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A B S T R A C T

The rheological behavior of complex fluids, including thixotropy, viscoelasticity, and viscoplasticity, poses
significant challenges in both measurement and prediction due to the transient nature of their stress responses.
This study introduces an artificial neural network (ANN) designed to digitally characterize the rheology of
complex fluids with unprecedented accuracy. By employing a data-driven approach, the ANN is trained using
transient rheological tests with step inputs of shear rate. Once trained, the network adeptly captures the
intricate dependencies of rheological properties on time and shear, enabling rapid and accurate predictions of
various rheological tests. In contrast, traditional phenomenological structural kinetic constitutive models often
fail to accurately describe the evolution of nonlinear rheological properties, particularly as material complexity
increases. The ANN demonstrates high flexibility, reliability and robustness by accurately predicting transient
rheology of varied materials with different shear histories. Our findings illustrate that ANNs can not only
complement and validate traditional rheological characterization methods but also potentially replace them,
thereby paving the way for more efficient material development and testing.
1. Introduction

Robust and reliable prediction of rheological properties of soft
matter is essential for its production, processing and utility in var-
ious applications (Salehi et al., 2023; Tucker, 2017; Mishra et al.,
2022). One of the greatest challenges in this respect arises from a
time-dependent complex material structure imparting transient charac-
teristics to the material. In particular, thixotropy is a topic of ongoing
substantial interest (Bhattacharyya et al., 2023; Choi et al., 2021), with
many fundamental challenges on understanding the nature thereof still
remaining. In thixotropic fluids, structural agglomerates can be broken
down by the application of a shear stress/shear rate for finite amount of
time. After the cessation of shear, the microstructure will intrinsically
tend towards its thermodynamic equilibrium state under the influence
of rotational Brownian motion, resulting in microstructural recovery.
While shear-induced structural breakdown can be achieved within
very short timescales, for thixotropic fluids complete microstructural
recovery happens over an extensive timescale (at rest), i.e. several
hours, and therefore beyond the timescale of most rheological/flow
experiments (Nijenhuis et al., 2007). In most cases, thixotropy mani-
fests itself along with yield stress and both properties originate from
the same basic physics (Møller et al., 2006). Yield stress is the critical
stress required to induce viscoplastic deformation or flow. For simple
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yield stress fluids there is only a shear rate dependency which makes
it easier to find a sharp yield stress point. Whereas, for thixotropic
yield stress fluids, there is an additional time dependency, making it
difficult to measure yield stress and obtain repeatable results (Bauer
and Collins, 1967; Barnes, 1997; Mewis and Wagner, 2009). Further-
more, most complex fluids are viscoelastic, exhibiting both elastic and
viscous behavior under deformation. The amalgamation of non-linear
and transient material properties make the study, testing and prediction
of time dependent materials challenging.

Numerous structural kinetic models (SKMs) have been proposed to
model the transient behavior of thixo-elasto-viscoplastic (TEVP) soft
matter (Mewis and Wagner, 2009; Toorman, 1997; Dullaert and Mewis,
2006; Pinder, 1964; Bénézech and Maingonnat, 1993). SKMs consist
of kinetic equations that model the time dependency of the structure
of the fluid and an equation of state that relates the structural evolu-
tion to the shear stress or viscosity. As material complexity increases,
higher number of model parameters are required to predict rheological
properties. Conventional curve fitting and modeling approaches to
obtain model parameters are time consuming and become increasingly
difficult when dealing with models such as the IKH (Wei et al., 2018)
and ML-IKH (Dimitriou and McKinley, 2014), which contain up to
https://doi.org/10.1016/j.engappai.2024.109598
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13 parameters, only some of which can be determined from experi-
ents while others need to be extracted from curve fitting to different

heological experiments (Larson and Wei, 2019).
Artificial neural network (ANN) architectures have exponentially

mproved predictive capabilities across various scientific disciplines
(Taherdoost, 2023; Abdelsalam et al., 2024b,a, 2025; Ghania et al.,
2024). ANN assisted rheological characterization has great potential
for process optimization, quality control, or material design in in-
dustrial applications. The use of ANN models to predict rheology
has been of great interest recently. Mahmoudabadbozchelou et al.
used a physics-informed neural network (PINN) to predict viscoelastic
rheological properties of fumed silica suspension using the Maxwell-
IKH model (Mahmoudabadbozchelou et al., 2022). In another study
by the same group, ANN was used to construct a constitutive
mathematical model from scratch using a data driven approach
(Mahmoudabadbozchelou et al., 2024). Similarly, a few other stud-
ies have used SKMs and data driven approaches to predict complex
rheological properties using neural networks (Nagrani et al., 2023;
Mahmoudabadbozchelou and Jamali, 2021; Zhang et al., 2023). When
ealing with transient material behavior, traditional constitutive mod-
ls face substantial challenges, particularly as material complexity
rows and introduces non-monotonic effects on transient data. ANN
resent a promising approach to address these complexities, offer-
ng unprecedented predictive accuracy and robustness in modeling
ntricate material behaviors. PINNs integrate governing physical laws
nto the training process, enhancing prediction realism and ensuring
dherence to fundamental principles. However, they can be complex
o implement, requiring substantial computational resources and exten-
ive hyperparameter tuning. In contrast, data-driven neural networks
ffer flexibility and robustness, relying solely on available data for
attern learning. This approach excels with rich datasets and is easier to
mplement, though it faces challenges like overfitting and data quality
ependence. Given the context of this research, the choice of a data-
riven approach is justified by the availability of extensive datasets and
he need for adaptable models.

When it comes to predicting the next value in a time series, ANN
models must make single-step-ahead predictions without allowing the
anticipated value to influence the input regressor. However, for more
complex, long-term predictions, the output must be fed back into
he input regressor for a set number of time steps. As a result, the
nput regressor gradually shifts from containing actual sample points
o incorporating previously predicted values (Menezes and Barreto,

2008). As the prediction horizon extends towards infinity, a time series
model is required to estimate future values of the input regressor.
Eventually, the input regressor comprises solely estimated values of
the time series, thereby transforming the multi-step-ahead prediction
ask into a dynamic modeling endeavor. This transition necessitates

the use of advanced modeling techniques to achieve accurate pre-
dictions (Menezes and Barreto, 2008). It is widely recognized that
he tasks of multi-step-ahead prediction and dynamic modeling en-
ail markedly greater complexity compared to their single-step-ahead

prediction counterparts. Recurrent neural architectures, in particular,
have been shown to be heavily relied upon in the context of these
tasks. The utilization of recurrence architectures has been widely dis-
cussed in the literature, particularly in the context of training these
rchitectures using temporal gradient-based variations of the backprop-

agation algorithm (Pearlmutter, 1995). The task of mastering temporal
ependencies across extended intervals in input–output signals can

present significant challenges when utilizing gradient-based learning al-
gorithms. It has been previously shown that the utilization of gradient-
descent methodologies for acquiring prolonged temporal dependencies
proves to be more effective in a specific category of simple recurrent
network model called Nonlinear Autoregressive with eXogenous input
(NARX), as compared to traditional recurrent models (Menezes and

arreto, 2008; Lin et al., 1998).
2 
In this study, we demonstrate the capabilities of NARX ANN to pre-
dict the non-monotonic, transient rheological behavior of TEVP fluids.
We use yogurt as a test fluid, which along with other food products
constitute some of the most difficult material responses to measure and
predict (Amini et al., 2024; Ramaswamy and Basak, 1991; Prajapati
et al., 2016; Benezech and Maingonnat, 1994; Abu-Jdayil and Mo-
hameed, 2002). It is made through a fermentation process that involves
milk, specific types of bacteria and a significant number of volatile
compounds during fermentation (Chen et al., 2017). The aggregation
of caesin and formation of a three dimensional (percolated) denatured
(low pH) protein structure imparts TEVP rheological functions to the

aterial. We show that a data-driven ANN model that does not rely on
onstitutive rheological equations (e.g. SKMs), trained on a transient
heological experiment, is capable of predicting TEVP properties of the
aterial. The predictive accuracy of the ANN surpasses all SKMs and

east-squared curve fitting methods in forecasting transient rheological
roperties. The ANN gains temporal context by training on data from a
imple step change in shear rate test, learning the intricate dependence
f transient shear stress response on shear history. While constitutive
odels with numerous fit parameters are difficult to fit and imple-
ent as non-unique combinations of model constants can satisfy the

it, the data-driven ANN approach enables quick and accurate digital
rheological characterization of complex fluids once trained on transient
ests.

2. Materials and experimental procedures

2.1. Materials

Three types of yogurt samples, a standard stirred yogurt, a stirred
yogurt containing flavor additives and a yogurt produced by fermenta-
ion using a different bacteria culture (Boosjin et al., 2016) and with

higher fat content were investigated (see Table S1 in supplementary
information). The yogurts chosen for this study (Arla Foods, Viby,
Denmark) are Naturell, Vanilj, and Långfil, designated as N, V, and
L respectively in this paper. These are typical varieties found in the
Swedish and Danish markets. Samples were purchased off-the-shelf and
stored at 2 ◦C. Newly bought samples were used for all experiments,
well within their expiry dates to ensure their freshness and reduce
measurement errors due to bacterial growth.

2.2. Rheological characterization

Rheological measurements were performed on an Anton Paar
CR702e Space rheometer (Graz, Austria) using a profiled bob and cup
easuring geometry (CC27/P6), inner diameter of cup being 29 mm

nd outer diameter of bob being 27 mm. The measurements were
erformed in single motor-transducer configuration. The C-ETD 200/XL
ccessory was used to maintain the measuring temperature constant at
3 ◦C. The yogurt samples were removed from the refrigerator 30 min
efore each measurement to allow the sample to naturally warm up
o the room temperature (23 ◦C). For each measurement, 20 ml of
he sample was gently poured into the measuring cup and the bob
as slowly moved down to the measuring position to avoid unwanted

tructure break-up. The sample was then allowed to rest for 5 min
efore starting the experiments.

A step change in shear rate experiment, also known as Multi Interval
Thixotropy (MITT) test, consist of successive shear rate step inputs
and captures structural breakdown and recovery in response to sudden
changes in shear levels. 8 arbitrary intervals of 120 s each, with
different input shear rates were applied and the resulting shear stress
response was measured. The input shear rates were chosen in such
a way that the corresponding shear stresses were above and below
the yield stress of the material. This was necessary to capture both
structural breakdown and buildup of the sample. After preliminary
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tests, MITT data was used to train the neural network and fit the SKMs
to extract model parameters.

To measure thixotropy, hysteresis loop tests were performed. A
hear rate ramp up in the range of 𝛾̇ ∈ [100, 103] s−1 and subsequent
amp down from [103, 100] s−1 was imposed, with a constant time

step size of 120 s for each shear rate step. The hysteresis loop tests
were performed in triplicates to minimize measurement errors and
nsure repeatability. Oscillatory shear strain sweep measurements were
erformed to assess viscoelasticity of the test samples. Dynamic moduli
𝐺′ and 𝐺′′) were measured in strain sweep tests in the strain amplitude
ange of 𝛾0 ∈ [10−2, 102]% at a constant angular frequency of 6 rad/s.
tress controlled steady shear tests were performed to determine static
ield stress (𝜎𝑦). Shear stress ramp between 𝜎 ∈ [100, 102] Pa was
mposed and shear viscosity (𝜂) was measured. When applied stress
xceeds the yield stress of the material, viscosity decreases as the ma-
erial transitions from elastic to plastic deformation and subsequently

starts to flow. Intersection of tangents drawn on the two slopes gives
𝜎𝑦. The yield stress range was measured with creep tests, wherein the
transient shear viscosity (𝜂+) evolves as function of time and imposed
constant shear stress. When a stress greater than the yield stress of the
material is applied, the structure breaks down, causing a decrease in 𝜂+.
When the applied stress is smaller than the yield stress of the material,
structural recovery results in an increase of 𝜂+. However, when the
imposed stress is within the yield stress range of the material, structural
breakdown and recovery compete and 𝜂+ fluctuates before achieving
steady or quasi-steady state. Creep tests reveal structural dynamics of
the fluid and are also used to estimate the time required to achieve
steady state (Coussot et al., 2002b).

2.2.1. Morphological characterization
The morphology of yogurts was analyzed using a Phillips XL-

30 (Amsterdam, Netherlands) environmental scanning electron micro-
cope (ESEM). To probe the structural dynamics of yogurt, samples
ere extracted from the cup geometry with a spatula and the sample

morphology was arrested at given experimental times using liquid
nitrogen, followed by freeze-drying for 72 h. A small piece of freeze-
dried sample was mounted onto a stub covered with carbon tape.
The sample was then sprayed with 5 nm gold in a vacuum sputter to
enhance conductivity and reduce electrostatic discharging. SEM images
were further analyzed using Fiji (Schindelin et al., 2012) to evaluate
the yogurts’ network connectivity. The images were first binarized and
hen processed using the Skeletonize plugin to reduce the binary images
nto network maps through surface/axis thinning algorithms (Lee et al.,

1994).

2.3. Structural kinetic modeling

Three different SKMs are considered for comparative analysis. To
model the thixotropy of a material, a structural parameter, 𝜆(𝑡), is
ntroduced in the formulation of viscosity through an equation of state
EOS). 𝜆(𝑡) varies from 0 to 1 and quantifies the level of structure

present in the material: 𝜆(𝑡) = 0 represents complete breakdown of
the structure and 𝜆(𝑡) = 1 represents complete buildup. The time
dependence of the structural parameter is then given by a kinetic or
ate equation. A large variety of EOSs of varying complexity have
een proposed in the scientific literature (Mewis and Wagner, 2009;

Mujumdar et al., 2002). Based on heuristic arguments (Fazilati et al.,
2021), we chose an EOS of the form

𝜂(𝜆(𝑡), 𝛾̇) = [𝐾1 +𝐾2𝜆(𝑡)]𝛾̇𝑚−1 (1)

coupled to a generalized kinetic equation of the form
𝑑 𝜆(𝑡)
𝑑 𝑡 = 𝑘1𝛾̇

𝑎𝜆(𝑡)𝑏
⏟⏞⏞⏟⏞⏞⏟
Breakdown

+ 𝑘2𝛾̇
𝑐 (1 − 𝜆(𝑡))𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Buildup

. (2)

𝐾1, 𝐾2, the power law index 𝑚 in Eq. (1) and 𝑘1, 𝑘2 in Eq. (2) are model
coefficients to be determined. The EOS considers the instantaneous
3 
Table 1
Summary of SKMs consisting of an equation of state and kinetic equation used in the
study. The generalized form of the kinetic equation can be found in Eq. (2).

Equation of State
(EOS)

Author & Indices, Eq.
(2)

Kinetic equation

𝜎 = [𝐾1 +𝐾2𝜆(𝑡)]𝛾̇𝑚

Mujumdar et al. (2002)
𝑎 = 1, 𝑏 = 1, 𝑐 = 0, 𝑑 = 1

𝑑 𝜆(𝑡)
𝑑 𝑡 = −𝑘1 𝛾̇ 𝜆(𝑡) + 𝑘2[1 − 𝜆(𝑡)]

Worrall and Tuliani
(1964)
𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0

𝑑 𝜆(𝑡)
𝑑 𝑡 = −𝑘1 𝛾̇ 𝜆(𝑡) + 𝑘2 𝛾̇

Coussot et al. (2002a)
𝑎 = 1, 𝑏 = 1, 𝑐 = 0, 𝑑 = 0

𝑑 𝜆(𝑡)
𝑑 𝑡 = −𝑘1 𝛾̇ 𝜆(𝑡) + 𝑘2

shear rate dependence of the viscosity through a power law component
and thixotropic effects through the structural parameter. Alternatively,
Eq. (1) can be expressed in terms of the shear stress,

𝜎(𝜆(𝑡), 𝛾̇) = [𝐾1 +𝐾2𝜆(𝑡)]𝛾̇𝑚 (3)

Structural breakdown in Eq. (2) is represented by the first term on the
ight hand side and the structural buildup by the second term. Indices
, 𝑏, 𝑐 and 𝑑, essentially define the three kinetic equations investigated
n this study, i.e. by Mujumdar et al. (2002), Worrall and Tuliani

(1964) and Coussot et al. (2002b), see the overview in Table 1.
Using a custom MATLAB code for curve fitting the SKMs, the least

squared error between experimental and simulated shear stress re-
sponse was minimized to extract the values of the model parameters 𝑘1,
𝑘2, 𝐾1, 𝐾2 and 𝑚. The EOS and kinetic equation were simultaneously
olved to obtain the shear stress. Thereafter, the complete model with
ts fitted coefficients was used to predict other rheological curves.

2.4. NARX neural network

The NARX neural network is a dynamic neural structure that has
been widely used for input–output modeling of deterministic non-
linear dynamic systems. When applied to the prediction of time series
ata, the NARX network is typically designed as a Feed Forward Time
elay Neural Network (TDNN). A simplified structure of the NARX
NN is presented in Fig. 1. The NARX model can be mathematically

represented as follows-

𝑦̂(𝑡) = 𝑓 [𝑢(𝑡), 𝑢(𝑡 − 1),… , 𝑢(𝑡 − 𝑛𝑢), 𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦)] + 𝑒𝑡 (4)

The model consists of target and predicted variables, 𝑦(𝑡) and 𝑦̂(𝑡)
respectively. The model prediction of the next value of 𝑦̂(𝑡) is regressed
on its previous value and an exogenous input variable, 𝑢(𝑡). 𝑛𝑢 and 𝑛𝑦
are the time delays (𝐷) of the input and output variables and 𝑒(𝑡) is the
error between the predicted and target values. The hidden layer output
at time 𝑡 is 𝐻𝑖(𝑡) and is given by the hidden layer activation function
1(⋅)-

𝐻𝑖(𝑡) = 𝑓1

[ 𝑛𝑢
∑

𝑟=0
𝑤𝑖𝑟𝑢(𝑡 − 𝑟) +

∑

𝑙=1
𝑛𝑦𝑤𝑖𝑙𝑦(𝑡 − 𝑙) + 𝑎𝑖

]

(5)

where 𝑤𝑖𝑟 is the weight of the connection between the input neuron
(𝑡− 𝑟) and the 𝑖th hidden neuron. Whereas, 𝑤𝑖𝑙 is the weight between

the 𝑖th hidden neuron and the output feedback neuron 𝑦(𝑡− 𝑙). 𝑎𝑖 is the
ias of the 𝑖th hidden layer.

The hidden layer output is then used to obtain the final prediction

𝑦𝑗 (𝑡) = 𝑓2

[ 𝑛ℎ
∑

𝑖=1
𝑤𝑗 𝑖𝐻𝑖(𝑡) + 𝑏𝑗

]

(6)

where 𝑓2(⋅) is the output layer activation function, 𝑤𝑗 𝑖 is the weight of
the connection between the 𝑖th hidden neuron and the 𝑗th predicted
value, 𝑏𝑗 is the bias and 𝑛ℎ is the number of hidden neurons.

In this study, the input signal of the neural network is the time
series of shear rate (𝛾̇(𝑡)) imposed in rheological measurements, and
the output signal, also used as feedback, is the time series of shear
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Fig. 1. NARX neural network architecture.
stress (𝜎(𝑡)). The ‘narxnet’ function was used for constructing the neural
network architecture in MATLAB. The ‘tonndata’ function is employed
to transform the time series data into a format that is suitable for
training neural networks. Selecting an appropriate training function
is a pivotal decision in neural network modeling. In this study, we
explored different training functions including Levenberg–Marquardt
and Scaled Conjugate Gradient backpropagation. However, after careful
consideration, we opted for Bayesian regularization as it demonstrated
superior performance. By incorporating the previous values of both
input and feedback variables, the network gains temporal context that
is crucial for ensuring accurate prediction. Input and feedback delays
of 1:2 were used, i.e. the neural network model takes into account
the shear rates and shear stresses, respectively, in the previous two
time steps to predict the shear stress response. This approach enables
the neural network to leverage temporal dependencies and incorporate
historical information to make more accurate predictions. The hidden
layer consists of 10 neurons, which allows for a degree of complex-
ity in the model that is capable of detecting and capturing intricate
patterns in the data. The hidden layer size influences the network’s
predictive accuracy, which reaches steady state for hidden layer size of
10. Increasing the hidden layer size further may result in overfitting.
Furthermore, we employ the open loop architecture which allows the
neural network to incorporate an external input.

In order to effectively train a neural network model, a relatively
large time series dataset is required that can capture the entire dy-
namics of the material. To this end, we trained the model with Multi
Interval Thixotropic Test (MITT) experimental data, 70% of which was
used for training, and 15% each for validation and testing purposes. It
should be noted that special consideration was given to maintaining the
temporal sequence of the samples during the partitioning process. This
approach ensures that the neural network is trained using a diverse yet
representative subset of the data, thereby improving its generalization
capabilities.

After conducting necessary training and testing on MITT data, the
neural network was subjected to input shear rate time series data from
various rheological tests. The new data was formatted in a manner that
aligned with the input and output requirements of the trained neural
network, with the aid of the ‘preparets’ function. This function factors
in any pre-processing steps applied during training. The trained neural
network was then used to predict the shear stress based on new input
shear rate data.

3. Results and discussion

As a product of bacterial culture, yogurt undergoes continuous
microstructural evolution that imparts transient rheological properties
to the material. This gives rise to thixotropy and influences viscoelastic
and viscoplastic properties. First, we detail the training of NARX net-
work and the fitting of SKMs to experimental MITT data (Section 3.1).
4 
The calibrated neural network is subsequently used to predict various
rheological behaviors: (i) thixotropy, assessed via hysteresis loop tests
(Section 3.2), (ii) viscoelasticity, analyzed through oscillatory stress re-
sponse and dynamic moduli in strain sweep tests (Section 3.3), and (iii)
viscoplastic behavior, evaluated using steady shear viscosity and creep
tests to measure yield stress and yielding dynamics (Section 3.4). SKM
predictions of the rheological functions are presented for comparison
in each section. Finally, we discuss the applicability of the ANN in
predicting the rheology of other time dependent complex fluids in with
different shear histories.

3.1. Model training/fitting with MITT

The SKMs can be analytically solved to obtain 𝜆 as a function of
applied shear rate and time. The analytical solutions of SKMs I, II and
III are presented in Eqs. (7)–(9) respectively.

• SKM I:
𝜆𝑖+1 =

𝑘2
−𝑘1𝛾̇ 𝑖 + 𝑘2

+
(

𝜆𝑖 −
𝑘2

−𝑘1𝛾̇ 𝑖 + 𝑘2

)

𝑒−𝛥𝑡(−𝑘1 𝛾̇ 𝑖+𝑘2) (7)

• SKM II:
𝜆𝑖+1 =

−𝑘1𝜆𝑖 + 𝑘2
−𝑘1

𝑒(−𝑘1 𝛾̇ 𝛥𝑡) + 𝑘2
𝑘1

(8)

• SKM III:
𝜆𝑖+1 =

−𝑘1𝜆𝑖𝛾̇ + 𝑘2
−𝑘1𝛾̇

𝑒(−𝑘1 𝛾̇ 𝛥𝑡) + 𝑘2
𝑘1𝛾̇

(9)

The formulation of 𝜆 takes into account the effect of shear history
on the instantaneous structure of the material. The decay term in
the analytical solutions of the SKMs, helps reduce the instantaneous
structure 𝜆𝑖+1 as the shear rate and/or the shearing time increases.
Structural breakdown caused by increasing the shearing time at a
constant shear rate as well as jumping to a higher shear rate, can be
captured through such a formulation. See Eq. S1 in the supplementary
material for the general form of the kinetic equation used in SKMs.

Model coefficients of the SKMs were determined by minimizing the
least squared error between the predicted and experimental stress re-
sponse, using a custom curve fitting MATLAB code. All models consid-
ered have multiple coefficients to be determined. This makes guessing
an initial value of each of these coefficients extremely difficult. It was
observed that the fitting quality significantly varies with the choice
of initial values of the model coefficients. Therefore, Latin Hypercube
Samping (LHS) technique was used, which is a statistical tool that gen-
erates random combination of initial values within a pre-determined
range. The number of samplings to be generated can be controlled, with
the only bottleneck being the computational effort and time, which
increases with increased number of samplings. This approach ensures



A.A. Mishra et al. Engineering Applications of Artiϧcial Intelligence 139 (2025) 109598 
Fig. 2. Multi-Interval Thixotropic Test (MITT) results of the 3 samples. Circular symbols show the transient stress response measured in experiments and lines show the model
fits. 𝛾̇ imposed in each interval is highlighted at the top of the figure.
that most initial value combinations are explored. Initial value of the
structural parameter, 𝜆0 was chosen to be 0.5 (Fazilati et al., 2021).

Multi-interval thixotropic test (MITT) reveals the material’s tran-
sient stress response to step-wise changes in shear rate, Fig. 2 (Yılmaz
et al., 2016; Toker et al., 2015). MITT mimics a shear history more
relevant to processing/transport applications in industries, with sudden
changes in imposed shear. When the applied stress is above the yield
stress, the structure breaks down and results in a decrease in transient
stress response with time. For intervals I, II, IV, VI and VIII a decrease
in stress can be observed, indicating structural breakdown. Whereas,
when shear rates corresponding to shear stresses below the yield stress
of the material are applied in intervals III, V and VII, an increase in
shear stress response can be observed, indicating structural recovery.
Each interval lasts 120 s. For most cases, the stress response plateaus
within 120 s of the application of the shear rate. However, in certain
intervals e.g. interval V, the stress first increases as a result of the struc-
tural recovery before eventually decaying with time. This fluctuation of
stress occurs when the imposed shear rate corresponds to a stress in the
yield stress range of the material.

The NARX neural network fits the stress response with an accuracy
of 98% and captures even minor fluctuations, such as in interval V.
We note that the NARX model predicts the instantaneous jump in
stress at the beginning of a new interval, where the microstructural
5 
change is maximum, with great accuracy. In comparison, the three
SKMs perform poorly in predicting the stress response. While SKM I
qualitatively captures the stress decay in the intervals above the yield
stress range, all the SKMs fail to predict stress recovery in intervals
below the yield stress. The response of material structure at different
length scales to small stresses below the yield stress is highly transient
and non-monotonic, which makes it difficult to capture with simple
SKMs. Especially in the stress recovery intervals, the relative error in
the SKM predictions is around 100%. Comparison of fitting errors in
each individual interval for all the models can be found in Fig. S1
(supplementary information).

3.2. Thixotropy

Thixotropy can be quantified by calculating the hysteresis loop area
in shear rate controlled steady shear test. Samples N and V exhibit
similar levels of thixotropy (Fig. 3), with their hysteresis loop areas
being 92.63 k Pa s−1 and 120.61 k Pa s−1 respectively. Sample L is much
more thixotropic, with a hysteresis loop area of 235.23 k Pa s−1. We
note that in Fig. 3, filled symbols are used to represent ramp up in
shear rate and hollow symbols for ramp down. When the shear rate is
ramped up, a non-linear increase in the stress can be observed (Fig. 3,
left column) in the form typical of shear thinning fluids, as also seen
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Fig. 3. Figures comparing experimental and predicted hysteresis loops, represented as (left column) shear rate dependent shear stress and (right column) time dependent stress
and transient viscosity evolution: (a)–(b) N, (c)–(d) V and (e)–(f) L. Labels A,B,C correspond to the labels in Fig. 4. Black lines and colored dotted lines shows the NARX network
and SKMs’ predictions respectively.
in viscosity functions in Fig. 3 (right column, lower curves). During the
ramp down in shear rate, the stress drops non-linearly, while recording
lower values than the ramp up curve. The material undergoes more
severe structural breakdown as the difference between the shear stress
recorded in ramp up and down curves at a constant shear rate increases.
While for N the flow curves in ramp up and down cycles do not
6 
exhibit striking non-monotonic features, Fig. 3(a), the hysteresis loop
of V shows a pronounced initial overshoot of stress at lower shear
rates, 𝜎 ∈ (2, 20), Fig. 3(c). The stress overshoot is caused due to
the breakdown of initial structure after startup, dominating the time
evolution of stress (Mewis and Wagner, 2009), and also due to elastic
effects (Serial et al., 2021). At high shear rates, the overshoot levels off
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Fig. 4. SEM micrographs for N, V and L yogurt samples, captured at different shear levels in a hysteresis loop test. A: Unsheared sample, B: Sample sheared by ramp up from
100–103 s−1, C: Sample obtained after completion of hysteresis loop tests.
and stresses close to sample N were recorded. In contrast to both N and
V, a relatively large thixotropic loop was obtained for sample L. Stresses
at the end of the measurement are almost 8 Pa lower than the initial
stress level, suggesting more severe structural breakdown compared to
N and V, which show a drop of 2–4 Pa in the end. Factors influencing
the recovery of L include increased fat content that impede structural
network recovery, and increased bacterial activity resulting from the
two bacterial cultures used.

Results of numerical modeling comparing the hysteresis loop pre-
dictions of the NARX neural network and the SKMs are summarized in
Fig. 3 (left column). The fitted model parameters of the SKMs can be
found in Table S2 in supplementary information. The neural network
predicts the thixotropic behavior in hysteresis loop test with an average
relative error of 8%. However, for most shear rates the error is less
than 2%, and the prediction suffers only towards the end of the test
as the input regressor gets filled with estimated values of the time
series. In comparison, only SKM I can capture the overall shape of
the hysteresis loop for samples N and V, albeit having much higher
prediction errors of around 74%. Both SKMs II and III qualitatively
predict a stress overshoot at low shear rates, as observed in sample V.
However, they fall short in magnitude. In the case of sample L, where
structural breakdown dominates due to higher thixotropy, the SKMs
completely fail to predict the transient stress response of the material.
Moreover, the superior predictive capabilities of the NARX model is
highlighted when the non-monotonic stress response is plotted as a time
series in Fig. 3 (right column). A comparison between NARX and SKM
prediction errors can be found in Fig. S2, supplementary information.

We briefly emphasize the effectiveness of the ANN in capturing
thixotropic effects by a microstructural analysis highlighting the tran-
sient structural evolution. The microstructure of thixotropic materials
evolves with time and shear rate, influencing stress response and
introducing shear history dependence. Microstructural changes due to
thixotropy were analyzed at three shear history levels during hysteresis
7 
loop tests. For each yogurt sample, SEM images were taken of un-
sheared samples (points A in Fig. 3), samples sheared from 𝛾̇ = 100–103
s−1 (points B in Fig. 3), and samples after completing a full hysteresis
cycle (points C in Fig. 3). Image analysis was performed to quantify
structural interconnectivity by calculating the number of structural
branches (Fig. 4, circular insets). Unsheared samples displayed an
intricate protein and casein network (Fig. 4(A)). Shearing increased
the number of branches by 100%, 120%, and 1000% for samples N,
V, and L respectively. At the end of the hysteresis test, branch counts
decreased as the structure partially recovered, forming larger branches
from smaller ones, reducing branch numbers to 63%, 80%, and 50% of
the initial counts for samples N, V, and L, respectively. The structure
did not fully recover to its original state due to thixotropic effects,
explaining the shear stress drop at the end of the hysteresis loop test
(Fig. 3(a)–(c)).

3.3. Viscoelasticity

In order to predict oscillatory shear data, which is commonly plotted
as storage (𝐺′) and loss (𝐺′′) moduli vs. the shear strain amplitude
(𝛾0), we must consider the underlying time-dependant imposed strain
(𝛾(𝑡)) and resulting time-dependent stress (𝜎(𝑡)). For a sinusoidal shear
strain input, 𝛾(𝑡) = 𝛾0 sin(𝜔𝑡), the resulting time dependent shear stress
in a linear viscoelastic oscillatory shear test is 𝜎(𝑡) = 𝜎0 sin(𝜔𝑡 + 𝛿),
where 𝛿 is the phase angle. The storage and loss moduli are defined
as 𝐺′ = 𝜎0∕𝛾0 cos 𝛿 and 𝐺′′ = 𝜎0∕𝛾0 sin 𝛿, respectively. The intracycle
material response has gained significant attention particularly in the
nonlinear regime, where the sinusoidal strain input results in a non-
sinusoidal stress output, i.e. nonlinear material response (Hyun et al.,
2011; Kamkar et al., 2022). The time-dependent data is represented
in Fig. 5 in the form of elastic and viscous Lissajous–Bowditch (LB)
diagrams.

The tested samples exhibit similar viscoelastic characteristics with
a pronounced gel-like behavior (𝐺′ > 𝐺′′) and equal loss factor,
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Fig. 5. Elastic ((a)–(c)) and Viscous ((d)–(f)) Lissajous-Bowditch (LB) plots showing the time dependent intra-cycle stress 𝜎(𝑡) as function of the time-dependent shear strain 𝛾(𝑡)
and 𝜎(𝑡) as function of the time-dependent shear rate 𝛾̇(𝑡) for all strain amplitudes investigated at 𝜔 = 6 rad/s. (g) Oscillatory shear strain amplitude (𝛾0) sweep test showing the
linear viscoelastic storage, 𝐺′ and loss 𝐺′′ moduli as function of the shear strain amplitude, 𝛾0 performed at 𝜔 = 6 rad/s. Note that each data point in the plot corresponds to one
loop in the LB plots. In all figures, triangular symbols and black lines represent experiments and NARX network predictions respectively. (h) SKM prediction of dynamic moduli
in strain sweep test.
t an 𝛿 ∼ 0.23, while samples V and L record higher magnitudes of 𝐺′

and 𝐺′′ compared to N (Fig. 5(g)). Time series of shear rate obtained
from the imposed strain is used as an input to the neural network to
obtain shear stress predictions. NARX network (black lines in Fig. 5)
accurately captures intra-cycle nonlinear behavior in both linear and
nonlinear viscoelastic loops, as well as the dynamic moduli evolution
in strain sweep test. This effectively means that a full nonlinear data
analysis could be performed using the predicted NARX data. For the
8 
sake of brevity, here we focus on the linear viscoelastic dynamic
moduli. Thus, in comparison, the SKMs can only predict the loss factor
accurately while missing the dynamic moduli magnitudes in strain
sweep tests and slightly overestimating the linear viscoelastic range
(LVR), Fig. 5(h). SKM prediction of 𝐺′′ curves show an overshoot post
𝐺′−𝐺′′ crossover, a characteristic feature of several gels showing weak
strain overshoot (Amini et al., 2024). It is important to note that the
analytical solutions of the chosen common SKMs do not contain a term
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Fig. 6. Comparison between steady shear stress viscosity functions (left column) and creep tests when estimating the yield stress range (right column): (a)–(b) N, (c)–(d) V and
(e)–(f) L.
accounting for viscoelasticity explicitly. However, the equation of state
considers the onset of yielding through a power law term at low shear
rates, which explains the ability of the SKMs to qualitatively capture the
departure from LVR. A comparison between NARX and SKM prediction
errors can be found in Fig. S3, supplementary information.
9 
3.4. Viscoplasticity

Yield stress obtained from shear stress-controlled viscosity tests for
the three yogurt samples are presented in Fig. 6(a), (c) and (e). Samples
N and V have equal yield stresses (𝜎(𝑁)

𝑦 , 𝜎(𝑉 )
𝑦 = 5.0 Pa), whereas sample

L shows a 14% increase (𝜎(𝐿) = 5.7 Pa). This approach of measuring
𝑦
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Fig. 7. (a) MITT training and (b) hysteresis loop predictions of the ANN for Laponite and hand cream samples. (c) Error in ANN’s prediction of Laponite’s thixotropy in hysteresis
loop test, trained on increasing number of MITT intervals. (d) Transient stress response to a decreasing shear rate ramp. The orange curve shows the steady state stress (flow
curve) of Laponite 2 wt%, while the black curve shows the ANN. ANN trained on the transient flow curve data predicts the hysteresis loop with 95.8% accuracy, Fig. 7(b) red
curve.
yield stress assumes the existence of a single critical stress above which
the material yields. In reality, most yield stress fluids exhibit a gradual
transition from elastic to plastic deformation (Møller et al., 2006). This
gradual transition necessitates the existence of a range of stresses in
which the material yields. This is further confirmed as the viscosity
curves do not show a sharp drop in Fig. 6(a), (c) and (e). Therefore,
10 
creep tests were performed where the time evolution of viscosity is
recorded at different constant imposed stresses (Fig. 6(b), (d) and (e)).
A new sample was used for every imposed shear stress to ensure that
shear history does not affect the measurements. The measured yield
stress ranges of the three samples are as follows; 𝜎(𝑁)

𝑦 ∈ (2, 6) Pa,
𝜎(𝑉 ) ∈ (4, 7) Pa and 𝜎(𝐿) ∈ (2, 6) Pa.
𝑦 𝑦
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Apart from revealing the transient material behavior, creep tests
lso give an estimate of the time required to achieve steady state.
xtended tests were therefore performed (data not shown) and an
pparent steady state could be reached after 2000 s of shearing for
ost but not all shear rates. This is an effect of thixotropy that makes

t difficult for the structure to achieve steady state. It is interesting
o note that while stress controlled viscosity tests (Fig. 6(a) and (c))
uggest that samples N and V have equal yield stresses, creep tests
Fig. 6(b) and (d)) reveal that sample V yields at a slightly higher stress

range compared to N. In other words, higher stresses are required to
transition from elastic to plastic deformation. This dominance of elastic
forces prior to yielding causes a more dramatic stress overshoot at the
lowest shear rates in the beginning of the hysteresis loop for sample V
(Fig. 3(c)).

Model predictions are also shown in Fig. 6. In stress-controlled vis-
cosity tests, NARX neural network not only perfectly captures the yield
stress value but also the transient state prior to yielding with errors
less than 1%, Fig. 6(a), (c) and (e). SKMs I and II underestimate and
KM III overestimates the viscosity function by thousands of Pascals.
owever, for samples N and V, SKMs can predict the magnitude of yield

tress (stress when the viscosity drops) in stress controlled viscosity
ests with good accuracy. This is a result of the formulation of the
quation of state (Table 1), where the first term acts as yield stress
rior to yielding, at lower shear rates (𝛾̇ ≪ 𝛾̇𝑦). It is interesting to note
hat the NARX network can also predict highly transient breakdown

and buildup of material structure in creep tests (Fig. 6(b), (d) and (f)),
hile also capturing the viscosity fluctuation when the imposed stress is

n the yield stress range. Understandably, the prediction slightly suffers
or stresses below the yield stress range as elastic forces dominate.
owever, as the imposed stress increases and the material transitions

owards plastic deformation, the predictions become more accurate. For
he sake of clarity, only the neural network’s predictions of the creep
urves are shown as the SKMs fail to capture the viscosity magnitude

in stress controlled viscosity tests, (Fig. 6, left column). A comparison
etween NARX and SKM prediction errors can be found in Fig. S4,

supplementary information.

3.5. Discussion

The ANN demonstrates a high level of accuracy in capturing the
transient rheological behavior of yogurt. To assess the generalizabil-
ity of the ANN in predicting transient rheological properties across
various material types, we examined Laponite gel and hand cream,
oth of which are categorized as thixo-elasto-viscoplastic (TEVP) fluids.

Laponite is a widely utilized polymer known for its role as a rheology
modifier and emulsion stabilizer in a diverse range of products, includ-
ing household cleaning agents, personal care items, agricultural formu-
lations, and pharmaceutical applications. In contrast, hand cream is an
emulsion characterized by its complex rheological behavior, exhibiting
high yield stress along with thixotropic and viscoelastic properties.

A 2 wt% Laponite (Conservation Resources, UK) suspension was
repared by dispersing the polymer in deionized water, followed by
omogenization with an overhead mixer at 2000 RPM for 30 min. The
rosslinking results in an increase of viscosity as the material transitions
o gel. It takes up to three days for Laponite to become stable and attain
 steady state rheology.

The ANN was trained on MITT performed on Laponite and hand
cream samples (Fig. 7(a)), following the measurement methodology
previously discussed for yogurt. The ANN learns the time dependent
behavior with minimal training errors of 2.3% for Laponite and 2.9%
for hand cream. Once trained, the ANN was employed to predict the
transient stress response in hysteresis loop tests, achieving remarkable
prediction accuracies of 95% for Laponite and 97.5% for hand cream,
Fig. 7(b). Hysteresis loop tests were performed on different range of
hear rates, specifically 𝛾̇ ∈ [10−2, 103] s−1 for Laponite and 𝛾̇ ∈
10−2, 102] s−1 for hand cream, to evaluate the ANN’s predictability
11 
of different shear histories. The performance of any ANN is highly
dependent upon the quality and quantity of training data utilized. In
our investigation, we explored the optimal number of MITT intervals
required to achieve effective network training for reliable predictions.
Remarkably, our findings revealed that only four intervals, which
quates to 480 s of transient data, were sufficient to achieve the optimal
rediction accuracy for Laponite, Fig. 7(c). Therefore, eight intervals

with a broad range of shear rates were employed in this study to
capture both structural breakdown and recovery.

Furthermore, we assessed the ANN’s performance when trained on
 different rheological test that involved varying shear history. Specif-
cally, the material’s stress response to a decreasing shear rate ramp
as evaluated, Fig. 7(d). The steady-state flow curve contains critical

information about the material’s rheology and is often employed to ex-
tract coefficients of shear-thinning and viscoplastic constitutive models
through curve fitting. The transient stress response was measured at
each imposed shear rate for 30 s (data acquisition at 1 point/s), suffi-
cient time for the stress to reach an apparent steady state. The steady
state stress at each imposed shear rate was extracted to construct the
flow curve of the material. The trained network predicts the thixotropic
behavior in hysteresis loop with an accuracy of 95.8%, highlighting
the ANN’s remarkable flexibility and adaptability in processing various
types of transient rheological data.

4. Conclusions

Complex fluids exhibit transient non-monotonic rheological proper-
ties which are difficult to model, specially for materials with evolving
microstructure. In this study we show that a NARX neural network
can predict the thixo-elasto-viscoplastic (TEVP) rheological properties
f yogurt using a data driven approach, without the need of constitutive

equations. By training the network to stress response in a simple rate
controlled test (MITT) the NARX model identifies intricate patterns
in material functions and their dependence on the shear history, as
the model considers the shear stress response in the past two time
steps for prediction. The trained NARX model can accurately predict
thixotropy in hysteresis loop tests with 92% accuracy, viscoelasticity
in oscillatory tests and viscoplasticity in stress controlled viscosity and
creep tests with an accuracy of more than 98%. For comparison, SKMs
are fitted to MITT to determine model parameters and the complete
model is then used to predict TEVP behavior in the same tests. It is
evident that the SKMs fail to capture the intricate dependence of the
shear stress/viscosity response to the shear history and show prediction
errors of greater than 100% in most cases. The flexibility of the ANN to
predict rheology was demonstrated by predicting the stress response of
Laponite and hand cream with 95% and 97.5% accuracy respectively.

dditionally, the ANN shows similar performance when trained on
a different transient test. With the evolution of artificial intelligence
technologies, ANN can be used to digitally characterize rheology of
complex fluids and shows potential to complement and even replace
tedious rheological characterization.
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