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Abstract—Traffic prediction is an evergreen research topic
in networking, with modern allocation algorithms often utiliz-
ing forecasts for optimized decisions. However, the employed
machine learning (ML) models are usually operated as black
boxes – without any insight into their internal operations. Such
an approach creates a risk of using excessive input features,
unnecessarily expanding the model complexity. In this work, we
extract insights into the operation of traffic prediction models
using explainable artificial intelligence (XAI) tools. We explore the
impact of literature-proposed features on various traffic types,
sampling rates, and ML algorithms. We identify the common
trends and dependencies regarding the most relevant features
depending on traffic fluctuation levels and aggregation type. We
discover how only a subset of inputs contributes meaningfully to
the final model decision, as opposed to the conventional approach
of only analyzing the resulting prediction quality after adding
new features. We demonstrate how training and inference times
can be significantly reduced by exploiting the obtained knowledge
without degrading prediction quality and bandwidth blocking.

Index Terms—Traffic Prediction; Machine Learning; Explain-
able Artificial Intelligence; Feature Selection;

I. INTRODUCTION

Network traffic forecasting has proven to be essential for
improving network operation in terms of, e.g., operational
costs, energy efficiency and stability [1], [2]. Operators can
exploit the knowledge obtained from traffic prediction to make
informed decisions for various networking problems such as
dynamic routing and spectrum allocation (RSA) [1], [2].

Among the various network segments, traffic forecasting
within the backbone segment, which serves as a large-scale
aggregation of a multitude of individual connections, receives
particular emphasis, as it empowers the operators to preemp-
tively identify potential congestion points at a large scale.

The traffic within backbone networks exhibits strong sea-
sonality. Consequently, clear patterns and trends can be
extracted in the daily utilization of specific network-based
services and applications [3] or the overall traffic crossing
internet exchange points [4]. Nevertheless, network traffic
forecasting is a challenging task and sophisticated methods
are adopted to obtain accurate predictions [5], [6], including
advanced statistical methods and machine learning (ML)-based
approaches [5], [7]. While it is possible to achieve satisfactory
performance with the former, previous studies (e.g., [5], [6])
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show that methods based on ML yield better quality forecasts
than those based solely on time-series analysis.

Exploiting the predictive power of ML, however, comes at
the expense of two aspects. First, and in contrast to the use
of statistical methods which use plain traffic measurements,
ML-based approaches require the processing of raw traffic
traces to engineer input features, usually not given up-front, for
training the learning algorithms. A typical way to proceed is
to characterize traffic time series via a number of temporal
or statistical indicators that are expected to be meaningful
for the prediction task. Feature engineering is usually per-
formed utilizing the observed trends, seasonality, and expert
knowledge [8]–[10]. In more detail, the prediction model
features can be composed of significant past observations (e.g.,
traffic measurements a day/week before), growth rate, or other
statistics [10]. No thought is, however, given to the actual
importance and contribution of the utilized inputs. Such a
workflow generates the risk of unnecessarily enlarging the
models and increasing their complexity by including features
of no significant impact on the model’s predictions.

The second aspect is the fact that ML models operate as
black boxes, i.e., they provide their traffic forecasts without
offering any indications (or reasons) behind their decisions.
Without clear explanations of the model’s predictions, network
operators are left in the dark regarding the factors influenc-
ing the forecasts. This lack of interpretability hampers the
decision-making process, making it challenging to validate the
reliability of predictions, understand the model’s limitations,
and incorporate human expertise in refining forecasts. Another
critical issue stems from the inability to extract meaningful
insights or reasons behind the model’s predictions, which
may help engineer features for traffic prediction and better
understand the problem at hand.

In this work, we aim to address these two aspects by
exploiting explainable artificial intelligence (XAI) techniques
for generating explanations that allow to quantify features’
contribution to model’s decisions, with the goals of enhancing
the transparency of the employed ML model and refining
the model development process with insights for feature
engineering and selection. Specifically, we explore how ML-
based traffic forecasting methods operate and which features
meaningfully contribute to their predictions. To reach this
aim, we employ a XAI framework, namely, Shapley Additive
Explanations (SHAP) [11] to gain insights into the mechanics
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of the forecasters. We examine literature-based representatives
of various types of ML algorithms (a neural network, an
ensemble method, and a simple single predictor) on multiple
real and semi-synthetic traffic datasets with different sampling
rates to identify the most common trends and dependencies.
We show how various models rely almost solely on temporal
features when making their predictions. Then, we use this
knowledge to reduce the size of the employed feature sets
and demonstrate that such reduction has almost no impact on
the prediction quality while significantly decreasing the model
training and inference times. We finally show the practical
application of our study in multilayer network operation.

The remainder of this paper is organized as follows. In
Sec. II we discuss the related work. In Sec. III we describe
the problem, datasets used and our approach. In Sec. IV
we discuss findings from applying SHAP to developed ML
models. In Sec. V we leverage insights from the previous
section to train ML models using a limited number of features
and then examine the practical application of our approach.
Sec. VI concludes this work.

II. RELATED WORK

Numerous works have investigated network traffic forecast-
ing: advanced statistical and ML-based methods were proposed
to accurately predict the upcoming traffic evolution [5], [7].
However, for the successful deployment of network traffic
forecasters, a particular focus needs to be put on practical
aspects, including data preparation and feature engineering. In
particular, features are necessary for the models to learn the
relationship between their inputs and the target and thus make
accurate forecasts. Usually, the raw traffic measurements are
the only data available; various time series characteristics can
then be crafted as features, including the highly correlated
past measurements (e.g., traffic recorded the day before),
information about the growth rate, statistics regarding the date
and time of the measurements, or traffic evolution within
a period [8]–[10]. If additional information, such as road
conditions or newly generated flows, is also available – they
can be turned into helpful features as well [12], [13].

Apart from the feature engineering process, the develop-
ment and choice of the ML model to be adopted for traffic
forecasting takes solely into consideration the model’s pre-
dictive power, overlooking other aspects such as the actual
contribution of each feature. In turn, the black-box models can
grow unnecessarily large and complex because no analysis is
performed to verify which of their inputs are the main decision
factors and if there are any unnecessary ones. In our work, we
aim to investigate this issue and, for the first time, explore
the contribution of multiple previously proposed features for
the network traffic prediction task to gain insights into their
importance and impact through XAI.

XAI is one of the research fields that enables examining ML
models to improve their transparency and trust in their outputs
[14]. In the networking community, XAI is recently gaining
attention to better understand and improve ML models solving
various tasks. The prime example is the quality of transmission
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Fig. 1: Examples of traffic types 0, 1, 3, 5 (top to bottom).
estimation, where XAI has been employed for quantifying the
contribution of features, simplifying the models, or validating
their uncertain decisions [15]. Other XAI use cases in optical
networks include failure management, specifically its detec-
tion, localization, and cause identification [16], [17]. In the
context of network traffic prediction, the application of XAI
is a rather unexplored field. In particular, explainability was
employed to gain insights into video quality classification [18].
Still, the specific task of traffic forecasting in optical networks
remains open. To the best of our knowledge, this is the first
study to explore feature engineering for traffic prediction using
XAI tools. We believe that the gained knowledge will provide
viable insights on how different ML algorithms predict various
traffic types and thus encourage the operators to employ AI-
based traffic prediction tools.

III. PROBLEM DESCRIPTION AND APPROACH

A. Problem Description

The underlying objective of this work is short-term network
traffic prediction. Given a series of historical traffic measure-
ments, our goal is to predict the bitrate for the following
sample. Additionally, as black-box ML models are employed
for traffic forecasting using various input features, our primary
goal is to gain insights into models’ behavior by computing the
importance of these features and identify the most contributing
ones. We aim to determine common trends and dependencies
for different traffic datasets and ML algorithms. We aim to
examine how the behavior of distinct models differ when
trained on the same dataset, and how the behavior of the
models vary across different datasets or when raw data is
processed differently. Finally, we wish to exploit this knowl-
edge to identify a minimal yet informative set of features
that can be used for model training. We examine the impact
of this in a practical implementation of ML-based network
traffic forecasting application by analyzing, in addition to the
quality of predictions, the training and inference times and the
blocking probability experienced when adopting ML models
with a reduced set of features identified using SHAP.

B. Traffic Data Generation

We use four semi-synthetic datasets, in which real data
patterns are used as a base for a generator adding desired
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Fig. 2: Example of real traffic from the SIX [4].
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Fig. 3: Illustration of the 30-min aggregation.

characteristics (e.g., noise), and a real dataset from Seattle
Internet Exchange Point (SIX) [4] to cross-verify our findings.
The semi-synthetic traffic datasets contain patterns of various
applications available in [3], which is a good representation
of diverse traffic in application-aware networks. As in our
previous work [2], we use our custom approximation and
noising algorithm (available as the Traffic Weaver package
[19]) to transform the provided bar plots with average traffic in
each hour into a continuous signal capturing the characteristics
of each traffic type. We build four datasets with a 5-minute
sampling for 14 days. The datasets, referred to as Type 0,
Type 1, Type 3, and Type 5, differ in the level of the added
fluctuation. Specifically, in traffic Type 0, the pattern repeats
daily with added Gaussian noise. The subsequent types (Type
1, Type 3, Type 5) are characterized by additional 1%, 3%,
and 5% of fluctuation in terms of day-to-day bitrate and shape
changes within days. Each dataset contains a collection of 50
distinct traces following a pattern of one network-based service
or application from [19]. Fig. 1 shows an example plot of each
traffic type present in the data. As for the real dataset [4], it
includes 5-minute sampled measurements collected over an
approximately 2-month-long period. It is a widely used data
source in networking research, including previous works [10],
[20]. Refer to a representative fragment in Fig. 2.

In addition to the 5-minute sampling, we resample all
datasets used in our study following a 30-minute maximum
aggregation (see Fig. 3 for an example). Our rationale is
that, although network traffic changes dynamically, alloca-
tion algorithms often perform resource assignment for more
extended periods for the sake of stability, even if it implies
overprovisioning (e.g., [20]). Therefore, a longer period might
be desirable to ensure versatility of the identified trends.

C. Data Processing and Feature Extraction

The highly seasonal nature of backbone network traffic
is one of the foundations for feature engineering for the
considered problem [8]–[10]. In particular, clear daily and
weekly patterns emerge when analyzing it over an extended
period (e.g., see [4] and the example plotted in Fig. 2). In turn,
features can be crafted using significant, highly correlated past
samples or statistics describing their neighborhood and evolu-
tion. Therefore, in previous research [10] we proposed several
ways of creating input features from raw data. We showed how
information extracted from traffic traces can be turned into
three groups: statistical (sin and cos components of date and

time, hour window percentiles, etc.), growth rate (growth trend
in significant past moments), and temporal (highly correlated
past samples). The experimental evaluation on various ML
algorithms revealed that the addition of each group of features
increases the prediction quality for different traffic types. The
final recommended model, which we consider as the base of
this study, contains seventeen (17) features from the three
aforementioned groups. The feature names are given on the
plots in Sec. IV, and for more details regarding their creation,
we refer to [10].

D. SHAP for Feature Contribution

To conduct our experiments, we first need to employ ML
models for the task at hand. To this end, we rely on ML models
that have proven their efficacy in this task in our previous work
[10]. Specifically, we consider three diverse ML algorithms,
namely, Multilayer Perceptron (MLP) with one hidden layer
of twenty-five neurons, with the ReLU activation function and
adam optimizer, Random Forest (RF) with 75 trees and a
Linear Regression (LR). We follow the 5x2 cross-validation
(for details on experimental protocol refer to [10]).

To quantify the contribution of the features (i.e., how
features impact the model’s outcome), we employ SHAP [11],
a model-agnostic XAI framework that explains the output of
ML models by estimating each feature’s contribution to the
model’s outcome in a post-hoc manner (i.e., after models are
trained). SHAP adopts a game theoretic approach exploiting
Shapley values to quantify each feature’s contribution [11]. For
regression problems, the SHAP value associated to a feature
indicates its numerical contribution to the model’s prediction.
A positive (resp. negative) SHAP value indicates that the
feature has a positive (resp. negative) outcome on the model’s
prediction, i.e., it increases (resp. reduces) the prediction. To
compute the SHAP values for a particular model, SHAP takes
as input the trained ML approach and the training dataset.

IV. ANALYZING FEATURE CONTRIBUTION OF ML
MODELS FOR TRAFFIC PREDICTION

A. Performance of ML Models for Traffic Prediction

We measure the performance of the ML models across the
five datasets and considering the 5-min sampling and 30-
min aggregation using the mean absolute percentage error
(MAPE)1. We report the MAPE achieved by the models in
Tab. I (please see the cases corresponding to all features).
The prediction accuracy of all models, and in all cases, is
generally satisfactory, with MAPE never exceeding 5%. As
expected, for both the 5-min sampling and 30-min aggregation,
the models show best performance (lowest MAPE) with the
least fluctuating traffic Type 0. MAPE then shows a slight
upward trend as the datasets become more intricate with
increased noise levels. Comparing the performance of the
different models, we notice that they exhibit a comparable
performance, and that there is no discernible trend indicating
one model consistently outperforming the others.

1As a percentage measure, the MAPE allows for a direct comparison of the
prediction quality between datasets with different traffic volumes.



TABLE I: Comparison of average MAPE and the training and inference times for the considered datasets when using all input features or only the most
contributing, temporal ones.
Model Features 5-min Sampling 30-min Aggregation Training

Time (s)
Inference
Time (s)Type 0 Type 1 Type 3 Type 5 Real Type 0 Type 1 Type 3 Type 5 Real

LR all 0.0054 0.0144 0.0184 0.0183 0.0042 0.0060 0.0116 0.0266 0.0402 0.0125 0.00133 0.00033
temporal only 0.0047 0.0118 0.0216 0.0241 0.0044 0.0060 0.0114 0.0260 0.0397 0.0151 0.00083 0.00027

RF all 0.0049 0.0109 0.0165 0.0214 0.0050 0.0054 0.0083 0.0171 0.0261 0.0140 0.41515 0.01223
temporal only 0.0051 0.0112 0.0189 0.0242 0.0052 0.0055 0.0085 0.0183 0.0290 0.0170 0.15200 0.01216

MLP all 0.0069 0.0125 0.0236 0.0301 0.0055 0.0072 0.0126 0.0273 0.0408 0.0155 0.55563 0.00065
temporal only 0.0061 0.0130 0.0231 0.0272 0.0044 0.0072 0.0125 0.0279 0.0412 0.0156 0.19137 0.00051

B. Feature Contribution Analysis

We now examine the models’ behavior in terms of features’
contributions (their SHAP values). Our analysis is concentrated
on specific facets of the problem, and consequently, on a set
of selected cases. More specifically, we aim to examine:
i) the impact of data fluctuations on the models’ behavior,
ii) the impact of considering a relatively large aggregation
period of data traffic, and iii) if, and in case, to which extent,
does the models’ behavior change with real data in respect to
the case with semi-synthetic data.

a) Impact of Data Fluctuations on Feature Contribution:
Fig. 4 shows SHAP summary plots for RF and MLP for the
least fluctuating traffic type in our semi-synthetic data traffic,
i.e., Type 0. The summary plot can be read as follows. The
primary y-axis reports the top-10 features ranked from most
(top) to least (bottom) contributing to the model’s decision.
The x-axis illustrates each feature’s impact on the model’s
output (i.e., how much the value of a given feature pushes
the model’s decision in the positive or negative direction).
The secondary y-axis reports a color scale for feature values.
Finally, for a given feature, each point represents the SHAP
value assigned to the feature for a particular prediction query.
The plot shows, for both models, that only the temporal fea-
tures (namely, "day_ago_value" and "week_ago_value" for RF,
and additionally "previous_value" for MLP) have a significant
impact on the models’ predictions. In particular, high values
of such features (purple-red points) increase the value of the
prediction (positive SHAP value), whereas low feature values
(blue points) tend to decrease models’ outcomes (negative
SHAP value). We further note that feature contribution plots of
other ML models considered in our study for traffic Type 0 and
Type 1 (not reported for the sake of conciseness) show similar
patterns. These findings indicate that, regardless of the ML
algorithm, the models create an internal prediction function
that is highly (and only) correlated to past measurements for
traffic characterized by light fluctuations. This observation also
suggests that features pertaining to both statistical and growth
rate do not contribute with any additional knowledge to the
model beyond what is already provided by temporal features.

We now analyze feature impact on the models’ decisions
considering the ML models trained for forecasting more fluc-
tuating traffic types. Fig. 5 shows SHAP summary plot for
the RF and MLP for traffic Type 5. The plots show that, in
both cases, the "previous_value" feature dominates the models’
predictions and exhibits significant feature importance. This
is also the case for traffic Type 3 (not shown in figure
due to space limitations); however, the "day_go_value" and
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Fig. 4: SHAP summary plots for traffic Type 0, examples of the RF
(left) and MLP (right) regressors.
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Fig. 5: SHAP summary plots for traffic Type 5, examples of the RF
(left) and MLP (right) regressors.

"week_ago_value" features still play a slightly more significant
role than in traffic Type 5. Such a trend is expected as we
increase the noise levels in the subsequent datasets. With the
relatively high sampling rate of 5 minutes, the models learn
to rely on neighboring samples while only scarcely using
direct seasonality information. For the rest of the features,
similar to the case of traffic Type 0, the plots show they
do not make any significant contributions to the models’
decision-making process, irrespectively of the ML algorithm
employed. We can conclude that, regardless of the ML algo-
rithm employed, in case of fluctuating traffic types, the models
construct their forecasts mostly based on the directly preceding
samples, without relying on features relative to other past
observations. Note that literature surrounding ML-based traffic
prediction has always assumed measurements (and hence,
features) pertaining for that extend beyond the immediate
preceding samples. Therefore, our findings introduce a new
direction for investigation for feature engineering for ML-based
traffic prediction.

b) Impact of the 30-minute aggregation of traffic: We
now focus on the impact of using a 30-minute aggregation
of traffic data on features’ contribution to the models’ de-
cisions. In this case, the subsequent samples are much less
correlated as they describe broader periods (see illustrative
example in Fig. 3), which might present a challenge for the
prediction models. Consequently, the feature "previous_value"
represents the maximum traffic from the past 30 minutes, as
opposed to the one taken 5 minutes before in the previous
case. Fig. 6 shows two examples of SHAP summary plots
for the resampled dataset of traffic Type 5. Similar trends
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Fig. 6: SHAP summary plots for traffic Type 5 after the 30-min
aggregation, examples of the RF (left) and MLP (right) regressors.

are visible for all the remaining ML models and datasets
(omitted here). We notice that the models once again rely
almost solely on the temporal features. Interestingly, the
feature ranking does not change significantly among datasets,
and the "day_go_value" and "week_ago_value" are the most
important ones despite the higher fluctuation levels. The only
discrepancy we notice is that the MLP relies significantly on
"hour_window_percentile_75". This example illustrates how
distinct types of learning algorithms have the capability to
extract knowledge and subsequently establish correlations in
unique ways (in fact, the MLP outperforms, albeit slightly, RF
in terms of MAPE (see Tab. I)). Despite this difference, the top-
3 and the 5th most important features pertain to the temporal
set of features. This once again shows the highly informative
value of the temporal features, which are the basis for the
predictions of various ML models regardless of the operated
traffic sampling rate.

The knowledge extracted from analyzing the models’ behav-
ior should be exploited during the feature engineering process
for traffic forecasting and, together with the quantitative eval-
uation, should be examined when deciding on suitable ML
model to employ in a given scenario.

c) Models’ Behavior on Real Data: We now examine
features’ contribution when models are trained for the traffic
prediction task using real data. The objective of this analysis
is to investigate whether the found trends and dependencies
would hold in real-world settings to confirm the versatility
of our study. Fig. 7 shows SHAP summary plots for the
5-minute sampled and 30-minute aggregated data obtained
using the RF regressor2. The plots show that "previous_value"
dominates the model’s predictions in both cases, with no
contribution by other features in the case of 5-minute sampling
and very minimal contributions by other features in the case
of 30-minute aggregation of data traffic. These findings prove
that the model can only rely on the last seen observation
("previous_value") to make its predictions. This behavior is
consistent with that of the semi-synthetic datasets with traffic
Type 5, which indicates the highly variable nature of real
traffic. However, similar to our previous analysis, the most
impacting contribution to the model output is generated by
features from the temporal group. This confirms the versatility
of our study – the identified feature contribution trends hold
for different fluctuation levels and sampling/aggregation rates
for semi-synthetic and real data.

2SHAP summary plots obtained from the remaining regressors (omitted here
due to space limitations) show similar trends.
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Fig. 7: SHAP summary plots of RF regressor obtained with real traffic
with 5-min sampling (left) and with 30-min aggregation (right).

V. PREDICTIVE PERFORMANCE AND PRACTICAL
IMPLEMENTATION

In Sec. IV, we showed how only a subset of features
(mainly from the temporal group) contribute to the models’
predictions. Among those, the exact feature choice depends
on the fluctuation levels of the traffic to be forecasted. We
now leverage this knowledge to train models using those
inputs, namely, "day_ago_value," "week_ago_value" and "pre-
vious_value", and examine the implications of employing an
ML model trained using this set of features in a practical
implementation.

A. MAPE, Inference and Training Times

Table I reports the average MAPE computed across all
datasets, the inference and training times of all three mod-
els considering 5-minute samples and 30-minute aggregation
when training using all 17 features and when only using
the temporal features selected based on the findings of the
SHAP analysis. In more detail, based on our investigation, for
the semi-synthetic data, the most-contributing features are the
"day_ago_value," "week_ago_value," and "previous_value,"
so those three were used. However, for the real data, the
first two had a less meaningful impact, so we used two
features describing samples closer in time: "previous_value"
and "hour_ago_value." For the 30-minute aggregation, we used
all four temporal features for all the traffic types.

The results show that, regardless of the ML model and traffic
type, there is no impact on prediction quality despite using 3
or 4 features instead of 17. In many cases, the performance in
terms of MAPE improves when using only the selected feature
set. In particular, considering the original 5-minute sampling,
for the most repetitive traffic Type 0, the LR and MLP obtained
better prediction quality when using fewer features. RF yielded
slightly worse but very comparable results. With the more
fluctuating traffic types, there are still instances with lower
MAPE for models when relying only on the temporal features
chosen with SHAP. In other cases, the differences are marginal.
Furthermore, the above-described trends also hold for the
real data and after the 30-minute aggregation, confirming the
versatility of the found trends and dependencies. We can
conclude that using only the few selected features does not
have a notable impact on the prediction quality and, in many
cases, can even slightly improve it.

Another advantage of reducing the number of features and
thus using more lightweight models is their improved training
and inference speed, quantified in Tab. I. For conciseness,
we report the averaged results for models with the 5-minute
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sampling for traffic Type 0, but the trends still hold for other
traffic types and after aggregation. The training and inference
times are clearly affected by the number of features in all
the ML algorithms, showing an evident advantage of using
fewer of them. On average, the training time is reduced by
56%, while the inference time is 13% shortened. Although one
can argue that the training time does not have a viable real-
world impact, the inference time is an important issue when
using traffic forecasts in practice. Obtaining the predictions
faster allows more time for their processing and utilization in
allocation algorithms.
B. Bandwidth Blocking Probability

We now examine whether the slightly higher MAPE experi-
enced when using only the temporal features impacts network
operation in terms of bandwidth blocking probability (BBP).
To this end, we utilize our recently proposed RSA algorithm
for multilayer networks with time-varying traffic, operating
with traffic predictions [2]. The connection requests take the
form of intents – continuous signals of various network-
based applications and services with bitrate varying throughout
the day (see Fig. 1), as in [21]. The algorithm dynamically
adapts to changing conditions and uses traffic grooming for
better utilization of spare bandwidth. The knowledge coming
from traffic prediction enables more informed decisions in
the long term, i.e., for each intent with an increasing bitrate
trend, the algorithm makes all the allocation decisions using
its maximum predicted bitrate from the upcoming period,
preventing grooming tightly fitting requests to avoid their
frequent reallocations and increase network stability. For more
details about the network model and algorithm, we refer to [2].

Fig. 8 shows the BBP with respect to traffic load. We
repeated the simulations using the bitrate predictions for
all intents coming from models using all features and then
models using the temporal features only. Results reveal that
there is no noticeable difference between the two cases. Any
blocking appears at the same traffic load in both cases, and
the difference in the amount of blocked bandwidth is marginal.
In other words, there is no notable BBP change when using
smaller prediction models, utilizing only the temporal features.
Simultaneously, simplifying the models decreases the infer-
ence time and thus allows quicker forecasting, enabling the
algorithm to use them and react to bitrate changes proactively
in practice. Additionally, training and storing smaller models
aligns with the green networking paradigm.

VI. CONCLUSIONS

In this work, we employed XAI to examine the behavior
of traffic prediction models for backbone optical networks

and extract insights into their operation that can serve their
design process. We examined the contribution of input features
from the literature on the outcome of different ML models
designed for traffic forecasting. Through a broad analysis
with various real and semi-synthetic datasets with different
sampling rates, we discovered that the predictors base their
decisions almost solely on the temporal features describing
the traffic in highly correlated past samples. We then verified
this conclusion by retraining all models with only those
features and confirmed it by showing marginal changes in
the prediction quality. At the same time, we demonstrated
multiple benefits coming from the newly-shrunken feature sets,
including significant problem simplification and shorter model
training and inference times. Based on our study, we thus
recommend training traffic prediction models for backbone
optical networks using temporal input features as they enable
fast and accurate forecasting. Finally, we demonstrated the
practical application of the conducted analysis on network
operation. We showed how using smaller prediction models
has almost no impact on the BBP for the dynamic RSA
problem. In the future, we plan to further investigate XAI for
the optimization of various ML-assisted networking tasks.
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