of Theorem 1.1. We note that, when
these hold, if y is a loop along a rectangle with side lengths of the same order, then, by
Theorem 1.1, we have

(Ly(aa ¢))/3,K,OO = @%,K(V)HK(V) + 0,3(1) + 0| suppy\(l)-

Example 1.6. In [5], Bricmont and Frolich consider Wilson line observables L, (o, ¢)
for axis parallel paths y which are a shortest path between two points x; and x, (see
Fig. 1).

The authors argue that the expectation (L,, (o, ¢)) g, should exhibit a phase transition,
corresponding to binding versus unbinding of dynamical quarks in the field of a static
colour source.

In detail, they argue that (L, (0, ¢))g,«,00 should have exponential decay with poly-
nomial corrections if § is large and « is small, and exponential decay if either g is large
and « is not too small.

Since, under assumption 3, H, (y) is uniformly bounded from below for all y, and
8;3,16 (y) has exponential decay in |supp y|, we see that (L, (0, ¢))g «,c0 indeed has
exponential decay in | supp | when 8 is large and « is not too small.

Example 1.7 [The Marcu-Fredenhagen parameter].
Let y and y’ be as in Fig.2. In [15,29], they consider the ratio

(Ly’(as ¢)>ﬁ,K,OO(Ly—y’(ov ¢))ﬁ,x,oo
(Wy (0))Bk,00 ’

(1.3)

z1 Z2

Fig. 1. The open path y. Note that for any £1 > |x — x1| and £, > O there is a rectangle R with side lengths
£1 and ¢ so that y is a path along the boundary of R, and hence y satisfies the assumptions of Theorem 1.1

2h

|29 — 1] |zo — 1]

(A) The open path +'. (B) The loop 7.

Fig. 2. The open path y’ and the generalized loop y considered in Example 1.7
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The limit of this ratio, when |x» — x| is proportional to 4 and & — o0, is often
referred to as the Marcu-Fredenhagen order parameter.

If this limit is zero, the model in argued to have charged states, and no confinement,
whereas if the limit is non-zero, then there should be no charged states and confinement.

We mention that this ratio is also studied in, e.g., [6,20,25,29,30].

As an immediate consequence of our Theorem 1.1, if « is not too small and B, «,
and y are such that | supp y |e~2*#~*¢ is bounded away from infinity, then the right hand
side of (1.3) is equal to Hy (y")? + 0| suppy| (1) + 0p(1).

However, since letting | supp y | tend to infinity while keeping 8 and « fixed violates
that assumption that | supp y|e~>*#~% is bounded away from infinity, we cannot use
this approximate equation to make conclusions about the Marcu-Fredenhagen parameter
itself.

Example 1.8. Let y and y' be as in Fig. 3.
In [23], Gliozzi considers the ratio

<Ly’(0v (p))ﬂ,l(,ooLy—y’(Ua ¢)>,B,K,oo
<Wy (U)>,3,K,OO

and note that it, asymptotically, seem to only depend on the distance |x; — x1|. Indeed,
from Theorem 1.1, it follows that if | supp y |e 2*#~#¢ is bounded away from infinity and
k is not too small, then the expression in (1.8) is equal to H, ()/’)2 +0[suppy| (1) +0p(1).
Using Remark 1.2 to recognise H, (y’) as the spin-spin-correlation function for the Ising
model, evaluated at the end-points of y’, this confirms the observation made in [23].

, (1.4)

Example 1.9 [Almost closed Wilson lines]. Let  and y’ be as in Fig. 4, and let r be the
distance between the endpoints of y’. In [23], when r is much smaller that | supp y|, the
path ' is referred to as an almost closed Wilson line, and it was argued that the following
functional equation should hold.

<LV/(G’ ¢)>ﬂ,K,oo(LV—V/(G’ ¢)>/S,K,oo = (WV (U)>/S,K,oof(r) (1.5)

for some function f(r) that should neither depend on y nor on the placement of the
open path y — y' on y.

Using our main result, it indeed see that if « is not too small, then (assuming that the
side lengths of the rectangle are proportional to | supp y| is large), we have

(Ly’(U, 4)))/3’,(’00(14)/7;/(0’ ¢))ﬂ,K,oo = <Wy (U))ﬂ’K’OOHK(V/)Z +0psuppy| (1) + 0grec (1).

z1 Z2
° °

|22 — 21 |z2 — 21

(A) The open path /. (B) The generalized loop 7.

Fig. 3. The open path ¥’ and generalized loop y considered in Example 1.8



275 Page 8 of 70 M. P. Forsstrom

(A) The open path 7. (B) The generalized loop +.

Fig. 4. The open path y’ and the loop y considered considered in Example 1.9

In particular, using Remark 1.2, this shows that the functional equation in (1.5) indeed
hold when | supp y | and B are both large, and with f (r) given by the spin-spin-correlation
function evaluated at the endpoints of y’.

1.7. Relation to other work. Many of the ideas used in this paper are refined versions of
analogue ideas used in [18], which in turn build upon the works [7,9, 17]. However, since
this paper deals with general paths y, and not only generalized loops as in [7,9,17,18],
the first main idea in these papers, which is to pass from a generalized loop to an oriented
surface, does not work. One of the main contributions of this paper thus consists in dealing
with this obstacle. Even in the case when the path y in Theorem 1.1 is a generalized
loop, our proof is different from that in [18], and we hence provides an alternative proof
in this case. In addition, when y is a generalized loop, we express the leading-order term
in a more transparent way than in [18].

We mention that although the recent paper [21] also calculate the first order term of
Wilson loop observables in an abelian lattice gauge theory, they work with a continuous
structure group, and thus their methods are fundamentally different from the ideas used
here.

1.8. Structure of paper. In Sect.2, we give a brief introduction to the cell complex of
7" and the discrete exterior calculus on this cell complex. We also define vortices and
recall some of their properties from [17] to [18]. Moreover, we recall the definition
of generalized loops and oriented surfaces from [18], explain unitary gauge and de-
fine a corresponding measure, and discuss the existence of the infinite volume limit
Eg.c,00[Ly (0, $)]. In Sect.3, we introduce additional notation which will be useful
throughout the paper. In Sect. 4, we recall the notion of activity of gauge field configura-
tions from [18]. In Sect. 5, we describe a useful edge graph, and introduce two couplings,
one between the abelian lattice Higgs model and a Z,-model, and one between two Z,, -
models. These will be important in the proof of our main result. In Sect. 6, using the edge
graph from Sect. 5, we give upper bounds on a number of events related to the couplings
introduced in Sect.5. Next, in Sect.7, we show how one of the couplings introduced
in Sect.5 can be used to obtain a first version of our main result, which is useful when
| supp y |e~#**%A) is small. This result is not needed for the proof of Theorem 1.1, but
illustrates the usefulness of the coupling. In Sect. 8, we introduce a spin decomposition
of two coupled configurations. In Sect.9, we describe how different 1-forms affect the
Wilson line observable. Finally, in Sect. 10, we use the setup from the earlier sections to
give a proof of our main result.
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2. Preliminaries

2.1. The cell complex. In this section, we introduce notation for the cell complexes of
the lattices Z™ and By :=[—N, N]" N Z™ for m, N > 1. This section will closely
follow the corresponding section in [17], where we refer the reader for further details.

To simplify notation, we define e; :=(1,0,...,0),e2:=(0,1,0,...,0), ..., e, :=
©,...,0,1).

2.1.1. Boxes and cubes. A set B of the form ([ar, bi] X -+ X [am, b]) N Z™ where,
for each j € {1,2,...,m}, {aj,b;} C Z satisfies a; < bj, will be referred to as
a box. If all the intervals [a;, b;], 1 < j < m, have the same length, then the set
([a1 b1l x - X [am, bm]) N Z™ will be referred to as a cube.

2.1.2. Non-oriented cells. When a € 7Z", k € {0,1,...,m}, and {ji,..., jk}
C {1,2,...,m}, we say that the set
k
(@i ejy,....ej):={x eR™: 3by,... b €0, 1]suchthatx =a+ ) bej,}
i=1
is a non-oriented k-cell. Note that if o is a permutation, then (a;ej,,...,ej) and
(a;o0(ej, ..., ej)) represent the same non-oriented k-cell.

2.1.3. Oriented cells. To each non-oriented k-cell (a; e, ..., e;) witha € Z™, k >1,

and 1 < j; < -+ < jr < m, we associate two orzented k-cells, denoted ——

3/111
AL| and ——2— /\—

i la T |a P , with opposite orientation. When a € Z™,
1<ji<---<jiy<m,and o is apermutation of {1,2, ..., k}, we define
0

dxdom |,

0
= sgn(o) =

dxdow |,
L A-A ax;z(k) )

8 . . . .
. J o | A A pm |a is said to be negatively oriented. Analo-

a 3x]k a

If sgn(o) = 1, then

j o is said to be positively oriented, and if

sgn(o) = —1, then ———

gously, we define
a

ax]o(l) a

a

ax]a(k) a

a
Ox Jk 4

el
= = Sgl’l(O’) ﬂ A
a

’

9 9
m ) A A W )
negatively oriented if —sgn(o) = —1.

Let L =7" or L = By C Z™. An oriented cell a—,l‘ A A m} is said to be in
L if all corners of (a; ej,, ..., ej,) belong to £; otherwise it is said to be outside L. The
set of all oriented k-cells in £ will be denoted by C(L). The set of all positively and
negatively oriented cells in Cy (L) will be denoted by C,:' (£) and C; (L), respectively.
A set C C Cy (L) is said to be symmetric if for each ¢ € C we have —c¢ € C.

A non-oriented O-cell a € Z™ is simply a point, and to each point we associate two
oriented 0-cells a* and a~— with opposite orientation. We let Co(L) denote the set of all
oriented O-cells.

Oriented 1-cells will be referred to as edges, and oriented 2-cells will be referred to
as plaquettes.

and say that — is positively oriented if —sgn(o) = 1, and
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2.1.4. k-chains. The space of finite formal sums of positively oriented k-cells with
integer coefficients will be denoted by Cy (L, Z). Elements of Cy (L, Z) will be referred
to as k-chains. If ¢ € Cx(L,Z) and ¢ € C;{ (L), we let g[c] denote the coefficient of ¢

ing.Ifc € C, (L), weletg[c]:= — gq[—c]. Forq, q" € Cx(L, Z), we define
g+q'== > (qlcl+qlc])c.
ceCi (L)

Using this operation, C¢ (L, Z) becomes a group.
When g € Cy (L, G), we let the support of g be defined by

suppq :={c € C{(L): gqlc] # 0}.
To simplify notation, when g € Cx (L, G) and ¢ € Cy(L), we write ¢ € q if either

(1) ¢ e C{(L) and g[c] > 0, or
(2) ce C (L) and g[—c] < 0.

2.1.5. The boundary of a cell When k > 2, we define the boundary dc € Cr_1(L, Z)

)
of c = ax_f'l|a VANKIRIVAN Bx_jk|ﬂ € Ck(ﬁ)by
;d ad ad ad
dc = Z <(_1)k dxJ1 dx -1 dx i+ dxJk
Kell,...k) X a X a a
1 0 d a ad
+ (=D — — A — : >
0x/1 atej, dx =t atejy dx e atejy Ox/k atejy,
2.1)
When ¢ := (’XL“ |a € C1(L£) we define the boundary dc € Co(L, Z) by

de=(=Dlat+ (=) a+e;)" = (@+ej)t —a'.

We extend the definition of 9 to k-chains ¢ € C (L, Z) by linearity. One verifies, as
an immediate consequence of this definition, thatif k € {2, 3, ..., m}, then ddc = 0 for
any ¢ € Qi (L).

2.1.6. The coboundary of an oriented cell Ifk € {0,1,...,n—1}and ¢ € C¢(L£) is an
oriented k-cell, we define the coboundary dc € Cyy1(L) of ¢ as the (k + 1)-chain

Z (ac[el)c.

c’'eCry1(L)

de:

Note in particular that if ¢’ € Cy+1(L), then dclc’] = dc'[c]. We extend the definition
of d to k-chains g € Ci (L, Z) by linearity.
2.1.7. The boundary of a box An oriented k-cell ¢ = afol|a /AREEWAN aijk|a € Cr(Bpn)
is said to be a boundary cell of a box B = ([a1, bi] x -+ X [am. bn]) NZ™ < By,
or equivalently to be in the boundary of B, if the non-oriented cell (a; ¢j,, ..., ej)isa
subset of the boundary of [ay, b1] X -+ X [am, by ].

When k € Cr(By), we let dCr(By) denote the set cells in Cx(By) which are
boundary cells of By .
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2.2. Discrete exterior calculus. In what follows, we give a brief overview of discrete
exterior calculus on the cell complexes of Z™ and B = [ay, by] X - - - X [an, by ]NZ™ for
m > 1. As with the previous section, this section will closely follow the corresponding
section in [17], where we refer the reader for further details and proofs.

All of the results in this subsection are obtained under the assumption that an abelian
group G, which is not necessarily finite, has been given. In particular, they all hold for
both G = Z,, and G = Z.

2.2.1. Discrete differential forms A homomorphism from the group Ci(L, Z) to the
group G is called a k-form. The set of all such k-forms will be denoted by Q¥(L, G).
This set becomes an abelian group if we add two homomorphisms by adding their values
in G.

The set C; (L) of positively oriented k-cells is naturally embedded in Cy (£, Z) via
the map ¢ = 1- ¢, and we will frequently identify ¢ € C;(£) with the k-chain 1 - ¢ using

this embedding. Similarly, we will identify a negatively oriented k-cell ¢ € C; (L)
with the k-chain (—1) - (—c¢). In this way, a k-form @ can be viewed as a G-valued
function on Cy (L) with the property that w(c) = —w(—c) for all ¢ € Cy(L). Indeed, if
we QXL G)and g = > ajci € Cy(L,Z), we have

o(q) =) aic) =) aio(c),

and hence a k-form is uniquely determined by its values on positively oriented k-cells.
If w is a k-form, it is useful to represent it by the formal expression

gyl .. Jk
Z Wiy dxTt A AN dxE,

I<ji<-<jk=m

where wj, . j is a G-valued function on the set of all a € Z™ such that aij] |a
d_| e Cr(L), defined by
)

7o la
Ifl1 <j; <--- < jx <mando is a permutation of {1, 2, ..., k}, we define

A A

0
wj i (a)=wl — -
]|~'~]k( ) (ax]l " dx Jk
dxJo W A oo A dxio® = sgn(o) dxlt A - A dxk,
andif 1 < ji, ..., jr < n aresuch that j; = j; forsome 1 <i < i’ <k, then we let

dx' A A dxTe=0.

Given a k-form w, we let supp w denote the support of w, i.e., the set of all oriented
k-cells ¢ such that w(c) # 0. Note that supp w always contains an even number of
elements.
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2.2.2. The exterior derivative Given h: 7" — G,a € Z™,and i € {1,2, ..., m}, we
let

dih(a):=h(a+e;) — h(a).

Ifk € {0,1,2,...,m}and w € Q¥(L, G), we define the (k + 1)-form dw € QK1 (L, G)
by

m
do = Z Zaiwj1,...,jk dx! /\(dxj1 /\'-'/\dxjk),

I1<ji<-<jesmi=l

The operator d is called the exterior derivative. Using (2.1), one can show that w €
QX(L, G) and ¢ € Cx(L,Z), we have dw(c) = w(dc). This equality is known as the
discrete Stokes’ theorem. Recalling that when k € {2,3,...,m — 2} and ¢ € Cy12(L),
then ddc = 0, it follows from the discrete Stokes theorem that for any w € Qk(L, G),
we have ddw = 0.

2.2.3. Closed forms and the Poincaré lemma For k € {0, ..., m}, we say that a k-form
w € QK(L, G) is closed if dw(c) = 0 for all ¢ € Ciy1(L). The set of all closed forms
in Q%(L, G) will be denoted by Q8 (L, G).

Lemma 2.1 [The Poincaré lemma, Lemma 2.2 in [9]]. Let k € {1,...,m} and let
B be a box in 7. Then the exterior derivative d is a surjective map from the set
QLB NZ", G) to QS(B N Z™, G). Moreover, if G is finite, then this map is an
|§215_1 (Bnz™", G)}-to-l correspondence.

Lastly, ifk € {1,2,...,m — 1} and w € QS(B NZ™, G) vanishes on the boundary
of B, then there is a (k — 1)-form o' € Q¥"Y(B N 7Z™, G) that also vanishes on the
boundary of B and satisfies do' = w.

2.2.4. Non-trivial forms. We say that a k-form w € QX(L, G) is non-trivial if there is
at least one k-cell ¢ € Cy (L) such that w(c) # 0.

2.2.5. Restrictions of forms. If w € QK(L, G), C C Cr(L) is symmetric, and ¢ € C,
we define
w(c) ifceC,
wlc(c) =
0 else.

2.2.6. A partial ordering of Q¥(L, G). We now recall the partial ordering on differential
forms, which was introduced in [18].

Definition 2.2 [Definition 2.6 in [18]]. Whenk € {0, 1,...,m} and , o’ € Qk(ﬁ, G),
we write o' < w if

(i) o = U)|suppa)’, and
(i) do' = (dw)|suppdw’-
If o # wand ' < w, we write 0’ < w.

The following lemma from [18] collects some basic facts about the relation < on
QF (L, G), and shows that < is a partial order on QF L, G).
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Lemma 2.3 [Lemma 2.7 in [18]]. Let k € {0,1,...,m} and w, o', & € QX(L, G).
The relation < on Q¥(L, G) has the following properties.

(i) Reflexivity: w < w.
(i) Antisymmetry: If ' < w and w < o/, then v = '.
(iii) Transitivity: If " < o' and o' < w, then v’ < w.
(iv) If o' < w, then w — &' = |, (By)~(suppe’) < @
(v) If ' < w, then suppdw’ and supp d(w — ') are disjoint.

The next lemma guarantees the existence of minimal elements satisfying certain
constraints.

Lemma 2.4 [Lemma 2.8 in [18]]. Let k € {0, 1, ..., m}, let @ € QX(L, G), and let
w € Q. Then there is @ < w such that

(i) o' € Q, and
(ii) There is no o" < ' such that " € Q.

2.2.7. Irreducible forms The partial ordering given in Definition 2.2 allows us to intro-
duce a notion of irreducibility.

Definition 2.5 [Definition 2.9 in [18]]. When k € {0,1,...,m — 1}, a k-form w €
QK(L, G) is said to be irreducible if there is no non-trivial k-form o’ € QK (L, G) such
that o’ < w.

Equivalently, w € Q%(£, G) is irreducible if there is no non-empty set S C supp @
such that supp d(w|s) and supp d(w|sc) are disjoint. Note that if w € Qk(L, G) satisfies
dw = 0, then w is irreducible if and only if there is no non-empty set S C supp @ such
that d(w|s) = d(w|sc) = 0.

Lemma 2.6 [Lemma 2.10in [18]]. Letk € {0, 1,...,m — 1}, and let w € Qk(L, G) be
non-trivial and have finite support.
Then there is an integer j > 1 and k-forms w1, ..., w; € Qk (L, G) such that

(i) Foreachi € {1,2, ..., j}, w; is non-trivial and irreducible,
(ii) Foreachi € {1,2,...,j}, wi < w,
(iii) w1, ..., w; have disjoint supports,

(iv)w=w)+---+wj, and

(v)dwi, ..., dw; have disjoint supports.

Aset Q:={w1,...,w;} C Qk(ﬁ, G) such that w, ..., w; satisfies (2.6) —(2.6) of
Lemma 2.6 will be referred to as a decomposition of w € Qk L, G).
We note that as an immediate consequence of the previous lemma, if € Q(z) (L, G)

has finite support, then there is a set 2 C Q(z)(ﬁ, G) which is a decomposition of w (see
also Lemma 2.12 in [18]).

2.2.8. Minimal forms. In this section, we recall three lemmas from [18] which gives
lower bounds on the size of the support of differential forms. Throughout this section,
we assume that m = 4. In other words, we assume that we are working on the 7 lattice.

Lemma 2.7 [Lemma 2.16 in [18]]. Let o € Ql(ﬁ, G). Then

| suppo| > |suppdol/6.
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Lemma 2.8. Let w € Q% (L, G) be non-trivial and have finite support, and assume that
there is a plaquette p € supp w such that supp dp contains no boundary edges of By .

Then |(suppw)t| > 6, and if |(supp w)*| = 6, then there is an edge ey € C1(By)
such that supp v = supp deg U supp 5(—60).

For a proof of Lemma 2.8, see, e.g., Lemma 3.4.6 in [7].

Lemma 2.9 [Lemma 2.19in [18]]. Let o € Q(l)(B ~, G) be non-trivial, and assume that

there is an edge e € supp o such that the support of de contains no boundary cells of
By. Then |(suppo)*| > 8.

2.3. Vortices. Inthis section, we use the notion of irreducibility introduced in Sect. 2.2.7
to define what we refer to as vortices. We mention that the definition of a vortex given
in Definition 2.10 below is identical to the definitions used in [17,18], but is different
from the corresponding definitions in [7,9].

Definition 2.10 [Vortex]. Let o € Ql(BN, G). A non-trivial and irreducible 2-form
Vv € Q%(BN, G) is said to be a vortex in o if v < do, i.e., if do(p) = v(p) for all

p € suppv.
We say that o € Q!(By, G) has a vortex at V C Co(By) if (do)|y is a vortex in o.

Lemma 2.11 [Lemma 3.6 in [18]]. Let 0/, o € QY (By, G) be such that ' < o, and
letv € SZ(Z)(BN, G) be avortexino'. Then v is a vortex in o.

With Lemma 2.8 in mind, we say that a vortex v such that no plaquette in supp v is
a boundary plaquette of £ is a minimal vortex if | supp v| = 12.

Lemma 2.12 [Lemma 3.2 in [18]]. Let 0 € QY (By, G), and let v € Q%(BN, G) be
a minimal vortex in o. Then there is an edge dx; € Ci1(By) and a group element
g € G ~ {0} such that

v =d(gdx;). 2.2)

In particular, do (p) = v(p) = g whenever p € deo.

Ifo € Q'(By,G)andv € Q%(BN, G) is aminimal vortex in & which can be written
asin (2.2) for some ey € C1(By) and g € G\{0}, then we say that v is a minimal vortex
centered at eg.

2.4. Generalized loops and oriented surfaces. In this section, we recall the definitions
of generalized loops and oriented surfaces from [17], and outline their connection.

Definition 2.13 [Definition 2.6 in [17]]. A 1-chain y € C(L, Z) with finite support is
a generalized loop if

(1) for all e € Q1(L), we have y[e] € {—1,0, 1}, and
2) oy =0.

Definition 2.14 [Definition 2.7 in [17]]. Let y € C{(L, Z) be a generalized loop. A
2-chain g € C»(L, Z) is an oriented surface with boundary y if g = y.
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We recall that by Stokes’ theorem (see Sect.2.2.2), for any g € C2(L, G) and any
o € QY (L, G), we have

0(dq) =do(q).

The following lemma gives a connection between generalized loops and oriented
surfaces.

Lemma 2.15 [Lemma 2.8 in [17]]. Let y € C{(L,Z) be a generalized loop, and let
B C L be a box containing the support of y. Then there is an oriented surface q €
Cy(L, 7)) with support contained in B such that y is the boundary of q.

2.5. Unitary gauge. In this section, we introduce gauge transforms, and the describe
how these can be used to rewrite the Wilson line expectation as an expectation with
respect to a slightly simpler probability measure.

Before we can state the main results of this section, we need to briefly discuss gauge
transformations. To this end, forn € Qo(By, G), consider the bijection 7 :=1, :=1, ’ X

7\?: Q' (By., G) x QU(By., G) — 21(By. G) x Q°(By, G), defined by

o(e) > —nx)+a(e) +n(y), e=(x,y) € Ci(Bn), 2.3)
¢ (x) = ¢ (x) +n(x), x € Co(Bn). ‘
Any mapping 7 of this form is called a gauge transformation. Any mapping t of this
formis called a gauge transformation, and functions f : QYUBN, G)xQ%By,G) — C
which are invariant under such mappings in the sense that f = f ot are said to be gauge
invariant.
For B,k > 0and o € Q! (By, G), define

unpi(©@) =2y cexp(B Y pldo(p)+k Y p(o()),  (24)

peCa(By) ecCi(Bn)

where Z;,’lﬁ’ . 1s anormalizing constant which ensures that y g, is a probability mea-

sure. We let Ey g . denote the corresponding expectation.
The main reason that gauge transformations are useful to us is the following result.

Proposition 2.16 [Proposition 2.21 in [18]]. Let B, k > 0, and let and assume that the
function f: QYU(BN, G) x Q°By, G) — Cis gauge invariant. Then

EN,/S,K,OO[f(Gv ¢)] =En g [f(a, l)]

The main idea of the proof of Proposition 2.16 is to perform a change of variables,
where we for each pair (o, ¢) apply the gauge transformation 7_g, thus mapping ¢ to
0. After having applied this gauge transformation, we are said to be working in unitary
gauge.

Noting that for any path y, the function (o, ¢) — L, (0, ¢) is gauge invariant, we
obtain the following result as an immediate corollary of Proposition 2.16.

Corollary 2.17. Let B € [0, o0], k > 0, and let y be a path in C1(By). Then

EN gcoolLy (0. ®)] = En gi[Ly(0. D] =En g p(c()].
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Results analogous to Proposition 2.16 are considered well-known in the physics
literature.

By combining the previous result with Lemma 2.1, we obtain the following result,
which will help us interpret our main result.

Corollary 2.18. Let k > 0, and let y be an open path from x| € Co(By) to x» €
Co(BN). Then

. — — Il
Hy) = lim Zil 3 plnt=an)p(nte)e ™ Zeeciim 700,

neQ0(By.G)
where
(n(de))
Zuaim Y T,
neQ0(By.G)

If particular, if G = Zo, then H,(y) is the spin-spin-correlation between for the spins
at the endpoints of y for the Ising model on By with coupling constant k.

Proof. By Corollary 2.17, we have
He() =Ly (@, D)) 00 = JIm [Ly (@ D)y s 000

= ngnoo EN,OO,K,oo[Ly(Ua ¢)] = ngnoo EN,OO,K[LV(Ga 1)]

. _1 .
= lim Zy o, Z p(a(y))e’fz ecyy) PO (@)
0eQ)(By.G)

Since § = oo, we only need to sumovero € Q(l) (Bn, G).Now recall thatby Lemma 2.1,
foreacho € Q(l)(BN, G) thereisn € Q% By, G) such that dn = . Moreover, the map-
ping n — dnisa |828(BN, G)|-to-1 correspondence. From this the desired conclusion
immediately follows. O
With the current section in mind, we will work with o ~ uy g . rather than (o, ¢) ~
N, B,ic,00 throughout the rest of this paper, together with the observable

Ly(0):=Ly(o, 1) =[] p(c(e)) = p(a(y)).

ecy

2.6. Existence of the infinite volume limit. In this section, we recall a result which shows
existence and translation invariance of the infinite volume limit (L, (o, ¢))g, defined
in the introduction. This result is well-known, and is often mentioned in the literature
as a direct consequence of the Ginibre inequalities. A full proof of this result in the
special case k = 0 was included in [17], and the general case can be proven completely
analogously, hence we omit the proof here.

Proposition 2.19. Let G = Z,,, M > 1, and let f: QY(By,G) > R.

For M' > M, we abuse notation and let f denote the natural extension of f
to C1(Byy), ie., the unique function such that f(o) = f(olc,(y)) for all o €
QY By, G).

Further, let B € [0, oo] and k > 0. Then the following hold.

(i) The limit limy o0 En g « [f(a)] exists.
(ii) For any translation t© of Z", we have limy_.ooEn g [f o r(a)] =

limy 00 En g [f(a)]
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3. Additional Notation and Standing Assumptions

Throughout the rest of this paper, we will assume that N > 1 is given, and that G = Z,,
for some n > 2.

To simplify the notation, we now introduce some additional notation.

Forr > 0 and g € G, we define

or(g) = " Np(8)=p(0) (3.1)
We extend this notation to » = oo by letting
) 1 ifg=0,
$oo(8) = {o if g e G~ {0).

Next, for ¢ € G and B, k > 0, we define

Y g P(@9p(8) P 0 (g + 8)*
Y e 98(&) 20 (g +9)?

When y is a path, or when £ C C{(By) is a finite set, we define

O 1) =En oo | [T 08 (0@)] and O pc(B) =B corc| [T 0 (0@) ]

ecy eeE

)]2

Op.ic(8) := (3.2)

(3.3)

We next define a number of functions which will be used as error bounds. To this
end, for r > 0, let

_— 2 i 2
a() = Y ¢ (g)? and o(r):= (ax ¢ (9)” (3.4)
geG {0}
Next, for B, k > 0, define
(B, k) =ag(Bao()/®, az(Bx) =1~
= 0
{gneagl 5.1 (8)

a4 (B, «)

(3.5)

. ( 'decmg)(nk 1 9p(8 + 80 pi (2)? )
as(B, k)= min
81:82:-+-:86€G 2 eeG Hk 1 98(8 + 80%) e (8)?
(3.6)
and
ae(B, k) = I;leac);(|1 — 0p.c(9)]- (3.7)

When y is a path, an edge e € supp y is said to be a corner edge in y if there is

another edge ¢’ € y and a plaquette p € de such that p € +de¢’. We define the 1-form
Ye € C](ﬁ, Z) for ¢’ € Ci1(Bn) by

y[c'] if ¢’ is a corner edge of y,
0 else.

veld']:= (3.8)

In the rest of this paper, we will often work under the following assumption.

[A] 182a9(k)(2 + ap(k)) < 1.

In essence, the purpose of this assumption is to guarantee that we are in the sub-critical
regime of the model, where certain edge clusters are finite almost surely.
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4. Activity of Gauge Field Configurations

In this section, we recall the useful notion of the activity of a gauge field configurations
from [18]. To this end, recall the definition of ¢, from the previous section. Since p
is a unitary representation of G, for any g € G we have p(g) = p(—g), and hence
Np(g) = Rp(—g). In particular, this implies that for any g € G and any r > 0, we
have

or(g) = o (@) =p() _ rBMp(=g)—p(0) _ or(—8). 4.1)

Clearly, we also have ¢xo(g) = ¢oo(—g) for all g € G. Moreover, ifa > 0 and » > 0,
then

()" = Qar(g).

Abusing notation, for o € QY(By, G) and r € [0, 0o], we define

or@)= ] erlo),

¢€C(By)
and for w € Q%(BN, G), we define
or@:=[] elo®)
PEC2(BN)
For g € [0, oo] and k¥ > 0, we define the activity of o € QL(By, G) by
08.c(0) = P (@) pp(do).
Note that with this notation, for o € Ql(BN, G), B € [0, o], and ¥ > 0, we have

0.« (0)
o'eQ! (By.G) 9B (07)

UN (o) = > 4.2)

Before ending this section, we recall two results from [18] about the activity of gauge
field configurations, which will be useful to us.

Lemma 4.1 [Lemma 4.1 in [18]]. Let 0,0’ € Q' (By, G) be such that ' < o, let
B € [0, oo], and let k > 0. Then

P8 (0) = @i (0Ngp (0 — ). (4.3)

Proposition 4.2 [Proposition 5.1 in [18]]. Let o’ € QYUBN, G), let B € [0, oo), and let
Kk > 0. Then

unpi({o € By, G): 0 <)) < ppi(a)).

5. Two Couplings

The main purpose of this section is to introduce two couplings which will be useful to us
throughout this paper. Both of these couplings use ideas from disagreement percolation,
and will be constructed so that the two coupled configurations agree as often as possible,
given certain constraints. Before we introduce the two couplings, we will recall the
definition of a certain edge graph from [16], and state and prove some of its properties,
and introduce a set Eg, 5 5 which will be used for the definitions of the two couplings.
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5.1. A useful edge graph.

Definition 5.1. Given 0,0’ € QY(By, G), let G(o, o’) be the graph with vertex set
C1(By), and with an edge between two distinct vertices e, ¢’ € C1(By) if either

(i) ¢ = —e, or
(ii) e, ¢’ € supp o Usupp o’, and either supp deNsupp de’ #~ @ or supp deNsupp d(—e’) #
@.

Given o € Q! (By), we let G(o) :=G(o, 0).

Given 0,0’ € Q'(By), G:=G(0,0'), and e € C(By), we let Cg(e) be set of
all edges ¢’ € C|(By) which belong to the same connected component as e in G. For
E C Ci(Bn),weletCg(E) = J,cx Cg(e).

We now state and prove a number of lemmas, which describe different properties of
the sets Cg(s.6) (E).
Lemma 5.2 [Lemma 7.2 in [18]]. Let 0,0’ € QY(By, G), E C C1(By), and E' :=
Cg(g’g/) (E) Then

D) olg <o,
(i) olc,By)~E' = 0,
(iii) o’'|gr < o/, and
(iv) o'lcyBy)~E S 0.
Lemma 5.3. Let 0 € Q' (By, G) be nontrivial and irreducible. Then the support of o
is a connected set in G(o).

Proof. Lete € suppo, and define o’ := 0o ICg(s) (e)- Then, by definition, o’ is non-trivial,
and by Lemma 5.2, we have o’ < 0. Since o is irreducible, it follows that 0 = o', and
hence the desired conclusion follows. O

Lemma 5.4. Let o, 0’ € QY(By, G). Assume that 6" < o is nontrivial and irreducible,
and let e € suppo”. Then

o’ < O1Cq 0.0y (@) (5.1)

Proof. Since ¢” is irreducible, by Lemma 5.3, the support of o’ is a connected set
G, 0).

Since 0" < o, we have o'|supp 7 = 0, and hence it follows that the support of o/
is a connected set in G (o, ¢’).

Consequently, since e € suppo”, we have

suppo”’ € Cg(a,07) (@), (5.2)
and thus, since o |gupp o7 = o, it follows that
(G|Cg<a,0/>(e))|suppa” = O‘|suppo” =o".
For (5.1) to follow, it thus remains to show that

(d@leg, @) =do". (5.3)

suppdo”

If do” = 0, then this immediately follows. Hence, assume that do” # 0, and let p €
suppdo”. Since p € suppdo”, there must exist at least one ¢’ € dp with o”(e’) # 0.
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Since ¢’ € suppo”, it follows from (5.2) that ¢’ € Cg(s,o)(e). Since ¢’ € dp, it
follows from the definition of Cg (4,4 (e) that any edge e’ € dp with o (e”) # 0 is also
a member of Cg(, ) (e). Consequently, we must have o (¢”) = o [N (") for all

e” € dp, and hence
dolcg, @ (P) =da(p).

Since 0” < o and p € suppdo”, we also have do’(p) = do(p), and hence we
conclude that

dolcg,, @ (P) = do"(p).

Since this holds for any p € suppdo”, we obtain (5.3).
This concludes the proof. O

Lemma 5.5. Leto, o’ € QY(By, G), andlet E C C1(By). Assume that " < o is non-
trivial and irreducible, and that supp 0" N Cgs.on(E) # 9. Then 0" < o |Cg 0.0 (-

Proof. Fix some e € suppo” N Cg(y,07)(E).

Since o” is irreducible and e € suppo”, it follows from Lemma 5.4 that 0" <
OlCg o 0ny @

Next, since e € Cg(g,o/)(E), we have Cg.oy(e) S Cge.oy(E), and hence, by
Lemma 5.2, it follows that

O1Cg 0@ = (O1Cg o (ENCg o on (@) = OlCg o (E)-

Since o” < o‘|cg(ag,)(g), using Lemma 2.3 (2.3), we thus conclude that

”
<
o < G|cg(a,a’)(5)' O

Lemma 5.6. Let o, 0’ € QY(By, G), let E C C1(By), and assume that ¢’ < o is non-
trivial and irreducible. Then either ¢” < O |Cg i 0n (BN OF o < Oy (BN)~C(p.0(E)-

Proof. If suppo” N Cg(s.0)(E) # ¥, then, by Lemma 5.5, we have 0 < O1Cg 007 (E)»
and hence the desired conclusion holds in this case.

Now instead assume that supp 6" N Cg .o/ (E) = ¥, and note that this implies that
suppo” € C1(Bn) \ Cg(s,0')(E).

Define

E":= SUpP O c, (By)~Co 0, (E) Y SUPP O |Cy (By)~Co 1) (E)-

Then, since 0” < o and suppo” € C1(By) \ Cg(s.0)(E), we have suppo” C E’.
Consequently, by Lemma 5.5, we have " < a|cg(0 oy (EN)- Since

T1C1(BN)Cgp.0n)(E) = TlCq5 01, (EN)»

we obtain 0" < olc,(By)~Cgq,,1 (E)- and hence the desired conclusion holds also in
this case.
This completes the proof. O
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5.2. The set Eg, 5 5. We now define a set which we will need for the definitions of the
couplings in Sects.5.3 and 5.4

Definition 5.7. For 0, o’ € Q!'(By, G) and Eq C C;(By), define

Egy.0.0 ' =CG(,0(Eo U {e € suppo: Ao, gonie 7 0 5
U {e € suppo’: da/|isupp5e # 0}). ’

Lemma 5.8. Let 0, 0’ € QYU(By, G), and let Ey € C1(By).
Then

(i) d©lE,, ) =do. and
(ii) d(@|cy(By)NEgy o) = 0
Proof. To simplify notation, let £ := Eg, 5,5'-

By Lemma 5.2, applied with o, o/, and E, we then have o|p < o, 0’| < o/,
oleyBy)~E <0 and o’'|c By)~E < 0.

We now show thatd (o |g) = do.Sinceo | < o,itsufficestoshow thatd(o|g)(p) #
0 whenever do (p) # 0. To this end, assume that do (p) # 0. Then the set supp dp N
supp o must be non-empty. Fix one edge e € supp dp N supp o. Recalling the definition
of E, we see that e € E, and hence any edge ¢/ € supp dp . {e} must satisfy either
o'(e)y=0()=0,0re € E.

Consequently, o |g(dp) = o (dp), and hence

do|g(p) =a|p(@p) = o (dp) =do(p)

as desired. This concludes the proof of 5.8.
To see that (5.8) holds, note simply that, using 5.8, we have

d(o|c,By)~E) =d(0 —0|g) =do —d(o|g) =do —do =0,
and hence (5.8) holds. This concludes the proof. O

Lemma 5.9. Let 6,6 € QY (By, G), and let Ey € C1(By).
Further, either let

e A A/
0= 0lEy ;50 T OICUBNINERy 550
o':=0o".

or let
A Jays
0= 0lEy ;50 T OICIBNINERy 550
fe A ~
0= G |Eg 550 T OICHBNINEgy 550+
Then EE(),G,U’ = EE(L&,(AT/‘

Proof. By Lemma 5.8, we have d&lEEO.J.J, = do, and d&/|C1(BN)\EE0_;,,;,/ = 0 and
hence

do = d(6—|EE0,&,&/ +OA—/|C| (BN)\EE(),U,U/) = d(&lEEO.Fr,&/) +d(&/|C1(BN)\EEO,rr,rr’)
=do+0=4do.
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If e € supp 6 is such that d6|isuppée #0,thene € Eg, 5 4,and thus o (e) = G (e),
implying in particular that e € supp o. Since do = d&, it follows that do | 4+ supp de # 0,
and hence

{e € suppo: d&lisuppée # 0} C {e € suppo: dalisuppée # 0}.
Analogously, we obtain
{e € supp 6 d6/|isuppée # 0} C {e e suppo’: da/'isuppée £ 0}.
Noting that G(&, 6") = G(0, ¢’), we thus obtain
Egy6.6 = Cg(a,&/)(Eo U {e € suppo : d6|:tsupp3e #0}U{e e Supp8/: d&/|:tsupp9e # 0})
C Cg(o,0/)(Eo U {e € suppo : do|+ suppae # 0}U
{ee suppa/: d0/|:tsupp3e * 0}) = Egy 0,0
For the other direction, assume that ¢ € supp o is such that do| + supp de # 0. Then

o (e) # 0, and there must exist p € de such that do (p) #0.
Since d6 = do, it follows that d6 (p) # 0. Consequently, there must exist ¢’ € dp
such that 6(e’) # 0. For any such edge ¢/, we have d&lﬂtsuplo 5 7 0, and hence

¢’ € Eg, s s Inparticular, this implies that o (¢') = 6 (¢') # 0, andhencee € Eg, 5 5.
Consequently,

{e € suppo: d“'isuppée #0} C Eg 6.6
Analogously, we also obtain
{e € suppo’: do/lisuppée #0} C Eg, 6.6
Again recalling that G(6, 6') = G(o, ¢’), we thus obtain
Egy o0 = CQ(G,U’)(EO U{e € suppo: do|+suppae # 0}
Ufe e SllppU/Z dU/|:|:supp8@ i 0})
CCg.61(EoUEE, 5.6 Ule €suppé’: d6'|+quppoe #0}) = Egy 6.6
This concludes the proof. O

Lemma 5.10. Let 0,0’ € QY (By, G), let Eg € C1(By), and let ¢ € Ci(By). Then
e € Eg, o6 if and only if one of the following holds.
(i) d(@lcy, @) # 0
(ii) d(0”lcg, o @) # 0
(iii) Cg(a,g/)(e) NEy#£0
Proof. Suppose first thate € Eg, 5 o'
By the definition of Cg s+ (e), there exists an edge ¢’ € Cg (5.7 (e) such that

e € EgU{e’ esuppo: Ao, gopier # 01U {¢" € suppo’: dU/'j:suppée” £ 0}.

If ¢ € Ep, then ¢’ € Cg(y0)(€) N Eg, and hence Cgy o1 (e) N Eg # V. If €’ ¢
Eo, then, by symmetry, we can assume that ¢’ € {¢” € suppo: Aol gpper 7 O
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In this case, we infer that there exists a plaquette p € d¢’ such that do(p) # 0.
Since e’ € Cg(s,47)(e), we have supp o Nsupp dp S Cg(o,07)(€), and so d(6|cg(m,)<e))

(p) =do(p) #0.

For the other direction, assume first that Cg )(e) N Eg # . Then there is
¢’ € Eg such that ¢ € Cg o (e). Since ¢’ € Cg(y,1)(e) we must also have e €
CG(o.0(€'), which is a subset of Ef, 5, since ¢’ € Eo. Next, assume instead that
there is a plaquette p € C,(By) such that d(0|cg(a,a/)(6))(p) # 0. Then there exists

an edge ¢ € dp with o(e¢’) # 0 and ¢’ € Cg(s,07)(e). Thus suppo N suppdp <
CG(s,0y(e), and so do(p) = d(0|Cg(a,a/)(€))(p) # 0. In particular, it follows that
¢ € suppdp C {¢” € suppo: do |y gppier # 0. Consequently, we must have
e € {¢' € suppo: do|isupp§e/, # 0}, and hence ¢’ € E,; . Since ¢’ € ng,(e),
we thus have e € Cgo,o’(e/) C EE,.0,0' as desired. Using symmetry, this concludes the
proof. O

Lemma 5.11. Let B, > € [0, 00], k > 0, Eg € C1(By), and 0,6,6" € Q' (By, G).
Then

0B, (), i (07) - IL(CATIEEO_;,V;,/ +5/|C1(BN)\EEO,&Y3/ =0)

=0px@) D pu@) UG =01k, 0 lCBONE ) (55)
o'eQ!(By,G)

~/ /!
: II-(U =0 |EE(),0,0/ + U|C1(BN)\E50,J,U/)'

Proof. By Lemma 5.2, we have &|EE0 sor =

< < 6’ and hence, by
Lemma 4.1,

N ")
o and o |EE0,3~&’

9p1.x(0) = @p, « (6—|EE0,&,&’)('0.311K(6—|C1(BN>\EEO,&.F7/) (5.6)

and

9puc () = ¢/32,K(6J|EEO_(;,&/)§0/32,K(&/|C1(BN)\EEO,3’3/)~ (5.7)
Next, by Lemma 5.8, we have

d(Glei(By)~Egy5.50) =0,
and hence
§0/31,K(5|C1(BN)\EEO_&,&/) = @ (6|C1(BN)\EEO,&.&/) = ¢p, .« (&|C1(BN)\EEOY&,&/)~
Since 6/|EE0,&,&/ and &|c, (BN)NEpy 550 have disjoint supports, it also follows that
&/lEEOﬁJA,/ < 6/|EEO,(;Y;,/ +O1Ci1(BN)NEpy 5.4

Thus, by Lemma 4.1, it follows that

(pﬁ2,l((OA’/|EEO’&’&/)(/)ﬂ1,K(6—|C1(BN)\EEOV&_;,/) = Qg ((AT/|EEO,&_&/ +5’|C](BN)\EEOV;,_;,/)-
(5.8)

By symmetry, we also have

~ ~/ ~ ~/
(/)ﬁl,K(O‘|EE0,&Y&/)(pﬁ2,K(O‘ |C1(BN)\EEO’&.6/) = @Bk (U|EEOY&,5/ +0 |C1(BN)\EEO.&_&/)-
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(5.9
Combining (5.6), (5.7), (5.8), and (5.9), it follows that

Pp1c ()0 (&) - (6l ;00 + & 1Cy (BN~ Epy g 50 = o)
= Bk (6|EE0,&,5’ + 6/|C1(BN)\EEO,&,&’)(pfSZJ((&,|EE0,&,5’ + &|C|(BN)\EEO,&,&’)
161y .50+ 6101 BYINEy 5.0 = O)
= ¢’ﬂ1,;<(0)¢ﬂ2,x(5f’|55075.6/ +&|C1(BN)\EEO‘515/) : IL(CATIEEO.[,W +6'1C1(Ba)NEgy .50 = o)

= ¢p,x(0) Z ‘/’/32,/((‘7/) . 1(6/|E50.6.5’ +6|C'(BN)\EEO,&.6’ = g/)
o'eQ!(By,G)

~ ~/
) ]]'(UIEE(),&,?T/ +0 ICl(BN)\EEOﬁ,[I’ = U)- (510)
Now fix o’ € Q' (By, G) and assume that
. ~)
0 = O—|EE0,&.&/ +0 |CI(BN)\EE()KA7,5/
’ A ~
0" =0NEy ;0 tOlCIBNINEL 55
By Lemma 5.9, we have Eg, 55 = Eg;o,. Since 0|EEO.&,5’ = UlEEO.a,a'
, A .
and o |C1(BN)\EEO.&,&’ = U|C1 (BNNEpy 5.6 it follows that
Ao / _ /
0 =0lEg 55 O ICIBNINER 550 = OlEg 0 + O lCIBNNE 00

. ’ oAy A
Analogously,since |, , . = 0'lE, ;A0 |cy(By)NEg 5 50 = O 1CI(BNNEgy 5500
it follows that

Al /7 _ /
0 =0 By ;0 Y OlCIBNINEL 550 = O 1Eg o0 T OICIBNNEg 400

This shows that for any ¢’ € Q!(By, G), we have

A7 ~ / ~ ~7
1(6 |Egy 660 T OICIBNNEg 550 = O ) - ]1(U|EEO_&,&/ O Ci(BYNER 5.4 = o)

~ ’ ~r ’
= ]1((7 = U|EE0.G.“, +o0 |C'(BN)\EEO,0,(7/) . ]1(0 =0 |EE0,0,0’ + O—|C1(BN)\EEO,(;.(;’)'
(5.11)

Combining (5.10) and (5.11), we obtain (5.5) as desired. O

5.3. A coupling between two Z,-models . In this section, we define a coupling between
two copies of 4y o0, constructed to always agree on a given set Eg € C1(By)

Definition 5.12 [A coupling of two Z,-models]. Fork > 0, 0,0’ € Q(l)(BN, G), Ey C
Ci(BN), and Eg, 5o = Cg__,(Ep), we define

E, A A
I o000y (@ 0 1= 1 oo X oo ({ (6. 67) € (B G) x (B, G):

N AL / A/
o= UlEEO,&,&’ +o |CI(BN)\EEU,&,&’ ando’ =0 })

We let E£

N (00.4).(00.K) denote the corresponding expectation.
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(A) Red edges correspond to the (B) Blue edges correspond to the (C) Red edges correspond to the
support of 6 € Q}(By, Z2). support of 6" € Q}(By, Z2). support of &, and blue edges cor-
respond to the support of 6'.

(D) Red edges correspond to the (E) Blue edges correspond to the (F) Red edges correspond to the
support of &‘EEQ.&,«W and blue support of 6'|¢, (By)<E, support of &‘Ezgﬁ.a” and purple

edges correspond to the support ‘ edges correspond to the support
Ofé"lEEOﬁé,‘ OfOA'/‘EN\E&&,.

Fig. 5. Illustration of the coupling (o, 0’) ~ p.f,o(oo 8),(00.8) defined in Definition 5.18, simulated on a
2-dimensional lattice, with G = Zy, and with Eg = C(By/4)-

Remark 5.13. When o, 0’ € Q(IJ(BN, G), then do = do’ = 0, and hence the definition
of Eg, 0,0 in Definition 5.12 in consistent with (5.4).

Remark 5.14. By definition,if 6, 6" ~ [ty 0.« areindependent, and we leto :=6|EEO sort
N N E
U/|C1(BN)\EE0,&,&/ and o’ :=¢", then (0, ¢’) ~ 'U“N(,)(oo,/c),(oo,l{)'

The next result shows that the measure introduced in Definition 5.12 is indeed a
coupling.

Proposition 5.15. Let « > 0, and let Eg € C1(By). Then /Lﬁo(oo K).(co.k) 15 @ coupling
of UN 00,k and UN 00K+

Proof. Tt is immediate from the definition that if (o, o) ~ uf,o(oo ). (co): then o' ~
LN 0.k and it is hence sufficient to show that o ~ Uy oo -
To this end, fix some o € Q(l)(BN). We need to show that
Aoa 1 1 s A
MN,OO,K X MN,OO,K({(Gv U/) S QO(BN) X Q()(BN) J|EEQ,5,5/ +G/|Cl(BN)\EEO,&.&’

= G}) = MN,OO,K(G)3
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or equivalently, that

A AL A A/
Yo 006 161, 40+ ICI BBy 0 = O)
6eQ)(BN,G),
6'€Ql(By.G)

=@c0) Y. gl (5.12)

o’} (BN,G)

We now rewrite the left-hand side of (5.12) in order to see that this equality indeed holds.
To this end, note first that by Lemma 5.11, applied with 81 = B> = oo, we have

Y e®)e G151 ey, 550 + 6 lC1BNNEg, 550 = O)

6€Q)(BN.G),
6'€Ql(By.G)
! Ja /
=pc0) Y e Y U6 =0lEy,, oleiBnnEL, )
0'eQ}(By.G) 6eQ)(By.G),
A~ 1 Al /
&< (6" =01y, 00 + 0 lCIBNEg o)
(5.13)

Since 0,0’ € Q(l)(BN), we can apply Lemma 5.8 to see that O’|EE0’0Y0, +

o'|C1(B)NEpy o1 € Q)(By, G) and 0By o + OlCUBNINEg, 50 € Q)(By, G).
From this it follows that the double sum on the right-hand side of (5.13) is equal to
1, and hence we obtain (5.12) as desired. This completes the proof. O

Lemma 5.16. Let B,k > 0, let Eg € C|(By), and let (0,0') € Q(l)(BN,G) X

Q(l)(BN, G) be such that ;L]If,?(oo"()’(oo’,{)(o, 0"y # 0. Then o(e) = o'(e) forall e €
Ci1(By) ~ EE()‘O,(T/'

Proof. Since /Lf,‘f(oo ). (c0.) (@ o’) # 0, by definition, there is (6, 6”) € Q(l)(BN, G) x
Q(l)(BN, G) suchthato = &|EEO.[7,&/+6/|C1(BN)\EE0.6,&’ ando’ = ¢’. Using Lemma 5.9,
we immediately obtain the desired conclusion. O

One application of the coupling introduced in Definition 5.12, which will be partic-
ularly useful to us, is the following proposition.

Proposition 5.17. Let « > 0, and let Eg, E1 C CY(By.,Z) have disjoint supports.
Further, let fo, fi: Q' (By, G) — R be such that fo(o) = f(olg,) and fi(o) =
fi(o|g,) forallo € QY(By).

Then

[E 0o [ f0(0) £10)] = E oo [fo(@) [En.ooic [ f1(0)]|
<20 follooll fillse Y 15 o000, (162 ) € QI(By. G) x 24(By. G)

eckE)

te€Ep,s.6)) (5.14)

We provide an upper bound on the right hand side of (5.14) in Proposition 6.4.
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Proof of Proposition 5.17. To simplify notation, for 0 € Q!(By, G), let F(c):=
f1(0) f2(0). Let 6, 6" ~ lin o0« Note that when d6 = dé’ = 0, we have Eg, 5 5 =

Cgs .61 (Eo).
Define

A oy
0:=0Eg 54 YO |lCIBNINEgy 550
o -

Then (o, 0') ~ Mﬁ‘f(oom)’(oo’,(), and hence o, 6’ ~ N 00« Consequently, we have

EN coxc[F(0)] = Ezﬁ?(oo,x),(oo,x)[F(")]
=ENcox X ]EN,OO,K[F(&|EEO.6,&/
+5’/|C1(BN)\EEOV;,’5/)]
=EN 00,6 X EN,OO,K[F(6'|EEOV&,&/ + 6101 (ByINEpy 5.00)°
L(E1NEgys.4)=90)]
+EN oo X En ook [F(CATIEEO,M/ + &/|C1(BN)\EEOY&V(~,/)'
W(E\NEgys.6) #D)]. (5.15)

Since Eg, 5.5 = Cg(s.6)(Eo), we have (supp& Usupp6’) N Eg € Eg, 5 6. This
implies in particular that

(OA—|EE0,&,&’ + OAJ'C] (BN)\EEO,&,&/)lEO = (6|EE0.F7,?7’)|E0 + (6—/|C|(BN)\EEO,(},&’)|EO = &|E0’
and hence
JoG ey ;0 + 6 lCiBNEgy 5.5 = Jo(6).

At the same time, on the event £y N Eg, 5 5+ = ¥, for all e € E| we have
(GlEg 5.4 +&/|C1(BN)\EEOY&.&/)|E1 =G lEg 50 |E + (6/|C1(BN)\EE0,6,&/)|E1
= 0+8/|E11

and hence
f1 (5|EEOY;,_&/ +8/|C1(BN)\EE0_&,&/) = f1(6").
Consequently, on the event E1 N Eg, 4 o' = ¥, we have
F(5|EEO‘&'&/ +6/|C1(BN)\EE0,6,;,/) = fo(6) f1(8"),
and hence

En ok X EN,OO,K[F(6'|EEO‘&_&/ +6"lc1(ByINEpy 55)  WEIN Egy .60 = )

=EN.coc X EN,couc[0(6) f1(6") - L(E1 N Egy 55 =1D)]

=EnN, 0ok X En oo [f0(5)f1(&/)] —En oo X En cox [f0(6)f1(a/)
L(E\N Egys.5 #0)]

= IEN,oo,/c [fO(&)]EN,oo,K [fl (6/)] - EN,OO,K X ]EN,oo,lc [fO(&)fl (&/)
-L(E\NEgy 5.5 #0)].



275 Page 28 of 70 M. P. Forsstrom

Inserting this into (5.15), we see that

EN o[ fo(o) f1(o)]
=EN o[ f0(O) |EN 00,6 [ [1(6)] = EN,ooic X En oo f0(6) f1(6)
“L(EINEgys5)#9)]

+EN, 0o X EN,M,K[F((%/'EEO’&.&/ +0lCiByNEgy 50 LELN Egy 560 # 7).

In particular, this implies that

(BN ek [Jo(@) £1(0)] = En o [ 0@V BN o[ £16))]
= 2|l follooll f1lloo N, 00,k X LN, 00,k (El N EEO,&,ﬁ’ # Q)
<20 follooll fillo Y iN.con X eN.cou (€ € Epy 650 # 9).

eckE

To obtain the desired conclusion, we note that by Lemma 5.9, we have Eg) 5 5 =
EE, 5,6 This concludes the proof. O

5.4. A coupling between the Abelian Higgs model and the Z,-model. In this section,
we recall the coupling between iy g and pLy oo, introduced in [18].

Definition 5.18 [The coupling to the Z, model]. For 8,x > 0, 0 € Ql(BN, G), and
o’ € Ql(By, G), let let

Eso:=Epoo = Cg(mo/)({e € suppo: da':l:suppée =~ O}). (5.16)
and define
N, (810,000 (0, ) 1= 1 e X N0, ({(6,67) € 1 (B, G) x (B, G):
0 = GlE, ; +6'lcy(By)~E; 5 and o' = G'}).
We let En (8,1),(c0,x) denote the corresponding expectation.
Remark 5.19. If [18], the measure /4y, (8,«),(c0,c) N Definition 5.18 above was defined

slightly differently, but using the Proposition 5.20 below, one easily shows that they are
equivalent.

The next result shows that this is indeed a coupling.
Proposition 5.20. Let B, k > 0. Then jin (8,),(co,x) IS @ coupling of 1Ly g, and (N oo -

Proof. Tt is immediate from the definition that if (¢, ') ~ wun, (8,4),(c0.c)> then o’ ~
IN,00,c> and it is hence sufficient to show that o ~ uy g . This is exactly equivalent
to, for each o € Q! (By, G), showing that

N B X N0 ({(6.67) € Q1(By) x Q4(BN): 6E, 4 +6'IC)(By)~E; 5 =0 })
= MN,ﬂ,K(a)-
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(A) Red edges correspond to the
support of & € Q'(By,Zs), and
black squares to the support of
do.

(B) Blue edges correspond to the
support of &' € QY(By,Zz). In
this case we automatically have
dé’' = 0.

(¢) Red edges correspond to the
support of &, blue edges corre-
spond to the support of 6/, and
black squares to the support of
dé.
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Fig. 6. Tllustration of the coupling (0, 0") ~ N, (B,x), (00,k) defined

2-dimensional lattice, with G = Z»)

or, equivalently, that

2

6eQ(By,G),
6'eQl(BN,G)

= 0‘) = (Pﬁ,x(a)

2

0’eQ)(BN.G)

D (OJ)'

9. (@) (") - 1(6 1k, , + 6 lc)(ByINE,

(F) Red edges correspond to
blue

port of 6’|, (By)~E, ,,» and black

squares correspond to the sup-
port of dé.

in Definition 5.18 (simulated on a

6!

(5.17)

We now show that (5.17) holds. To this end, fix some o € Q!(By, G).
By Lemma 5.11, applied with 81 = $ and B, = oo, we have

2

6eQ!(By.G),
6'€Q)(BN.G)

98 (@) (0)VL(G|E; , +6'ci(By)~E,

.6’

=0’)
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=@c0) > epulc) Y. 16 =o0lg,, +0 leyyE, )

o'eQ!(By,G) 65eQl(By,G),
6'e(By: (6" = 0|, , +0|
o€ 0( N3 O =0 Em”/ o C'(BN)\EG,O‘/

=@c0) Y epu(@(0E,, +0leiy~E,, € (BN, G))
o'eQl(By,G)

=0c@) Y epa@1(d(olr,, +oliBynE,,) =0).  (5.18)
o'eQ(By,G)

By Lemma 5.8, we have

d(o'|E, , +0olciBy~E,,) =d(o'|E, ) +d(olciy~E,, ) =d(0|E,,)+0
=do’,

and hence

0@ Y epe@)1(d(0lk, , +olcimonE, ) =0)
o’'eQl(By.G)

=0c@) Y pu(@)Ldo’ =0)=0c(0) > gpilo).
o'eQ!(By,G) 0'eQ)(By.G)
(5.19)

Combining (5.18) and (5.19), we obtain (5.17) as desired. This concludes the proof. O
Lemma 5.21. Let B,k > 0, let Ey € Ci(By), and let (0,0') € Q'(By,G) x

Q(])(BN, G) be such that Ly (g.c),(00x)(0,0") # 0. Then o(e) = o'(e) for all e €
Ci(By) ™ Ea,o’~

Proof. Since (AN, (8,c),(00.c) (0, 0') # 0, by definition, there is (6, 6") € QY(By, G) x
Q(])(BN, G) such that o = G|, ., + &’|C1(BN)\E&,&, and ¢’ = ¢’. Using Lemma 5.9,

we immediately obtain the desired conclusion. O

6. Distribution of Vortices and Edge Configurations

In this section, we use the edge graph defined in Sect. 5.1 to give upper bounds on several
useful events. Throughout this section, constants K, K», ..., K15 will be introduced.
We use distinct names for these to make it possible to find explicit upper bounds, but
stress that under the assumptions of the main results these are all bounded from above,
and will thus not affect the decay rate of the upper bounds obtained throughout this
section.

For Eg € Ci(By) and ¢ € C{(By), we define

1
disti (e, Eo) == 5 min[ Cq, ()] 0.0" € Q' (By, G). Cg, ,,(e) N Eg # @]

1
— S min{|cg, (@)]: o € ' (By. G). Co, () N Eo £ 8}, e e Ci(By).
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and

1
disto(e, Eo) =5 minf[Cg, , ()] 0.0" € R(By. G). Cg, , () N Eo # 0},
e e Cl(BN).

Note that,by Lemma2.9,ife ¢ E, thendisty(e, E) > 8. We extend this definition to sets
E C Ci(By)bylettingdist| (E, Eg) := minecg dist| (e, Eg) and distg(E, Eo) := minecg
distg (e, Ep).

In this section, we will state and prove the following three propositions.

Proposition 6.1. Let B, k1, k> € [0, 00] be such that 18% (oo (k1) +oto (k) +etg (k1 et (k2) )
< 1, let e € C1(By) be such that disto(e, 8C1(BN)) > 8, and let M > 1 and M’ > 0.
Then

N g X oo ((6.6)) € @1 (By, G) x Qf(By. G):
Cae.61(©)] = 2M, and |suppd(& ey, )|z 2M'})
< prao - Lar=t - (187 (0 (k1) + @o(ie2) + g (k1) (i2) Jorr (B)™ M)

al (ﬁ)max(é,M’)

dist; (¢,0C1(Bn))
a(B)

(M,2)
+ Lyrso- Ki (182(060(/61) +ao(k2) + 0!0(/(1)Oto(Kz)))max

+1arep 23,45 Ki (182 (a0 (k1) + o ic2) + Oto(Kl)Olo(Kz))>

’

(M,38)
+ Tar—o - Ki (182 (o (k1) + o (k2) + c0 k)t (k2))

where
K1 = Kier. 2) = 187(1 = 182 (ag (i) + a(k2) + co(k)an(k2)) - (6.2)

Remark 6.2. If k1 = k2 =: K, then the assumption on k| and «7 in Proposition (6.1) is
equivalent to 3.

Proposition 6.3. Let 8,k > 0 be such that 3 holds, and assume that p € Cy(By) is
such that disto(supp de, dC1(By))) > 8. Then

v ({6 € Q' (Br. G): do (p) #0}) < Kaca (8.0, (6.3)
where

ar(B)°
ao(B)°®

Proposition 6.4. Let k > 0 be such that 3 holds, let Eq € C1(By) be non-empty, and
let e € C1(By) be such that disty(e, 0C1(By))) > 8.
Then

E
A (o). 0oy ([ (@, 07) € QY(By, G) x Q4(By,G): ¢ € Egy5.0})

Ky = 4(18% + 180 () (1 — 18%ap()) ") (6.4)

)disto(e,Eo) (6 5)

< Kj <K40t0(K)
where

K3:= 1873(1 — 182 (2 + ap(k))ato(k)) ™', and Kg:=18*(2+ap(k)). (6.6)
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Proposition 6.5. Let 8, k > 0 be such that 3 hold, let e € C1(By) be such that for all
p € de we have disto(supp dp, dC1(By)) > 8, andlet Ey:={e' € C1(By): 0¢'Nde #
#}. Then

un g (|0 € 1B, G): 1CG(0)(E)| = 2M and [suppd(@lcg,, )| = 2M'})

< Ks5(18%a0 () M a1 (B)M'.
where
Ks:= (1873 + 187 (1 — 18%ap(x)) . 6.7)

Before we give proofs of the above propositions, we introduce some additional nota-
tion and prove two useful lemmas. To this end, we first define a graph G as follows. Fix
some g € G \ {0} and define o € QY (By, G) by letting o (¢) = g forall e € C;(By)*.

Let G:=G(a, 0) and note that G does not depend on the choice of g. Note also that if
0,0 € Q' (By, G), then G(o, o) is a subgraph of G.

Lemma 6.6. [See also Lemma 7.15 and Lemma 7.16 in [18]] Let e € CI“(BN), and let
m > 1. Then

‘{E CCH(By):e€E, |E|=m, and G| is connected}| < 1gmax(0.2m=3)

Proof. Since the case m = 1 is trivial, we can assume that m > 2.
Fix some set E € C{(By) such thate € E, |E| = m, and G| is connected.

Since the graph G| is connected, it has a spanning tree. Let 7 be such a spanning
tree. By definition, 7 must contain exactly m — 1 edges. Since any spanning tree is
connected, 7 must have a spanning walk which uses each edge in 7 exactly twice, and
starts and ends at the same vertex. This walk must have length 2(m — 1) = 2m — 2. By
removing one of the edges adjacent to the vertex e, we obtain a spanning walk of G|g
which has length 2m — 3, starts at the vertex e and visits every vertex of G|g at least
once.

Since foreach e’ € Ey, we have |{e” € C1(By)~{e'}: de"Nde +~ ®}| =6-3 =18,
there can exists at most 182”3 walks in G which starts at e and has length 2m — 3, and
hence the desired conclusion follows. O

Lemma 6.7. Let k1, k3 > 0, and let E € C{(By). Then

I N E
> 9 (6)9 (87) < (0 lier) + o (ie2) + g (e )rp(2)) .
6eQ!(By.G).6'eQ! (By.G):
(suppéUsuppé’)":E
(6.8)

Proof. If6 € Q'(By,G) and ¢ ¢ supp &, then, for any k > 0, we have ¢, (é(e’)) =

@ (0) = 1. Also, if é, 5 e QU(By,G) and ¢ € (suppé Usuppo’)* = E, then either
6()#0and6’(e') =0,6(¢) =0and 6'(¢') #0,0r(e),6'(e') #0.
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Combining these observations, we find that

3 [T ¢aGe)? ] ea@e)
6eQl(By.G).6'eQ! (By.G): ¢ €C1(BN)* e"eCy(By)*

(supp 6Usupp &')*=E

5]_[{%(0)2( > ¢K2(é/<e/>>2>+< > %(3(8/))2>%(0)2

¢'eE 57(e")eG~ {0} 5(e"YeG~{0}
2 2 2 2
(X wber)( X eey)]
6(e)eG~{0} 67(e")eG {0}
E
= l_[(Oto(K1)+Olo(K2)+Olo(K1)Olo(K2)) = (Olo(Kl)+010(K2)+a0(/<1)0!0(/<2))‘ .
e'eE

This concludes the proof. O

Proof of Proposition 6.1. Since Cgs 5 (e) is symmetric, induces a connected subgraph

in G, and contains e if it non-empty, we have

N B X ,U«N,oo,,(z({(ff, 6') e Q' (By, G) x Q) (BN, G):
Cas.61 ()] = 2M, and [suppd (e, .. 0)| = 2M'})

= Y iwps X e (6.6 € 2By, G) x 4By, 6):

ECC{(Bn):
eck, |E|>M,
G| is connected

Co.n (@) = E. and [suppd (3lcy,, ,0)| = 2M'}) 6.9)

Given (6, 6") € Q' (By, G)xQ)(By, G), if welets =604 1@ and&’:=6"lc, .0 (o

then the following statements hold.

(1) By Lemma 5.8, we have 6’ € Q) (By, G).

2) If |supp d(8|cg(6,&,)(e))| > 2 M, then, by definition, |supp d&| >2M.

(3) If |Cg(5.51(e)| = 2, then we have e € supp& U supp &', and thus (Cgs 67)(e))™ =
(supp& U supp6’)*. Consequently, (Cgs 67)(e))* = E if and only if (suppé U

supp &)t = E.
As a consequence, (6.9) can be bounded from above by

> > BN Bue) X N 00ucr (6,67) € @1 (B, G) x Q) (By., G):
ESCT(By): 5e@l(By,G),6'e@l (By.G): _ 5 ands’ o,
28 [z, GuppdUsppd/yt=E, 018G 1@ =0 ad8lIcg ;50 =):

G| E is connected | supp (lé\EZM’
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For any &, and 6’ as in the sum above, by Lemma 5.2, we have

N i X N oo (16, 67) € Q1(By, G) x (BN, G): Sleg, 11 0
N A~/ A
=6 and o |Cg(3,&/(e) =0 })

A~
~

<UN o XIN 0o (16, 67) € Q1 (By, G)xQ)(By, G): & <& and &' < 6'})
= 1N (16 € QU(BN. G): 6 < 6})in.oour (16" € Qy(By. G): 6 < 6'})
= ¥B.k; (&)(Poo,xz(&/),

where the last inequality follows by applying Proposition 4.2 twice.
Taken together, the above equations thus show that

N X oo ({(6.6)) € @1 By, G) x Q4 (By. G):
ICg .6 (e)] = 2M and ]suppd(&lcg(ﬁ,&,)(e)ﬂ > 2M’})

Yo Jsma(E),
ECCH(By):
¢€E,|E|=M,
G| is connected

IA

(6.10)

where

) 2 2,
JB.ict e (E) 1= Z VB, (0) Yook, (07).
5€Q'(By,G),6'eQ)(By.G):
(suppéUsuppé’)*:E,
|suppdc|22M/

Fix some set E € C{(By). Then

JBoscricr (E) = Z Picy (6’)@«2 (6/) H (%] (d&(P))‘
5€Q (By,G),6'€Q)(BN.G): peCa(By)
(supp éUsupp 6')t=E,
| supp délzZM/

Now recall that for any » > 0 and g € G, we have ¢,(0) = 1 and ¢,(g) =
M@= ¢ (0,1]. If g # 0, then ¢, (g) < 1 and hence gg(g)*> < a1 (B) < 1.

If é, é’ and E are as above, then we must be in one of the following three cases.
(1) If |(suppd&)*| > 6, then

1_[ (pﬁ(dé(l’)) = l_[ g)ﬂ((dé-)p)z < Oll(,B)maX(M/ﬁ).

peCa(By) peCr(By,G)*

(2) If |(supp d§)+| e {1,2,3,4,5}, by Lemma 2.8, é must support a vortex with
support at the boundary of By, and hence we must have |E| > distj(e, dC1(Bn)).

At the same time, by definition, we also have [ ¢, (5,.6) #8(d5 (p)) < @1 (B).
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(3) If |(suppd&)*| = 0, then & € Q}(By, G). Since | supp(6)* U supp(&')*| > 0, it
follows from Lemma 2.9 that |E| > min(M, 8, distg(e, dC1(By))). Moreover, we

have l_[pecl(BN,G) ‘/’ﬁ(d6(p)) =1

Consequently, we have

112 (E) < (@1 (B)™ M) 4+ 1 ppre1 2.3.4.5), 1 E[zdisty (e.001 (By) - @1 (B)
+ 11M/:0, |E|zmax(M,min(S,disto(e,ﬁcl(BN)))))
Z 01 (0) 92 (07)-
5eQ!(By,G),6'eQ)(BN,G):

(supp c:rUsupp &) =E,
| suppdo|>2M’

By dropping the condition |supp dé| > 2 M’, and replacing the condition 6 €

Q(l)(BN, G) with the condition that 5 el (Bn, G), we make the sum larger.
Hence

Z Picy (é)(Plcz (é/) = Z (23] (é)‘sz (é/)‘

5eQ(By,G),6'eQ)(By.G): 5eQ!(By,G),5'eQ! (By,G):
(supp 6Usuppo’)*=E, (supp 6 Usupp6')*=E
| suppdc|>2M'

Using Lemma 6.7, we thus obtain

T 12 (E) < (@1 (B)™ M) 4+ 1 ppre1 2.3.4.5), E1zdisty 0001 (By) - @1 (B)
+ L pr7=0, | E|>max(M,min(8, disto(e,9C1 (Bx)))) ) (6.11)

- ((Oéo(Kl) +ap(k) + Oto(Kl)Oto(Kz))lEl)~

Combining (6.10) and (6.11) and applying Lemma 6.6, we now finally obtain

1N e % i oo ([6.6) € @By, G) x 2§ (By. G):
ICg(.61y(@)] = 2M and [suppd (3¢, 11 )| = 2M'})

oo
= 30 18mEO2I) )+ ag i) + g (e (2)) ey (YO

m=M
o0
Flareasas Z 1gmax(0,2m—3) (a0 (k1) + ot (ic2) + 0 (k1 et (k2) ) " et (B)
m=dist| (¢,dC1(By))
o0

+ ]lM’:O 18max(0.2m—3)( m‘

m=max (M ,min(8,disty(e,0C1(By))))

ag (k1) +ag (i) + g (i1 (2))

Computing the above geometric sums, we obtain (6.3) as desired. O

Proof of Proposition 6.3. If 6 € Q'(By, G) satisfies d6(p) # 0, then there must
exist e € dp such that o(e) # 0. For any such e, we must have |(Cg(s.0)(e))*| > 1.
Moreover, since o (¢) # 0, for any ¢’ € dp such that o (¢’) # 0, by definition, we have
¢’ € Cg 0)(e). Consequently, we must have d(&|cg(&’0)(e))(p) = dao(p) # 0. Using
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Lemma 2.8, it follows that |(supp d (6 Icg 60 ()))*| = 6. Combining these observations
with a union bound, it follows that

unp (|6 € @By, G): do(p) #0])

< Z KN, B,k ({0 e !By, G): [(Cgsy(e)™| = 1and I(SUPPd(&\cg((;)(e)))J'I > 6})
e€dp

Applying Proposition 6.1 withk| = «, k) = 00, M = 1, and M’ = 6, we obtain (6.3)
as desired. m]

Proof of Proposition 6.4. Recall first that by the definition of ,uf,o( 00.k).(00.K)" using
Lemma 5.9, we have

N (sou. ooy ({001 € Q4(BN, G) x (BN, G): € € Egyo00})
= 1N .couc X UN.cox ({(6.67) € Qy(By. G) x Q(By.G): e € E; 5}).
Next, since 6,6’ € Q(l)(BN, G), we have d6 = dé’ = 0. Consequently,
e€ Eg 66 € ecCqe.s)(Eo) & EgNCgi.e)(e) #0.

Finally, note thatif EgNCg 5.5/ (e) # ¥, then, by definition, we musthave | (Cgs 51 (€))*| =
distg (e, Ep).
Combining these observations, it follows that
Mg(j(oo,/(),(oo,/c)({(a’ o') € Q(1)(BN7 G) x Q(])(BN1 G).ec EEO,J,J’})
< UN,oo X UN,ooi({(6,6") € Q(BN, G) x Q) (B, G): ICgs.51 ()]
> distg(e, EO)})
Applying Proposition 6.1 with k] = k; = «, B = 00, M = distg(e, Eg), and M' = 0,
we obtain (6.5) as desired. O

Proof of Proposition 6.5. Without loss of generality, we can assume thate € C{(By)*.
To simplify notation, let

E:={o € Q' (BN, G): |Cg(s)(Ep)| = 2M, and |suppd(olcg, z0)| = 2M'}.

Now note that Cg(s 5y(Ep) is symmetric, and that the set Cgs 5 (Eo) U {e, —e}
induces a connected set in G. Consequently, we have

/-’LN,ﬁ,K(g)

= Y MN,ﬂ,K<{U € Q' (By. G): Cgo)(Eo)*
ECCY(By): |E|=M,
Q_IEUM is connected

=E, suppd(o|cg(a>(50))| > 2M/}).

Giveno € Q' (By, G), if we let 6:=0 ICg o) (Eq)» then the following statements hold.

() If |suppd(a|cg(m0)(50))| > 2 M’, then, by definition, suppdc:7| >2M.
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(2) Ifd(olcg .0 (Ep)) # 0, then Eg Nsuppo # ¢ and thus (Cg(s)(E0))*" = (supp é)+.

As a consequence, the expression in the previous equation is bounded from above
by

Z Z MN,g,K({o e QY(By, G): Glegs.0)(En) = é})

ECCI(BN): |EIZM, 5eQ! (By,G): (6.12)
GlEguge) is connected  (supp 6)*=E,
| suppdao|=2M’

For any & as in the sum above, by applying first Lemma 5.2, and then Proposition 4.2,
we have

N pu((6 € QUBN. G): 6leg, o En =0)) < unpa(16 € 2 (By.G): 6 < 6})
=< ‘Pﬁ,/{(&)~
Taken together, the above equations show that
uN @) < Y Tpe(E),
ECCH(By): (6.13)

e€L, |[E|=M,
G| is connected

where

Joe(E)i= Y 9p.(0).
5eQ!(By,G):
(supp &)+A=supp E,
| suppda|>2M’

Now recall that

opc@) = ] ec6@) [ es(dop).

e'eC(By) peCa(By)

Also, recall that forany r > 0 and g € G, we have ¢, (0) = 1 and ¢, (g) = (P&~ ¢
(0, 1]. If g # 0, then ¢, (g) < 1 and hence <p,3(g)2 <a1(B) < 1.

If & is as above, then | supp dé’| > 2 M’, and hence
2y \2 /
[T  es(@d),) <eip)™.
PEC2(BN,G)*
Consequently, if E is as above, then

Jpe(E) <er (B ) [T @@Ge).

5eQ! (By,G): ¢ €C1(BN)*
(suppd)*=E,
| suppdao|>2M’
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By dropping the condition |supp dé| > 2 M’ we make the sum larger. Hence

! : 2
Jﬁ,K(E) = Ol](ﬂ)M Z l_[ @K(a(e/)) .
5eQ!(By,G): €EC1(BN)*
(supp 3)+:supp w
If 6 € Q'(By,G) and ¢ ¢ suppé, then g (5(e) = pc(0) = 1. Also, if & €

Q! (By, G) and ¢’ € (supp&)*, then 6(¢') # 0.
Using this observation, we obtain

3 [T e6@)’<]] Y @aG@)?=]]aw

§eQ'(By.G): ¢<C1(BN)* ¢€E §1(eheGN(0) ¢k
(suppo’)*=E
= (i)',
(6.14)
We thus have
g (E) < ar (B (i) . (6.15)
Now note that, by Lemma 6.6, for any m > M, we have
‘{E C CH(BN): |E| =m, GlEu(e) is connected}’
= ‘{E CC{(By): |El=m, ecE, G|gis connected}‘
+ ‘{E CCi(By): |[El=m+1,ecE, Glgis connected}‘
S 182m—3 + 182(m+1)—3.
Combining this with (6.13) and (6.11), we thus find that
o
U pic(E) < D (A8 182D e (10) "y (B)M
m=M
Computing the above geometric sum, we obtain (6.3). O

7. A First Version of Our Main Result

In this section, we present a first application of the coupling introduced in Sect. 5.4, by
giving a first version of Theorem 10.1. This result provides an upper bound on (L, (o, ¢))
which is good when the probability is small that there is a cluster in G(6, 6”) which both
intersects supp y and supports a vortex. We later present a strengthening of this result
in Proposition 10.18.

Proposition 7.1. Let 8,k > 0 be such that 3 holds, and let v be a path with finite
support. Then

(L@ o = (L @ D) | = 2Ka(1 + K3Kaao(©))| supp o ()1 (B)°,
(7.1)
where K3 and K4 are defined by (6.6).
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Proof. Let N > 1belarge enoughsothatsupp y € C(By)anddisto(supp y, dC1(By)))
> 8.
Then, by definition, we have

EN,;B,K [LV(U)] = IEN,(ﬁ,/c),(oo,/c) [LV(U)] = UN,B,k X UN,o00,k [Ly(5—|E[,’&/

~1
+o |C1(BN)\E5,&/)]-

On the event suppy N Es 5 =¥,
we have

Ly(6lE, ;0 + 6 loyBa~Es 5) = Ly(0+6"IciBy)nE; ) = Ly (g, 5 +6 ey (By)~E; 51)
=L, (6.

Asa consequence,

N B X UN.cox [ Ly (BB, ;0 + 6 IciBy)~E; )]
= N, B X UN.0o|Ly(6) - Lsupp yﬂE&ﬁ/=Q)]
+UN pic X UN oo [Ly G lE, ;0 + 6 Cy(By)~E; 5) - LsuppynE, 520]
= LN B X UN,cox[Ly ()] = un g X UN,cox[Ly(E) - ]lsuppyﬁE&,&/;&VJ]

~ At
+UN puc X UN.cow[Ly(GlE, . +6 lci(By)NE; 5) ]lsuppyﬂE&,&/#V}]

Since p is unitary and L, (0) = p(o(y)) forany o € QY (By, G), it follows that

[EN e[ Ly ©@)] = Ew ook [Ly 6]
<2y g X incoi({6,67) € 1By, G) x Q)(By, G): suppy N Eg 51 # 0})

<23 N pue X N0 ({6.6)) € Q1 (B, G) x Q(By, G): € € E; 51 # 1))
ecy

By Lemma 5.10, if e € Ci(By), 6 € Q!(By,G) and 6’ € Q\(By, G), then e €
Es 5 if and only if d(&|cg(&,&/)(e)) # 0. On the other hand, if d(&lcg((}ﬁ/)(e)) # 0, then
we must have e € suppd ¢ G6.5(@) implying in particular that —e € Cgs 5 (e), and
hence |Cg5.51(e)| > 2. Applying Proposition 6.1 with M = M’ = 1 and k| = k2 = «,
we thus obtain

N pc X N .o ({(6.67) € Q'(By. G) x Q(By. G): e € E; 51})

dist; (e,0Cy (BN))OH

< K4(1+ K3Kaoo())eo (k)1 (B)° + K3(Kao0 (k) B).

Combining the above equations and letting N — oo (using Proposition 2.19 and Corol-
lary 2.17), we obtain (7.1) as desired. |
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8. A Decomposition of the Coupled Spin Configuration

The main result in this section is the following proposition, which gives a decomposition
of 0 :=6|g,, +6'lc,(By)~E, , in terms of decompositions of & and &'

Proposition 8.1. Let 6 € Q' (By, G) and 6’ € Q(l)(BN, G), let 3 be a decomposition

of 6 and Y bea decomposition of 6’ (these are guaranteed to exist by Lemma 2.6), and
define

A

2:=16e: suppé C Es 4/}
and
¥ :={6 €% suppé C C1(By) ~ Es 50}
Then ¥ U X' is a decomposition of o :=6|EM, + &/|C1(BN)\E(;,;,/-

Proof. We need to show that (2.6)—(2.6) of Lemma 2.6 holds, i.e. that

(i) If 6 € ¥ U X/, then & is non-trivial and irreducible,
(i) If6 € U/, thend <o,
(iii) If 61,62 € £ U ¥/, then 61 and & have disjoint supports,
(iv) 0 =) sc5us 0. and
(v) if 61,6, € X U X/, then d6 and d&, have disjoint supports,

‘We now show that (i)—(v) holds.

(i) Since T and % are decompositions of & and &’ respectively, (8) holds with £ U 3’
replaced with X U 3. Since TU Y C XU, the desired conclusion follows.
(ii) Fix some & € X. By the definition of X, we have suppo C E; 4/, and hence

A

o = alE& 5 At the same time, since ¥ C Sand ¥ is a decomposition of &,

we have 6 < 6. Finally, note that, by Lemma 5.9, we have Es 50 = Eg 5. By
applying Lemma 5.2 twice, we obtain

6 =0lg,, <6l

550 = OlE; 5 = OlE, 5 = 0,
and hence & < o. Since proof in the case 6 eYis analogous, we omit it here.

(>iii) Since Yisa decomposition of &, for any distinct 61,6, €% C fl 61 and 65
have disjoint supports. Analogously, since S isa decomposition of ¢’ for any
distinct 61,6, € ¥/ € 3/, &1 and &5 have disjoint supports. Finally, if 5| € X
and 65 € X", then, since supp & C Es ', SUPD G2 C C1(Bn) ~ Es o, and the
sets Eq o and C1(By) \ E - are disjoint, it follows that & and & have disjoint
supports. This concludes the proof of (8).

(iv) Since ¥ is a spin decomposition of &, each 6 € 3 is non-trivial and irreducible.

Consequently, using Lemma 5.6, it follows that for each & € 3, we have either
suppo C Es 5/ or suppa C C1(By) ~ Es 5, and hence

51, , = (Zé)\%, =Y 6l Zo

6es €S

Q»
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Completely analogously, we find that

A/ - A - A o A
7 |C](BN)\E'}';’, - Z “ C\(BVNEs 5 Z U|E&-5' - Z g
A & 6,6

bty ' besy Gex!

Combining the previous equations and using the definition of o, we obtain (8).

(v) If 6 € ¥, then, since ¥’ € 3 and 3/ is a decomposition of 6, we have & < 6.
Since 6’ € Q(l)(BN, G), we have dé’ = 0, and hence d& = 0. Consequently, the
desired conclusion will follow if we can show that (8) holds with ¥ U X’ replaced
Wlth 2. To see that thls holds, let 51, 62 € X. Then, since ¥ C E we also have
61,62 € 3. Since L isa decomposition of &, the 2-forms dé | and daz must have
disjoint support. This concludes the proof of (8).

O

9. Disturbing 1-Forms

The main purpose of this section is to introduce the following definition.
Definition 9.1. Let o € Q'(By, G), and let y € C'(By) be a path. If there is no path
y € CY(By) with 3y = —dy and 1-form & € Q' (By, G) such that
() d6 < do

(i) o (7) = 0,

(i) o(y +7) =0,

(iv) Any vortex v in 0 — & is a minimal vortex centered around an edge in y — y,

(see (3.8) for a definition of y.), and
(V) If do(p) = do(p') forall p, p’ € de, then dé(p) = 0 for all p € de,

then we say that o disturbs y.

Note that if y € C'(By) is a generalized loop and o € Q!(By, G), then we can
pick y = 0 in Definition 9.1, and hence, in this case, (ii) automatically holds.

The main reason for introducing the previous definition is Lemma 9.2 below. To
simplify the notation in this lemma, we define

V'lel:=(y — yolel - 1(3p, p' € be: do(p) # do(p)), eeCi(By). (O.1)

Lemma 9.2. Let o € Q' (By, G) and let y € C'(By) be a path. For each e € y, fix

one plaquette p, € de.
Then, if o does not disturb y, we have

o)=Y do(p).
ec(y—ye)—v'

Proof. Assume that o does not disturb y. Then, by definition, there is 7 and 6 which
satisfies (9.1)—(9.1) of Definition 9.1.
To simplify notation, define & :=o — &. Then

o) =0 +0 % o) +0()
=o(y+P)=(0—-0+0)y+7)=(0 —6)y+7)+o(y +7)
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Since d(y +y) = dy +dy = dy — dy =0, y + y is a generalized loop. Let B be
a cube of width | supp(y + )| which contains y + . Since y + 7 € C!(By), such a
cube exists. Next, let ¢ be an oriented surface inside B such that y + y is the boundary
of g. The existence of such a surface is guaranteed by Lemma 2.15.

By Lemma 2.6, there is a set 2 € Qg(BN, G) which is a decomposition of do . Fix
such a set €2, and note that, by definition, each w € 2 is a vortex in &. Let 24 be the set
of all w € Q with w(g) # 0. Then, by the discrete Stokes’ theorem, we have

Gy +7P)=ds(g)= ) o).
weQd

qu fix some w € Q4. Since w(q) # 0, by (9.1) and Lemma 2.12, there must exist
ei=-"21| ¢ QT(BN) and ¢ € G ~\ {0} such that y[e] = 1 and v = d(gl,dx;).

T ox/ la
Then, by definition, we have w(p,) = g, and since w < do and g # O, it follows that
do (pe) = w(pe) = g. Since q is an oriented surface with boundary y, we thus have

w(q) =d(glydx;)(q) = (gladxj)(y) = g = w(pe) = do(pe).
Define
yslel:=(y — yo)lel - 1(3w € Q7 such that suppw = de U d(—e)), e € CT(By).

Then, since minimal vortices around distinct edges in ¥ — y,. have disjoint supports, it

follows that
D wlg) =) d5(p.).

weQd €EYs

Since, by assumption, we have d6 < do, and d6 = do — d&, it follows from
Lemma 2.3 (2.3) that do < do.

Using the definition of ys, it follows that for any e € y5, we have do (p,) = do (p.).

Consequently,

> de(pe) =) do(pe).
€ecys eE€ys
Now note that by the definition of y’, we have
(v —ve) = ¥)lel = (v — yolel - 1(do(p) = do(p') forall p, p’ € de),
e € C{(Bn).

Since d& < do, it follows that if e € ys5 then e € (y — y.) — y’. Finally, we note
that if e € (y — y.) — y/, then d&(p.) = 0, and hence d& (p.) = do(p.) = 0. As a
consequence,

Yodopy= Y do(p.).
€€ys es(y—ye)—y’

By combining the previous equations, we obtain the desired conclusion. O
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10. Proof of the Main Result

In this section, we will first give a proof of the following result, which is more general
that Theorem 1.1, and then show how this proof, with very small adjustments, implies
Theorem 1.1.

Theorem 10.1. Let G = Z,, for some n > 2, let 8, k > 0 satisfy 3, let y be a path, and
let yo € C'(By) be any path with 3y = —dy. Then

Ly @, ) e — O I HP)|

< &o(wxtp >+/w

) [ supp(y —ve)1/ (| supp(y —ye)1+2| supp y|)

)

| supp ¥ |
(10.1)

where

Opc ) =[] Op.c (0@ — 0 0e)))_

ecy

s
K, 00

He(r):=(Ly(0.9)) .
K¢ 1= 22Isuppy1/Q2Isuppy [+ supp(y —ye)l)
max (0,disto (e, supp y0)—8)

. [11(8)/ #0) - 2K3K5ao ()’ Z<182 2+ ocg(/c))ao(/())

ecy

, (a1(ﬁ)>6 (B )

ao(B) as(B, k)
K, - (B, €)° + K3K2 ag(k)/8 - (“‘('8))7 . @2, €)°
as(B, k) ao(B) as(B, k)
L N
2 ao(B) as(B, k)
. \/ZKs ao (k)34 (B, k) max(ag (), o1 (8)°) ./(al(ﬁ)f ' \/az(ﬂ,K)G
as(B, k) ao(B) as(B, k)

+2\/2K7ao(f€)8a4(ﬂ,x) .\/<0ll(,3))6.\/062(/3,'€)6
as(B, «) ao(B) as(B, «)

(B, 6)°  az(B, k) Ko ao(k)8as(B, k)
T IZKZ'\/as(ﬂ,:o '\/asw,x) +\/ as(B, )

a3 (B, k) :| | supp(y —ve)l/ (I supp(y —ye) 1+2| supp v |)

as(B, k)

(10.2)

where K is given by (6.4), where K3 and K4 are given by (6.6), K5 is given by (6.7),
K7 is given by (10.21), Kg is given by (10.22), and K¢ is given by (10.24).



275 Page 44 of 70 M. P. Forsstrom

Remark 10.2. Using the equations in the beginning of Sect. 10.9, together with (10.39),
one easily shows that if G = Z,, then

K¢ = 22!suppy|/Q2Isuppy [+ supp(y —ye)l)

. |:2K3 Kff()l()(l(ﬂ Z(K4a0(K))max(O,distO(e,VO)*S)

ecy

+ Ko+ K3K2 + K7 +/Ks +/Kio+ /12K + 1

)

] ['supp(y —ye) /(| supp(y —ye)|+2| supp v |)

10.1. A first application of the coupling. In this section, we split the expected value we

are interested in into two parts, later corresponding to the two functions ®g , (y) and

H,(y) in Theorem 10.1. In order to do this, we first define three useful events;
&1:={(6,6") € Q' (By, G) x Q)(By, G): Firreducible 5 < 6’|, .,

6.6

that disturbs y } (10.3)
&:={6.6") € Q'(By. G) x Q(By. G): Tirreducible & < &1, ,,
that disturbs y }, (10.4)

and
&3 :={U eQ'(By,G):3eey, 6<0,6' <0—6 S't'd6|isuppée -

0
i (10.5)
and 6’|, 05, # 0}.

We provide upper bounds of the probabilities of these events occurring in Sect. 10.4.
Using this notation, we have the following result, which is the main result of this
section.

Proposition 10.3. Ler 8,k > 0, and let y € C'(By) be a path. For each e € y, let
Pe € de. Then

PR TMICE) ST PN S ) R )|
ee(y—vye)—y'
< 2UN (B.1), (00,) (E1) + 2N (B.1), (00,16) (E2) + 2N (B,10), (00,1) (E3).

Proof. Leté € Q'(By, G) and 6’ € Q)(By, G), and let
0 =6, ; +6 o (By)~E; 5-

Let 3 be a decomposition of &,
let X’ be a decomposition of 6’, and define
Y = {3 es: supp5 C E; 51,
¥ = {6 €% suppé C C1(By) ~ Es.5/),
Shad = {6 € X1 & disturbs y},
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and
S)aq =16 € X' & disturbs y}.
Note that these sets depend on ¢ and 6. Note also that if (' =Hn ﬁ:l/wd = {, then
(6,6") € &, andif T N Spag = B, then (6, 6) € &. By Proposition 8.1, X U X' is a

decomposition of o. This implies in particular that the 1-forms in ¥ U ¥’ have disjoint
supports, and hence

Ly@ =L,( Y 6+ > &) =1,( X6, (X 5).  a0s
Gex G'es’ Gex G'ex’

If (6,0") ¢ &, then (E/\Z)HZ bad = - Since d6 = 0 forall 6 € %', and
hence, using Lemma 9.2, it follows that, on this event, we have

Ly( > 5)=p<< > 5)()/)):/)( > 3(V))=p( > 0>=1,

Ge/Nx ey Ge/\y Ges\y
and hence
A A A A A/
L(Y6)=0,(X6)L,( X 6)=1,(X 6+ ¥ 6)=1,6)
ey’ ey’ GesI\y/ ey’ GesI\y/

In particular, this shows that

L(Y6)- Ly«w’)’) = 2N oo €. (107)

En,8.),(00,0) <
sex’

Next, note that since the 1-forms in ¥ have disjoint supports, we have

L(Y6) = p(( > &)m) =o( X 6w) =T rl6).

Gex bex Gex Gex

For 6 € Q1(By, G), define
vilel'=(y —yo)lel-1(3p, p' € de: d6(p) #d6(p)), ee Cl(By).

If (6,6') ¢ &, then we have ¥ N Ep.q = #. Consequently, for any & € ¥ we can
apply Lemma 9.2 to obtain

p6w) =TI elddp).

ee(y—ve)=v;
If 6 € &\ %, then d& = 0. Consequently, if (5, 6") ¢ &, then

[TeGm)=T] TI er@wa)=]1 T] ~rdspe).

bex GET ee(y—ve)—v; beSecly—v)-v;

‘We now make a few observations.
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o If &5 € © satisfies dé(p) # 0 forsome e € (y — y.) — yé and p € de, then, since

3 is a decomposition of &, we must have d6’(p) = 0 forall &’ € £ ~ {G}.

e If6 € 3, then,since 3 is a decomposition of &, we musthave 6 < 6. Consequently,
1fd0(p) 7& 0 for some p € C2(By), then da(p) da(p).
o If 6,6’ € ¥ are distinct and e € yA then either e € yA or dé(p) = 0 for all

pE de.
Define

y"lel:=(y — yo)lel - 1(3p, p' € de, 6 € £:d6(p) #d5(p))), e e Ci(By).

Combining these observations, it follows that

[T I1 eswo)=T1 TI edéo)

beS ec(y—ve)—v; beS ec(y—ye)—vy:
d6 (pe)#0
=11 TII »elswa)= T[] »r(dsp).
365266()/—%:)—)/;;2 es(y—ve)—y"
d5 (pe)#0

Combining the previous equations, it follows that if (6, 6") ¢ &, we have
LV(ZS-) = 1_[ P(d5(l7e)),
GeX es(y—yo)—y""

and hence

L(Ys)- I p(da(pa)DszuN,w,K),(oo,K)(ez).

]EN,w,x),(oo,K)(
ec(y—ye)—y"

Q»
m
™

(10.8)

"

We now argue that if yé # y"”, then the event £&3 must happen. To this end, first

assume that e € ;. Then there is p, p’ € de with 6(p) # 6(p'). Without loss of

generality, we can assume that 6 (p) # 0. Since Tisa decomposition of &, there is
6 € ¥ with & < & such that d6(p) = dé(p). Since 6 < &, we must have either
do(p )= da(p ) ordé (p’) = 0. Using the assumption that d& (p) # 0, it follows that
d6(p) #dé(p'), and hence e € y””.

Now, instead assume that e € y”" — y’. Then, since e € y’’, there must exist
p.p € de and & € % such that do (p) # d&(p'). Without loss of generality, we can
assume that do(p) # 0. Since & € 3, we have & < &, and hence, since dé(p) #0, it
follows that dé (p) = dé (p) # 0.

Since & < &, we must have either 6 (p’) = 6(p’) or 6(p’) = 0. Since ¢ € Y/, we
have dé (p) = dé(p'), and hence, since dé(p) = d&(p) and d&(p) # d&(p'), we
conclude that 6 (p) = 0.

Since d6(p’) # 0 and d6(p’) = 0, there must exist 6’ € ¥ ~ {6} such that
ds'(p') = d&(p') #0.

"
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A

To sum up, we have showed that if e € y”” — y, then there are distinct 5,6 € X
such that & (p) # 0 and 6/ (p’) # 0. Since &, 6’ € % are distinct, using Lemma 2.8 we
conclude that if y; # y", then &; holds.

Consequently,

[T »rlswp)- ] p(dc?(pe))DSZuN,ﬁ,K(Es)-

En, 8.1, (00,0) (

ee(y=ye)=v" ec(y—yo)—v'
(10.9)
Combining (10.6), (10.7), (10.8), and 10.9 we obtain
En g [Ly @] = Enoon[Ly @] Ewpi| ] p(dov(pe))]'
ec(y—ye)—v’
= ‘EN,w,K),(oo,K) [Ly< Y &)L (Y 6)-L,6) ] p(d?f(pe))]'
G'es’ Gex ee(y—vye)—v'
< EN,w,K),(oo,x)[ Ly( Y &)L, (Y 6)-L,6) ] p(d?r(pe))’]
G'ex’ Gex ec(y—=ye)—y"”
< EN,(ﬂ,K),(oo,K)[ Ly( Y 5’) — Ly (6" ]
6'ex’
+EN, (8.4),(00.k) ‘Ly( Z 5) - l_[ P(d5(Pe))H
- Gex ee(y—ye)—y"
+EN.(B.0).(00.00) ‘ [T »rlspa)- ] p(dc?(pe))‘]
- ee(y—ye)—y"” es(y—yo)—y’
S 20N (Bk), (00.0) (E1) + 21N, (B.i0), (00.) (E2) + 21N .1 (E3).
This concludes the proof. O

10.2. A resampling trick. Recall that given a path y and o € Q' (By, G), we have let

y'lel = (v = yo)lel - 1(3p, p' € de: do(p) # da(p), e € Ci(By),
In this section, we describe a resampling trick, first introduced (in a different setting) in
[9].
Proposition 10.4 [Proposition 10.1 in [18]]. Let B, > 0, and let y € CY(By) be a
path such that disto(y, 0C1(By)) > 8. For each e € y, fix one plaquette p, € de. Then

EN,ﬁ,K[p( > da(pa)}:EN,ﬁ,K[ [T 6sclo@—dopo)].

ee(y—ye)—y' ee(y—ye)—y'
(10.10)

For a proof of Proposition 10.4, we refer the reader to [18, Proposition 10.1]. In
[18, Proposition 10.1], y is assumed to be a generalized loop rather than a path as in
Proposition 10.4. However, since the proofs in the two cases are identical, we do not
include a proof here.
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10.3. A second application of the coupling. In this section, we take the next step towards
the proof of Theorem 10.1, by giving an upper bound on the distance between the right
hand side of (10.10) and ®§V,ﬁ,/«(7’)' To this end, using the notation of Sect.5, we now
introduce a few additional useful events which will be used to express the upper bound
in the Proposition 10.5 below.

Given an edge e € C1(By), let

Ea(e):=|(0,0") € Q' (By, G) x Q)(Bn,G): e € E; o and o'(e) # 0}, (10.11)
Es(e):={(0,0") € Q' (By, G) x QY(By, G): 3¢’ € E5 o s.t. 0’ Nde # 0

anddg € G\ {0} s.t.o(e) —do(p) =gVp € ée}, (10.12)
Eole) =0’ € Q)(By. G): o'(e) # 0}, (10.13)
&(e):={(0,0") € QY(By,G) x Q)(By,G): 3p, p € de s.t.do(p) # do(p))}.

(10.14)

Proposmon 10.5. Let B,k > 0, and let y € C! (BN) be a path such that for all e € y,

p € de and p' € 9Cy(By), we have supp dp N suppap =0.
Then

Evpe| 1 eﬂ,K(cr(e)—da(pe))]—®N,5,K<y)‘

ec(y—ye)—v'
<2 20!4(/3,K)ZMN,(ﬁ,K),(oo,K)(gs(e)) +4\/2014(/3, K)ZMN,(ﬂ,K),(oo,K)(&(e))
ecy ecy

(10.15)

+ 2\/20{4(/3, K) D 1N cou (E6(€)) +2/2] supp yelas (B, )

ey,

+ 2\/2053 (B, ) Z AN, (B.10), (00.0) (E7(€)).

ecy

For the proof of Proposition 10.5 we need a two lemmas from [18], which we now
recall.

Lemma 10.6 [Lemma 11.2 in [18]]. Assume that zl,z2,z’l,z’2 e C are such that
|Z] |a |Z2|a |Z/1|7 |Z/2| S 1 Then

lz122 — 2125] < |z1 — 2} + |22 — Z5).

Lemma 10.7 [Lemma 11.3in[18]]. Leta, b > 0. Assume that A C C(By) is a random
set with E[|A|] < a, and that

(i) X, € Cand | X,.| < 1forall e € C{(By), and
(ii) there exists a ¢ € [—1, 1] such that | X, — c| < b forall e € C1(By).

Then

E[‘HC—HXE

ecA ecA

}SZ«/Za_b.
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Proof of Proposition 10.5. Recall the coupling (o, o) ~ N, (B.x),(c0,x) DEtwWeen o ~
un, g and o’ ~ Wy oo « described in Sect. 5.4, and the set E,; - defined in (5.16). Since
LN, (B.i),(c0,) 18 @ coupling of puy g« and py 0o, We have

EN,/S,K[ 1_[ 9[3,/( (U(e) —dU(Pe))] - EN,OO,KI:HGﬂ,K (U(e))]
ec(y—yo)—y’ ecy

= EN,(ﬂ,K),(oo,K)[ l_[ 6p.c (0 (€) —do(pe)) — 1_[ 0.« (0/(6))].

ee(y—ye) -y’ ecy

Given (0, 0") € Q1 (By, G) x Q\(By, G), define

y'lel:i=(y — yo)lel - 1(3¢' € Eypr: de' Nde #0), e Ci(By)".
In other words, y’ is the indicator function for all edges is ¥ — y, that is adjacent to some
edge in E, . By Lemma 5.21,if e € (y — y.) — y”, then o(¢/) = o’(¢/) whenever

e’ € dp for some p € de, and hence do (pe) = do’(p.) = 0. In particular, this implies
thatife € (y — y.) — y”, then

o(e) —do(pe.) =0o'(e) —do'(p.) =0o'(e) — 0 =0c'(e). (10.16)

By the definition of 3/, if ¢ € y’ then there exists p’ € d¢’ and ¢” € dp’ such that
e’ € {¢ € suppo: do|gppien # 0} S Eoor. Consequently, there is ¢’ € Ego

such that de” N de # .
Hence, if ¢ € y’ then e € y”, and it follows that

[T opclo@—dop))= [ 0pclo(e—do(pe))

ec(y—vye)—v’ es(y—ve)—vy"
[T 0p(ole)—do(pe))
eey//_.y/
10.16
T tselo’@) [T tpslo@=dotpo).
ec(y—ye)—y’ ecy’—y’

Consequently, using Lemma 5.21, we have

[T Osc(o@ —dope) =[]0 (c'(e)

ee(y—ye)—y’ ecy
= I ssc@) [] Opx(o(e)—doipe)
ee(y—ye)—vy" ecy”—y’'
= | RN CAQ)) H Op.(0'@) [] Opx(c’(e))
ey —ve)—y" ey’ —y’ ecyc+y’
= J] eﬁ,K(o%e»( [T 6exlol@—dope)) — [] %(o’(e)))
es(y—ye)—v" ecy”—y’ ecy”—y’

+ [T tee0'@)(1- ] oxte'@n)

ec(y—ye)—y’ ecye
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+ J1 selo’@) [T sxle"@) (1~ 1_[9,3,(0(6))

ee(y—ye)—y’ eEYe ecy’

Combining the above equations, we find that

Evpe 1 0p(0© = dopo)] = En o] [ 105 (0 @)]

ee(y—ve)—y' ecy
=EN,<ﬂ,K>,<oo,K>[ I1 9/3,;((0/(6))( [[ fs.x(c(e)—doipe)
ec(y—ye)—y" eey”—y’
I1 eﬁ,m’(e)))]
EGV”—V,
+EN,<ﬂ,K>,<oo,K>[ [T e’ @n(1-T1 e,s,x(a%e)))}
es(y—ve)—y' ecye
+IEN,<,3,K>,<OO,K>[ [T 6D Tt @n(1-T] 9,3,,((0/(6))>]-
ec(y—ve)—y’ €€y ecy’

Now note that

[1 puclot@ —dape)) = ] 6pilo’e)

ecy’—y’' ecy’—y’
= I 0m<0>< H Op.x (0 () —do(pe)) — H e,s,K(O)>
ecy”—y': ecy”—y': eey”—y':
o(e)—do(pe)=0 0 (e)=do (pe)#0 (e)=do (pe) 0
+ T1 e,s,K<0)( [T tec0— ] eﬂ,m/(e))),
ecy’—y': ecy’—y': ecy’—y':
o’ (e)=0 o’ (e)#0 o’ (e)#0

and similarly, that

L= []0sx@' @) = (1=, @)+ ] %(0)( [T 0.0

€€y, ecy;: ecy;:
o' (e)=0 o’ (e)#0
I1 eﬁ,m’(e)))
(4SS 7
o’(e)#0
and
1= []0sc0’@) = (1=, + ] eﬂ,K«»( [T 0.
ecy’ ecy’a’(e)=0 ecy’o’ (e)#0

- 11 em(o’(e)))

ecy’'a’(e)#0
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Consequently, by applying the triangle inequality and noting that, since p is unitary,
we have [0g ,(g)| < 1 forall g € G, we obtain

Evse| 1 %(v(e)—da(pe))]—EN,OO,K[]'[eﬂ,K(o(e))]‘

ee(y—vye)—y’ ecy
s]EN,@.K),(oo,K)U [ clc@—dop)- ] %(0)”
ecy’—y': eey”—y':
7 (e)~do (pe)#0 0 (&)—do (pe)#0
+EN. (B0). (c0.0) ‘ [T tsc0— T[] Gﬁ,K(G’(e))H
U v (10.17)
o’ (e)#0 o' (e)#0

+EN. (B, (00.0) ‘ [T osc—= J] aﬁ,K(g/(e))(]+(1faﬁ,K(o)nuppyL.\)

L' eey.: eEY,
a’(e)#0 a’(e)#0

+EN.(8.0).(00u0) \ [T o= J] e,s,x(a/(e))(]+(1—95,K<0)'S“PPV").
- eey’: eey’:
a’(e)#0 o' (e)#0

We now use Lemma 10.7 to obtain upper bounds for each of the terms on the right-
hand side of the previous equation.

Claim 10.8.
EN,(ﬁ,K),(OO,K)I:‘{e ey’ o'(e) # 0}|] < ZMN,(ﬁ,K),(oo,K)(&(e))- (10.18)

ecy

Proof of claim. For any e € y”, by definition, there is at least one ¢’ € E, ,+ such that

de' Nde £ 9. Consequently, by the definition of E, ,/, if 67'(e) # 0, we e € E4 4.
From this it follows that

EN,(ﬂ,K),<oo,x>[|{e ey’ 0'(e) # 0}|]

= Z MN,(ﬁ«),(oo,@({(G, o') € QY(By, G) x QY(Bn, G): o' (e) # 0})

ecy”

= Z MN,(ﬁ,K),(OO,K)({(Ov o) € Q' (BN, G) x Q)(By,G): e € Eq o

eey”

and o' (¢) # 0})
= Z AN, (B.10), (00,i0) (Ea(€)) < ZMN,(ﬁ,K),(OO,K)(€4(e))1

ecy” eey
which is the desired conclusion.

Claim 10.9.

EN,(ﬁ,K),(OO,K)I:’{e ey —y'iole) —do(pe) # 0}’] < ZMN,(ﬂ,K),(oo,K)(Es(e))-

ecy

(10.19)
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Proof of claim. Note fist that by definition, for any e € y” — y’, we have
{(0,0") € Q'(By, G) x Q)(Bn, G): a(e) —do(p.) # 0} = Es(e).

Consequently,
EN,w,x),(oo,K)[He ey’ —y o) —do(pe) # O}I]

= Y v ({00 € @' By, G) x 2By, 6):
66}///7)//

o(e) = do(pe) #0})
= Z KN, (B.k).(00.K) <5§> < ZMN,(ﬁ,K),(oo,K)(gs(e)),

EE}/”—)// ecy
which is the desired conclusion. O
Next, by definition, we have
]EN,(ﬁ,K),(oo,x>[|{e €ye:ol(e) # O}I] =Y un.cou(Es(e))
ecye

and
En.g.«[Isupp y'l]
= Y v ({©@.0) € @By, G) x Q(By. G): 3p. p € de

eey Yo

st.do(p) # dG(ﬁ)})
= D NG00 (E1()) =Y 1 (B0 (E1(0)).

ecy \Ye ecy

Finally, since for any e € ¥’ we also have e € y”, we have

EN,(ﬂ,K),(oo,K)[I{e ey'io'(e) # 0}|] < EN,(ﬂ,K),(oo,K)[He ey’ o'(e) # 0}|],

the right-hand side of which we have given an upper bound for in (10.18),
Applying Lemma 10.7 to the terms in (10.17), we thus obtain

Evpe| 1 e,s,K(a<e>—da(pe))]—EN,OO,K[]"[eﬁ,K(a@)]‘

ee(y—ye)—y' ecy
<2 /2 max| 0. () = O (O] D 1. (o000 (E5(€))
ecy

ecy

+4 \/2 x| .0 (6) — .x (0)] Y 1. 1.0 (E5(6)

eeye

+2 \/2 x| .0 (6) — . (0)] 3 pov.cus(E5(e)

ecy

+ 2/2| supp ve| |1 — 0p. (0)] +2 /2|1 — 05O Y 1N (B, o0r) (E7(0)).



Wilson Lines in the Abelian lattice Higgs Model Page 53 of 70 275

Recalling the definitions of «3(8, ) and a4 (B, k), we obtain the desired conclusion. O

10.4. Upper bounds on events. In this section we provide upper bounds on the events
&1, &, and &3, defined in Sect. 10.1, and the events E4(e), Es(e), Eg(e), and E7(e), from
Sect. 10.3.

Proposition 10.10. Ler 8, k > 0 be such that 3 hold, let y € C'(By) be a path with
disto(supp v, 8C1(BN)) > 8, let yp € CY(By) be any path such that dyy = —dy, and
let & be given by (10.3). Then

0,di R -8
N (8.0, (0000 €D = 1@ # 0)( K3 Kfag() e (8)0 I (Kaag () ™ O o (e 10)=8)
ecy

+ K3] supp | (Kqaug i) 1 CHPPY-0CHEND )

where K3 and K4 are given in (6.6).

Proposition 10.11. Ler B, k > 0 be such that 3 hold, let y € C'(By) be a path such
that e € y and p € de we have disto(supp dp, 0C1(By))) > 8, let yo € CY(By) be
any path such that 3yy = —dy, and let &, be given by (10.4). Then
KN (k). (00.k) (E2)
< 1@y #0) - K3Kjao(o)bar (B)° Y (Kaag (i) ™ Hotewpr0 s

ecy
+ Ka| supp yelaa (B, 1)° + K3 K 2| supp y o () a1 (B)
+4K3] supp y | (Kaag () ™ 1P I,

where K> is defined in (6.4), and K3 and K4 are given in (6.6).

Proposition 10.12. Let 8, k > 0 be such that 3 hold, let y € C'(By) be a path such

foralle € y and p € de we have disto(supp dp, dC1(By)) > 8, and let E3 be defined
by (10.5). Then

N pxc(E3) < 18* K| supp y oo (k) a1 (B) ' (10.20)
where Ks is given by (6.7).

Proposition 10.13 [Proposition 7.10 in [18]]. Let B,k > 0 be such that 3 holds, let

e € C1(By) be such that the support of de contains no boundary plaquettes of By, and
let E4(e) be given by (10.11).
Then

dist, (.0Cy (B
AN, (8.1, (00.) (E(€)) < K70t0(1) 1 (B)® + K3(Kaotg (i)™ He9C1 BN

where
K7:=18'"K; (28050(/()_1 ((1+ (k) /2)" — 1)+ 281<4), (10.21)

and K3 and K4 are given by (6.6).
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Proposition 10.14 [Proposition 7.12 in [18]]. Let B8, k > 0 be such that 3 holds. Next,

let e € C1(By) be such that the support of de contains no boundary plaquettes of By,
and let Es(e) be given by (10.12).
Then

1N, (B ), (00,0 (E5(€)) < Kgar (B)ao (10)® max (aro (i), a1 (8)°)

+K9 (K40t()(l<))dis“ (e,0C1(BN))

)

where

Kg:=2K3 - 183182 + 1) (2 + ap(x)),  Ko:= K3(1 +((2+ Olo(K))Olo(K))il),
(10.22)
and K3 and K4 are given by (6.6).

Proposition 10.15 [Proposition 7.14 in [18]]. Let B,k > 0 be such that 3 holds, let

e € C1(By) be such that disto(supp dp, dC(By)) > 8 forall p € de, and let Eq(e) be
given by (10.13).
Then

1N, 00,k (E6(0)) < Koo (k)®, (10.23)
where
Kio:=18"(1 — 18%a(0)) . (10.24)

Proposition 10.16. Let 8, k > 0 be such that 3 holds, let e € C1(By) be such that for

all p € de, the support of dp contains no boundary edges of By, and let E7(e) be given
by (10.14). Then

AN, (8,10 (c0.0) (E7(€)) < 6Kz aa(B, 1),
where K» is given by (6.4).

Before we provide proofs of Propositions 10.10, 10.11, 10.12, and 10.16, we state
and prove the following lemma, which will be useful in these proofs.

Lemma 10.17. Lety € C'(By) be a path with 3y # 0and disto(supp y, 9C1 (By))) >
8, leto € Q(l)(BN, G) be such that the support of any path p € C1(By) withdp = —dy

intersects supp . Then, for any e € suppo and any path yy € C'(By) such that
dyp = —dy, we have

|(suppo)*| > max(disto (e, supp yo). 8).

Proof. Since dy # 0 and the support of any path 7 € C'(By) with 3y = —dy
intersects supp o, we must have suppo # . Since o € Q(l)(BN, G), it thus follows
from Lemma 2.9 that

|(suppo)*| = 8.

Using the definition of yy, the desired conclusion now follows. O
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Proof of Proposition 10.10. Assume first that (6, 6’) € £;. Then there exists an irre-
ducible 1-form 6’ < 6| E, ., that disturbs y.

By Lemma 5.2, we have &’|E€r s = &', and hence, since §’ < &/|E(; 4+ it follows
from Lemma 2.3 (2.3) that 6’ < 6’. Since 6’ € Q}(By, G), we have d6’ = 0, and
hence we conclude that d6’ = 0.

Since ¢’ disturbs y, the set supp y Nsupp 6" must be non-empty (since otherwise, we
could let = —y and & = &’ in Definition 9.1). Fix some edge ¢ € supp y Nsupps’.

Since ¢’ < 6’|, ,,. we have suppo’ C E; ;. Using the definition of Es s,

we conclude that d (& 0. Since 4’ is irreducible and ¢ € suppd’,
Coe PP

&/,(suppé’))
Lemma 5.3 implies that Cg s 5/)(supp6”) = Cgs.57)(e), and hence d(6|cg(&16/)(e)) £0.

Since ¢’ is irreducible, satisfies d6’ = 0, and disturbs y, the support of any path

y € C'(By) with 39 = —dy must intersect the support of '. This implies in particu-

lar that we must have dy # 0. Applying Lemma 10.17, we thus obtain |(supp ot =

max (disto (e, supp yo). 8), and consequently | Ggs 51 (e)| = 2 max(disto(e, supp y0), 8).
To sum up, we have showed that

KN L (B.x). ((00.)) (E1)
=10y #0) v g % oo ({626 € ' By, §) x 2)(By. G):
Je € y such that

d(8|cg(6‘6,)(e)) # 0and [Cgs 6 (e)] > Zmax(disto(e, supp o), 8)})

=10y #0) Y mvp X ivcon ({6.6) € @' (B, G) x Qf(By. G):

ecy

d(&|cg(&’3,)(6)) # 0and [Cg s 61 (e)| = 2 max(disto (e, supp o), 8)})

Applying Proposition 6.1 with M = max (disto(e, supp o), 8) and M’ = 1 for each
e € y, we obtain (10.10) as desired. O

Proof of Proposition 10.11. Assume first that (6, 6’) € &. Then there exists an irre-
ducible 1-form ¢’ < 6|, ,, that disturbs y. Since ¢’ disturbs y, the set supp y Nsupp &’

must be non-empty (since otherwise, we couldlet = —y and& = &’ in Definition 9.1).
Fix some edge e € supp y Nsuppd’.

By definition, we must have suppo’ € Ej 5. Using the definition of Ej 5/, we see
that d ( # 0. Since e € supp6’ and &' is irreducible, it follows from

Lemma 5.3 that Cgs 67, (supp&”) = Cg(s.67)(¢), and hence d(Glc, ; 1 e)) # O-

g 41y supp 5)

Since 6’ is irreducible and disturbs y, we must be in one of the following four cases.

(1) 9y # 0, andall paths p € C'(By) with 3y = —dy intersects the support of 5'. In
this case, by Lemma 10.17, we must have | supp 6'| > 2 max(disto(e, supp y0). 8).
and consequently, gg(&,g,,)(e)| > 2 max (disto(e, supp o), 8).

(2) &' contains a minimal vortex centered around some edge ¢/ € y.. Since 6’ <
ol E, ;, by definition, and ol Es s < 6 by Lemma 5.2, is follows from Lemma 2.11,
applfed twice, that & also contains a minimal vortex centered around some edge
e €y
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(3) |(suppdé’)*| > 6. In this case, by the same argument as above, we must have
both |suppd6|cg(&ﬁ/)(e) >2-7and [Cg 6 (e)] =2 2.

(4) &’ supports a vortex v with support at the boundary of By. In this case, by the
same argument as above, we must have }Cg(&ﬁ/)(e)] > 2 - disty(e, dC1(By)).

Consequently, we have showed that

N (B.x).(00.) (E1)
= 1@y #0) N pu X uN.oo,K({(r%, 6") € QY(By, G) x Q) (By, G): Je € y such that

d(&\cg(&_&,)(e)) #0and |Cgs.61y(e)| > 2max(disto(e, supp o), 8)})
+ ;LNJ;,K(’& e Q! (By,G): 3¢’ € y.and v < & s.t. v is a minimal vortex arounde/})
+UN, B X MN,oo,K([(&, 6" e Q'(By, G) x Q(])(BN, G): Je € y such that

|G leg o @)] = 2+ 7 and [Cg(e 51 ()] = 2-2)
+UNp X uwa([(&,&’) € Q'(By. G) x Q)(By.G): 3e € y such that

d(&\cgw,)(@) 75 0 and |Cg([},5r) (€)| > Zdistl(e, 3C1(BN))]).

By first applying union bounds to all terms, and then using Proposition 6.1 to upper
bound the first, third, and fourth term and Proposition 6.3 to upper bound the second
term, we obtain

N, (B,10), (00,1) (E2)
< 1@y #0) - K3KSao(k)3a1(8)° Z(Kwo(K))mmo,disto(e,supp ¥0)—8)
ecy

(K4QO(K))dISlo(SUPP y,0C1(BN))

+ K3 supp | + K>| supp yeloo (B, ©)°

+ K3K3 | supp y lao (k)21 (B)’

di ,0C1 (B
+ Ka| supp y| (Kaarg 1)) ™ P70 ()
+2K3] supp y |(Kaarg (o)) ™! P77,
Simplifying this expression, and noting that by definition, we have o1 (8) < 1, we
obtain (10.11) as desired. This concludes the proof. |

Proof of Proposition 10.12. Assume first that o € &3, and let X be a decomposition of
o. Further, let ¢ € y, p, p’ € de, and 6,5 € X be such that & # &/, d6(p) # 0,
and do’(p’) # 0. Without loss of generality we can assume that e € C;(By)*. By
Lemma 2.8, we must then have |(supp d3)+| > 6 and \(supp dé/)+| > 6, and hence
|(suppd (6 +61))"| = 12.

Define E, :={e' € C1(By): d¢' N de # B}.

Since d&(p) # 0, there must exist ¢/ € dp such that &(e’) # 0. Since 6 < o,
it follows that o(¢’) # 0. Since ¢’ € dp C E,, it follows that Cg(s,0)(E,) is non-
empty. Moreover, since & is irreducible, using Lemma 5.5, it follows that supps €
CG(s,0)(E.). Completely analogously, we also obtain supp 6 C CG(s,0)(E¢). Since
dé(p),ds’(p') # 0, by Lemma (2.8), we must have |(suppd6)*|, |(suppdé’)*| > 6,
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and hence | supp do'Cg(G_o)(Ee))+| > 2.6 = 12. Using Lemma 2.7, it follows that

(Co0.0)(E)?*| = 12/6 = 2.
Combining these observations and using a union bound, we see that

1N, B (E3)
“Eme(lo e
<) unpalijo € RUBN, G): [Co.0)(Ee)| =22, and [suppd (olcg,, o (E)|

ecy

22-12}).

Applying Proposition 6.5 with M = 2 and M’ = 12, we obtain (10.20) as desired. O
Proof of Proposition 10.16. Recall that

&1(e) = {(0,0") € @ (By, G) x Q(By, G): 3p, p’ € dest.do(p) # do(p))).

On this event, there must exist some p € de with do (p) # 0. Since |E§e| = 0, together
with a union bound, the desired conclusion follows from Proposition 6.3. O

10.5. A second version of our main result. In this section, we prove a second version
of our main result, by giving a refinement of Proposition 7.1. While the error term in
Proposition 7.1 corresponds to the probability of the event that no clusterin G(6, 6') both
intersects y and at the same time supports a vortex, the error term in Proposition 10.18
below essentially corresponds to the probability that no clusterin G (&, 6”) both intersects
y and at the same time supports a non-minimal vortex.

Proposition 10.18. Let 8, k > 0 be such that 3 hold, lety € C'(By) be a path such that

disto(supp ¥, 0C1(By)) > 8 and such that for each e € y the support ofée contains no
boundary plaquettes of By, and let yo € C'(By) be any path such that dyy = —dy.
Then

[Ex i [Ly @] = En o [Ly @] O, (7))

< 2K 11| supp ¥ lo2 (B, K)° + 2K 12,/ 2] supp a2 (B, )°,
(10.25)

where

0,distg (e, -8
2K3K o0 ()81 (B)0 Y, (Kaarg (i)™ O o€ pP 0 =5)

Ky =1y #0)-
11 @y #0) | supp y |2 (B, K)6
4K (Kaag(i)) M ump7-0€1 (BN

(B, k)0
Ky |suppyel K3K3ao(k)’ar(B)’ . 18*Ksap (1)1 (B)"?
| supp ¥ | ar(B, k)0 202(B, k)°
. \/ 2K oo (k) %01 (B)0aua (B, k) max (o (i), o1 (B)S)
| supp ¥ |2 (B, )12
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disty (suppy,0C1(Bn))

) \/21@ as(B, 1) (K3 (i)
| supp y o2 (B, k)12

) \/2K7 a0 ()°1 (B)Sea (B )
| supp ¥ |2 (B, k)12

disty (suppy,0C1(Bn))

\/ 2K eia(B. 1) (Kacro ()
+2
| supp y a2 (B, )12

. \/121(2 a2 (B, K)0a3 (B, 2 (10.26)
| supp y @2 (B, )12

Ky KlO|SUPP)/c|OlO(’<)8a46(I3»K)+ Isuppyc|a3(ﬁ,1<)6. (1027)
| supp v |a2(B, k) | supp ¥ laa (B, k)

K> is given by (6.4), K3 and K4 are given by (6.6), K5 is given by (6.7), K7 is given
by (10.21), Kg and Kg are given by (10.22), and K is given by (10.24).

Proof. By using first the definition of ®y g . (y), and then the triangle inequality, we
see that

En e [Ly @] = B oo [Ly @)]On 4 )]

= [ENpc[Ly @] = oo [Ly @) En oo [ [T 00|

ecy
= [EwpulLy @] = Enoon[Ly @] Enpe| ] p(do<pe))]'
ec(y—ye)—v'
+‘IEN,OO,K[LV(0)]‘. JEN,N[ I1 p(do(pe))]
ec(y—vye)—v’
_ EN,,S,K[ H 0p.c (o (e) — do(pe)):”

es(y—ve)—y'

+Evoox Ly @) [Evp [T Osxlo@ —dopo)]

ec(y—ye)—y’

—EN ook [ []6.(c (e))] ‘

ecy

Since |L, (0)| < 1, we canapply Proposition 10.3, Proposition 10.4 and Proposition 10.5
in order to obtain

(BN [Ly @] = En e [Ly @] Ew,ooie | [T 0.6 00 ]|
ecy

S 2UN,(Bi), (00.0) (E1) + 21N, (B,10), (00,6) (E2) + 214N g ic (E3)
+ 2\/20!4(/3, i) Z N, (Bs0). (o) (E5(€)) + 4\/2a4(ﬂ, K) Z N, (B.x0), (00.) (Ea(€))

ecy ecy
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+2 \/2014(/3, Y o (E6(@)) +2y/2[ supp yelaz (B. )

ey,

+ 2\/20!3 (B, «) Z LN, (B.1). (00,10 (E7(€)).

ecy

Inserting the upper bounds from Proposition 10.10, Proposition 10.11, Proposition 10.12,
Proposition 10.13, Proposition 10.14, Proposition 10.15, and Proposition 10.16, and

using the inequality ~/a + b < /a + /b, we obtain (10.25) as desired. i

10.6. An upper bound. The following result generalizes [9, Lemma 7.12] and [17,
Lemma 3.3], and is completely analogous to Lemma 12.3 in [18].

Proposition 10.19 [Lemma 12.3 in [18]]. Let 8,k > 0, and let y € CY(By) be a path
such that no edge in y is in the boundary of By. Then

‘ENﬂ,K[LV(U)]‘ < exp(—|supp(y — yo)l as(B. ).

Remark 10.20. In Lemma 12.3 in [18], y is assumed to be a generalized loop, rather
than a path. However, since the proof is identical in the two cases, we do not include a
proof here.

10.7. A proof of Theorem 10.1. In this section, we give a proof of Theorem 10.1. Before
we give this proof, we recall the following lemma from [18].

Lemma 10.21 [Lemma 8.2 in [18]]. Let B, k > 0, and for each g € G, let j, > 0 be
given. Further, let j:= 3, jg- Then

“_[ Op.c(8)

geG

< g Jas(BK)

Proof of Theorem 10.1. Let N be sufficiently large, so that disto(supp y, 9C1(Bn)) >

8, and so that for each e € y, the support of de contains no boundary plaquettes of By .
Then the assumptions of Proposition 10.18 holds, and hence

[En [y @] = Ew,ooe[Ly @)]On . 0)

< B -2|supp ylas(B, k) + B' - 2y/2| supp y s (B, )

where

Bi= Kiioa(B.1)as(B. ) and B'=KinJar(B, )°/as(B. 1), (10.28)

where K11 and K15 are given in (10.26) and (10.26) respectively.
Using that for x > 0, we have x < ¢*, and 2./x < ¢, it follows that

[En g [Ly @] = En e [Ly @)]On ()| = (B + B2 ormvias(®o),
(10.29)
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Now recall that, by Proposition 10.19, we have ‘IEN,,g,K[Ly(a)]‘ < e Isuppy—velas(Boic)
By using the triangle inequality and applying Lemma 10.21, it follows that
BN g [Ly @] = o [Ly @)]On 4 )]
< [En Ly @)][+En cox[Ly(@)]] - |On 5 ()] (10.30)
< e Isuppy=velas(B) 4 1 p=Isuppyles(Bi) < o p—lsuppy —velas(Bi)
Combining (10.29) and (10.30), we obtain

142 supp y |/I supp(y —ve)|
B el Ly (0] = En ool Ly @10, . (1)

< 22Isuppyl/Isupp(y =yl (B 4 By,

(10.31)

Recalling Proposition 2.16 and Proposition 2.19, and letting N — oo, the desired
conclusion thus follows from (10.31) after simplification. |

10.8. Simplifications for rectangular paths and G = Z,. The purpose of this section
is to establish the tools we need in order make the small adjustments to the proof of
Theorem 10.1 needed to instead obtain Theorem 1.1.

In order to simplify notations, for 8, x > 0 and a path y, we define

Oy g (y)ime ™ supp yle 24 (1% ~ D supp ¥ |7 X ey EN ol oe)=11)
) .

The main result in this section is the following proposition.

Proposition 10.22. Let 8, > 0 be such that 3 and 68 > « both hold, let y be a
path along the boundary of a rectangle with side lengths €1 and €, which is such that
disto(supp y, 0C1(Bn)) = 8, and let G = Z».

Then

Kiza2(B, k)
ON g (V) = Oy 4 ()] <2 ﬁ + K14l supp ylaa(B. k)2, (10.32)

where

K3 = (4+41<1 K3ao()* + 4K3K oz (B, €)° - | supp y | (Kaar(i))mintér-€2)=4

5
+4K3K oo (B, 1)° - 32(Kaao(k))* +4K3K o (B, 1)° - M)

1 — Kqo0(k)
(10.33)

Kiq:=4(1+ K1 (00, ) K§ (o0 (6)) "), (10.34)
K1 is given by (6.2), K3 and K4 are given by (6.6).

The second result which we will state and prove in this section is the following
proposition, which will be used to simplify the error term in the proof of Theorem 1.1.
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Proposition 10.23. Let 8, k > 0 be such that 3 holds, and let y be an open path along the
boundary of a rectangle with side lengths €1 and £>. Then there is a path yy € C'(By)
such that 0yy = —0dy and

0, distg e, -8 2K
Z(KMO(K))maX( isto (e, supp y0)—8) <164 400(k)
1 — Kaap(x)

ecy

+|suppy|<K4

max(0,min(£1,¢2)—7)
: )

ap(K)

’

where Ky is given by (6.6).

Before we give a proofs of Proposition 10.22 and Proposition 10.23, we will state
and prove a few useful lemmas. For these lemmas, it will be useful to note that when
G =75 and p(G) = {1, —1}, then

1 — o= 28B4«
013’,((0) = m al‘ld Gﬁ,K(]) =

1 — p—24B+4c

From this, it in particular follows that when 68 > «, then 6g ,(0), 8g , > 0. Next, we
recall from Section 12.2 in [18], that when G = Z; and p(G) = {1, —1}, we have

ao(r) =a1(r) =@ (D> =™, (B, k) = e /O
26—24}3—4K
Ol3(,3,K): 1_9ﬂ’K(O):m’ aS(,B»K):l_eﬁ,K(O)
D¢ 24h 4k (10.36)
T 14 e 2AB—A
26—24/3 (e4I( _ e—4;<)

Ol4(/3, K) = 95”((0) - 913”‘(1) = (1+ 6—24/3—4/()(1 + e—24ﬁ+4/()'

Proof of Proposition 10.23. Choose yy so that y + yp is a generalized loop along the
boundary of a rectangle with side lengths ¢, £, > 2.
Letey, ez, ..., e suppy| be the edgesin y, labelled according to their order in the path
y. Then, forany j € {1,2, ..., |suppy|}, one verifies that (see Fig.7)
disto(e, supp o) > max(8, dist (e, supp yp)) > max(S, min(j, [suppy| — j

+1,£1,E2) + 1).

Using this inequality, we obtain

max (0,distq (e,supp yo)—8) max(0,min(j,| supp y |—j+1,€1,€2)+1—8)
Z<K4060(K)) < Z(KMXO(K))
ecy egy

o0

i=8 |suppyl max(0,min(£1,£2)—7)

< 16+229(K4a0(/<)) + T(mo(x)) .
j:

Evaluating the geometric sum above, we obtain the desired conclusion. m]
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(A) The open path 7. (B) The open path 7o

il

(c) Given an edge e; € 7, we draw the support (D) Given an edge e;: € v, we draw the support

of a l-form o with suppy N Cgo)(ej) # & of a 1-form o with suppyo N Cgr)(ej) # I

which minimizes | supp o|. which minimizes | supp o|.
Fig. 7. In the figures above, we illustrate the setting of the proof of Proposition 10.23. Note in particular that
for the edge e; in 7a, we have dist (e, supp o) = |suppy| — j + 2, and for the edge ejr in 7b, we have
disty (ejr, supp y0) = min(€1, £7) + 1

‘We now proceed to the proof of Proposition 10.22. Before we give this proof, we will
state and prove a few lemmas. To simplify the notation in these lemmas, when 68 > «
and 0 ~ N, 0o, We define the following random variable.

Y, (y):=|supp )/|_1 Zlog 95,,{(0(@). (10.37)

ecy

Lemma 10.24. Let 8, k > 0 be such that 3 and 68 > « both hold, let y be path along
a rectangle with side lengths £1 and £, and such that disto(y, dC1(By)) > 8, and let
G =17.

Then, for any ¢ > 0, we have

Kizaz(B. )

oo ([0 ~ Byce[ V]| 2 €) = 30,

where K13 is given by (10.33).

Remark 10.25. The idea of the proof of Lemma 10.24 is essentially to use the weak
law of large numbers for correlated random variables with exponential decay. For this to
approach to work, we need the loop to be "smooth" enough for the sum of the covariances
of all pairs of edges in y to be finite. The reason for working with rectangular loops
is that in this case, it is relatively easy to show that this holds. However, with small
modifications, the conclusion of this lemma holds for more general classes of loops as
well, as long as the path y do not have too many corners.

Proof of Lemma 10.24. Fix some ¢ > 0.
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By Chebyshev’s inequality, we have

82MN,00,K<‘T/3,K (V) — En,cox [Tﬂ,K(V)]‘ = 8) < Vary oo [Tﬁ,/c()/)]

= Z COVN,OO,K(TIB,K(e)vTﬂ,l((e/))

e, e'ey
= |supp y| > Z CovN,oo,,((logQﬂ’,((cr(e)),log@,g,,((cr(e’))).
e e'ey
By combining Proposition 5.17, applied with fy = log 6«

(a (e)) and fi; = logfg (a (e )), and Proposition 6.4, it follows that

Y Covy o (logbp (o)), logbp.c (o (e)))

e.e'ey

< Z Vary g (log Op.ic (o (e))) +2|log g, ||io
eesupp y

H /
Y Ks(Kao() e,
e.e’esuppy: eF£e’

Since 0 < 6g, (1) < 0p,(0) < 1forall 8,x > 0, we have

1 — a2 (1)72
1+@p()2¢, ()72

—205(1) 2, (1)72

[logbp.ic | o, < [logbp.(1)] < |log | < [loge

< 205(H) 20 (1) 72

Next, recall that, by Proposition (6.1), applied with M = 1, M’ =0, 8 = k] = o0,
and k> = k, for any edge e € y, we have

v oo ({6 € 2By, G): 0(e) #0}) < Ki(o0, 1) (Kseo (k).
Consequently, for any e € y, we have
2
Vary oo (10g 9/3,1( (G (e))) = EN,OO,K [<log eﬁ,K (U (e))) ]
2 2
< (logeﬁ,x (O)) + K1(K4010(K))8(10g9ﬂ,x(1))
< 40p(1 ¥ ()* + K1 (Kaoro (1)) - dpp (D> (1)~
< ()P (1)* (4 +4K1 Koo ()*).
Finally, note that

Z (K4a0(K))diSt0(€,e’) < Z (K4QO(K))diSIO(E,€,)

e,e’esuppy: eFe’ e,e’esupp yr: e#£e’

oo
< Isupp|(Isupp ¥1/2 - (KatoGe)™ 12 +2 " (Kyeto ()™ )
j=1
2<K4ao(x))9)

< Isupp |1 supp y1/2 - (Katg ()™ ™) 4 16(K s ()* +
1 — Kqop(k)
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Combining the above equations and recalling that when G = Z;, we have ag(k) =
@ (D% and @2 (B, k)® = ap(B)°ao(k)® = (1), (1)%, we finally obtain

82| supp 7/|/LN,00,K< Ygu(¥) — En oo [Tﬁ,K(V)]’ > 5)
< (B, 1) (4 + 4K K§ao (1))

4(K4ao(K))5)

+4K3K (B, 1) (1 supp | (Kaerg(0) ™27 4 32Ky ())* +
I~ Kaao(k)

Rearranging this equation, the desired conclusion now immediately follows. This con-
cludes the proof. O

Lemma 10.26. Let 8, k > 0 be such that 3 and 68 > « both hold, let y be path along
the boundary of a rectangle with side lengths £1 and £, and let G = 7.

Then
. Kz (B, k)
‘®N,B,K(V) — e‘suppylEN,DC,K[Tﬁ,K(V)]‘ <2 SIW’

where K13 = K13(€1, £2) is given by (10.33).
Proof. Recall the definition of Yg . (y) from (10.37), and note that

ONpx(V) =EN oo []_[ 0. (o (e))] = En.cox [ezeey 10g 0p. (a(e))]

ecy

=By oo K[e|suppywm<y>]'

Consequently,

‘ThetaN puc(y) — ! SUPP Y [EN 0ok [ Vg (¥)]

— ‘EN,OO,K [elsur’ple,s,K(y) — elsuppVIEN,oo,K[T,s‘K(y)]]'
<Ey o Ua SUPP ¥ T (¥) __ 51 upp ¥ B e[V ()] H

Next, note that since p is unitary, we have [0, (g)| < 1 for all g € G, and hence
Y. (y) < 0.Now fix some & > 0.

On the event ‘Tﬂ,,((y) — ]EN,ﬂ,K[Tﬂ’K(y)]‘ > ¢, since Yg (y) < 0, we must have

‘e|suppy|r,g,K<y> _ e|suppy|EN,oo,K[T,s,K(y>]‘ <1

On the other hand, on the event |Tﬂ,,((y) — EN’,g,K[T;;,K(y)H < ¢, since Tg () <0,
we have

el supp Y Mg (y) _ e\SUPPV\EN.oo,K[Tﬁ.K(V)]‘ < ’Tﬂ,x()/) _ ]EN,oo,K[Tﬂ,K(V)] <.

Using Lemma 10.24 with ¢ = (K1302(B, «)| suppy|_1)1/3, we obtain the desired
conclusion. o
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Lemma 10.27. Let B8, k > 0 be such that 68 > «, and let G = Z;. Then

_np—2B—4k D24+

< 4(e_24’6_4’()2 and  |Og (1) —e

|0, (0) — e

< 4(6—245+4K)2.

Proof. For the first inequality, note that

| — g—24B—4

D244k
e |

244k
2e | e

|08,c(0) — e
1—e

< |

= '] 4 o—24B—4«

< 2(6724574/32 + (26724574;«)2/2 _ 4(6724574/«)2.

—248—4k o
- (- 26_24‘3_4")| + \(1 _ Qe 2By _ e 24p-4 )|

The second inequality follows analogously. O

Proof of Proposition 10.22. By definition, we have

EN,OO,K[Tﬂ,K(J/)] = IEN,<>o,/( [| supp V|_1 Z IOg 0/3,/( (U (e))]

ecy
= | supp Vl_l Z EN 0ok [IOg 0.« (G (e))]
ecy
=1suppy ™' Y Encox| Y 108 To(e)=eOp.x ()] = D _ logbp.c(e) suppy |~
ecy geG geG
Z]EN,OO,K []la(e)=g]~

ecy

Consequently, by Lemma 10.26,

K b
O e () — O (0 eey Enosallowoolgy (1) Ty Evacilloiat] < 93 1322(B. k)
| supp y|

Next, by Lemma 10.6, we have

‘9/3’,( (O)Zeey ]EN.OO,K[]IU(E)ZO]QI&K(I)Zeey EN oo, [Lo(e)=1]

—2e7 BN BN ool Loey=0l—2e 7Y BN o [To(e)=1]

244k
<Y Enoowllo@=0l-05.c0) = e |+ Y Encollo@=11-|0p.c(1)
ecy ecy
_ 6_26—24+4K |

By combining Lemma 10.27 with Proposition 6.1, applied with M = 1, M’ = 0,
B = k1 = 00, and k3 = k, we can bound the previous equation from above by

|suppy| - 4(e=2F~4)2 1 K (00, k) (Kaeo (k)| supp | - 4(e™24F+4)2,
pp
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Combining the previous equations, we thus obtain

‘@N b (y) — 6—26_24“5_4'( Deey EN o [Lg(e)=ol—2e~240+4 Deey EN,oo.;c[h(e):]]‘

53 Kizan(8, k)
| supp |
. 4(6—24/5+4K)2

_ _ 8
+|supp y| - 4(e” 2742 4 Ky (00, k) (Kaao ()’ supp y |

Rearranging this equation, and recalling from (10.36) that e 2*/=%¢ = @, (8, x)° and
ao(k) = e~ %, we obtain (10.32) as desired. O

10.9. A proof of Theorem 1.1. We now provide a proof of Theorem 1.1. Since this proof
is very similar to the proof of Theorem 10.1, we will refer to this proof in order to avoid
repetition.

Proof of Theorem 1.1. Let N be sufficiently large so that disty(y, d By) > 8 and so that

foreache € y, de contains no boundary plaquettes of C2(By).

Using (10.35), it follows that if 8 and « satisfy the assumptions of Theorem 1.1,
then 3 hold.

By combining Propositions 10.18 and 10.32, using that ‘EN,OO,K [Ly(a)]‘ <1, we
obtain

BN 4Ly @)] = B, [Ly @]} 5. )]

< B [ Ly @] = Ex oo [Ly @105 )| + |08, 0) = Oy 5.,

- (B N Kisaa(B, )12
2a5(8, «)

+\3/ Kizaz(B, «) 2| supp y lees (B, k),

) -2l supp ylas (. ) + B 2y/2[ supp ylas (B, )

|supp y [2as(B, k)

where B and B’ are given in (10.28).
Using that for x > 0, we have x < e*, 2,/x < ¢, and 2./x < e*, it follows that

[En [y @)] = Ew oo [Ly @)]O)y .. )

12
< <B+M +B/+\3/ Kizoa (B, k) )ez|suppy|as<ﬂ,x>_

2a5(B, k) | supp v |2as (B, «)
Combining this inequality with (10.30), we obtain

142 supp y |/] supp(y —ve)l
(BN Ly @] = En oo el Ly @) 1EN o[ [ ] 0500

ecy

12
- 22|Suppy|/\supp(y—yc)|(Kll L Kum@B.o " o Kisea k) )
B 2a5(B, k) | supp y|2as (B, «)
(10.38)
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Now recall (10.36), and note that these expression imply that

6 2
a2(B, ) <1 and M < 1. (10.39)

as(B. k) — as(B, k)

Using these equations and inequalities and Proposition 10.23, it follows that

L Kuo@0? \/ K1302(B, )

2a5(B, k) | supp ¥ |25 (B, k)
2K53K3 7

2K 0, 0,min(¢1,42)—7 1
.<16+ 4a0(x) N |Suppy|<K40{0(K))maX( max (0,min(£;,£2) )))_
1 — Kqop(x) 2 | supp ¥

disty (s L0C1(B
4K (Kaog (i) 11 PP 11 ) | supp v
* K, . PP Yel
aS(IB’K) |suppy|
184K5Ol2(,3, /()5
— B«
2
N \/21(9 a4 (B, K)(Kwo(/())disn(sur’p r-8C1(Bw)

| supp ¥ |ees (B, k)2

. \/ 2K3 4(B, ) (Kauo ) ™™ PP 721 W)
| supp y |5 (B, k)?

+ <\/2Kg a0 ()3 max (a0 (), @1 (B)®) +2v/2K7 g (k)6 + \/121(2) Y
| supp y |

+ 27 Kaan(B. ) - an (B i)+ (v Ko ao ()0 + 1) - [ SuPPYel

| supp ¥ |
o K 1
|suppy| \ Isuppy|

Now note that since y is a path along the boundary of a rectangle with side lengths
£1,€, > 2, we must have |suppy.| < 8. Since 3 holds, we must have 2ap(k) <
Kaap(k) < 1, and since G = Zy, we have a2 (8, k), ao(B) < 1.

Recalling Proposition 2.16 and Proposition 2.19, letting N — oo, and simplifying,
we thus obtain

+ K3K3 ap(c)>/® - an (B, k) +

(Ly @ @)y, o — Ly @ 9) O ()] P10 00

< 721suppy /| SUPP(V*Vc)lKls(aZ(IB’ K) + | supp V|71/2),

where
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4K3K oo (1)®
1 — Kaqagp(k)
+8K) + K3K2 +18*Ks/2 + /Ky + VK7 + /12K + K14/2 +/8K10 + V8 + /K 3.

(10.40)

12 min(€y,£2)
Kisi=1(y #0)- (32K3Ks + + K3Kalsupp y 2 (Kseo ()™ )

Next, note that since y is a path along the boundary of some rectangle with side lengths
£1,42 > 2, we have | supp y.| < 8. Since, by assumption, we have | supp y| > 24, , it
follows that | supp y.|/|supp y| < 1/3, and hence

1
1+ 2| supp y|/(| supp y | — [ supp yel)

1 1
- < < —.
4 — -3

If we in addition have a2 (8, k) + \/ max (1, | supp y¢|)/|supp y| < 1, then it follows that

(2@ ) = (L 0. D) O )| 221 KL

1
(e i)+ V1T supp yT) (10.41)
Since |p(g)| = 1 for all g € G, we always have

(Ly (0. 9)) —(Ly (0, 9)) O, ()| 2.
B.k,00 00,k,00 ~ B

Consequently, if a2 (8, k) + /[ supp y.|/I supp ¥| > 1, then (10.41) automatically holds.
If we let

Ko:=2iK,L, (10.42)
we thus obtain (1.2). This completes the proof of Theorem 1.1. O
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