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obtain several factorization results at the level of C∗-algebras.
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1. Introduction

The classification of unital separable simple nuclear non-elementary C∗-algebras by 
their K-theory and tracial data, also known as the Elliott classification program, has been 
one of the major developments in the theory of operator algebras in the past 40 years. A 
landmark achievement, obtained as the collaborative effort of many hands and decades 
of work (see, among many others, [31,13,29]), states that any such C∗-algebra A can be 
classified by the so-called Elliott invariant as long as A is Z-stable (i.e. it absorbs the 
Jiang-Su algebra tensorially) and satisfies the universal coefficient theorem (UCT). Some 
of the first results in the Elliott classification program relied heavily on the inductive 
limit presentation of the algebras under consideration; however, the modern approach to 
classification exploits conditions that are more abstract in nature. One such condition is 
Winter’s notion of pure C*-algebras, which were defined in [31] as those algebras that are 
both almost divisible and almost unperforated. This notion is deeply connected to Z-
stability, as stated explicitly in the famous Toms-Winter conjecture: For unital separable 
simple nuclear non-elementary C∗-algebras, the conditions of almost unperforation, Z-
stability and finite nuclear dimension should all coincide. The conjecture is by now largely 
a theorem [24,31,6,9], with the only remaining implication being if almost unperforation 
implies Z-stability. If true, pureness and Z-stability agree for all unital separable simple 
nuclear C∗-algebras. However, it should be noted that Z-stability and pureness do not 
agree in general, with the latter then becoming an important regularity property on its 
own right; see [3].

The current approaches to the classification program classify C∗-algebras by classi-
fying maps. In such results, strong conditions are only imposed either on the domain 
or codomain, while the assumptions on the other side tend to be milder. One impor-
tant example of this phenomenon is Robert’s classification of ∗-homomorphisms from 
1-dimensional NCCW-complexes with trivial K1-group (and their inductive limits) to 
stable rank one C∗-algebras via the Cuntz semigroup [19]. This semigroup is a rich in-
variant for C∗-algebras, which plays a crucial role in both Elliott’s program and the 
Toms-Winter conjecture. Robert’s theorem has been an important tool in recent classifi-
cation results, and can be regarded as an example where the result for ∗-homomorphisms 
is much more powerful than its induced result for C∗-algebras. A recent groundbreaking 
development along these lines can be found in [8], where unital embeddings from unital 
separable nuclear C∗-algebras satisfying the UCT to unital simple separable nuclear Z-
stable C∗-algebras are classified. Further, a current trend in such results is to move the 
conditions on the domain or codomain to the maps themselves. This can be seen, for 
example, in the definition of O2-stable ∗-homomorphisms [14], in the study of O∞-stable 
∗-homomorphisms run in [7], in the introduction of real rank zero inclusions [15], and 
many others.

Inspired by this modern approach to classification —as well as by its importance 
as a regularity property— in this paper we generalize the notion of pureness to maps 
between C∗-algebras. Extending the original definition, we say that a cpc order-zero map 



J. Bosa, E. Vilalta / Journal of Functional Analysis 288 (2025) 110739 3
(in particular, a ∗-homomorphism) θ : A → B is pure if it is both almost unperforated 
and almost divisible, in their suitable versions (Definition 3.2).

Our first examples of pureness arise from the study of maps akin to Z-stable C∗-
algebras. Recall from [16, Proposition 4.4] that a unital separable C∗-algebra A is Z-
stable if and only if Z embeds unitally into Aω ∩ A′ (for a free ultrafilter ω), which is 
equivalent to Z embedding unitally to Aω ∩ A′ ∩ S′ for any separable sub-C∗-algebra 
S ⊆ Aω ∩A′. In particular, the unit in Aω ∩A′ ∩S′ is almost divisible for each S. In our 
setting, we get the following:

Theorem 1.1 (cf. 3.9). Let A be σ-unital, and let θ : A → B be a ∗-homomorphism. 
Assume that 1 ∈ Bω ∩ θ(A)′/Ann(θ(A)) is almost divisible. Then, θ is pure.

Further, if 1 ∈ Bω ∩ (θ(A) ∪S)′/Ann(θ(A) ∪S) is almost divisible for every separable 
sub-C∗-algebra S ⊆ Bω ∩ θ(A)′, there exists a pure sub-C∗-algebra C ⊆ Bω such that 
θ(A) ⊆ C ⊆ Bω.

The second part of Theorem 1.1 says that, up to passing to the ultraproduct, certain 
pure ∗-homomorphisms factor through a pure C∗-algebra. In the general setting, a central 
question in the study of regularity properties for maps is which ∗-homomorphisms with a 
certain property factor, up to Murray-von Neumann equivalence (Lemma 4.5), through 
a C∗-algebra with said property; see the comments before Question 3.10 for a more 
in-depth discussion. Restricted to our case, the question is:

Question 1.2 (3.10-3.11). Let θ : A → B be a ∗-homomorphism. Is θ pure if and only if 
the map ιB ◦ θ : A → Bω factors, up to Murray-von Neumann equivalence, through a 
pure C∗-algebra?

More generally, does there exist n ∈ N such that, for any tuple θ1, . . . , θn of pairwise 
composable pure ∗-homomorphisms, the composition ιB ◦ θn ◦ · · · ◦ θ1 factors up to 
Murray-von Neumann equivalence through a pure C∗-algebra?

We start our study defining the notion of pureness and asserting Theorem 1.1 in Sec-
tion 3, where we also provide a number of examples. In Section 4 we establish several 
permanence properties of pureness that are used throughout the paper. In Section 5, 
the main section of the paper, we combine all the previous results to provide an an-
swer to Question 1.2. To do so, we exploit the structure of (abstract) Cuntz semigroup 
morphisms that are both almost divisible and almost unperforated. Our main technical 
result (Theorem 5.5) says that, at the level of Cuntz semigroups, any composition of two 
pure maps factors through a pure object. Restricted to C∗-algebras, the result reads as 
follows:

Theorem 1.3 (cf. 5.9). Let θ1 : A1 → A2 and θ2 : A2 → B be pure *-homomorphisms. 
Then, there exists a Cu-morphism β such that the following diagram commutes
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Cu(A1)
Cu(θ2θ1)

−⊗1

Cu(B)

Cu(A1) ⊗ Cu(Z)
β

Theorem 5.9 is in fact more general. For the previous result to hold, one only needs 
θ1, θ2 to be cpc order-zero maps, with θ1 almost divisible and θ2 almost unperforated; 
see Definition 3.2 for details. This generality provides us with many applications where 
the above statement can be used. Indeed, one obtains a complete answer to Question 1.2
when A1 is AF and B has stable rank one.

Corollary 1.4 (cf. 5.10). Let A1 be a unital AF-algebra, and let B be a unital C∗-algebra 
of stable rank one. Let θ1 : A1 → A2 and θ2 : A2 → B be unital, pure ∗-homomorphisms. 
Then, θ2θ1 factors, up to approximate unitary equivalence, through A1 ⊗Z.

Further, if B has strict comparison, one can set θ2 = idB to answer Question 1.2 for 
a single ∗-homomorphism in the above situation. We state this in Corollary 5.13.

The last section of the paper, Section 6, is devoted to two types of pure maps: 
q-rational ∗-homomorphisms (Definition 6.1) and soft, pure ∗-homomorphisms (see Def-
inition 6.6). Here, we deduce analogues of Theorem 5.9 for other types of tensorial 
absorption. Again, such results are also valid for cpc order-zero maps, at the expense of 
β being only a generalized Cu-morphism.

Theorem 1.5 (cf. 6.3, 6.10). Let θ1 : A1 → A2 and θ2 : A2 → B be q-rational (resp. soft, 
pure) ∗-homomorphisms. Then, there exists a Cu-morphism β such that the following 
diagram commutes

Cu(A1)
Cu(θ2θ1)

−⊗1

Cu(B)

Cu(A1 ⊗D)
β

where D is the UHF-algebra Mq (resp. the Jacelon-Razak algebra W).

Combining the results above with Robert’s classification result, we obtain:

Corollary 1.6 (cf. 6.4). Let θ1 : A1 → A2 and θ2 : A2 → B be two unital q-rational 
∗-homomorphisms. Assume that A1 is stably isomorphic to an inductive limit of 1-
dimensional NCCW-complexes with trivial K1-group, and that B is of stable rank one. 
Then, θ2θ1 factors, up to approximate unitary equivalence, through A1 ⊗Mq.
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2. Preliminaries

2.1 (The Cuntz semigroup). Given two positive elements a, b in a C∗-algebra A, we write 
a � b whenever a is Cuntz subequivalent to b, that is, whenever there exists (rn)n ⊆ A

such that a = limn rnbr
∗
n. Further, we say that a is Cuntz equivalent to b, and write 

a ∼ b, whenever a � b and b � a.
The Cuntz semigroup of A is defined to be the set (A ⊗ K)+/ ∼, equipped with the 

addition induced by diagonal addition and the partial order induced by �. We denote 
this monoid by Cu(A); see [11].

As shown in [32], any completely positive, contractive (cpc), order-zero map ϕ : A → B

(for example, any ∗-homomorphism) induces a well-defined, partially ordered, monoid 
morphism Cu(ϕ) : Cu(A) → Cu(B) given by Cu(ϕ)([a]) = [ϕ(a)].

2.2 (Abstract Cuntz semigroups). As defined in [11], a positively ordered monoid S is a 
Cu-semigroup if it satisfies the following four conditions:

(O1) every increasing sequence has a supremum;
(O2) every element is the supremum of a �-increasing sequence;
(O3) x′ + y′ � x + y whenever x′ � x and y′ � y;
(O4) supn(xn + yn) = supn xn + supn yn for any pair of increasing sequences (xn), (yn)

in S,

where one writes x � y if, for any increasing sequence (zn)n with supremum greater 
than or equal to y, there exists n ∈ N such that x ≤ zn.

A monoid morphism S → T between Cu-semigroups is said to be a generalized Cu-
morphism if it preserves both the order and suprema of increasing sequences. A Cu-
morphism is any generalized Cu-morphism that also preserves the �-relation. Any cpc 
order-zero map induces a generalized Cu-morphism, while any ∗-homomorphism induces 
a Cu-morphism; see [32] and [11] respectively.

The reader is referred to [2] for an in-depth introduction to Cu-semigroups.

3. Pure ∗-homomorphisms

We introduce in Definition 3.2 a notion of Cu(Z)-multiplication for Cu-morphisms, 
and we say that a ∗-homomorphism is pure if its induced Cu-morphism has Cu(Z)-
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multiplication. We then provide a number of examples (3.3-3.5), and exhibit a class of 
pure maps whose composition with the canonical diagonal embedding always factorizes 
through a pure C∗-algebra; see Theorem 3.9.

The section ends with Question 3.10 and its weakening Question 3.11. A satisfactory 
general answer to the second question is given in Section 5.

3.1. Recall from [31, Definitions 3.1, 3.5, 3.6] (see [22] for the concrete definition displayed 
here) that a Cu-semigroup S is said to be

• almost unperforated if, whenever x, y ∈ S are such that (m + 1)x ≤ my for some 
m ∈ N, one has x ≤ y.

• almost divisible if for every k ∈ N and x′, x ∈ S such that x′ � x there exists z ∈ S

such that kz ≤ x and x′ ≤ (k + 1)z.

One says that a C∗-algebra is pure if its Cuntz semigroup is almost unperforated and 
almost divisible.

In [2], a theory of tensor products and multiplication for Cuntz semigroups was 
developed. Amongst other results, the authors showed in [2, Theorem 7.3.11] that a 
Cu-semigroup S is pure if and only if S ∼= S ⊗ Cu(Z). Further, one can see that the 
Cuntz semigroup of any Z-stable C∗-algebra has Cu(Z)-multiplication (i.e. it tensorially 
absorbs Cu(Z)).

Definition 3.2. Let ϕ : S → T be a generalized Cu-morphism. We will say that ϕ is

(i) almost unperforated if ϕ(x) ≤ ϕ(y) whenever (m + 1)x ≤ my for some m ∈ N.
(ii) almost divisible if for every k ∈ N and x′, x ∈ S such that x′ � x there exists z ∈ T

such that kz ≤ ϕ(x) and ϕ(x′) ≤ (k + 1)z.

The generalized Cu-morphism ϕ will be said to have Cu(Z)-multiplication if it is 
almost unperforated and almost divisible, and a cpc order-zero map θ : A → B will be 
called pure if Cu(θ) has Cu(Z)-multiplication.

Let us begin the section with some examples of pure maps:

Example 3.3. It is readily checked that any ∗-homomorphism A → B is pure whenever 
A or B is pure. More generally, the same holds if Cu(A → B) factors through the 
Cuntz semigroup of a pure C∗-algebra; see Proposition 4.2 for details and more general 
statements.

As a concrete example, any ∗-homomorphism that factors through an infinite reduced 
free product ∗∞i=1(A, τ), with A unital and τ a faithful trace, is pure. These products 
are always simple and monotracial ([5, Corollary, page 431]), have stable rank one ([12, 
Theorem 3.8]), and strict comparison ([19, Proposition 6.3.2]). A standard argument, 
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using the positive solution to the ranks problem for simple, stable rank one C∗-algebras 
from [25], proves that the Cuntz semigroup is almost divisible; see, for example, [30, 
Remark 4.4], or its generalization Proposition 3.5 below.

Example 3.4. Let A, B be unital C∗-algebras, and assume that B is almost divisible. 
Then, it follows from [21, Lemma 6.1(i)] that the first factor embedding A → A ⊗ B is 
almost unperforated and, therefore, pure.

Another example of pure maps is given by the following proposition. Recall that a C∗-
algebra A is said to be nowhere scattered if it has no nonzero elementary ideal-quotients; 
see [27].

Proposition 3.5. Let A be a separable nowhere scattered C∗-algebra of stable rank one, 
and let θ : A → B be a cpc order-zero, almost unperforated map. Then, θ is pure.

Proof. We need to show that Cu(θ) is almost divisible. To see this, let x ∈ Cu(A) and 
take k ∈ N. Then, it follows from [1, Theorem 7.13] that there exists y ∈ Cu(A) such 
that ŷ = 2

2k+1 x̂ in L(F (Cu(A))); see [1, Section 7] for the appropriate definitions.
Thus, we have

∞x = ∞y, λ(ky) < λ(x), and λ(x) < λ((k + 1)y)

for every normalized functional λ ∈ F (Cu(A)).
By [18, Proposition 2.1], there exist n, m ∈ N such that

(n + 1)(ky) ≤ nx, and (m + 1)x ≤ m(k + 1)y.

Using that Cu(θ) is almost unperforated, we obtain kCu(θ)(y) ≤ Cu(θ)(x) ≤ (k +
1) Cu(θ)(y), as desired. �
Remark 3.6. The assumption of separability is not needed in Proposition 3.5. This will 
be explained in detail in Remark 4.4.

Recall that a separable unital C∗-algebra is Z-stable if and only if Z embeds unitally 
into Aω ∩A′; see, for example, [16, Proposition 4.4]. A reindexing argument shows that 
this is equivalent to Z embedding unitally to Aω∩A′∩C ′ for any separable sub-C∗-algebra 
C ⊆ Aω ∩A′. In particular, any such C∗-algebra satisfies that the unit 1 ∈ Aω ∩A′ ∩C ′

is almost divisible.
In what follows (Theorem 3.9), we show that any ∗-homomorphism satisfying the 

analogue of this property is pure. For that, recall that given a ∗-homomorphism θ : A →
B, the annihilator of θ, in symbols Ann(θ), is defined as the set of elements x in B such 
that xθ(A) = θ(A)x = {0}.
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Proposition 3.7. Let θ : A → B be a ∗-homomorphism. Assume that there exists a net of 
contractive, positive elements (eλ)λ∈Λ in θ(A)′∩B such that (eλ)λ acts as an approximate 
unit for θ(A) and such that eλ is almost divisible in θ(A)′ ∩ B/Ann(θ(A)) for each λ. 
Then, there exists a sub-C∗-algebra C ⊆ θ(A)′ ∩B such that the map A → C∗(θ(A), C)
is pure. If Λ = N, C can be taken to be separable.

Proof. For each triple μ = (λ, k, p) ∈ Λ ×N×Q+,≤1, let fμ ∈ (θ(A)′ ∩B)+ be such that

f⊕k
μ � eλ, and (eλ − p)+ � f

⊕(k+1)
μ

in Cu(θ(A)′ ∩B/Ann(θ(A))), where the superscript ⊕k denotes the diagonal formed by 
k copies of the element.

Thus, up to a cut-down of fμ, there exists a finite matrix hμ with entries in Ann(θ(A)))
such that

f⊕k
μ ⊕ 0 � eλ ⊕ hμ, and (eλ − p)+ ⊕ 0 � f⊕(k+1)

μ ⊕ hμ

in (θ(A)′ ∩B) ⊗Ml for some l, where the 0’s denote zero matrices of appropriate sizes.
Now, for any q ∈ Q+,≤1, it follows from [23, Proposition 2.4] that there exist finite 

matrices rμ,q and sμ,q over θ(A)′ ∩B such that

(f⊕k
μ − q)+ ⊕ 0 = rμ,q(eλ ⊕ hμ)r∗μ,q (1)

and

(eλ − p− q)+ ⊕ 0 = sμ,q(f⊕(k+1)
μ ⊕ hμ)s∗μ,q. (2)

Set C = C∗({eλ, fμ, rμ,q(i, j), sμ,q(i, j)}μ,q,i,j). If Λ = N, then C is separable by 
construction.

Let us show that A → C∗(θ(A), C) is pure. For any m ∈ N and C∗-algebra E, let 
ιm : E → Mm(E) denote the map e �→ e⊕m. We will also use this notation for the matrix 
amplification Mk(E) → Mkm(E) defined entry-wise. Note that, for a matrix e ∈ Mn(E), 
e⊕m denotes the mn ×mn matrix e ⊕ . . . ⊕ e, while ιm(e) is the mn ×mn where each 
entry of e has been replaced by a diagonal m × m matrix. An important fact that we 
will use is: Given a ∈ Mn(A) and b ∈ Mm(θ(A)′ ∩B), then ιn(b) commutes with θ(a)⊕m

(and the roles of a and b can be reversed).
First, given a contraction a ∈ Mn(A)+, note that applying ιn to Equation (1) and 

multiplying by an l = l(μ, q) diagonal matrix of θ(a)’s, one gets

(θ(a)(fμ − q)⊕n
+ )⊕k ⊕ 0 = θ(a)⊕lιn((f⊕k

μ − q)+ ⊕ 0)

= θ(a)⊕lιn(rμ,q)ιn(eλ ⊕ hμ)ιn(rμ,q)∗

= ιn(rμ,q)θ(a)⊕lιn(eλ ⊕ hμ)ιn(rμ,q)∗
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= ιn(rμ,q)(θ(a)ιn(eλ) ⊕ 0)ιn(rμ,q)∗

� θ(a)ιn(eλ)

and, by multiplying an m = m(μ, q) diagonal matrix of a’s to an enlarged Equation (2), 
we obtain

θ(a)(eλ − p− q)⊕n
+ ⊕ 0 = θ(a)⊕mιn(sμ,q)ιn(f⊕(k+1)

μ ⊕ hμ)ιn(sμ,q)∗

= ιn(sμ,q)((θ(a)ιnf⊕(k+1)
μ ⊕ 0)ιn(sμ,q)∗

= ιn(sμ,q)((θ(a)f⊕n
μ )⊕(k+1) ⊕ 0)ιn(sμ,q)∗

� (θ(a)f⊕n
μ )⊕(k+1).

Thus,

((θ(a)f⊕n
μ − q)+)⊕k � θ(a)e⊕n

λ � θ(a), and (θ(a)(e⊕n
λ − p− q)+) � (θ(a)f⊕n

μ )⊕(k+1)

in C∗(θ(A), C) ⊗K.
Since this holds for any choice of p and q, taking suprema gives (θ(a)f⊕n

μ )⊕k � θ(a)
and (θ(a)e⊕n

λ ) � (θ(a)f⊕n
μ )⊕(k+1). Further, since the e⊕n

λ ’s are an approximate unit for 
θ(a), it follows that a is almost divisible in C∗(θ(A), C) ⊗ K. Since this holds for any 
finite matrix over θ(A), we get that A → C∗(θ(A), C) is almost divisible.

To show that A → C∗(θ(A), C) is almost unperforated, we follow the same strategy 
as in [24, Lemma 4.3]. Thus, let a, b ∈ Mn(A)+ be contractions such that a⊕(k+1) � b⊕k

in A ⊗K for some k ∈ N. For any ε > 0, there exists a finite matrix v with entries in A
such that (a − ε)⊕(k+1)

+ = v(b⊕k ⊕0)v∗. Given μ = (λ, k, p), we can use that fμ is central 
to obtain

(f⊕n
μ θ((a− ε)+))⊕(k+1) = θ(v)((f⊕n

μ θ(b))⊕k ⊕ 0)θ(v)∗.

In particular, (f⊕n
μ θ((a −ε)+))⊕(k+1) � (f⊕n

μ θ(b))⊕k in Cu(C∗(θ(A), C)). Recall from 
the above computations that we have

(θ((a− ε)+)e⊕n
λ ) � (θ((a− ε)+)f⊕n

μ )⊕(k+1), and (θ(b)f⊕n
μ )⊕k � θ(b).

Chaining these three �-relations together, one obtains

(θ((a− ε)+)e⊕n
λ ) � (θ((a− ε)+)f⊕n

μ )⊕(k+1) � (f⊕n
μ θ(b))⊕k � θ(b).

Using once again that the e⊕n
λ ’s are an approximate unit for θ((a − ε)+), we get 

(θ(a) − 2ε)+ � θ(b). This proves that A → C∗(θ(A), C) is almost unperforated, as 
required. �

Lemma 3.8 below shows that, when studying pureness of maps, one can restrict to 
those with an ultraproduct for a codomain.
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Lemma 3.8. Let θ : A → B be a cpc order-zero map, and let ιB : B → Bω be the natural 
inclusion. Then, θ is pure if and only if ιBθ is pure.

Proof. If θ is pure, the composition ιBθ is pure; see Proposition 4.2 for details.
Conversely, assume that ιBθ is pure. We need to show that Cu(θ) is both almost 

divisible and almost unperforated. First, let n ∈ N, [a] ∈ Cu(A) and ε > 0. Since any 
element in Cu(A) can be written as the supremum of classes in M∞(A)+ (and since 
Cu(θ) preserves suprema), we may assume a ∈ Mk(A)+ for some k ∈ N. Using that ιBθ
is pure, we find [b] ∈ Cu(Bω) such that [ιBθ((a −ε/3)+)] ≤ (n +1)[b] and n[b] ≤ [ιBθ(a)]. 
Upon cutting-down a and b if needed (say, to (a − ε/2)+), we may assume b ∈ Bω ⊗Mk

and that there exist finite matrices r, s over Bω such that ιBθ((a − ε/2)+) = rb⊕(n+1)r∗

and b⊕n = sιBθ(a)s∗.
Further, note that Bω ⊗ Mk

∼= (B ⊗ Mk)ω. Thus, by going sufficiently far in the 
sequences corresponding to b and the entries of r and s, we can find elements b0 ∈ Mk(B)
and r0, s0 ∈ M∞(B) such that [θ((a − ε)+)] ≤ (n + 1)[b0] and n[b0] ≤ [θ(a)]. This shows 
that Cu(θ) is almost divisible.

The proof of almost unperforation is analoguous. �
Theorem 3.9. Let A be σ-unital, and let θ : A → B be a ∗-homomorphism. Assume that 
1 ∈ Bω ∩ θ(A)′/Ann(θ(A)) is almost divisible. Then, θ is pure.

Further, if 1 ∈ Bω ∩ (θ(A) ∪S)′/Ann(θ(A) ∪S) is almost divisible for every separable 
sub-C∗-algebra S ⊆ Bω ∩ θ(A)′, there exists a pure sub-C∗-algebra C ⊆ Bω such that 
θ(A) ⊆ C ⊆ Bω.

Proof. As shown in Lemma 3.8 above, a ∗-homomorphism A → B is pure if and only if 
the induced map A → Bω is pure. Further, since 1 ∈ Bω ∩ θ(A)′/Ann(θ(A)) is almost 
divisible, it follows from Proposition 3.7 above that A → Bω is pure. This gives the first 
part of the statement.

For the second part, note that it follows from Proposition 3.7 that there exists a 
separable sub-C∗-algebra C1 ⊆ Bω ∩ θ(A)′ such that inclusion θ(A) ⊆ C∗(θ(A), C1)
is pure. Since C1 is separable, we know by our assumption that 1 ∈ Bω ∩ (θ(A) ∪
C1)′/Ann(θ(A) ∪ C1) is almost divisible. Proposition 3.7 proves the existence of a sepa-
rable C2 ⊆ Bω ∩ θ(A)′ ∩ C ′

1 such that C∗(θ(A), C1) ⊆ C∗(θ(A), C1, C2) is pure.
Proceeding inductively, one obtains a sequence of pure inclusions in Bω. Their limit, 

denoted by C, is pure. �
The previous result justifies the following question:

Question 3.10. Let θ : A → B be a ∗-homomorphism. Is θ pure if and only if the compo-
sition ιBθ : A → Bω factors, up to Murray-von Neumann equivalence (see Lemma 4.5), 
through a pure C∗-algebra?
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Question 3.10 is a particular instance of a general question that one can ask for any 
property P . Namely, does any ∗-homomorphism with P ‘come’ from a C∗-algebra with 
P? In other words, does P admit a McDuff type characterization?

This question has been posed for: real rank zero inclusions [15], where it remains open; 
for O2-stable morphisms, answered in [14, Corollary 4.5]; and for morphisms of nuclear 
dimension 0, with a partial answer provided in [10].

For any of the properties P listed above, one has that an inductive system where 
each map satisfies P has a limit with P . Loosely, one can interpret this as saying that 
any infinite composition of maps with P always factorizes through a C∗-algebra with 
P . In this sense, one may also ask if there exists a natural number nP such that the 
composition of nP morphisms with P always factorizes through a C∗-algebra with P . 
Specialized to our setting, the question is:

Question 3.11. Does there exist n ∈ N such that, for any tuple θ1, . . . , θn of pairwise 
composable pure ∗-homomorphisms, the composition ιBθn · · · θ1 factors up to Murray-
von Neumann equivalence through a pure C∗-algebra?

To our knowledge, an answer to Question 3.11 is not known for real rank zero inclu-
sions. In what follows, we investigate the question for our notion of pureness.

4. Pureness and Cu(Z)-multiplication

This section compiles permanence properties of Cu(Z)-multiplication for generali-
zed Cu-morphisms. We state some of these results in the language of abstract Cuntz 
semigroups to highlight when the �-relation needs to be preserved.

Propositions 4.1 and 4.2 below are in analogy to Proposition 3.19 and Lemma 3.20 
from [14].

Proposition 4.1. Let S be a Cu-semigroup. Then S ∼= S ⊗ Cu(Z) if and only if idS has 
Cu(Z)-multiplication.

Proof. It follows from Theorems 7.3.11 and 7.5.4 in [2] that S ∼= S ⊗ Cu(Z) if and only 
if S is almost divisible and almost unperforated. The statement now follows from the 
definitions. �
Proposition 4.2. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be generalized Cu-morphisms. Then,

(1) if ϕ1 has Cu(Z)-multiplication, so has ϕ2ϕ1.
(2) if ϕ1 is a Cu-morphism and ϕ2 has Cu(Z)-multiplication, the composition ϕ2ϕ1 also 

has Cu(Z)-multiplication.
(3) if S2 has Cu(Z)-multiplication, so have both ϕ2 and ϕ1.
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Proof. (1) Given x′ � x in S1 and k ∈ N, there exists z ∈ S2 such that ϕ1(x′) ≤ (k+1)z
and kz ≤ ϕ1(x). Thus, one has ϕ2ϕ1(x′) ≤ (k + 1)ϕ2(z) and kϕ2(z) ≤ ϕ2ϕ1(x).

Similarly, if (m + 1)x ≤ my for some m ∈ N in S1, one gets ϕ1(x) ≤ ϕ1(y) and, 
consequently, ϕ2ϕ1(x) ≤ ϕ2ϕ1(y).

(2) If ϕ1 is now a Cu-morphism and ϕ2 is the map that has Cu(Z)-multiplication, 
one can take x′ � x in S1 and consider the induced relation ϕ1(x′) � ϕ1(x) in S2. Since 
ϕ2 has Cu(Z)-multiplication, one obtains the element needed for the almost division in 
T .

The same argument shows that if (m + 1)x ≤ my in S, then ϕ2ϕ1(x) ≤ ϕ2ϕ1(y) in 
T , as desired.

(3) If S2 has Cu(Z)-multiplication, [2, Proposition 7.3.8] implies that for any element 
x ∈ S2 and k ∈ N, there exists y ∈ S2 such that ky ≤ x ≤ (k + 1)y. With this stronger 
property, it is routine to check that both ϕ1 and ϕ2 have Cu(Z)-multiplication. �
Lemma 4.3. Let ϕ : S → T be a generalized Cu-morphism. Then ϕ has Cu(Z)-
multiplication if and only if ϕιH has Cu(Z)-multiplication for every inclusion ιH from 
a countably based sub-Cu-semigroup H to S.

Proof. The proof uses standard model theoretic techniques applied to Cu-semigroups. 
We sketch it here for the convenience of the reader.

First, note that the forward implication follows from Proposition 4.2 (2). For the 
backwards implication, let x, y ∈ S and let n ∈ N. Using [26, Lemma 5.1], find a 
countably based sub-Cu-semigroup H of S containing x and y.

By our assumptions, the composition ϕιH has Cu(Z)-multiplication. Thus, if (n +
1)x ≤ ny in S (equivalently in H) we obtain ϕ(x) = ϕιH(x) ≤ ϕιH(y) = ϕ(y). This shows 
that ϕ is almost unperforated. A similar proof shows that ϕ is also almost divisible. �
Remark 4.4. As mentioned in Remark 3.6, the assumption of separability is not needed 
in Proposition 3.5. Indeed, let A be a nowhere scattered C∗-algebra of stable rank one 
(not necessarily separable), and let θ : A → B be a cpc order-zero almost unperforated 
map.

Then, for any countably based sub-Cu-semigroup H ⊆ Cu(A), there exists a separable 
sub-C∗-algebra C ⊆ A such that the Cuntz morphism induced by the inclusion ιC : C →
A is an order-embedding and contains H in its image; see [26, Proposition 6.1]. Further, 
one can choose such a C to be nowhere scattered and of stable rank one, since separable 
nowhere scattered stable rank one sub-C∗-algebras of A form a σ-complete and cofinal 
family amongst all separable sub-C∗-algebras of A (for nowhere scatteredness see [27, 
Proposition 4.11]).

Now, by Proposition 3.5, the composition θιC : C → B is pure, which implies that 
Cu(θ)ιH has Cu(Z)-multiplication. Since this holds for each countably based sub-Cu-
semigroup, we deduce from Lemma 4.3 above that θ is pure.
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Recall from [14, Definition 3.4] that a pair of ∗-homomorphisms θ, η : A → B are 
approximately Murray-von Neumann equivalent if, for any finite subset F of A and any 
ε > 0, there exists u ∈ B such that

‖uθ(a)u∗ − η(a)‖ < ε, and ‖u∗η(a)u− θ(a)‖ < ε,

for every a ∈ F .
The following is essentially [14, Corollary 3.11] applied to the category Cu, with the 

only difference that we drop the assumption of A being separable.

Lemma 4.5. Let θ, η : A → B be two approximately Murray-von Neumann equivalent 
∗-homomorphisms. Then, Cu(θ) = Cu(η).

Proof. Let x ∈ Cu(A). By [26, Proposition 6.1], there exists a separable sub-C∗-algebra 
A′ ⊆ A such that Cu(ιA′)(Cu(A′)) is a sub-Cu-semigroup of Cu(A) containing x. Here, 
ιA′ denotes the inclusion from A′ to A.

Since the functor Cu(·) is M2-stable and invariant under approximate unitary equiv-
alence, [14, Corollary 3.11] implies that

Cu(θ)(x) = Cu(θιA′)(x) = Cu(ηιA′)(x) = Cu(η)(x),

as required. �
The following result gives one of the implications of Question 3.10.

Proposition 4.6. Let θ : A → B be a ∗-homomorphism. Assume that, for any separable 
sub-C∗-algebra A′ ⊆ A, there exist cpc order-zero maps η : A′ → C and ρ : C → B such 
that C is pure and ρη is approximately Murray-von Neumann equivalent to θιA′ .

Then, θ is pure.

Proof. Assume first that A is separable. Then, θ is Murray-von Neumann equivalent to 
a map that factorizes through C. Thus, by Lemma 4.5, Cu(θ) itself factorizes through 
Cu(C), and so θ is pure by Proposition 4.2.

If A is not separable, we know from [26, Proposition 6.1] that any countably based 
sub-Cu-semigroup H in Cu(A) is contained in Cu(A′) for some separable sub-C∗-algebra 
A′ of A. Thus, the argument above shows that Cu(θιA′) has Cu(Z)-multiplication.

Consequently, since any inclusion gives rise to a Cu-morphism, Proposition 4.2 shows 
that Cu(ϕ)ιH has Cu(Z)-multiplication. Lemma 4.3 gives the required result. �
4.7 (Approximations of ∗-homomorphisms). Recall that a C∗-algebra A is said to be 
approximated by a family of sub-C∗-algebras (Aλ)λ∈Λ if, for each ε > 0 and every choice 
of finitely many elements a1, . . . , an ∈ A, there exist λ ∈ Λ and b1, . . . , bn ∈ Aλ such 
that ‖bj − aj‖ < ε for each j.
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Let θ : A → B be a cpc order-zero map. We will say that a tuple (Aλ, θλ : Aλ → B)λ∈Λ
approximates θ if each θλ is cpc order-zero and the following condition holds:

For every ε > 0 and every finite tuple a1, . . . , an ∈ A, there exist λ ∈ Λ and b1, . . . , bn ∈
Aλ such that

‖bj − aj‖ < ε, and ‖θλ(bj) − θ(aj)‖ < ε

for each j.
Note that this notion of approximation naturally includes the notion of limit morphism 

(i.e. when Aλ = A for each λ).

We will now show that pureness is preserved under approximations. We do this by 
proving a much more general result, which we expect to find other uses elsewhere. Infor-
mally, Proposition 4.8 below says that any formula of the Cuntz semigroup is inherited 
by the approximated map. This generalizes [26, Proposition 3.7].

Proposition 4.8. Let θ : A → B be a cpc order-zero map, and let (Aλ, θλ)λ∈Λ approximate 
θ. Then, for any pair of finite index sets J, K ⊆ N, any family of pairs [a′j ], [aj ] ∈ Cu(A)
such that [a′j ] � [aj ] for each j ∈ J , and any pair of functions mk, nk : J → N such that

∑
j∈J

mk(j)[aj ] �
∑
j∈J

nk(j)[a′j ]

for all k ∈ K, there exists λ ∈ Λ, and cj ∈ (Aλ ⊗ K)λ for each j, such that [θ(a′j)] �
[θλ(cj)] � [θ(aj)], and [a′j ] � [cj ] � [aj ] in Cu(A), and

∑
j∈J

mk(j)[cj ] �
∑
j∈J

nk(j)[cj ]

in Cu(Aλ).

Proof. Let ε > 0 be such that [a′j ] ≤ [(aj −2ε)+] for each j. Note that, by definition, the 
Aλ’s approximate A. Thus, it follows from (the proof of) [26, Proposition 3.7] that, for 
every sufficiently small positive σ > 0 with σ < ε, one can find λ ∈ Λ and bj ∈ (Aλ⊗K)λ
such that [a′j ] � [(bj − ε)+] � [aj ] in Cu(A) and

∑
j∈J

mk(j)[(bj − ε)+] �
∑
j∈J

nk(j)[(bj − ε)+]

in Cu(Aλ) for every k and, additionally, such that ‖θλ(bj) − θ(aj)‖ ≤ σ for every j.
Set cj := (bj − ε)+. Then, since σ < ε, it follows that θ((aj − 2ε)+) � θλ(cj) � θ(aj). 

Using that θ is cpc order zero, we see that θ(a′j) � θ((aj − 2ε)+) and, consequently, 
θ(a′j) � θλ(cj). �
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Corollary 4.9. Let θ : A → B be a cpc order-zero map, and let (Aλ, θλ)λ∈Λ approximate 
θ. Assume that θλ is pure for each λ. Then, θ is pure.

Proof. First, let n ∈ N. Given [a] ∈ Cu(A) and ε > 0, use Proposition 4.8 (with K = ∅) 
to find λ ∈ Λ and c ∈ (Aλ ⊗ K)+ such that [θ((a − ε)+)] � [θλ(c)] � [θ(a)] and 
[(a −ε)+] � [c] � [a]. Take δ > 0 such that [θ((a −ε)+)] ≤ [θλ((c −δ)+)]. Then, since θλ
is pure, there exists [d] ∈ Cu(B) such that n[d] ≤ [θλ(c)] and [θλ((c − δ)+)] ≤ (n + 1)[d]
in Cu(B). This implies

n[d] ≤ [θλ(c)] ≤ [θ(a)], and [θ((a− ε)+)] ≤ [θλ((c− δ)+)] ≤ (n + 1)[d],

which shows that θ is almost divisible.
Now assume that [a1], [a2] ∈ Cu(A) are such that (m + 1)[a1] ≤ m[a2] for some 

m ∈ N. Take any pair of elements a′1, a′′1 such that [a′1] � [a′′1 ] � [a1], and find a′2 such 
that [a′2] � [a2] and (m +1)[a′′1 ] � m[a′2]. Apply Proposition 4.8 for the pairs a′1, a′′1 and 
a′2, a2 and the formula (m + 1)[a′′1 ] � m[a′2] to find λ ∈ Λ and c1, c2 ∈ (Aλ ⊗ K)+ such 
that

[θ(a′1)] � [θλ(c1)] � [θ(a′′1)], [θ(a′2)] � [θλ(c2)] � [θ(a2)]

in Cu(A) and (m + 1)[c1] � m[c2] in Cu(Aλ).
Thus, since Cu(θλ) is almost unperforated, [θλ(c1)] ≤ [θλ(c2)]. This shows that 

[θ(a′1)] ≤ [θ(a2)] and, since the choice of a′1 was arbitrary, we obtain [θ(a1)] ≤ [θ(a2)]. �
5. Factorizing compositions of pure ∗-homomorphisms

The aim of this section is to provide a partial answer to Question 3.11. Namely, 
we show that —at the Cuntz semigroup level— the composition of any two pure ∗-
homomorphisms (in fact, two cpc order-zero maps) factors through a pure Cu-semigroup; 
see Theorem 5.9. In order to prove such a result, we start with a study of pureness in 
the category Cu, which we use to prove the technical result Theorem 5.5.

Recall that the Cuntz semigroup of the Jiang-Su algebra Z is isomorphic to Z =
N ∪ (0, ∞] (see e.g. [2]). Throughout this subsection, we will write Z as the union Z =
Zc ∪ Zsoft, where Zc = N and Zsoft = [0, ∞] with Zc ∩ Zsoft = {0}. Denote by σ : Z →
[0, ∞] the soft retraction, that is, the map that sends each compact element n ∈ Zc to 
its soft counterpart n ∈ Zsoft = [0, ∞] and leaves the soft part invariant.

Lemma 5.1. Let S be a Cu-semigroup, and let γ : Z → S be a map such that γ|Zc
is an 

order-preserving monoid morphism. Then, γ is a generalized Cu-morphism if and only 
if the following two conditions are satisfied:

(i) γ(σ(1)) ≤ γ(1) ≤ γ(1 + ε) for every ε > 0; and
(ii) γ|Zsoft is a generalized Cu-morphism.
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Proof. The forward implication is trivial. For the reverse implication, assume that γ|Zsoft

is a generalized Cu-morphism and that γ(σ(1)) ≤ γ(1) ≤ γ(1 + ε) for each ε > 0. Note, 
in particular, that we have γ(σ(n)) ≤ γ(n) ≤ γ(n + ε) for each n ∈ Zc. To show that γ
is order-preserving, take n ∈ Zc and t ∈ Zsoft such that t ≤ n. Then, one has t ≤ σ(n)
and, consequently, γ(t) ≤ γ(σ(n)) ≤ γ(n). Conversely, if n < t, we know that σ(n) < t

in Zsoft. Let ε > 0 be such that σ(n) + ε < t. Then,

γ(n) ≤ γ(n + ε) = γ(σ(n) + ε) ≤ γ(t).

To show that it preserves suprema, note that any increasing sequence in Z has a cofinal 
subsequence either in Zc or Zsoft. Thus, we may assume that we are in one of these two 
cases. If the increasing sequence (td)d is in Zsoft = [0, ∞], γ preserves its supremum by 
assumption. Else, if (td)d is in Zc, it either stabilizes (in which case γ trivially preserves 
its supremum) or it tends to ∞ ∈ Zsoft. In this situation, one can take the sequence 
(σ(td))d induced by the soft elements corresponding to our compact sequence. These 
two sequences share ∞ as their supremum. One has

γ(σ(td)) ≤ γ(td) ≤ sup
d

γ(td), and γ(td) ≤ γ

(
td + 1

d

)

for every d ≥ 2. This implies γ(∞) = supd γ(σ(td)) ≤ supd γ(td) and supd γ(td) ≤
supd γ(td + 1

d ) = γ(∞). This shows supd γ(td) = γ(∞), as desired.
Finally, to see that the map is additive, take n ∈ Zc and t ∈ Zsoft. Then,

γ(n + t) = γ(σ(n) + t) = γ(σ(n)) + γ(t) ≤ γ(n) + γ(t).

Conversely, if t �= 0, let ε > 0 such that t − ε > 0. Then, n + t = (σ(n) + ε) + (t − ε). 
This implies

γ(n) + γ(t− ε) ≤ γ(σ(n) + ε) + γ(t− ε) = γ(n + t)

and, letting ε tend to 0, we obtain γ(n) + γ(t) ≤ γ(n + t), as required. �
Let S be a Cu-semigroup. The following notation is inspired by [2, Theorem 6.3.3]: 

For any pair x′ ≤ x and any k, n ∈ N, set

μ((k, n), x′, x) := {y ∈ S | ny ≤ kx, and kx′ ≤ (n + 1)y}.

Note that this set is not empty whenever x′ � x and x is almost divisible. Further, one 
has that

μ((k, n), x′′, x) ⊆ μ((k, n), x′, x) ⊆ μ((k, n), 0, x)

whenever x′ ≤ x′′ ≤ x, and that μ((k, n), 0, x) = {y ∈ S | ny ≤ kx}.
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What follows is a generalization of [2, Theorem 6.3.3] to our setting. In our case, the 
proof becomes more technical (for example, we cannot use unicity arguments) and so we 
proceed with additional care. As another difference between the methods, we will need 
to use the extension result (Lemma 5.1) proved above.

Lemma 5.2. Let ϕ : S → T be an almost unperforated generalized Cu-morphism. Let 
x1, x2 ∈ S and k1, k2, n1, n2 ∈ N such that k1/n1 < k2/(n2 + 1). Assume that x1 ≤ x2. 
Then,

(1) ϕ(y1) ≤ ϕ(y2) for every y1 ∈ μ((k1, n1), 0, x1) and y2 ∈ μ((k2, n2), x1, x2).
(2) If ϕ is a Cu-morphism, then ϕ(y1) � ϕ(y2) whenever y1 ∈ μ((k1, n1), 0, x1), y2 ∈

μ((k2, n2), x′
2, x2) and x1 � x′

2 � x2.

Proof. One has n1y1 ≤ k1x1 and k2x1 ≤ (n2 + 1)y2. In particular,

n1k2y1 ≤ k1k2x1 ≤ (n2 + 1)k1y2.

It follows from almost unperforation of ϕ that ϕ(y1) ≤ ϕ(y2), which shows (1).
For (2), simply note that one gets

n1k2y1 ≤ k1k2x1 � k1k2x
′
2 ≤ (n2 + 1)k1y2.

Thus, we can find y′2 such that y′2 � y2 and n1k2y1 ≤ (n2 + 1)k1y
′
2. This implies 

ϕ(y1) ≤ ϕ(y′2) � ϕ(y2), as required. �
Lemma 5.3. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be generalized Cu-morphisms. Assume 
that ϕ1 is almost divisible, and that ϕ2 is almost unperforated. Then, for any x ∈ S1 and 
t ∈ (0, ∞], the set

Φ(t, ϕ1(x)) :=
{
ϕ2(y) | y ∈ μ((k, n), 0, ϕ1(x)) for some k, n ∈ N such that k

n
< t

}

has a supremum, bounded by �t�ϕ2ϕ1(x) (here, �∞� := ∞).

Proof. For every d ∈ N, take kd, nd ∈ N and xd ∈ S1 such that

kd
nd

<
kd+1

nd+1 + 1 , sup
d

(
kd
nd

)
= t, xd � xd+1, and sup

d
xd = x.

Set x0 = 0. For each d, take yd ∈ μ((kd, nd), ϕ1(xd−1), ϕ1(xd)), which exists by almost 
divisibility of ϕ1. By Lemma 5.2 (1), we see that the sequence (ϕ2(yd))d is increasing in 
T . Consider z = supd ϕ2(yd). We will prove that z is the supremum of Φ(t, ϕ1(x)).

Take y ∈ μ((k, n), 0, ϕ1(x)) for some k, n ∈ N such that k/n < t. Take y′ ∈ S2 such 
that y′ � y, and find d ∈ N such that
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k

n
<

kd+1

nd+1 + 1 , and y′ ∈ μ((k, n), 0, ϕ1(xd)).

Since yd+1 ∈ μ((kd+1, nd+1), ϕ1(xd), ϕ1(xd+1)), it follows from Lemma 5.2 (1) that 
ϕ2(y′) ≤ ϕ2(yd+1) ≤ z. As this holds for every y′ �-below y, we get ϕ2(y) ≤ z. This 
shows that z is the supremum of Φ(t, ϕ1(x)), as desired.

To see that z is bounded by �t�ϕ2ϕ1(x), simply note that for any pair k, n such that 
k/n < t we have k+ 1 ≤ �t�n. Thus, one gets (k+ 1)y ≤ �t�ny ≤ k(�t�x). Consequently, 
we obtain ϕ2(y) ≤ �t�ϕ2ϕ1(x), as desired. �
Proposition 5.4. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be generalized Cu-morphisms. Assume 
that ϕ1 is almost divisible, and that ϕ2 is almost unperforated. Then, for any x ∈ S1, 
there exists a generalized Cu-morphism αx : Z → T such that αx(1) = ϕ2ϕ1(x).

Proof. For every n ∈ Zc, set αx(n) := nϕ2ϕ1(x). For each t ∈ Zsoft, define

αx(t) := sup Φ(t, ϕ1(x)),

which exists by Lemma 5.3.
Note that, for any s ≥ t in Zsoft, one has Φ(t, ϕ1(x)) ⊆ Φ(s, ϕ1(x)). This implies 

αx(t) ≤ αx(s). Further, it follows from Lemma 5.3 that αx(σ(1)) ≤ ϕ2ϕ1(1) = αx(1). 
Additionally, for any ε > 0, take any x′ ∈ S1 such that x′ � x and let n ∈ N be 
such that 1 < (n + 2)/n < 1 + ε. Using almost divisibility, there exists y in μ(((n +
2), n), ϕ1(x′), ϕ1(x)). One has (n + 2)ϕ1(x′) ≤ (n + 1)y. Using almost unperforation, 
ϕ2ϕ1(x′) ≤ ϕ2(y) ≤ αx(1 + ε) and, by taking suprema on x′, we deduce αx(1) =
ϕ2ϕ1(x) ≤ αx(1 + ε).

The arguments above show that αx(σ(1)) ≤ αx(1) ≤ αx(1 + ε) for every ε > 0. 
Further, note that αx|Zc

is trivially an order-preserving monoid morphism. We will now 
prove that αx|Zsoft is a generalized Cu-morphism. Lemma 5.1 will then imply that αx is 
a generalized Cu-morphism. We have already shown that αx|Zsoft is order-preserving, so 
it suffices to prove that the map preserves suprema and addition.

To show that it preserves suprema, note that any increasing sequence (td)d in Zsoft
satisfies ∪dΦ(td, ϕ1(x)) = Φ(supd td, ϕ1(x)). This proves that αx preserves suprema in 
Zsoft.

To see that the map is additive, let t1, t2 ∈ Zsoft = [0, ∞]. First, for each i = 1, 2, let 
yi ∈ μ((ki, ni), 0, ϕ1(x)) for some ki, ni ∈ N such that

ki
ni

< ti.

Take y′i ∈ S2 such that y′i � yi for i = 1, 2, and let x0 ∈ S1 be such that

x0 � x, and y′i ∈ μ((ki, ni), 0, ϕ1(x0)).
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Choose k, n ∈ N such that

k1

n1
+ k2

n2
= k1n2 + k2n1

n1n2
<

k

n + 1 , and k

n
< t1 + t2.

Using that ϕ1 is almost divisible, find y ∈ μ((k, n), ϕ1(x0), ϕ1(x)). Note that y′1 +y′2 ∈
μ((k1n2 +k2n1, n1n2), 0, ϕ1(x0)). By Lemma 5.2 (1), one gets ϕ2(y′1 +y′2) ≤ ϕ2(y). Thus, 
we get

ϕ2(y′1) + ϕ2(y′2) ≤ ϕ2(y) ≤ αx(t1 + t2)

and, since this holds for every choice of y′1, y′2, one obtains ϕ2(y1) +ϕ2(y2) ≤ αx(t1 + t2). 
Taking suprema now on y1, y2, we have αx(t1) + αx(t2) ≤ αx(t1 + t2).

Conversely, take y ∈ μ((k, n), 0, ϕ1(x)) for k, n with k/n < t1 + t2 and x′ � x. Find 
ki, ti ∈ N such that ki

ni
< ti and

k

n
<

k1

n1 + 1 + k2

n2 + 1 = k1(n2 + 1) + k2(n1 + 1)
(n1 + 1)(n2 + 1) .

Proceeding as before, take y′ � y and find x′ such that x′ � x and y′ ∈
μ((k, n), 0, ϕ1(x′)). Find yi ∈ μ((ki, ni), ϕ1(x′), ϕ1(x)). In particular, we have

(k1(n2 + 1) + k2(n1 + 1))ny′ ≤ (k1(n2 + 1) + k2(n1 + 1))kϕ1(x′)

≤ (n1 + 1)(n2 + 1)k(y1 + y2).

Since ϕ2 is almost unperforated, we obtain ϕ2(y′) ≤ ϕ2(y1) +ϕ2(y2) ≤ αx(t1) +αx(t2). 
Taking suprema on y′, and then on y, we deduce αx(t1+t2) ≤ αx(t1) +αx(t2), as desired. 
This proves that αx is additive in Zsoft.

Lemma 5.1 shows that αx : Z → T is a generalized Cu-morphism. �
Theorem 5.5. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be (generalized) Cu-morphisms. Assume 
that ϕ1 is almost divisible, and that ϕ2 is almost unperforated. Then, there exists a 
(generalized) Cu-morphism β : S1 ⊗ Z → T such that the following diagram commutes

S1
ϕ1

−⊗1

S2
ϕ2

T

S1 ⊗ Z

β

Proof. We define the map α : S1 × Z → T by

α(x, t) := αx(t),

which satisfies α(x, 1) = ϕ2ϕ1(x).
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We will now prove that α is a generalized Cu-bimorphism. Using [2, Theorem 6.3.3 (1)], 
this will imply the existence of β : S ⊗ Z → T with the required properties.

Note that α(x, ·) = αx is a generalized Cu-morphism by the results above. Further, 
α(·, n) is trivially a generalized Cu-morphism for every n ∈ Zc. Set γt(x) := α(x, t) for 
every t ∈ Zsoft, and let us show that γt is a generalized Cu-morphism.

To see that γt preserves order, take x0, x ∈ S1 such that x0 ≤ x. Clearly, one has

Φ(t, ϕ1(x0)) ⊆ Φ(t, ϕ1(x))

and thus γt(x0) = αx0(t) ≤ αx(t) = γt(x).
Now take (xd)d in S1 increasing with supremum x. Then, for any element y ∈

μ((k, n), 0, ϕ1(x)) with k/n < t, take y′ � y and find d ∈ N such that y′ ∈
μ((k, n), 0, ϕ1(xd)). This shows that ϕ2(y′) ≤ γt(xd) and, consequently, ϕ2(y) ≤
supd γt(xd). Taking suprema, one gets γt(x) ≤ supd γt(xd). Since γt is order-preserving, 
we also obtain supd γt(xd) ≤ γt(x). In other words, γt preserves suprema of increasing 
sequences.

To prove that γt is superadditive, take x1, x2 ∈ S1 and let y1, y2 ∈ S2 be such that 
yi ∈ μ((ki, ni), 0, ϕ1(xi)) for some ki, ni’s such that ki/ni < t. Find k, n ∈ N such that 
ki/ni < k/(n + 1) and k/n < t. Take y′i ∈ S2 such that y′i � yi, and let x′

i ∈ S1 be 
such that x′

i � xi and y′i ∈ μ((ki, ni), 0, ϕ1(x′
i)). Using almost divisibility of ϕ1, find 

zi ∈ μ((k, n), ϕ1(x′
i), ϕ1(xi)). By Lemma 5.2 (1), we get ϕ2(y′i) ≤ ϕ2(zi). Note that we 

have z1 + z2 ∈ μ((k, n), 0, ϕ1(x1 + x2)). Thus, one gets

ϕ2(y′1) + ϕ2(y′2) ≤ ϕ2(z1) + ϕ2(z2) = ϕ2(z1 + z2) ≤ αx1+x2(t) = γt(x1 + x2).

Taking suprema on y′1 and y′2, this implies ϕ2(y1) +ϕ2(y2) ≤ γt(x1 +x2). Taking now 
suprema on y1, y2, k and n gives γt(x1) + γt(x2) ≤ γt(x1 + x2).

Conversely, to prove subadditivity, let y ∈ μ((k, n), 0, ϕ1(x1 + x2)). Take y′ � y

and let x′
i � xi be such that y′ ∈ μ((k, n), 0, ϕ1(x′

1 + x′
2)). Find l, m ∈ N such that 

k/n < l/(m + 1) and l/m < t. Find yi ∈ μ((l, m), ϕ1(x′
i), ϕ1(xi)). Then, y1 + y2 ∈

μ((l, m), ϕ1(x′
1 +x′

2), ϕ1(x1 +x2)). By Lemma 5.2, one obtains ϕ2(y′) ≤ ϕ2(y1) +ϕ2(y2). 
Again, this implies ϕ2(y) ≤ γt(x1) + γt(x2) and, consequently, γt(x1 + x2) ≤ γt(x1) +
γt(x2).

We have shown that each coordinate of α is a generalized Cu-morphism. In particular, 
we know that there exists a generalized Cu-morphism β : S1 ⊗ Z → T with the desired 
properties; see [2, Lemma 6.3.2, Theorem 6.3.3].

Now assume that ϕ1 and ϕ2 are Cu-morphisms. To prove that α is in fact a Cu-
bimorphism, take t′, t ∈ Z and x′, x ∈ S such that t′ � t and x′ � x. We have to show 
that α(x′, t′) � α(x, t). If t′ or t are in N, we may assume t = t′. In this case, one has 
α(x′, t) = tϕ2ϕ1(x′) � tϕ2ϕ1(x) = α(x, t) because both ϕ1 and ϕ2 are Cu-morphisms. 
Finally, assume t′, t ∈ (0, ∞]. Take x1, x2 ∈ S1 such that x′ � x1 � x2 � x.
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Find l1, l2, m1, m2 ∈ N such that

t′ <
l1

m1 + 1 ,
l1
m1

<
l2

m2 + 1 ,
l2
m2

< t.

By almost divisibility of ϕ1, there exist elements y1, y2 ∈ S2 such that y1 ∈
μ((l1, m1), ϕ1(x′), ϕ1(x1)) and y2 ∈ μ((l2, m2), ϕ1(x2), ϕ1(x)). By Lemma 5.2 (2), one 
gets ϕ2(y1) � ϕ2(y2) ≤ α(x, t).

Now note that for every y ∈ μ((k, n), 0, ϕ1(x′)) with k/n < t′, one has k/n < l1/(m1+
1). Thus, another application of Lemma 5.2 (1) gives ϕ2(y) ≤ ϕ2(y1). In other words, 
α(x′, t′) ≤ ϕ2(y1). Since we already know that ϕ2(y1) � α(x, t), one gets α(x′, t′) �
α(x, t), as desired.

Now [2, Theorem 6.3.3] shows that β : S1⊗Z → T is a Cu-morphism with the desired 
properties. �
Corollary 5.6. Let ϕ : S → T be a Cu-morphism. Then,

(i) if S is almost divisible and ϕ is almost unperforated, ϕ factorizes through S ⊗ Z.
(ii) if T is almost unperforated and ϕ is almost divisible, ϕ factorizes through S ⊗ Z.

Proof. For (i), consider the composition of maps S → S → T and apply Theorem 5.5. 
For (ii), consider S → T → T and apply Theorem 5.5. �
5.7. The proof of Theorem 5.5 requires the order of the conditions to be as stated (first 
almost divisibility and then almost unperforation). It is unclear to us if the same state-
ment holds when the conditions are reversed.

The intuitive reason behind this is that one always wants to compare the divisors of 
two elements from S1, which cannot be done if the conditions on the morphisms are 
exchanged.

Question 5.8. Can the roles of almost divisibility and almost unperforation be reversed 
in Theorem 5.5?

Theorem 5.5 above provides a partial answer to Question 3.11:

Theorem 5.9. Let θ1 : A1 → A2 and θ2 : A2 → B be pure ∗-homomorphisms. Then, there 
exists a Cu-morphism β such that the following diagram commutes

Cu(A1)
Cu(θ2θ1)

−⊗1

Cu(B)

Cu(A1) ⊗ Cu(Z)
β
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One also obtains the following proposition, which answers Question 3.11 completely 
when the initial domain has some extra assumptions and the codomain is of stable rank 
one. We believe that this result may be far more general, but new or tinkered techniques 
need to be developed in order to do so; see Question 5.11.

Proposition 5.10. Let A1 be a C∗-algebra, and let B be a unital C∗-algebra of stable rank 
one. Let θ1 : A1 → A2 and θ2 : A2 → B be unital, pure ∗-homomorphisms. Assume that 
A1 satisfies both of the following conditions:

(i) Cu(A1 ⊗Z) ∼= Cu(A1) ⊗ Cu(Z);
(ii) A1 ⊗ Z is an inductive limit of 1-dimensional NCCW complexes with trivial K1-

group.

Then, θ2θ1 factors, up to approximate unitary equivalence, through A1 ⊗Z.
In particular, this holds if A1 is a unital AF-algebra.

Proof. The induced composition of Cu-morphisms factorizes through Cu(A1) ⊗ Cu(Z)
by Theorem 5.5. By assumption, we have Cu(A1) ⊗ Cu(Z) ∼= Cu(A1 ⊗Z).

Since the C∗-algebra A1 ⊗Z is an inductive limit of 1-dimensional NCCW complexes 
with trivial K1-group, the result now follows from [19, Theorem 1.0.1].

We note that, if A1 is a unital AF-algebra, [2, Proposition 6.4.13] implies that 
Cu(A1) ⊗ Cu(Z) ∼= Cu(A1 ⊗ Z). Further, it is readily checked that condition (ii) also 
holds. �

Note that there are two obstructions to generalizing Proposition 5.10. First, the 
Cuntz semigroup tensor product does not generally behave well with its C∗-algebraic 
counterpart. For example, it is known that Cu(C[0, 1]) ⊗ Cu(Z) �∼= Cu(C[0, 1] ⊗ Z); 
see [2, Proposition 6.4.4]. Secondly, the only currently available result for lifting ∗-
homomorphisms is Robert’s [19, Theorem 1.0.1]. However, it is conceivable that such 
result can be generalized whenever A, B are sufficiently noncommutative (say, if A, B
are simple) and Cu(θ) maps every Cuntz class to a strongly soft class. The following 
question is related to the first of the two obstructions.

Question 5.11. Let A, B be C∗-algebras, and let ψ : Cu(A) ⊗ Cu(Z) → Cu(B) be a Cu-
morphism. When does there exist a Cu-morphism ρ : Cu(A ⊗ Z) → Cu(B) such that 
ψ([a] ⊗ 1) = ρ([a ⊗ 1])?

As shown by Winter in [31, Corollary 7.4], a separable, unital, simple, non-elementary 
C∗-algebra of locally finite nuclear dimension is pure if and only if it is Z-stable. In 
analogy to this result, one may ask:
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Question 5.12. Let A, B be C∗-algebras. Under which conditions on A and B does every 
pure ∗-homomorphism θ : A → B factor (in a suitable sense) through a Z-stable C∗-
algebra?

Restricting the codomain in Proposition 5.10 further, we obtain a first answer to 
Question 5.12.

Corollary 5.13. Let A be a unital AF-algebra, and let B be a unital C∗-algebra of stable 
rank one and with strict comparison. Let θ : A → B be a unital, pure ∗-homomorphism. 
Then, θ factors up to approximate unitary equivalence through A ⊗Z.

Remark 5.14. Following the ideas from Definition 3.2, one could also define other Cu-like 
notions for morphisms, such as algebraicity and (weak) (2, ω)-divisibility.

6. Soft and rational ∗-homomorphisms

In this last section we exploit Theorem 5.9 in two cases of interest: Pure maps with a 
soft image (Definition 6.6), and rational maps (Definition 6.1). These notions are meant 
to generalize tensorial absorption, at a Cuntz semigroup level, of the Jacelon-Razak 
algebra and UHF-algebras respectively. In contrast to Theorem 5.9, Cu-tensor products 
and C∗-tensor products of such algebras do behave nicely. This allows us to show that 
a composition of maps always factors (at the level of Cu) through A ⊗Mq and A ⊗W
respectively; see Theorems 6.3 and 6.10.

6.1. q-rational morphisms

Given a supernatural number q such that q = q2 and q �= 1, let Mq denote the UHF-
algebra associated to q. As shown in [2, Section 7.4], Cu(Mq) ∼= Kq � (0, ∞] where Kq

is the subset of Q+ formed by the elements of the form k
n with k, n coprime and n a 

divisor of q.
Adapting [2, Definition 7.4.6] to our setting, we define:

Definition 6.1. Let ϕ : S → T be a generalized Cu-morphism, and let q be a supernatural 
number as above. We will say that ϕ is q-rational if it is both

(i) q-divisible, that is, if for every x ∈ S and every finite divisor n of q there exists y ∈ T

such that ϕ(x) = ny.
(ii) q-unperforated, that is, if whenever nx ≤ ny, for some finite divisor n of q, one has 

ϕ(x) ≤ ϕ(y).

As shown in [2, Theorem 7.4.10], a Cu-semigroup S tensorially absorbs Cu(Mq) if and 
only if S is q-divisible and q-unperforated. Thus, examples of morphisms satisfying the 
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two conditions above include all morphisms whose domain or codomain absorbs Cu(Mq)
tensorially.

Proposition 6.2. Let q be a supernatural number such that q = q2 and q �= 1. Let ϕ1 : S1 →
S2 be a q-divisible (generalized) Cu-morphism and let ϕ2 : S2 → T be a q-unperforated 
(generalized) Cu-morphism. Then, there exists a (generalized) Cu-morphism γ : S1 ⊗
Cu(Mq) → T such that γ(x ⊗ 1) = ϕ2ϕ1(x).

Proof. We mimic the approach of [2, Theorem 7.4.10].
First, note that for every x ∈ S1 and every n divisor of q there exists a unique element 

ωn(x) ∈ ϕ2(S2) such that ωn(x) = ϕ2(z) where z is such that ϕ1(x) = nz.
Indeed, existence follows from q-divisibility of ϕ1, while uniqueness is given by ϕ2. 

Thus, we can define the map ωn : S1 → T as the assignment x �→ ωn(x). It is readily 
checked that ωn is a (generalized) Cu-morphism whenever ϕ1 and ϕ2 are.

Further, it follows from Theorem 5.5 that there exists a (generalized) Cu-bimorphism 
α : S1×Z → T such that α(x, 1) = ϕ2ϕ1(x). Now, define a (generalized) Cu-bimorphism 
αq : S1 × (Kq � (0, ∞]) → T as follows: Given t ∈ (0, ∞], simply set αq(x, t) := α(x, t). 
Else, if t = k

n for some (unique) coprime pair k, n with n a divisor of q, set αq(x, t) :=
kωn(x). By construction, αq(·, t) is a generalized Cu-morphism.

A proof analoguous to that of Lemma 5.1 shows that αq(x, ·) is a generalized Cu-
morphism if and only if αq(x, ·)|(0,∞] is a generalized Cu-morphism and αq(x, σ( 1

n )) ≤
αq(x, 1n ) ≤ αq(x, σ( 1

n ) + ε) for every ε > 0 and any n dividing q. Note that the first 
condition is satisfied by construction of α, while the second condition is readily checked 
after a careful examination of αq. Thus, [2, Theorem 6.3.3 (1)] implies the existence of 
the map γ with the required properties. �

We know from [2, Proposition 7.6.3] that Cu(A ⊗ Mq) ∼= Cu(A) ⊗ Cu(Mq) always. 
Thus, one gets the following result, where ∗-homomorphism and Cu-morphism can be 
changed to cpc order-zero map and generalized Cu-morphism respectively.

Theorem 6.3. Let θ1 : A1 → A2 and θ2 : A2 → B be ∗-homomorphisms. Assume that θ1 is 
q-divisible and that θ2 is q-unperforated. Then, there exists a Cu-morphism β : Cu(A ⊗
Mq) → Cu(B) such that Cu(θ2θ1)[a] = β([a ⊗ 1]) for each [a] ∈ Cu(A).

Applying Robert’s classification result ([19, Theorem 1.0.1]), one obtains:

Corollary 6.4. Retain the above assumptions. Assume that A1 is a unital C∗-algebra 
stably isomorphic to an inductive limit of 1-dimensional NCCW-complexes with trivial 
K1-group, that B is unital and of stable rank one, and that θ1 and θ2 are unital. Then, 
θ2θ1 factors, up to approximate unitary equivalence, through A ⊗Mq.
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6.2. Soft maps

Recall that the Cuntz semigroup of the Jacelon-Razak algebra W is isomorphic to the 
monoid [0, ∞]. As shown in [2, Theorem 7.5.4], every element in a pure Cu-semigroup S
is strongly soft (see Paragraph 6.5 below) if and only if S ∼= S ⊗ Cu(W). We show the 
analogue of Theorem 5.5 in Theorem 6.9.

6.5 (Soft elements and strongly soft Cuntz classes). Let S be a Cu-semigroup, and let 
x ∈ S. Recall from [28, Definition 4.3, Proposition 4.14] that x is strongly soft if, for any 
x′ ∈ S such that x′ � x, there exists t ∈ S such that x′ + t ≤ x ≤ ∞t. Making an abuse 
of notation, the set of strongly soft elements is usually denoted by Ssoft.

Let A be a stable C∗-algebra. Under the presence of sufficient non-commutativity on 
A (for example, if A has the Global Glimm Property), a positive element a ∈ A+ has a 
strongly soft Cuntz class if and only if a is Cuntz equivalent to a soft element, that is, 
an element b ∈ A+ such that no nontrivial quotient of bAb is unital; this equivalence is 
proved in [4, Corollary 3.4].

Definition 6.6. Let ϕ : S → T be a generalized Cu-morphism. We will say that ϕ is soft
if ϕ(S) ⊆ Tsoft.

Further, ϕ will be said to have Cu(W)-multiplication if it is soft and has Cu(Z)-
multiplication.

Remark 6.7.

(1) Let θ : A → B be a ∗-homomorphism between stable C∗-algebras, and assume that 
B satisfies the Global Glimm Property. Then, Cu(θ) has Cu(W)-multiplication if 
and only if θ is pure and θ(a) is Cuntz equivalent to a soft element for every a ∈ A+.

(2) Note the analogue statements of Lemma 4.3 and Propositions 4.1, 4.2 and 4.6 also 
work with Cu(W)-multiplication instead of Cu(Z)-multiplication.

Example 6.8. By (the analogue of) Proposition 4.2, any ∗-homomorphism A → B that 
factorizes through A ⊗W induces a Cu-morphism with Cu(W)-multiplication.

As noted in [14, Remark 3.21], the infinite repeat φ ⊗ 1M(K) : A → M(B ⊗K) of any 
∗-homomorphism of the form A → M(B) factorizes through M(B) ⊗O2.

Since every O2-stable C∗-algebra is purely infinite by [17, Theorem 5.11], its Cuntz 
semigroup has {0, ∞}-multiplication and, also, [0, ∞]-multiplication. Thus, it follows 
that Cu(φ ⊗ 1M(K)) always has Cu(W)-multiplication regardless of our choice of A and 
B.

Theorem 6.9. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be (generalized) Cu-morphisms. Assume 
that ϕ1 is soft and almost divisible, and that ϕ2 is almost unperforated. Then, there exists 
a (generalized) Cu-morphism γ : S1 ⊗ [0, ∞] → T such that γ(x⊗ 1) = ϕ2ϕ1(x).
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Proof. Let β : S1 ⊗Z → T be the map constructed in Theorem 5.5, and denote by γ the 
restriction of β to (S ⊗ Z)soft ∼= S ⊗ [0, ∞].

Let x ∈ S1 and take x′ ∈ S1 such that x′ � x. Then, since ϕ1(x) is soft, there 
exists n ∈ N such that (n + 1)ϕ1(x′) ≤ nϕ1(x); see, for example, [28, Proposition 4.6]. 
This implies that ϕ1(x′) ∈ μ((n, n + 1), 0, ϕ1(x)) and, in particular, that ϕ2ϕ1(x′) ∈
Φ(1, ϕ1(x)). Thus, one has ϕ2ϕ1(x′) ≤ γ(x ⊗ 1) for every x′. Consequently, ϕ2ϕ1(x) ≤
γ(x ⊗ 1). Further, note that one gets

γ(x⊗ 1) = β(x⊗ 1Zsoft) ≤ β(x⊗ 1Z) = ϕ2ϕ1(x),

that is, γ(x ⊗ 1) = ϕ2ϕ1(x), as desired. �
Combining [20, Theorem 5.1.2] and [2, Proposition 7.6.3], one has that Cu(A ⊗W) ∼=

Cu(A) ⊗ [0, ∞]; hence, we obtain the following result.

Theorem 6.10. Let θ1 : A1 → A2 be a soft and pure ∗-homomorphism, and let θ2 : A2 → B

be a pure ∗-homomorphism. Then, there exists a Cu-morphism β : Cu(A ⊗W) → Cu(B)
such that Cu(θ2θ1)[a] = β([a ⊗ 1]) for each [a] ∈ Cu(A).
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