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Abstract—Adapting to concept drift is a challenging task in
machine learning, which is usually tackled using incremental
learning techniques that periodically re-fit a learning model
leveraging newly available data. A primary limitation of these
techniques is their reliance on substantial amounts of data for
retraining. The necessity of acquiring fresh data introduces
temporal delays prior to retraining, potentially rendering the
models inaccurate if a sudden concept drift occurs in-between two
consecutive retrainings. In communication networks, such issue
emerges when performing traffic forecasting following a failure
event: post-failure re-routing may induce a drastic shift in
distribution and pattern of traffic data, thus requiring a timely
model adaptation. In this work, we address this challenge for
the problem of traffic forecasting and propose an approach
that exploits adaptive learning algorithms, namely, liquid neural
networks, which are capable of self-adaptation to abrupt changes
in data patterns without requiring any retraining. Through exten-
sive simulations of failure scenarios, we compare the predictive
performance of our proposed approach to that of a reference
method based on incremental learning. Experimental results
show that our proposed approach outperforms incremental
learning-based methods in situations where the shifts in traffic
patterns are drastic.

Index Terms—Traffic Prediction; Adaptive Learning; Incre-
mental Learning; Concept Drift; Network Failure.

I. INTRODUCTION

Network traffic prediction represents a foundational problem
in optical network design due to its significant implications
for the overall performance and efficiency of the network [1],
[2]. Currently, network operators perform traffic prediction and
then feed forecast values as inputs to optimization algorithms
responsible for fine-tuning the resource allocation and the
service provisioning in the network [3].

To accurately predict network traffic, operators typically
rely on machine learning (ML) algorithms. More specifically,
operators train ML models to extrapolate future trends in traffic
based on historical data reflecting past traffic patterns [1], [2].
However, the dynamic nature of traffic in networks, coupled
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with the continuous deployment of emerging services, intro-
duces a plethora of challenges that have garnered widespread
research attention. Among these challenges, continuous adap-
tation of ML models to align with evolving traffic patterns is
of particular concern.

A potential solution to address this challenge is adopting
a continual retraining process of ML models, as the most
recent traffic measurements become available. While such
an approach is effective under typical network (and thus,
traffic) conditions, it fails to adapt in a timely manner under
unforeseen network circumstances (and hence, under previ-
ously unseen network traffic conditions) for which the ML
model was not originally trained. One such scenario arises
during network faults, such as link failures, which can have
cascading effects on traffic throughout the network, generating
unprecedented patterns not encountered during the ML training
process. In the context of ML, this shift in data patterns
represent a phenomenon known as concept drift, in which
trained ML models fail when faced with new and unexpected
data distributions [4]. Fig. 1 shows the shifts in traffic patterns
on a given link and the consequent distribution of traffic data
(concept drift) resulting from a sudden decrease in traffic load
due to a network failure (at time = 100) affecting another link.
Note that an ML model developed to predict traffic is trained
on data that shares a similar distribution to that seen prior to
the failure.

The consequence of this shift in data distributions, or, in
simpler terms, this mismatch, between ML model training data
and data seen in failure scenarios may cause, depending on
the magnitude of this mismatch, a drastic deterioration in
prediction accuracy, rendering the employed ML model inef-
fective. The inability to accurately predict traffic under these
circumstances poses a severe obstacle to network operators, as
timely and precise predictions are paramount for expediting
the restoration of network elements and associated traffic
flows. This issue underscores the critical need for a specialized
focus on traffic prediction under unforeseen scenarios, such
as in the case of a failure of a network element, where
conventional models and approaches fall short. An advanced
approach to tackle this issue is by relying on incremental
learning strategies, which involves updating or expanding a
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Fig. 1: Example of a concept drift in traffic patterns and trends on a
link due to network failure (at time step 100).

model’s knowledge over time without completely retraining
the entire model. A primary limitation of this approach is
its dependency on acquiring data that reflect the newly seen
patterns for retraining. In a scenario of network failure, an
operator must first collect an adequate amount of data prior
to retraining and redeploying the model. The temporal gap
between the occurrence of the failure and the reintroduction
of the freshly trained model imposes a period of operational
uncertainty, during which the operator cannot rely on an
updated and reliable model. Note that frequent retraining,
or retraining at shorter intervals, may not be a feasible so-
lution for operators to adequately address the task at hand,
considering that the quantity (and quality) of data used may
be insufficient. In fact, identifying the just-enough quantity
of data to collect (and hence, amount of waiting time) is
crucial when adopting incremental learning approaches and
merits considerable attention. However, even when this is
determined, it does not eradicate the period of uncertainty that
operators inevitably endure. Hence, employing methodologies
that adapt seamlessly to shifts in data patterns under such
failure scenarios, and consequently, allow operators to extract
meaningful traffic predictions under a failure scenario until
newly trained models are deployed, is essential.

In this work, we address the aforementioned challenge with
a primary focus on the rapid adaptation of ML models for
traffic prediction to drastic changes in traffic conditions arising
from failure scenarios. Specifically, we propose a novel ap-
proach based on liquid neural networks (LNNs) [5], which can
adapt to changes in data patterns without need for retraining.
We compare the performance of our proposed approach to
a reference method based on incremental learning, which
performs retraining periodically. To conduct our experiments,
we propose and employ a traffic model and a restoration
mechanism and simulate dynamic network operations in the
event of a network failure impacting network traffic patterns.
We present a comparative analysis of the two approaches in
terms of their predictive performance and the time required
to provide predictions within a predetermined error threshold.
Experimental results show that LNN-based approaches provide
great utility in scenarios characterized by abrupt shifts in
traffic patterns whilst incremental learning-based approaches
undergo retraining. The results also highlight the preference
for extended intervals of periodic retraining of incremental
learning approaches when faced with moderate changes in
traffic patterns.

The rest of the paper is organized as follows. Section II

discusses related work. Section III formulates the problem
of traffic prediction under failure scenarios and describes our
proposed methodology to tackle it. Section IV describes traffic
and network models adopted in our study. Section V reports
the experimental settings and discusses numerical results.
Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Addressing Concept Drift

Various techniques can be employed to address concept
drift in ML. Retraining is a traditional technique that involves
periodically updating ML models with the most recent data,
allowing them to dynamically adjust to changing patterns. For
instance, assuming that the data is a time series, windowing
or sliding window, which is an approach that focuses on
considering only a recent window of data for training, ex-
cluding older observations, can be employed. This technique
enables models to swiftly adapt to the most recent patterns
and minimizes the impact of outdated data, however, it still
requires the availability of enough data for retraining. Another
approach is incremental learning, which supports updating
models with new data without the need for retraining on the
entire dataset, thus facilitating a more immediate response to
changing patterns, yet still requiring the availability of new
data. On the contrary, adaptive models, such as online learning
algorithms, are designed to inherently adjust their parameters
as new data arrives, promoting continuous adaptation without
the necessity for explicit retraining. In our work, we employ
a novel online learning algorithm, i.e., LNNs, that does not
require periodic updates to perform real-time adaptation.

B. ML-based Traffic Prediction

Existing works on traffic prediction propose various statisti-
cal and ML-based methodologies for enhancing the predictive
performance of their algorithms on short- and long-term traffic
evolution [6]–[8]. Since network traffic patterns and trends
gradually change over extended periods, a specific focus
should be given to dynamic approaches to predict previously
unseen traffic conditions, as opposed to offline-learned models
which fail to adapt in such cases [9]. In particular, online traffic
forecasting algorithms using data stream mining techniques
were proposed as an effective solution to enable a gradual
model adaptation over long periods [9]–[12]. Despite their ef-
fectiveness, these approaches are not seen fit to cope with rapid
and drastic shifts in traffic patterns (i.e., with concept drift).
To address this issue, incremental learning-based approaches
have been recently proposed [3], [13], with a specific focus on
forecasting traffic after a failure event in the network. More
specifically, [13] proposes an algorithm based on moving win-
dows, demonstrating the trade-off between prediction quality
and speed of adaptation. In [3] authors employ partial fitting,
an incremental technique facilitating swift convergence after
sudden traffic pattern changes due to network failure. This
is achieved through model retraining with each batch of new
data. While effective, the performance of this approach relies
heavily on the batch size and retraining frequency, introducing



uncertainty when significant changes in input data patterns
occur in short periods. In this work, we tackle the problem
from a different angle and propose a novel approach based
on adaptive learning algorithm to adapt, in real time, to new
data patterns without the need for retraining. We quantify the
achievable advantages and identify the scenarios where such
an approach can benefit the network operator with respect to
the above-mentioned benchmark methods.

III. ADAPTIVE LEARNING AND INCREMENTAL LEARNING
FOR LINK LOAD PREDICTION

The link load prediction task can be modeled as a regression
problem which consists of forecasting the amount of traffic
to be provisioned along a link in a future time step t,
considering as input a set of p observations of historical traffic
measurements on the link. The success of the regressor (i.e.,
the link load predictor) is assessed by quantifying the deviation
of traffic predictions with respect to the actual values. In
the event of a failure in the network, which causes a shift
in data distribution, the efficacy of the regression method is
then quantified by its ability to promptly adapt to changes in
traffic patterns (we introduce a metric explained in detail in
Sec. V-A, referred to as Time to Convergence, to quantify this
adaptability). We consider two distinct approaches to address
the problem at hand: i) incremental learning techniques (refer-
ence scenarios) and ii) adaptive learning algorithms (proposed
method).

A. Reference Approach: Incremental Learning

The reference approach considered in this paper is based
on the algorithm proposed in our previous work [3]. To
create a model capable of adapting to changing traffic after
failures, we developed an incremental learning approach based
on data stream mining techniques. To this end, we employ
a MultiLayer Perceptron (MLP) regressor that is periodically
partially fitted. In more detail, the model is first trained on
a number of traffic samples, and after enough new data arrives,
it is updated to match the current traffic conditions. The size of
the retraining window is a parameter that steers the frequency
of the model partial fitting. As input features for the MLP
learning algorithm we directly use raw data, i.e., the p previ-
ous traffic samples. For example, model p3 implies that the
prediction is made using three previous traffic samples as input
features. Typically, streaming models utilize the test-then-train
protocol, i.e., for a specified batch size, the model outputs
its forecast for the entire new batch of data, and when the
real data is available – it undergoes retraining. However, such
a methodology does not allow for the direct use of previous
samples as features, as they are not yet available to the model
when making batch predictions. Therefore, the closest samples
outside the prediction window act as the model inputs. In this
work, we modify this approach to consent the best possible
model adaptation after concept drifts. Specifically, the model
predicts the traffic for the upcoming sample using p previous
ones. After the batch of new data is available, it undergoes
retraining.

B. Proposed Approach: LNN-based Online Learning

Artificial Neural Networks (ANNs) are ML models inspired
by the structure of the mammalian brain, which is composed
of neurons organized in interconnected layers. In traditional
ANNs, neuron states are determined by linear combinations
of inputs from other neurons, enhanced with specific non-
linear activation functions (e.g., the sigmoid) to increase model
expressiveness. A significant subtype of ANNs, specifically
designed to model time-series data, is the recurrent neural
network (RNN). Such a network is characterized by recurrent
mechanisms, that enable neuron activation to be influenced by
linear combinations of inputs from other neurons and their own
previous states. However, traditional RNNs often face chal-
lenges in adapting to complex time-series dynamics. LNNs [5]
represent a fundamental shift from traditional RNNs. Indeed,
while still making use of recurrent mechanisms, LNNs explic-
itly model time-series dynamics through differential equations
that determine neuron states. Specifically, the neurons’ state is
the solution to the differential equation presented in Eq. 1:

dx(t)

dt
= −

[
1

τ
+ f(x(t), I(t),θ)

]
x(t) + f(x(t), I(t),θ)A

(1)
where x(t) is the vector representing the states of network

neurons at time t, τ is a constant that ensures numerical
stability, I(t) represent the inputs to the neurons at time t, f is
a neural network parametrized by θ and A is a bias term. This
design offers more effective modeling of dynamic systems and
possesses the remarkable capability to adapt LNN’s behavior
post-training, i.e., they can adjust to the dynamics of unseen
inputs without the need for further training.

For this reason, LNNs are particularly useful in scenar-
ios where sudden shifts in data distribution occur due to
unforeseen events, such as a significant change in network
traffic following a network failure. In such situations, network
operators are required to respond quickly, basing their actions
on the traffic load estimated by their models. However, models
trained on prior data distributions may not provide reliable
estimations after data distribution has changed. Typically,
these models would necessitate re-training through incremental
learning methods, which can only take place once an adequate
volume of new data has been accumulated, thus further delay-
ing network recovery. In contrast, models utilizing LNNs can
adjust to novel data without the need for re-training, thereby
facilitating a quicker response from network operators.

IV. TRAFFIC AND NETWORK MODEL

A. Traffic Model

We use Euro28 topology (28 nodes, 82 directed links),
which models the European core network [14]. R nodes
selected based on real data1 host a data center (DC) and provide
anycast services/contents. We assume a continuous inter-DCs
synchronization, which guarantees that each DC offers exactly
the same content and can serve any of the interested clients.

1Available at http://www.datacentermap.com



Fig. 2: Topology of the network and failure scenarios.

However, we always assign a client with the closest (according
to the distance in kilometers) working DC.

We work under the assumption that the network traffic is
a result of four transmission types, i) city to city: a basic
unicast transmission between each pair of network nodes
(representing cities), ii) city to DC: a service/content request
and control data send from each city node to the closest
working DC, iii) DC to city: a service/content provision and
control data send from the selected DC to each city node, and
iv) DC to DC: a unicast transmission observed between each
pair of DCs; it realizes the inter-DCs synchronization.

To mathematically describe the network traffic, we use the
model proposed in [15]. It models each transmission type (its
time process) as a sine (trigonometric) function with param-
eters (amplitude, pulsation, initial phase) determined by the
network economical, demographic and topological parameters.
The entire traffic between a pair of nodes is then a sum of
the sine functions related to the transmission types observed
between that pair. Considering a simulation consisting in T-
iterations (time steps), the model brings information about the
traffic volume observed between each pair of network nodes
for each time step t ∈ T . Within each time step of that time
perspective, the average network load (the sum of all offered
bitrate) is always equal to B [Tbps].

B. Network Model

Formally, a network is modeled as a directed graph G =
(V ,E), where V denotes a set of nodes and E indicates a set
of directed fiber links. Each fiber link offers the same spectrum
range divided into S frequency slices. Adjacent slices can be
grouped then into spectral channels, each one characterized by
the first slice index and the channel width.

We consider a dynamic network operation, which refers to
the allocation of new arriving demands and resource release
after expired demands at each time step. A demand is given
by a tuple d = (s, t, b,h), where s(d) and t(d) are demand’s
source and destination nodes, b(d) is a demand’s volume
(bitrate) in Gbps and h(d) is a demand holding time. Note that
all demands are unicast, since the DC selection task is solved

off-line and known in advance. The applied traffic model
(see Sec IV-A) provides data regarding the total traffic bitrate
observed between each pair of communicating nodes at each
time step t ∈ T . To translate these series into sets of demands
arriving at each time step, we make use a special method
introduced in [16]. At each time step t ∈ T , it iterates through
all pairs of communicating nodes and divides the offered
bitrate into a set of arriving demands. To this end, it takes
into account all previously offered and still existing demands.
The method also assumes that the maximum demand’s bitrate
can be 250 Gbps while their duration is randomly selected
from the range (0, 30] time steps.

To deploy a traffic demand, it is necessary to assign it
with a lightpath (a routing path connecting the demand source
and destination nodes and a channel tailored to the demand’s
bitrate and path’s length). A demand can be allocated only at
the time step of its arrival. If the available spectrum is not
sufficient to serve it, the demand is rejected.

We assume that optical channels are multiplexed in a flex-
ible grid with a standard slice width of 12.5 GHz. An elastic
transceiver operates at 28 Gbaud with an optical channel band-
width of 37.5 GHz (i.e., 3 frequency slices) and can use one of
four modulation formats: BPSK, QPSK, 8-QAM and 16-QAM.
The supported bitrates and transmission reaches are 50 Gbps,
6300 km for BPSK; 100 Gbps, 3500 km for QPSK; 150 Gbps,
1200 km for 8-QAM; 200 Gbps, 600 km for 16-QAM. We allow
for the usage of signal regenerators only if necessary, i.e.,
when a path length exceeds the modulation reach. To select
a modulation and a routing path for a particular demand d, we
use the distance-adaptive transmission rule [17]. It chooses the
most spectrally efficient format that simultaneously minimizes
the number of used regenerators.

The network operation is simulated within T subsequent
time steps. In each of them, a set of demands arrives (and
needs to be served) and a subset of already allocated demands
expires (and releases resources). When a link failure occurs,
the demands using that link (on their lightpaths) are affected
and have to be restored. They are handled in the same way as
new demands, however, their duration is shortened according
to the time already spent in the network. The objective function
is to serve as much bitrate as possible. However, the network
load in this research is chosen to mitigate any demand blocking
and to allow for full traffic restoration after a link failure.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Failure Scenarios: We simulate 10 failure scenarios
considering the topology depicted in Fig. 2 (see legend to
identify failed link and inspected link pairs for each failure
scenario). Upon a link failure event, the traffic restoration
process takes place as described in Sec. IV-B. Based on
shift in data distribution of the traffic load on an inspected
link, we divide the above 10 cases into two categories: 1)
highly impacted and 2) moderately impacted. Specifically,
highly impacted (resp., moderately impacted) category consists
of cases in which the inspected link suffers from a drastic
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Fig. 3: The RMSE and MAPE achieved by Online LNN, Incremental-20 and Incremental-5 along the 50 time steps after the failure event (i.e.,
after concept drift) for the highly impacted (subfigures (a) and (b)) and moderately impacted (subfigures (c) and (d)) cases.

(moderate) variation of more (less) than 80% between the
mean value of the 50 observations just prior to failure and
that of the 50 observations just after the failure.

2) Model Parameters and Training: We consider a neural
network composed of a first LNN layer with 30 neurons and
hyperbolic tangent activation function, followed by 3 dense
layers with a linear activation function and number of neurons
of 10, 5 and 1 (i.e., for the output layer), respectively.

We use the same LNN architecture for all links. In all cases,
we train the LNN using first 6000 time steps of the available
data. The LNN is designed to take, at time step t, the past
3 observations from the previous three time steps (t− 3, t−
2 and t − 1) to predict the traffic at time step t + 1. Note
that these 6000 observations (time steps) correspond to normal
traffic conditions (prior to failure, with no concept drift). The
LNN does not undergo any further training. We refer to this
approach as Online− LNN .

For the Incremental Learning approaches, we use an MLP
with one hidden layer of twenty-five neurons, with the ReLU
activation function and adam optimizer. Similarly to the case
of LNN, we design the model to take as input, at time step t,
the past 3 observations from previous three time steps (t− 3,
t − 2 and t − 1) to predict the traffic at time step t + 1.
We consider two variations of this model. The first undergoes
batch retraining every 5 time steps while the second undergoes
batch retraining every 20 time steps. We refer to them as
Incremental − 5 and Incremental − 20, respectively.

3) Evaluation Metrics: We consider three metrics to eval-
uate the performance of the proposed approaches, namely, the
Root Mean Square Error (RMSE), the Mean Absolute Percent-
age Error (MAPE) and the Time to Convergence (TConv).

The RMSE evaluates how well the predicted values of the
various approaches align with the actual observed traffic values
in terms of their absolute values, penalizing larger errors more
heavily, while the MAPE evaluates the percentage deviation be-
tween predicted and actual observed traffic values, to quantify
the accuracy in a relative sense. In our work, we compute the
RMSE and the MAPE of the various approaches considering
different time intervals, in terms of time steps, after the failure.
This allows us to measure how the deviation between the
predicted values of an approach and the actual values differ as
we move farther from the failure. In other words, it allows us
to identify when incremental learning methods, which undergo
training, start to provide more accurate predictions than the
LNN-based online learning approach.

The TConv is defined as the amount of time needed by
an approach to provide x number of predictions that are all
within a predefined th percentage error. We assume that th
represents a percentage error in the prediction that is tolerated
by the operator, or in other words, a percentage error that
minimally impacts the network operations that leverage the
predictions. This allows us to identify when the incremental
learning approaches provide reliable predictions and hence, the
operator can again rely on them instead of LNN-based online
learning approach. In our analysis we consider a fixed value
of x = 5 and two distinct th: th ∈ {10, 15}.

B. Numerical Results and Discussion

We start our discussion by comparing the performance of
the three approaches in terms of RMSE and MAPE considering
the period after failure, in particular from the moment of
failure (time step 0) to 50 time steps after failure (time step
50), as we aim to investigate how the various approaches
react after the occurrence of concept drift. Figs. 3(a) and 3(b)
show the RMSE and the MAPE of the three approaches in the
highly impacted cases. In terms of RMSE, LNN outperforms
the incremental-based approaches directly after failure (at time
step 0), showing an RMSE substantially lower (better) than
Incremental 20 (168 instead of 180) and slightly lower than
Incremental-5 (168 instead of 172). LNN consistently outper-
forms incremental-based approaches in the subsequent 50 time
steps, even though the incremental-based methods underwent
multiple partial refitting processes up to that point. Specifi-
cally, Incremental-5 underwent 10 partial refitting processes,
and Incremental-20 underwent two such processes. These
results unveil two main findings in case of drastic change
in traffic patterns: i) LNN exhibits a consistent edge, albeit
marginal, over incremental-based approaches. This advantage
persists even when the incremental learning-based approaches
undergo an intensive retraining process (every 5 time steps),
for a substantial duration (e.g., up to 50 time steps), and
ii) frequently performing partial refitting (considering a batch
of 5) offers an improvement in the predictive quality of the
models. In terms of MAPE (Fig. 3(b)), results show that
Incremental-5 outperforms LNN and Incremental-20. While the
results confirm the second finding observed when analyzing
the performance in terms of RMSE, they oppose the first one.
This can be explained considering that the MAPE measures a
relative error (i.e., to the actual traffic value), while the RMSE
measures an absolute error. Hence, large absolute errors may



be absorbed by high reference traffic values, and are therefore
more evident from the RMSE than from the MAPE. We observe
that, in the context of traffic allocation, absolute errors are
more relevant than relative ones. For instance, the same MAPE
value is more impactful on a large traffic flow than on a
small flow, as the actual traffic difference (e.g., the RMSE)
is much greater in the former case. In turn, underestimating
or overestimating high traffic volumes (i.e., having a large
RMSE but possibly a small MAPE) could lead to significant
problems such as congestion, under-utilization of resources,
or even service outages. The choice of the metric to serve
as foundation to select the approach to be adopted should
be determined by the network managers, considering their
specific objectives and network conditions.

Figures 3(c) and 3(d) report the RMSE and MAPE of the three
approaches for the moderately impacted cases. Results show
that, in terms of both metrics, Incremental-20 outperforms the
LNN and Incremental-5 directly after the failure (i.e., before
Incremental-20 has undergone a partial refitting process) and
throughout the considered period (up to time step 50). The
LNN, although very comparable to Incremental-5 in some
cases, fails to edge any of the incremental learning-based
approaches. We observe that in case of a relatively moder-
ate change in data patterns, incremental learning approaches
maintain their reliability over LNN. This is attributed to their
ability to leverage the knowledge accumulated through partial
refitting, allowing them to adapt more effectively to the
changing dynamics when the latter are not very drastic. It
is important to note that in such scenarios, achieving better
performance is observed when partial refitting is conducted
less frequently, using a larger batch size of 20, as opposed to
a more frequent approach with a smaller batch size of 5. This
is expected, as larger batch sizes in partial refitting allow the
model to accumulate knowledge over a more extended period
before updating, thus potentially capturing more stable patterns
in the data and reducing overfitting to recent (and most likely,
short-term) fluctuations (which are in fact very likely to occur
just after the network has experienced a link failure).

We now compare the approaches in terms of the TConv.
Table I reports the TConv for each approach across the
10 cases, considering values of x and th as reported in
Sec. V-A. We first note how TConv varies drastically among
failure scenarios (e.g., for th = 10, in failure scenario #5
the various approaches require 32 time steps to converge
while in failure scenario 6 they converge from the first time
step). This highlights the complexity and variability of the
problem. Comparing the various approaches, for th = 10,
LNN shows the best TConv in 6 out of 10 scenarios (in some
scenarios exhibiting the same TConv of incremental learning
approaches). For th = 15, LNN shows the best TConv in 50%
of the cases, achieving convergence in almost half the time
with respect to the other approaches (e.g., failure scenario
#5). Despite LNNs efficacy in some scenarios, they struggle to
outperform incremental learning in the rest of the scenarios.
Therefore, a hybrid approach exploiting the strengths of each
individual approaches could represent a promising solution.

TABLE I: TConv achieved by the various approaches across the 10
failure cases (see Fig. 2) considering two distinct values of th: 10
and 15, and for x = 5.

th Approach Failure Scenario ID
1 2 3 4 5 6 7 8 9 10

10
Incremental-5 14 49 2 10 32 1 2 8 4 41
Incremental-20 6 21 144 17 32 1 17 8 5 41
LNN 9 21 35 18 32 1 1 5 4 74

15
Incremental-5 7 2 2 2 32 1 1 4 3 10
Incremental-20 6 7 34 2 31 1 1 5 1 9
LNN 6 7 14 0 17 1 1 5 3 41

VI. CONCLUSION
In this paper, we addressed the concept drift issue in

traffic patterns arising due to network failure for machine
learning-based link load prediction. To this end, we propose
an adaptive learning approach based on the use of liquid
neural networks to adapt to changes in traffic patterns without
requiring any retraining. As reference scenario, we design
incremental learning-based approaches that undergo partial
refitting periodically. We compare our LNN-based proposed
approach to incremental learning-based approaches in terms
of quality of their predictions and time to adapt to newly-seen
traffic patterns. Our results show that LNN-based approaches
can come in handy in circumstances of drastic change in
traffic patterns, whilst incremental learning-based approaches
can be retrained and adapted. Results also reveal that a larger
interval for periodic refitting is desirable when change in traffic
patterns is relatively moderate. Overall, our results provide
network managers with valuable insights for machine learning-
based traffic prediction in case of network failure.
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