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Combining ML Regression and Classification for
Reliable QoT-Aware Lightpath Provisioning in
Elastic Optical Networks

Carlos Natalino, Piotr Lechowicz, Farhad Arpanaei, and Paolo Monti

Abstract— The dynamic provisioning of lightpaths in elas-
tic optical networks (EONs) requires the decision of which
modulation format (MF) to be used by the lightpath. This
involves estimating the quality of transmission (QoT) of the
unestablished lightpath. Machine learning (ML) has been used
as an effective QoT estimator in the presence of uncertain
physical layer parameters. However, minor inaccuracies in the
estimation may lead to the incorrect modulation format selection,
which degrades the reliability of decisions during lightpath
provisioning. In this paper, we analyze this issue and propose
the use of two ML models, i.e., regression for generalized signal-
to-noise ratio (GSNR) estimation, and multi-class modulation
format classification. Combined, the models reduce the incorrect
modulation format selection compared to the cases using a single
model.

Keywords— Machine learning, quality of transmission, un-
established lightpaths.

I. INTRODUCTION

Dynamic lightpath provisioning in elastic optical networks
(EONSs) consists of estimating the quality of transmission
(QoT) of a new, unestablished, lightpath and solving the
routing, modulation format, and spectrum assignment (RMSA)
problem considering the existing lightpaths in the network.
The decision of which modulation format (MF) depends
mainly on the estimated QoT. In the literature, numerous
analytical models can be used to estimate the QoT of lightpaths
[1], [2]. However, such models require a precise input of the
physical layer parameters of the network, which may not be
available.

Machine learning (ML) has been investigated as a solution
to overcome the uncertainty of physical layer parameters [3]
in the QoT estimation of unestablished lightpaths. The QoT
estimation problem has been formulated as binary classifica-
tion [4], [5], [6] or regression [7], [8]. In binary classification,
the model is executed for each MF, and the one classified
as working and with the highest MF order is selected. In
regression, the model outputs the generalized signal-to-noise
ratio (GSNR), which is compared to known thresholds for each
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MF, selecting the one with the highest order that requires at
most the obtained GSNR. To the best of our knowledge, the
direct multi-class MF classification of unestablished lightpaths
has not yet been addressed in the literature. However, the
online modulation format identification (MFI) of established
lightpaths has already been explored in the literature but
represents an entirely different problem [9], [10].

Once a QoT estimation approach has been adopted, the
dynamic lightpath provisioning requires solving the RMSA
problem. In this problem, a route, MF, and sufficient spectrum
need to be allocated. A particular requirement is that the
QoT achieved by the lightpath needs to fulfill the minimum
requirements of the selected MF. A reliable provisioning will
always select a suitable MF. Failure to do so may lead to
two issues. If the MF selection process makes an aggressive
selection, i.e., selecting an MF that requires higher QoT than
achieved, an immediate re-provisioning is needed. On the
other hand, a conservative selection may lead to lower spectral
efficiency but can be mitigated at a later stage, e.g., during a
maintenance window.

In this work, we propose a new approach to the ML-
based MF selection that aims at enhancing the reliability of
the lightpath provisioning process by reducing the number of
aggressive MF selections. We adopt two ML models, one for
QoT regression, and another for MF classification, which are
used for the same unestablished lightpath. An alternative ap-
proach that adopts regression and a margin is also investigated.
Then, we propose a new algorithm that, based on the output of
the two ML models, defines which MF should be adopted by
the unestablished lightpath. Results show that the proposed
approach reduces the number of aggressive MF selections
by 36% and 44% when compared to traditional approaches.
Moreover, the total number of wrong MF selections is lower
than the one achieved by regression with or without margins.
The results indicate that the evaluation of accuracy metrics
of ML-based QoT estimation strategies falls short of fully
illustrating their impact on network operation and that deeper
analyses are necessary.

II. ML-BASED MODULATION FORMAT SELECTION IN
ELASTIC OPTICAL NETWORKS (EONS)

In this work, we investigate the use of ML models to aid the
MF selection during the dynamic provisioning of lightpaths in
EONs. In this scenario, a lightpath request contains a source-
destination node pair, and the bit rate. Upon the arrival of a
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Fig. 1: The two traditional ways to select the modulation format based on ML models: (a) binary classification and (b) GSNR
regression. The proposed approach (c) uses multi-class classification in combination with GSNR regression.

lightpath request, the RMSA problem needs to be solved. This
entails the selection of a sequence of links (route), the MF to
be used by the lightpath, and a set of continuous and contigu-
ous frequency slots (spectrum) sufficient to accommodate the
requested bit rate. The decision of the route and spectrum has
been the topic of numerous research activities [11] and is out
of the scope of this paper.

In this paper, we focus on the ML-based MF selection,
which mainly depends on the estimated QoT of the lightpath,
once established. This is achieved by training the ML model
with the result of previous lightpath provisioning instances.
The MF selection depends mainly on the QoT to be achieved
by the lightpath once established. The QoT of lightpaths is
usually modeled as the GSNR, and each MF establishes a min-
imum required GSNR which guarantees an acceptable bit error
rate (BER). In the literature, the ML-based QoT estimation has
been modeled as two kinds of problem: binary classification
[4], [5], [6] and regression [7], [8]. These modeling alternatives
share a common property: the ML model receives as input a
set of features F' = {f1, fo, f3,..., fn} that represent the state
of the network and potential lightpath configuration.

Fig. 1(a) illustrates how binary classification can be used
for MF selection. An ML model receives a set of features F'
and the potential MF to be used. The model gives a binary
output indicating whether or not that configuration and MF
will work. In this case, one inference is needed for each
considered modulation format. After collecting the results, the
most efficient ML that works can be selected.

Fig. 1(b) illustrates how regression can be used for MF
selection. An ML model receives a set of features F'. The
model gives a numerical output that represents the estimated
lightpath GSNR. Then, the MF can be performed by selecting
the most efficient MF possible for the estimated GSNR. Often
a margin is considered to account for inaccuracies in the
GSNR estimation, among other effects [12].

Two issues may arise from the incorrect MF selection: con-
servative or aggressive selection. In a conservative selection,
the selected MF has a lower efficiency than the one that
could be achieved. This leads to a higher spectrum usage
than necessary, impacting the overall spectral efficiency of the
network. In an aggressive selection, the selected MF requires
a higher GSNR than the one achieved. This leads to a higher
BER than allowed, resulting in degraded channel quality with

excessive data transmission errors.

Upon provisioning the lightpath and detecting one of these
cases, the solution is to re-provision the lightpath with the
correct MF. However, in this paper, we consider aggressive
selection as the most detrimental one, given that it requires
immediate re-provisioning. Moreover, since a less efficient
MF will be needed, it might happen that the current path and
spectrum selection do not have sufficient free spectrum, which
will trigger a complete re-computation of the RMSA solution.
Meanwhile, the re-provisioning of a conservative selection can
be delayed to a service window, and since the new MF will
be more efficient, there are enough spectral resources.

Fig. 1(c) shows the approach proposed in this paper. The
first model is a multi-class classifier, unlike the binary classi-
fiers previously used in the literature, responsible for directly
outputting the most suitable MF for the lightpath. The second
model is a traditional regressor that outputs the estimated QoT
(e.g., the GSNR) of the lightpath and can be processed in the
same way as in Fig. 1(b) for selecting the best possible MF.
The intuition is that the two models will output, each, the
best MF achievable according to their training. Given that we
assume that an aggressive selection is more detrimental than
a conservative one, the output of the two models is combined,
and the most conservative decision is adopted.

III. PERFORMANCE ASSESSMENT

In this section, we evaluate the performance of MF selection
using the three ML-based approaches discussed in the previous
section. Firstly, we discuss the generation of the dataset
using an accurate analytical model. Then, we present and
discuss the results. The results are evaluated in terms of the
number of lightpaths affected by the wrong MF selection. We
evaluate the three strategies discussed in the paper, and how
the introduction of a margin to the regression output affects
the number of wrong selections, both in terms of aggressive
and conservative MF selections. Then, the confusion matrices
show the true and predicted MF to be used by the lightpath,
and it is possible to identify the aggressive and conservative
estimations.

A. Dataset Generation

The ground truth dataset used in this work was generated by
adopting the enhanced Gaussian noise (EGN) analytical model
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Fig. 2: Number of lightpaths with wrong MF selection — in terms of (a) conservative, (b) aggressive, and (c) total selections
— considering a strategy where a margin is introduced to the regression output.

described in [2]. In this model, the GSNR of a lightpath can
be calculated as a function of the set of spans S along the

path:

-1 (P i )_1 1)

GSNR =
; Pise + P (

where, for each span s € S, P° is the launch power, P}q is
the noise incurred by amplifier spontaneous emissions (ASE),
and FY;; is the noise incurred by non-linearity. We use a
simulation of the dynamic provisioning of lightpaths. The
arrivals follow a Poisson process, where source and destination
nodes are uniformly distributed over the nodes in the network
topology. The bit rate of the request is uniformly chosen from
{10, 40, 100, 400} Gbps. The RMSA problem is solved upon
the arrival of each lightpath request. We pre-compute 5 shortest
paths for each node pair in the network. The path is randomly
selected. We consider six modulation formats: binary phase-
shift keying (BPSK), quadrature phase-shift keying (QPSK),
8-, 16-, 32-, and 64-quadrature amplitude modulation (QAM),
identified with labels 1-6, with their GSNR threshold set to
{3.71, 6.72, 10.84, 13.24, 16.16, and 19.01} dB, respectively.
The best modulation format is selected based on the ground
truth model, followed by first-fit spectrum allocation.

The following results are generated from the European
network topology with 28 nodes and 41 links. Spans within a
link have equal length, with a maximum of 80 km. We assume
a launch power of 0 dBm across all spans, with a 0.2 dB/km
fiber attenuation, and a 4.5 dB noise figure for each amplifier.
We simulate the arrival of 100,000 requests, over which 94,109
requests were successfully provisioned.

The following 17 features compose the input to the dataset,
divided into lightpath, node, and path features. Lightpath
features are the bit rate and center frequency. Node fea-
tures are the source and destination nodes, and source and
destination node degrees. Path features are the total length,
number of hops, number of spans, mean, minimum, and
maximum link length, mean, minimum, and maximum link
usage, and standard deviation of the link usage. These features
are normalized, and the target features are set according to the
task. Then, the dataset is divided into balanced training and
testing datasets in a 50/50 manner. The training set is used

for training three ML models: binary classification, regression,
and multi-class classification. The testing set is used to obtain
the results discussed in the following.

B. Results and Discussion

Fig. 2 shows the number of wrong MF selections for
the 3 investigated approaches, in addition to a regression
approach that considers a variable margin. Fig. 2(a) shows
the number of conservative selections. We can see that the
proposed approach leads to the highest number of conservative
selections, followed by the regression model, and finally by the
binary classification. Intuitively, the number of conservative
MF selections increases with the margin, due to the margin
requiring a higher GSNR for selecting a given MF. With a
very small margin of less than 0.03 dB, the regression model
already incurs a higher number of conservative selections than
the proposed approach.

Fig. 2(b) shows the number of aggressive MF selections.
The proposed approach reduces the number of aggressive
selections by 36% when compared to the binary classification.
When compared to the regression, the number of aggressive
selections is reduced by 44%. For the regression with margin,
a margin of at least 0.07 dB is necessary for it to outperform
the proposed approach. However, a 0.07 dB margin leads to a
very high number of conservative selections, as shown in Fig.
2(a).

Fig. 2(c) shows the total number of wrong MF selections.
While the binary classification has the lowest total number, we
know from Fig. 2(b) that nearly half of the number is related
to aggressive MF selections, which incur the highest overhead.
Moreover, regression with and without margin incurs the high-
est number of wrong selections. Finally, the proposed approach
achieves performance between the two traditional approaches,
but with the benefit of not having as many aggressive MF
selections as the regression model.

Fig. 3 shows the confusion matrices of the MF selection
based on the binary classification, regression, and the proposed
approach. These results detail the precise selections in the
numbers previously shown in Fig. 2. All three strategies
provide appropriate accuracy in the range of 96-97%, with
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Fig. 3: Confusion matrices of the MF selection using the three ML-based strategies over the test set.

a maximum of 0.6% difference among them. However, the
main changes concern the aggressive and conservative MF
selection. The region above the main diagonal represents the
cases of aggressive MF selection where the selected MF has a
higher order than the possible one. The region below the main
diagonal represents the cases of conservative MF selection.
The binary classifier has better accuracy on MFs 1-3 and 6,
while the regression has higher accuracy on MFs 4 and 5. We
can also note that for higher-order MFs, the regression model
leads to more aggressive MF selections. Finally, as expected,
the proposed approach shows a higher number of conservative
selections, in favor of having a lower number of aggressive
ones.

In summary, we can observe that by using the output of two
ML models, MF selections output by the proposed approach
are more reliable than the ones using traditional strategies. In
particular, the number of aggressive MF selections that lead
to the need for immediately re-provisioning the lightpath is
reduced by at least 36%. Meanwhile, the increase in number
of conservative selections still makes it achieve a lower total
number of wrong selections than the one using regression.

IV. CONCLUSIONS

This work investigated ML-based strategies to select the MF
of unestablished lightpaths. We raise awareness for the two
issues that may arise from the wrong selection of an MF. Two
traditional ML models (binary classification and regression)
were investigated. The regression model considering a margin
was also included in the analysis. Then, we proposed a new ap-
proach that combines multi-class classification and regression
models to improve the reliability of the MF selection. Results
showed that the proposed approach reduce the number of the
most disruptive kind of error. Moreover, the total number of
errors of the proposed approach is lower than the one achieved
by regression.

This work showcases additional ways that ML-based QoT
estimation approaches can be evaluated. In future works,
the assessment of how the wrong MF selections impact the

overall network spectrum efficiency is required. Moreover,
investigating how to improve the accuracy of the models,
and potentially combining other types of models, is also an
interesting direction.

REFERENCES

[1] P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri,
“The GN-model of fiber non-linear propagation and its applications,” J.
Lightwave Technol., vol. 32, no. 4, pp. 694-721, Feb.

[2] M. Ranjbar Zefreh, F. Forghieri, S. Piciaccia, and P. Poggiolini, “Ac-
curate closed-form real-time EGN model formula leveraging machine-
learning over 8500 thoroughly randomized full C-band systems,” Journal
of Lightwave Technology, vol. 38, no. 18, pp. 4987-4999, 2020.

[3] M. Lonardi, J. Pesic, T. Zami, and N. Rossi, “The perks of using machine

learning for QoT estimation with uncertain network parameters,” in

OSA Advanced Photonics Congress (AP) (IPR, NP, NOMA, Networks,

PVLED, PSC, SPPCom, SOF), 2020, p. NeM3B.2.

T. Panayiotou, S. P. Chatzis, and G. Ellinas, “Performance analysis of

a data-driven quality-of-transmission decision approach on a dynamic

multicast- capable metro optical network,” Journal of Optical Commu-

nications and Networking, vol. 9, no. 1, pp. 98-108, 2017.

[5]1 R. M. Morais and J. Pedro, “Machine learning models for estimating
quality of transmission in DWDM networks,” Journal of Optical Com-
munications and Networking, vol. 10, no. 10, pp. D84-D99, 2018.

[6] C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore, “Machine-learning
method for quality of transmission prediction of unestablished light-
paths,” Journal of Optical Communications and Networking, vol. 10,
no. 2, pp. A286-A297, 2018.

[7] M. Ibrahimi, H. Abdollahi, C. Rottondi, A. Giusti, A. Ferrari, V. Curri,
and M. Tornatore, “Machine learning regression for QoT estimation
of unestablished lightpaths,” Journal of Optical Communications and
Networking, vol. 13, no. 4, pp. B92-B101, 2021.

[8] M. Lonardi, J. Pesic, T. Zami, E. Seve, and N. Rossi, “Machine
learning for quality of transmission: a picture of the benefits fairness
when planning wdm networks,” Journal of Optical Communications and
Networking, vol. 13, no. 12, pp. 331-346, 2021.

[9]1 F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T.

Lau, “Modulation format identification in coherent receivers using deep

machine learning,” IEEE Photonics Technology Letters, vol. 28, no. 17,

pp. 1886-1889, 2016.

Z. Huang, X. Xin, Q. Zhang, H. Yao, F. Tian, and F. Wang, “Modulation

format identification method based on multi-feature input hybrid neural

network,” IEEE Photonics Journal, pp. 1-7, 2024.

B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum

allocation in elastic optical networks: A tutorial,” IEEE Communications

Surveys & Tutorials, vol. 17, no. 3, pp. 1776-1800, 2015.

Y. Pointurier, “Design of low-margin optical networks,” Journal of

Optical Communications and Networking, vol. 9, no. 1, pp. A9-A17,

2017.

[4

[l

[10]

[11]

[12]



