
Thesis for the degree of Doctor of Philosophy

Microwave Photon Generation and Entanglement
for Distributed Quantum Computing

Jiaying Yang

Department of Microtechnology and Nanoscience
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2024



Microwave Photon Generation and Entanglement for Distributed Quantum Comput-
ing
Jiaying Yang
ISBN 978-91-8103-137-9

© Jiaying Yang, 2024.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5595
ISSN 0346-718X

Department of Microtechnology and Nanoscience
Chalmers University of Technology
SE–412 96 Göteborg, Sweden
Telephone + 46 (0)31 – 772 1000

Cover: A distributed quantum computing system, see Figure 4.1 on page 66.

Typeset by the author using LATEX.

Printed by Chalmers Reproservice
Göteborg, Sweden 2024



To my grandpa 致我的姥爷





Abstract
Distributed Quantum Computing (QC) is a system that interconnects multiple
quantum processors through quantum communication channels. It enables scalable
and robust quantum computations by leveraging the combined capabilities of each
processor. This thesis explores key components of distributed QC, specifically fo-
cusing on the generation of propagating microwave photons and the emission of
entanglement using superconducting systems. We present a series of experimental
and theoretical demonstrations that establish essential foundations for high-fidelity
quantum state transfer and remote entanglement generation via propagating mi-
crowave photons. First, we demonstrate deterministic quantum state transfer from a
superconducting qubit to a propagating microwave mode by encoding the quantum
state as a superposition of the vacuum state and the single-photon Fock state. We
employ photon shaping techniques to emit photons with time-symmetric amplitude
and constant phase, thereby ensuring efficient reabsorption by a receiver. However,
photon loss remains the primary loss channel in distributed QC networks. To address
this challenge, we further propose and experimentally generate frequency-bin-encoded
photonic modes, that can serve as a heralding protocol for detecting photon losses.
The protocol is achieved by deterministic encoding of qubit information into two
simultaneous photonic modes with different frequencies. By excluding the vacuum as
a logical state, frequency-bin-encoded photons enable effective error detection at the
receiver processor. Finally, we explore the generation of entangled photonic modes
through the continuous driving of a quantum emitter. We demonstrate that the tem-
porally filtered modes, obtained from the two sidebands of the resonance fluorescence
spectrum, exhibit entanglement and can be extracted to separate quantum processors.
These works serve as foundational building blocks for quantum state transfer and
remote entanglement in distributed QC networks, with potential applications in
waveguide quantum electrodynamics and scalable quantum architectures.

Keywords: Distributed quantum computing, Quantum networks, Superconduct-
ing circuits, Microwave quantum optics, Single-photon source, Single-rail photon
emission, Dual-rail photon emission, Heralding protocols, Frequency-bin encoding,
Entanglement
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Chapter 1

Introduction

This thesis is structured as follows. In this introductory chapter, we first explore the
motivation and background for the work, with a literature review of the state-of-the-
art distributed quantum computing systems, which is the main goal of this work. We
then present the foundational concepts necessary for understanding photonic-state
generation and qubit entanglement in superconducting circuits, which form the basis
for distributed quantum computing.

Chapter 2 covers the common methodologies used across all of our experiments.
Chapter 3 presents the experiments described in Paper 1 to Paper 3. Chapter 4
provides a summary and outlook for future research. Chapter 5, included as an
appendix, contains additional information relevant to the experiments.

1.1 Introduction to Distributed Quantum Com-
puting

Distributed quantum computing.— Quantum computing (QC) offers promising solu-
tions to complex computational problems by leveraging the principles of superposition
and entanglement [1]. However, in the noisy intermediate-scale quantum (NISQ)
era [2], these processors are constrained by both the number of qubits and noise. To
address these limitations, quantum processors must be scaled up [3], as practical
quantum computing will likely require tens of thousands to millions of physical qubits
to implement quantum error correction (QEC) [4].

As single-chip quantum processors scale up, various constraints emerge, including
wafer size, available refrigerated space, and cooling power [5, 6], presenting significant
challenges. Moreover, as quantum processors grow, the likelihood of all qubits
functioning reliably on the same chip decreases. For instance, if each qubit has a
0.1% chance of failure, a processor with 1,000 qubits would have approximately a
37% probability that no qubits fail, and a processor with 10,000 qubits would have
only about a 0.005% chance to have all qubits flawless. This estimate assumes that
correlated errors are excluded from consideration, though these types of errors also
increase as qubit numbers grow and represent an additional factor that motivates
the need for distributed architectures. Consequently, instead of solely scaling up
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4 1.1. Introduction to Distributed Quantum Computing

a single quantum chip, distributed QC architectures or quantum networks [7, 8]
offer an alternative solution by distributing computations across multiple processors,
thereby enabling the cooperative resolution of larger tasks.

To implement a distributed QC architecture, quantum channels—communication
pathways for transmitting quantum information—are required between remotely
distributed quantum processors. For platforms with trapped-ion qubits [9], neutral
atoms [10, 11], semiconductor quantum dots [12, 13], and color-center qubits [14, 15],
quantum channels can be implemented using optical fibers to transmit photons over
long distances, mediating entanglement between distant qubits [16]. However, the
process using the optical channels is typically probabilistic, or with a low information
transfer rate. Superconducting quantum processors function within the microwave
frequency range, where photons possess significantly lower energies compared to their
optical counterparts. In recent years, these processors have made impressive strides
toward scalable quantum computing. However, the lower energy of microwave photons
introduces challenges for establishing long-distance channels at room temperature.
This is because transmitting microwave photons in such conditions results in a
significant increase in thermal noise, i.e., in the regime of kBT ≫ ℏω (where the
thermal energy kBT is much greater than the energy of a single photon ℏω), leading
to a much higher presence of thermal photons compared to optical channels. To
address this, transducers between microwave and optical photons [17–21] can be
used to establish photonic channels between superconducting quantum processors.
Nonetheless, practical applications in quantum communication remain limited due
to the difficulty of achieving high-efficiency, low-noise transduction. Therefore,
superconducting qubits connected solely by microwave channels currently represent
a more feasible testbed, offering a deterministic method for transferring information
between remote processors. Thus, for the remainder of this section, we focus on the
implementation of microwave quantum channels between superconducting processors.

Distributed QC with superconducting qubits and microwave channels.— In super-
conducting circuits, the microwave-based quantum channels can be implemented
based on standing modes [22, 23] or travelling microwave photons [5, 24–28]. In
the first case, photons are transferred coherently through the discrete modes of the
channel. However, the standing modes begin to overlap with increasing distance,
forcing the cable lengths to be approximately one meter or less [22]. In the latter
case, to transfer travelling microwave photons, it is essential to prevent reflected
signals from returning to the emitter’s node. In [5, 24–26], this is done by adding a
circulator in the middle of the channel, allowing the reflected signal to go through
the third port of the circulator. In this way, the quantum channel can be modelled
as a continuum of states with microwave photons travelling through. However, the
circulator adds around 1 dB insertion loss to the process and forces the transmission
to be unidirectional. Another method to prevent the reflected signal is to ensure that
the emitted photons have temporal widths comparable to the cable length of the
channel [27–29], fulfilling L ∼ λ

2 = c
2Γ . In this formula, L represents the cable length

of the quantum channel and λ denotes the wavelength of the photon, which can be
calculated as the ratio of the signal propagation speed c to the photon’s decay rate
Γ. With this relation fulfilled, the adjacent standing modes merge together, and we
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can also model the channel as a continuum. For either method—adding a circulator
or ensuring the relation between the decay rate and the channel length—the photon
carrying quantum information is emitted by the sender processor, travels through
the quantum channel, and is reabsorbed by the receiver processor. This process
enables deterministic quantum state transfer and remote entanglement between the
qubits on both processors.

In [5], a cryogenic microwave link was established between two dilution refrigera-
tors separated by a physical distance of five meters. While extending such setups
to larger configurations presents challenges, efforts are shifting toward integrating
microwave links within a single cryostat. The work in [23] represents state-of-the-
art scalability, achieving entanglement between six superconducting qubits across
two distinct processors, while Ref. [27] demonstrates the longest-distance quantum
channel to date, spanning 64 meters. Moreover, quantum teleportation based on
remote entanglement between processors has been achieved, as shown in [27, 30]. In
related developments, Reference [31] presents a modular quantum computing system
consisting of four modules interconnected via a router built with Superconducting
Nonlinear Antisymmetric Inductive Element (SNAIL) technology. Finally, in [32, 33],
a giant artificial molecule is used to enable bidirectional photon emission, facilitating
the connection of more than two processors along a single waveguide.

Single-rail photon emission and reshaping.— Single-rail photon emission encodes
the quantum information of a static qubit into the presence or absence of a single
photon in a specific mode, serving as a fundamental component of distributed
QC systems. As demonstrated in [34], photon reshaping is crucial in the emission
process, because it enables reabsorption through the time-reversed process of emission,
significantly increasing absorption efficiency from 54% to over 99%. Several studies
have explored single-photon emission and reshaping using superconducting qubits [35–
38]. Reference [36] employs a straightforward design, featuring a qubit coupled to
a source line with a flux-tunable coupling rate to the waveguide for emitting and
reshaping photons. References [35, 37] utilizes a qubit-cavity or qubit-resonator
system for single-photon emission, leveraging a second-order transition to emit and
reshape photons.

In our work (Paper 1), we implement a single-photon emission source based
on parametric coupling [39] between two transmon qubits. We have achieved a
deterministic transfer of a qubit state into a propagating microwave photon with
a process fidelity of 94.5%. Compared to [40] with a similar structure, we use a
time-dependent parametric drive to shape the temporal profile of the propagating
mode, ensuring its time symmetry and constant phase, which allows the reabsorption
process by a receiving processor to be implemented as a time-reversed version of the
emission [35].

Dual-rail photon emission.— The emitted microwave photons are exposed to noise
during transmission through the quantum channel, posing a risk of photon loss when
transmitting quantum information between remotely distributed quantum processors.
For example, transmission losses in superconducting coaxial cables and waveguides at
cryogenic temperatures can reach up to 5 × 10−3 dB/m [41], significantly higher than
the 2 × 10−4 dB/m typically observed in optical fibres [42]. When using single-rail
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photon emission to transmit quantum information, the loss of a single photon results
in the loss of the encoded information, making the system highly vulnerable to
transmission noise. Error detection protocols can address this issue by introducing
an additional degree of freedom in the emission, converting the emission from a
single-rail into a dual-rail photon emission. Dual-rail encoding employs two distinct
modes—such as time-bin [43, 44], frequency-bin [45–47], polarization [48], path [49,
50], or angular momentum [51]—to represent the quantum information redundantly,
which are commonly utilized in the optical regime. The fact that the vacuum is
not a logical state allows the dual-rail photon to serve as a heralding protocol for
error detection, addressing photon loss at the receiver processor. In [52, 53], time-bin
encoded photon is experimentally demonstrated using superconducting qubits. In
comparison, frequency-bin encoded photons offer a higher data rate by emitting at
different frequencies simultaneously, doubling the transmission speed. However, to
the best of our knowledge, no implementation of frequency-bin encoded photons
exists in the microwave regime. Furthermore, if such an implementation were to be
developed, it would typically necessitate additional hardware resources, such as extra
qubits functioning as quantum state emitters, to emit both photons simultaneously.

In our work (Paper 3), we experimentally generate frequency-bin encoded photons
using a qubit-coupler-qubit structure similar to that in Paper 1, where one qubit
is strongly coupled to the waveguide. However, rather than using the coupler to
mediate interactions between the qubits, we tune it into resonance with the emitter
qubit to form a hybridized emitter. By applying two simultaneous pulses—one that
preserves excitation and one that does not—we transfer the quantum state from the
data qubit to the hybridized emitter. This allows for the simultaneous emission of
two propagating modes at different frequencies. Our approach is hardware-efficient,
as it eliminates the need for adding extra emitter qubits coupled to the waveguide.

Entangled photons from a resonance fluorescence system.— We now shift to a
different framework for exploring entanglement, a fundamental feature of quantum me-
chanics. Entangled photons have broad applications in quantum communication [54–
56] and distributed quantum computing [57–59]. Here we investigate entangled
photonic modes from a coherently and continuously driven qubit, which can be
described by a resonance fluorescence system [60]. Resonance fluorescence systems
have been demonstrated to exhibit a rich landscape of multi-photon correlations,
non-classical states and entanglement. Wigner-negative states have been shown to be
achievable in such systems by continuously driving a qubit to its steady state, with
both theoretical studies [61, 62] and experimental demonstrations [63] using a super-
conducting qubit. Moreover, higher-order correlations between the two-photon modes
within this scheme have been explored both theoretically [64–66] and experimentally
using quantum dots [67, 68]. In [69], Lopez et al. theoretically propose a method for
generating entangled photons by off-resonantly driving a qubit and measuring the
emission from the sidebands of the Mollow triplet [70, 71]. In our work (Paper 2), we
demonstrate entanglement by combining the time and frequency dimensions through
the selection of two temporally overlapping, yet spectrally orthogonal, photonic
modes. The entanglement can be physically extracted and transferred to quantum
memories to perform quantum information processing tasks or entanglement dis-
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tribution, which can be potentially used in a distributed QC system for enhanced
scalability and connectivity.

In summary, the three works in this thesis concentrate on two main aspects.
The first one is encoding quantum information from the superconducting qubit
to microwave photonic modes (Paper 1 and 3), with the later paper introducing
error-detection protocol against photon loss. The second aspect is generating entan-
gled photonic modes from a continuously driven superconducting qubit (Paper 2).
Together, these contributions serve as fundamental building blocks for distributed
QC systems in the microwave regime, with the potential to extend to broader
applications.

1.2 Superconducting circuit

1.2.1 Circuit elements
Quantum electrodynamics (QED) provides a framework for studying interactions
between light and matter at the quantum level, specifically within superconducting
circuits. Superconducting qubits, which act as artificial atoms in this setting,
are constructed from engineered circuit elements that leverage the principles of
superconductivity. These elements, including capacitance, inductance, and the
Josephson junction, form the foundation of superconducting qubit circuits and enable
the controlled manipulation of quantum states.

Circuit element Symbol Energy
Capacitance EC = 1

2CΦ̇2

Inductance EL = Φ2

2L

Josephson junction EJJ = EJ

[
1 − cos

(
2π Φ

Φ0

)]
Table 1.1: Elements for superconducting qubit circuit

Capacitance (C) quantifies a capacitor’s ability to store charge. The energy
stored in a capacitor is EC = 1

2CV
2. Since the voltage across the capacitor relates

to the time derivative of the magnetic flux (Φ) by V = Φ̇, the energy can also be
expressed as EC = 1

2CΦ̇2.
Inductance (L) quantifies an inductor’s ability to store energy in a magnetic field

when current flows through it. The energy stored in an inductor is EL = 1
2LI

2. Since
the magnetic flux (Φ) through the inductor relates to the current (I) by Φ = LI, the
energy can also be expressed as EL = Φ2

2L
.

A Josephson junction is a nonlinear inductance made up of a thin insulating
barrier between two superconducting materials [72] [Fig. 1.1]. In our experiment,
we use aluminium as the superconducting material and aluminium oxide as the
insulator. Unlike a normal inductance, the Josephson junction exhibits nonlinear
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Al
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Figure 1.1: Josephson junction. (a) A schematic symbol, including two supercon-
ductors (Aluminium, Al) separated by an insulating barrier (Aluminium oxide,
AlOx). (b) Photo of the Josephson junction in one of our devices. The junction is
formed by two superconductors positioned perpendicularly to each other with a
thin insulating layer between them. The junction patch serves as the interface
between the junction arms and the rest of the circuit.

behaviour due to the tunnelling of Cooper pairs between the superconductors at low
temperatures [72].

Josephson junction is characterized by two fundamental relations, the dc and ac
Josephson relations. The former one describes the supercurrent Is as a function of
the phase difference ϕ between the superconducting condensates on the two sides of
the junction,

Is = Ic sinϕ . (1.1)

where Ic is the critical current. The second relation, the ac Josephson relation, links
the time derivative of the phase difference to the voltage V across the junction,

dϕ

dt
= 2eV

ℏ
. (1.2)

Here, e is the elementary charge and ℏ is the reduced Planck’s constant.
According to the ac Josephson relation, the voltage V across the junction is

V = Φ̇ = ℏ
2e

dϕ
dt

, where the phase difference ϕ can be written by ϕ = 2π Φ
Φ0

, with
Φ0 = h

2e
the magnetic flux quanta. By combining these equations with the dc

Josephson relation, integrating the power over time gives the energy EJJ stored in
the junction,

EJJ =
∫
P dt =

∫
IsV dt =

∫
Ic sinϕ · ℏ

2e
dϕ

dt
= EJ

[
1 − cos

(
2π Φ

Φ0

)]
, (1.3)

where EJ = ℏIc

2e
is the Josephson energy.

1.2.2 Quantum harmonic oscillator
To study superconducting qubit circuits, we can begin with the foundational concept
of a quantum harmonic oscillator, formed by an LC circuit [Fig. 1.2(a)]. In our case,
we consider the wavelength of the oscillator to be much larger than the physical
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size of the circuit. This ensures that the circuit can be accurately modelled as a
lumped element, where the inductance and capacitance are concentrated in discrete
components.

Figure 1.2: (a) Parallel LC circuit. (b) Fixed-frequency superconducting qubit
circuit. (c) Frequency-tunable superconducting qubit circuit, enabled by a SQUID
loop consisting of two Josephson junctions and applied external flux.

The Lagrangian L of an LC circuit is given by the difference between the ki-
netic energy T and the potential energy V given by capacitance and inductance,
respectively,

L = T − V = 1
2CΦ̇2 − Φ2

2L . (1.4)

For the transition from the Lagrangian to the Hamiltonian, we first define the
conjugate momentum to the flux as Q, representing the charge on the capacitance,

Q = ∂L

∂Φ = CΦ̇ . (1.5)

Using the classical definitions of charge Q and flux Φ, we can express the Hamiltonian
H for a circuit as:

H = QΦ̇ − L = Q2

2C + Φ2

2L ,

where the terms correspond to the energy stored in the capacitor (charge Q) and
the inductor (flux Φ), respectively. This Hamiltonian describes a classical harmonic
oscillator with a resonance frequency of 1√

LC
.

To transfer to the quantum mechanical representation, we promote the classical
variables Q and Φ to quantum operators Q̂ and Φ̂. The quantum Hamiltonian is
then written as,

Ĥ = Q̂2

2C + Φ̂2

2L = 4EC n̂
2 + 1

2ELϕ̂
2 ,

where we define the reduced charge operator n̂ = Q̂
2e

and flux operator ϕ̂ = 2πΦ̂
Φ0

, with
Φ0 the flux qunata. EC = e2

2C
represents the charging energy. EL = Φ2

0/4π2L defines
the inductive energy. In this quantum mechanical framework, Q̂ and Φ̂ are no longer
just real numbers but quantum operators, satisfying the canonical commutation
relation, [

Φ̂, Q̂
]

= iℏ . (1.6)
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By introducing the annihilation operator â [73],

n̂ = i
(
EL

32EC

)1/4 (
â† − â

)
, (1.7)

ϕ̂ =
(2EC

EL

)1/4 (
â† + â

)
, (1.8)

The Hamiltonian of the quantum harmonic oscillator can be rewritten as,

Ĥ = ℏω
(
â†â+ 1

2

)
, (1.9)

where the angular frequency ω of the quantum harmonic oscillator is given by
ω = 8

√
ECEL

ℏ = 1√
LC

.

1.2.3 Superconducting transmon qubit

x

y

z

φ

θ

1

0

ψ

Figure 1.3: The Bloch sphere, with figure taken from [74].

The state of a qubit can be described by a state vector on a Bloch sphere (Fig. 1.3),

|ψ⟩ = cos θ2 |0⟩ + sin θ2e
iφ|1⟩ , (1.10)

with θ and φ angles in real values. Here, |0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
represent the

two basis states of the qubit. The manipulation of this state to perform quantum
operations relies on the application of quantum gates, which can be expressed using
the Pauli operators, defined as,

σ̂X =
(

0 1
1 0

)
, σ̂Y =

(
0 −i
i 0

)
, σ̂Z =

(
1 0
0 −1

)
. (1.11)

There are many physical ways to implement qubits, such as trapped-ion qubits [75,
76], photonic qubits [77], quantum dots [78, 79], and superconducting circuits. Among
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these implementations, superconducting qubits [80–84] have gained significant im-
provements due to their scalability and compatibility with existing technologies, such
as cryogenic systems for maintaining low-temperature environments, high-fidelity
microwave control systems for qubit manipulation, and standard semiconductor
fabrication techniques used to produce Josephson junctions and other circuit ele-
ments. Charge qubits are one of the most commonly used types of superconducting
qubits [85].

The Cooper-pair box is the first type of superconducting charge qubit that can be
coherently controlled in experiments [86]. It has the structure of two superconducting
islands connected via a Josephson junction, as the equivalent circuit shown in
Fig. 1.2(b). The system’s behaviour is governed by the charging energy EC = e2/2C,
which favours discrete charge states on the island, and the Josephson energy EJ ,
which enables Cooper-pair tunnelling through the junction.

Figure 1.4: Circuit representation of the Cooper-pair box qubit.

To derive the Hamiltonian of a cooper-pair box qubit, we start with deriving the
Lagrangian from a more explicit circuit representation (Fig. 1.4),

L = T − V = 1
2CJΦ̇2 + 1

2Cg(Vg − Φ̇)2 + EJ cos
(
πΦ
Φ0

)
. (1.12)

Φ is the flux floating through the marked node in the circuit. The charge at this
node can be calculated as,

Q = ∂L

∂Φ̇
= CJΦ̇ − Cg(Vg − Φ̇) =⇒ Φ̇ = Q+ CgVg

CJ + Cg

. (1.13)

We can now compute the Hamiltonian as follows,

H(Φ, Q) = QΦ̇ − L = 1
2

(Q+ CgVg)2

CJ + Cg

− EJ cos
(

2πΦ
Φ0

)
. (1.14)

Introducing the dimensionless offset charge ng = CgVg

2e
, the charge energy EC = e2

2CΣ
=

e2

2(CJ +Cg) , and the number of Cooper pairs in the superconducting island n = − Q
2e

,
we can rewrite the Hamiltonian as,

H = 4EC(n− ng)2 − EJ cos
(

2πΦ
Φ0

)
. (1.15)

We can then quantize the system, promoting n and Φ to operators, which fulfills the
commutation relation, 2πΦ̂

Φ0
, n̂

 = −i . (1.16)
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where n̂ |n⟩ = n |n⟩, with n being the number of excess Cooper pairs on the island.
Using the Baker-Campbell-Hausdorff lemma, e±i 2πΦ̂

Φ0 |n⟩ = |n± 1⟩ , which shows
that the exponential of the phase operator can act as a ladder operator on the
charge basis, and the relation cos

(
2πΦ̂
Φ0

)
= 1

2

(
e

i 2πΦ̂
Φ0 + e

−i 2πΦ̂
Φ0

)
, we can rewrite the

Hamiltonian as,

Ĥ = 4EC

∑
n

(n̂− ng)2|n⟩⟨n| − EJ

2
∑

n

(|n+ 1⟩⟨n| + |n⟩⟨n+ 1|) . (1.17)

When operating within the offset charge range 0 < ng < 1, the Cooper-pair box
qubit can be effectively described in the two-charge state basis {|0⟩, |1⟩}, leading to
the Hamiltonian,

Ĥ = −Ech(ng)
2 σ̂Z − EJ

2 σ̂X , (1.18)

where Ech(ng) = 4EC(1 − 2ng), and σ̂X and σ̂Z are the Pauli operators.
The Cooper-pair box qubit has comparable EJ and EC . In Fig. 1.5(a), we plot

the lowest energy levels five of the Hamiltonian in Eq. (1.17), with EJ = EC . We can
see that the energy levels of the Cooper-pair box qubit vary significantly with the
gate charge ng, making the qubit highly sensitive to charge noise and limiting the
coherence time of the qubit. To improve coherence time, ng needs to be adjusted to
the sweet point [87], which is at ng = 1/2. At this point, the slope of the eigenenergies
is zero respective to ng, meaning that the noise will not affect the qubit frequency,
thereby reducing the impact of dephasing. However, it is difficult to achieve this
precisely in experiments.

(a) (b)

Figure 1.5: The lowest five energy levels of the Cooper-pair box qubit as a function
of the gate charge, with (a) EJ/EC = 1, and (b) EJ/EC = 50, in the transmon
regime.

To mitigate this issue, the transmon regime was introduced [88]. By increasing
the ratio to ensure EJ ≫ EC , the energy levels become less dependent on ng. In
Figure 1.5(b), we show the energy levels with EJ = 50EC , illustrating that the level
spacing becomes nearly independent of the gate charge. This reduced sensitivity
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to charge fluctuations enhances the qubit’s coherence times, making the transmon
qubit a more robust candidate for quantum computing.

By Taylor expanding the cosine term cos ϕ̂ = cos
(

2πΦ̂
Φ0

)
in Eq. (1.15), and

introducing the annihilation operator â as in Eq. (1.8), the Hamiltonian of transmon
can be computed as,

Ĥ = ℏωQâ
†â+ ℏα

2 â†â†ââ , (1.19)

where ωQ =
√

8ECEJ −EC

ℏ is the qubit transition frequency between the lowest two
energy levels, and α = −EC represents the anharmonicity of the qubit.

1.2.4 Flux-tunable transmon qubit with SQUID
By introducing a Superconducting Quantum Interference Device (SQUID) loop, we
can turn a fixed-frequency transmon qubit into a flux-tunable one [Fig. 1.2(c)]. The
SQUID, consisting of two Josephson junctions in a superconducting loop, has a
flux-dependent Josephson energy. By applying external flux, Φexp, to the flux line
that is inductively coupled to the SQUID loop (see Fig. 1.6 for the photo), the
magnetic field through the loop is altered, which changes the phase difference across
the junctions. This, in turn, modifies the effective Josephson energy, allowing us to
tune the qubit frequency. For devices without an on-chip flux line, external flux can
be applied using a coil positioned vertically above or below the device.

10um Flux line

SQUID

Figure 1.6: Photo of a SQUID loop on our device, which is inductively coupled to
a flux line for applying external flux.

The effective Josephson energy EJ(Φexp) of the flux-tunable transmon qubit is
given by [89],

EJ(Φexp) = EJΣ cos
(
π

Φexp

Φ0

)√√√√1 +
[
d tan

(
π

Φexp

Φ0

)]2

, (1.20)

where Φexp is the applied magnetic flux through the SQUID loop, which is sometimes
simplified to Φ in the next chapters. Φ0 is the magnetic flux quanta. EJΣ = EJ1 +EJ2
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is the total Josephson energy of the two junctions. d = β − 1
β + 1 is the junction

asymmetry parameter, with β = EJ1/EJ2 and EJ1 ≥ EJ2. The qubit frequency ωQ

is then tunable, dependent on the applied flux Φexp,

ωQ =
√

8EJ(Φexp)EC − EC . (1.21)

Typically, flux-tunable transmon qubits are designed with symmetric Josephson
junctions in the SQUID loop, meaning both junctions have equal Josephson energies
(EJ1 = EJ2). This symmetry enables tuning the qubit frequency down to zero with
flux, as shown in the blue curve in Fig 1.7, and this is used in the couplers in our
Device 1 and 2 in the following chapters of this thesis.

1.0 0.5 0.0 0.5 1.0
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Figure 1.7: An example of the qubit frequency as a function of flux for different
asymmetry parameters (β).

However, using symmetric junctions can make the qubit more susceptible to
flux noise, which can degrade coherence times and cause flux crosstalk between two
flux-tunable qubits [90]. Introducing asymmetry between the junctions (EJ1 > EJ2)
can mitigate this issue. An asymmetric transmon provides a smaller frequency-tuning
range that is sufficient for frequency tunability variations (see the rest of the curves
in Fig 1.7) without introducing unnecessary sensitivity to flux noise. The asymmetric
junctions (β = 3.6) are used in the SQUID loop of our emitter qubit in Device 2,
where both the coupled coupler and emitter qubit are flux-tunable, to reduce the
crosstalk.

1.2.5 Readout resonator
We use a coplanar waveguide (CPW) for propagating photons on a superconducting
quantum chip, which consists of a center conductor separated from the ground plane
by gaps at both sides. In this section, we mainly focus on the transmission line
resonators for the qubit-state readout. The readout resonators employed are designed
as either quarter-wavelength (λ/4, with unequal boundary conditions at both ends)
or half-wavelength (λ/2, with equal boundary conditions at both ends) resonators.
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In this thesis, we use the λ/4-type resonator, which has one end open, and the other
end shorted to the ground plane. The Hamiltonian of the resonator can be described
as a quantum harmonic oscillator as in Eq. (1.9). The CPW resonators also have
important parameters including quality factor (Q) and its coupling strength to the
qubit (j), which will be explained more explicitly in Sec. 2.3 and 5.2.1.

1.2.6 Jaynes-Cummings model
To analyze the interaction between a qubit and a readout resonator, we need
a framework that captures the effect of their coupling j on both the qubit and
resonator properties. The Jaynes-Cummings model provides an effective description
of this coupled system, capturing how the qubit-resonator interaction modifies the
frequencies of each component. When they are not interacting, considering the qubit
as a two-level system (TLS), they can be described by the bare Hamiltonian,

Ĥbare = 1
2ℏωQσ̂Z︸ ︷︷ ︸

Qubit

+ ℏωR(â†â+ 1
2)︸ ︷︷ ︸

Resonator

. (1.22)

Considering the interaction between the qubit and the coupler, the Hamiltonian
becomes,

ĤJC = 1
2ℏωQσ̂Z︸ ︷︷ ︸

Qubit

+ ℏωR(â†â+ 1
2)︸ ︷︷ ︸

Resonator

+ ℏj(âσ+â
†σ−)︸ ︷︷ ︸

Interation

, (1.23)

where σ̂− = |g⟩ ⟨e| =
(

0 0
1 0

)
and σ̂+ = |e⟩ ⟨g| =

(
0 1
0 0

)
are the lowering and raising

operators for the qubit, respectively. The two non-energy-conserving parts of the
interaction Hamiltonian, aσ− and a†σ+, are dropped.

In this thesis, we work in the dispersive regime for the qubit and the resonator,
where the detuning between them, ∆ = |ωQ − ωR|, is much larger than the coupling,
∆ ≫ j, and the direct excitation transfer between them is depressed [91]. By applying
perturbation theory in j/∆, we can find the dispersive Hamiltonian,

Ĥdisp = 1
2ℏ(ωQ + χ)σ̂Z + ℏ (ωR + χσ̂Z) â†â, (1.24)

where χ = j2/∆. Now the frequency of the resonator becomes ωR ± χ, depending
on the state of the qubit. At the same time, the level separation in the qubit
ℏ(ωQ + χ+ 2χâ†â) also depends on the number of photons in the resonator, since
n̂ = â†â is the photon number operator. We call χ = j2/∆ the Lamb shift and 2χâ†â
the ac Stark shift.

1.2.7 Decoherence
When a quantum system interacts with its environment, it gradually loses its quan-
tumness through a process known as decoherence. This process can be characterized
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by two relaxation rates: the longitudinal relaxation rate Γ1 = 1/T1 and the transverse
relaxation rate Γ2 = 1/T2.

The longitudinal relaxation rate Γ1 describes the rate at which the population of
the qubit’s energy states decays, leading to energy dissipation to the environment.
The transverse relaxation rate Γ2 captures the combined effects of both longitudinal
relaxation and pure dephasing, which results in the loss of coherence between quantum
states. This rate is expressed as,

1
T2

= 1
2T1

+ 1
Tφ

, (1.25)

where Γφ = 1/Tφ represents the pure dephasing rate, indicating the rate at which
phase coherence is lost without energy dissipation. In the ideal scenario where the
qubit’s transition frequency remains perfectly stable over time, and there is no photon
shot noise[92] or other sources of dephasing present, we should observe that T2 = 2T1.

After decoherence, the qubit can no longer be represented as a pure state, or as a
vector on the Bloch sphere’s surface. Instead, the qubit’s state falls inside the Bloch
sphere, and it has become a mixed state due to interactions with the environment.
In this case, the state can only be described by a density matrix ρ rather than
a state vector. The density matrix provides a more general representation of the
qubit’s statistical state, for both pure state and mixed state of the qubit. The purity
of a quantum state becomes less than 1, Tr(ρ2) < 1 (for a pure state, the purity
is 1). After time t, the density matrix of a qubit state initialized in α |0⟩ + β |1⟩
becomes [93] due to the relaxation,

ρ =
(

1 + (|α|2 − 1) e−Γ1t αβ∗ei∆te−Γ2t

α∗βe−i∆te−Γ2t |β|2e−Γ1t

)
, (1.26)

where the phase e−i∆t is introduced by the detuning between the qubit and the drive,
∆ = ωQ − ωd.

1.2.8 Waveguide
A waveguide quantum electrodynamics (wQED) system, where a qubit couples to a
one-dimensional superconducting transmission line, enables strong and controllable
interactions between quantum emitters and guided photonic modes. Unlike the
readout resonator, which is a discrete harmonic oscillator designed for measuring
the qubit’s state, the waveguide in a wQED system acts as an open-ended, one-
dimensional continuum that allows propagating photonic modes to travel through.

When considering one single mode in the waveguide, with the annihilation operator
denoted as â, we can write the Hamiltonian for the qubit-waveguide coupling system,

Ĥ = ℏωQ

2 σ̂Z + ℏΓσ̂Z

(
â+ â†

)
. (1.27)

where Γ1 is the relaxation decay rate of the qubit, defined as Γ1 = Γr + Γnr, the sum
of the radiative decay rate Γr and the non-radiative decay rate, Γnr, the rate of qubit
decaying into the environment.



Chapter 1. Introduction 17

In a waveguide quantum electrodynamics (wQED) setup, the interaction between
the qubit and the waveguide introduces dissipation, as photons emitted by the
qubit can escape into the waveguide modes and travel away. This process can be
effectively captured by a master equation in the Lindblad form [94], which describes
the non-unitary dynamics of the qubit’s density matrix, ρ, due to the coupling to
the waveguide. The master equation for the qubit-waveguide system, assuming a
Markovian environment, is given by,

dρ

dt
= − i

ℏ
[
Ĥ, ρ

]
+ Γ1D[σ̂−]ρ+ 1

2ΓφD[σ̂Z ]ρ , (1.28)

where the first term represents the evolution of the system governed by the Hamilto-
nian. The second term represents the dissipative dynamics due to the total excitation
decay of the qubit, with D[X̂]ρ = X̂ρX̂† − 1

2(X̂†X̂ρ+ρX̂†X̂). The last term considers
the dissipation due to the pure dephasing rate Γφ.

When the qubit is driven by an external continuous wave at Rabi frequency Ω,
by transforming into the rotating frame at the drive frequency, the Hamiltonian of
the qubit-waveguide interaction can be expressed as,

Ĥeff = ∆
2 σ̂Z + Ω

2 (σ̂+ + σ̂−) , (1.29)

where ∆ = ωQ − ωd is the detuning between the qubit frequency and the drive
frequency ωd. To analyze this system, we use the master equation in the steady-state
limit, describing the dynamics with the Lindblad operator D[σ̂−],

Lρ = Γ1D[σ̂−]ρ+ 1
2ΓφD[σ̂Z ]ρ . (1.30)

According to input-output theory [95–97], the outgoing field can be expressed in
terms of the incoming field and the expectation value of the qubit’s lowering operator
⟨σ̂−⟩, specifically,

âout = âin +
√

Γr⟨σ̂−⟩ . (1.31)

Solving the master equation with the effective Hamiltonian for ⟨σ̂−⟩ and using the
definition of the incoming field, âin = Ω

2
√

Γr
, we obtain the reflection coefficient,

S11 = âout

âin
= 1 − 2Γr (Γ1 + Γφ − 2i∆)

(Γ1 + Γφ)2 + 4∆2 + Ω2 . (1.32)





Chapter 2

Methods

This chapter provides an overview of the experimental setup and methodologies to
achieve low-noise measurements of the generated propagating modes in our system.
We begin by detailing the cryogenic setup and the calibration of the Travelling Wave
Parametric Amplifier (TWPA), both of which are critical for minimizing thermal
and amplifier noise. We then describe the device architecture, which serves as the
foundational platform for all the experiments presented in the subsequent chapters.
Next, we explore the techniques of temporal mode matching and moment denoising,
which are crucial for characterizing the propagating photonic modes with minimal
noise interference. Finally, photonic state tomography is introduced as a powerful
tool for reconstructing the quantum states of light, allowing for the analysis of the
performance of our system. Together, these elements create an optimal environment
for the measurement and characterization of propagating microwave modes.

2.1 Cryogenic setup
In our experimental setup, the quantum device is prepared for testing within a
cryogenic environment to achieve the ultra-low temperatures necessary for qubit
operation. The device is cooled down to below 15 mK inside a dilution refrigerator
[Fig. 2.1(a-b)]. To initiate the cooling cycle of a dilution refrigerator, a starting
temperature close to that of liquid helium (4.2 K) or lower must first be achieved,
typically using a pulse tube cooler. The dilution refrigerator then uses the heat of
mixing between the two helium isotopes, 3He and 4He, to reach 15 mK or lower [98].

The cold temperature is crucial for enabling the superconductivity of the circuit.
The critical temperature (Tc) for Aluminium is around 1.2 K, meaning that the
elements on the devices become superconducting only below this temperature. Addi-
tionally, the low temperature creates a low-noise environment for the measurements,
as it significantly reduces thermal noise. This is important because we require
the condition ℏωQ ≫ kBT , where ℏ is the reduced Planck’s constant, ωQ is the
angular frequency of the qubit transitions, kB is Boltzmann’s constant, and T is
the temperature of the device. The ultra-low temperature of < 15 mK ensures that
thermal energy remains much lower than the qubit transition energy, ℏωQ, thereby
minimizing thermal excitations and reducing decoherence. This environment enables

19
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Figure 2.1: (a) Wiring diagram of the selected lines within the dilution refrigera-
tor [98]. MXC stands for the mixing chamber layer. Other elements are defined in
the legend on the right. (b) A picture of the Bluefors dilution refrigerator, named
Wampa, where all measurements in this thesis are conducted. (c) One of our de-
vices wire-bonded in the sample holder, and then mounted in the mixing-chamber
layer of the fridge.

more accurate and reliable quantum measurements.
Figure 2.1(a) shows the wiring diagram inside the dilution refrigerator, including

the transmission input line, qubit charge line, flux line, and output line (see Fig. 2.4
for how the device is connected to the lines). The transmission line is capacitively
coupled to readout resonators that interact with the qubit and the coupler, allowing
microwave signals to be delivered for qubit readout. The charge line is also capacitively
coupled to the qubit, enabling the control of the qubit. The flux line, inductively
coupled to the qubit or the coupler, modulates the magnetic flux, facilitating the
tuning of the qubit or coupler’s energy levels alongside the SQUID loop.

The input of the transmission line is highly attenuated to reduce thermal photons
propagating down the line from the room temperature environment, which helps
minimize the thermal population of qubits and preserve their coherence. Additionally,
attenuators are distributed across each layer of the refrigerator rather than concen-
trated at the coldest stages to prevent heat dissipation from significantly burdening
the refrigerator’s cooling power [6]. On the output side, where signals are weaker,
amplification is necessary to boost the qubit signals for analysis without adding
significant noise, enabling assessment of the qubit states. Isolators and circulators
are used to shield the sample from thermal noise photons along the output line and
amplifier noise, without attenuating the output signal. For the same reasons, in
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the input lines, the coaxial cables between each layer of the refrigerator are usually
lossy to further dampen thermal noise. In contrast, the output lines use NbTi
superconducting coaxial cables to preserve signal fidelity as they transmit amplified
qubit signals from the coldest stage up to room temperature. The filters on both the
input and output lines are selected with passbands centered around the qubit and
resonator frequencies, while the stopbands provide additional suppression of thermal
radiation.

The amount of attenuation in the three types of input lines follows: transmission
input line (readout line) > qubit charge line > flux line. Because the qubit’s decay
rate into the charge line is much smaller than its total decay rate, Γc ≪ 1

T1
, thermal

noise photons entering through the charge line have a negligible impact on qubit
decoherence compared to the readout line. This allows for lower attenuation in the
charge line, balancing the need to minimize thermal noise with the requirement to
deliver high-power control signals to implement fast qubit rotations. The flux line
has the least attenuation due to the weak magnetic coupling, enabling these lines to
support higher signal powers for implementing desired operations while minimizing
the current noise that can lead to qubit dephasing [6, 99].

When operating the flux line, both dc and ac signals are transmitted through the
attenuated lines. Both components induce power dissipation as they flow through
the resistive elements of the attenuators. However, the power dissipation from the ac
signals is minimal and often negligible due to their low power and pulsed operation. To
avoid excessive heating of the refrigerator, we focus on the dc component, calculating
the power dissipation based on the resistive configuration of the attenuators at
each stage of the dilution refrigerator. By comparing the calculated dissipation to
the cooling capacity of each respective refrigerator layer, we verify that the power
dissipation remains below the cooling power thresholds, ensuring there is no danger
of heating up the fridge too much. An alternative method transmits dc signals
through superconducting twisted-pair lines to minimize electromagnetic interference,
while ac signals are sent through attenuated flux lines. Twisted-pair configurations
cancel the magnetic fields generated by parallel conductors by twisting the lines,
thereby reducing electromagnetic interference. Cryogenic bias tees can be employed
to combine the separate dc and attenuated ac lines in the mixing chamber—the
lowest layer—of the refrigerator.

2.2 TWPA calibration
The HEMT amplifier in the output line provides a high gain in excess of 40 dB but
adds around 10 noise photons to the signal, which is problematic for measurements
at the single-photon level. Therefore, we benefit from using a nearly quantum-
limited amplifier, such as a Travelling-Wave Parametric Amplifier (TWPA) or
Josephson Parametric Amplifier (JPA), for pre-amplification to measure the low-
power propagating modes. These amplifiers add noise close to the quantum limit
by employing non-linear parametric amplification techniques in superconducting
circuits, enabling precise measurements at the single-photon level. In this thesis,
a 4-wave-mixing TWPA amplifier with a pump signal is employed. The TWPA



22 2.2. TWPA calibration

is connected to the waveguide’s output line via a circulator, allowing calibration
through measurements of the qubit coupled to the waveguide (see Sec. 2.3 for further
details on the device). The objective is to assess the gain and the noise photon
number under various configurations of the TWPA pump signal, for the improvement
of the readout of propagating modes.

The gain of the amplification chain (including the TWPA, HEMT, and the
room-temperature amplifiers in the output line) is measured using a vector network
analyzer (VNA). By comparing the reflection parameter S11 when the TWPA is on
and off, the gain is determined (Fig. 2.2). This procedure overestimates the gain by
a few dB, because a turned-off TWPA acts as a few dB attenuator.

4 5 6 7 8
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Figure 2.2: A single-tone spectroscopy measurement of the emitter qubit at the
waveguide, with the qubit frequency shifted outside the bandwidth, is used to
determine the on-off gain of the TWPA (details of the VNA measurement are
provided in Sections 5.1.1 and 5.2.1). The stopband in the gain profile results
from phase mismatching, while the ripples are caused by impedance mismatching.

In addition to the gain, it is important to assess the noise performance of the
TWPA. We introduce three methods for calibrating the noise photon number; ulti-
mately, we choose the third method as it aligns with our measurement requirements
for quantum tomography.

The first method calibrates nnoise using the following relation,

nnoise = Pnoise

ℏωQBG
, (2.1)

where Pnoise is the measured noise power at the output after the TWPA, which can
be obtained through a power spectrum density (PSD) measurement by a spectrum
analyzer. ℏωQ is the power of a single photon at the frequency of interest. B is the
resolution bandwidth of the measurement. G is the total system gain. Note that this
differs from the on-off TWPA gain mentioned earlier. Here, G = Son

11 +A, where Son
11
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is the reflection parameter measured with the TWPA turned on, and A represents
the total attenuation in the system.

The second method involves calibrating nnoise from the PSD measurement of the
Mollow triplet [70], as follows,

nnoise = Pnoise

Pon, central − Poff, central
, (2.2)

where Pnoise is the measured noise power, and Pon, central (Poff, central) represents the
normalized on (off) power of the central peak in the Mollow triplet.

The third method leverages the measurements used in our quantum tomography
experiments. In this thesis, we emit propagating modes from stationary qubits and
use temporal mode matching and quantum tomography to characterize these modes.
The same measurements can also be employed to calibrate the noise photon number.
We measure the emitted photon in an interleaved manner, alternating between two
cases: with and without the operating pulses [see Sec. 2.4 for more details]. In the
case without operating pulses, we perform repeated single-shot measurements of the
vacuum state, capturing both quadratures, X̂ and P̂ . These single-shot measurement
results are then compiled into a two-dimensional (2D) histogram in the IQ plane,
representing the quadrature space [Fig. 2.3(a)]. The histogram is normalized based
on the operating-pulse-on histogram of the system, with the assumption that our
system functions as a single-photon source. We can then model the histogram as a
thermal state [100, 101], as shown in Fig. 2.3(b-d). The noise photon number can be
extracted by taking a slice from the 2D histogram and then fitting the histogram to
the convolution [102], ∫

P th
n (α∗ − β∗)Q(β) d2β . (2.3)

Q(β) in the convolution is the Husimi Q function [103], and P th
n (α) is the function

of a thermal state [104],

P th
n (α) = 1

πnnoise
exp

[
− |α|2

nnoise

]
. (2.4)

The noise photon number, nnoise, is the only unknown parameter and can be deter-
mined through this fitting procedure. By measuring nnoise in this method at different
settings of the TWPA, i.e., pump power and pump frequency, we can determine the
optimal working point of the TWPA. In our case, the TWPA can reduce the added
noise photon number to below 5.

The system’s quantum efficiency, denoted by η, can be calculated from the noise
photon number,

η =
1
2

nnoise + 1
2
, (2.5)

where the 1
2 in the formula is due to the added photon number nnoise = G+1

2G
. For a

perfect gain G → ∞, the added photon number is 1
2 .
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(a)

(b)

(c) (d)

Figure 2.3: Calibration of the noise photon number nnoise in this thesis. (a) An
example of a 2D histogram measured with the operating pulses turned off, leaving
the target mode in a vacuum state, serves as a reference for the noise mode during
measurement. (b-c) Horizontal and vertical linecuts taken through the center of
the histogram in (a). (d) A zoom-in view of the vertical linecut in (c), fitted to
the model of a thermal state to extract nnoise.

2.3 Device
In this work, we utilize two 6.6 × 6.6 mm2 superconducting devices, both with a
similar capacitance layout as Fig. 2.4. The device is fabricated on a silicon substrate,
and its ground plane consists of a single layer of Aluminium deposited on top of the
substrate. Although this thesis does not contain any fabrication work, we briefly
summarize the fabrication process as follows:

• Dip the silicon substrate in SC-1 (Standard Clean 1 [105]) and HF (hydrofluoric
acid).

• Deposit the Aluminium layer with an electron-beam evaporator.

• Spin-coat the resist, followed by photolithography and development to create
the desired pattern on the resist layer.

• Perform wet-etching to transfer the pattern from the developed resist layer to
the substrate. After this step, the ground plane of the device is fabricated.

• Fabricate the Josephson junctions and the patches using electron-beam lithog-
raphy, as the features are smaller than the resolution limit of photolithography,
followed by deposition, in-situ oxidation, and lift-off.

• Airbridges are typically added to mitigate ground plane discontinuities, which
can give rise to higher-order parasitic modes; however, this is not applied in
this thesis, as wire bonds are used in places of airbridges.

• Dicing of the whole wafer into separate chips.
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Figure 2.4: (a) Schematic design layout of Device 2, with key components high-
lighted in colors. The hatched regions represent the exposed silicon substrate.
The three red dots are the three Josephson junctions or SQUIDs and their patches
of the qubit or coupler. (b) Microscope photograph of Device 2, corresponding to
the area within the grey dashed rectangle in (a). Device 1 has the same layout as
Device 2, but the emitter qubit has a charge line instead of a flux line. The black
wires in the picture are the Aluminium-bonded wires acting as airbridges.

After the device is fabricated, we wire-bond the device in a copper sample holder,
which is then enclosed within a copper shield. To provide additional protection
against magnetic interference, the copper shield is placed inside another µ-metal
shield (cryoperm). The fully shielded assembly is installed in the mixing chamber
layer of a dilution refrigerator, ensuring that all experimental measurements are
conducted at temperatures below 15 mK.

We have used two devices in the experiments of this thesis. In our devices, we
have a qubit-coupler-qubit structure, with one of the qubits, the emitter qubit [orange
in Fig. 2.4(a)], strongly coupled to the waveguide (dark red). The coupler (blue) is
frequency-tunable, enabled by the SQUID coupled to it. In Device 2, the emitter
qubit is flux-tunable as well. The data qubit (green) and the coupler are coupled to
their corresponding readout resonators. The readout resonator on the emitter qubit
is omitted to ensure a larger claw-shaped capacitance for enhanced coupling to the
waveguide. Since the emitter qubit is rarely occupied, direct measurement through
the waveguide is sufficient, eliminating the need for a dedicated readout resonator.
We adapt our devices from the device used in [106], which, however, did not include
the coupling of a qubit to a waveguide.

Of the two devices we have, Device 1 is used for the following experiments:

• Deterministic single-rail photon emission (Paper 1, explained in Sec. 3.1)

• Photon reshaping for photon reabsorption (Paper 1, explained in Sec. 3.2)
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• Generation of entangled photons from steady-state qubit (Paper 2, explained
in Sec. 3.4)

Device 2 is used in the experiment:

• Dual-rail photon emission in frequency bins (Paper 3, explained in Sec. 3.3)

The measured parameters of both devices, listed in Table 2.1, are experimentally
obtained according to the methods in Appendix 5.2. Among all parameters, the
coupling rates are designed according to the capacitance matrix of the components
on the device. The coupling rate between the qubit and their readout resonator j is
designed according to [107],

j = Cj

2
√
CΣQ

CΣR

√
ωRωQ . (2.6)

Here, Cj is the capacitance between the qubit and the resonator, CΣQ
is the total

capacitance of the qubit, and CΣR
is the total capacitance of the readout resonator.

Capacitance matrix simulations in this thesis are performed using the software Ansys
HFSS [108]. Similarly, the coupling strength g between the qubit and the coupler
can be designed in the same way, according to,

g = Cg

2
√
CΣQ

CΣC

√
ωQωC , (2.7)

with Cg the capacitance between the qubit and the coupler and CΣC
the total

capacitance of the coupler. Moreover, the coupling rate between the emitter qubit
and the waveguide, ΓE, is determined by [109],

ΓE = ωge
E

2CΣE
β2(N0 + 1)Z0 , (2.8)

where β = CgE

CΣE

, with CgE
the capacitance between the emitter qubit and the waveg-

uide, and CΣE
the total capacitance of the emitter qubit. Here, N0 = 1

exp(ℏωge
E /kBT )−1 ,

approximated to 0 at low temperatures in the dilution refrigerator. Z0 is the frequency-
independent impedance. Design considerations for the remaining parameters are
discussed in detail in the thesis [107].

We have also measured the relaxation rates of the data qubit (Table 2.2). In the
ideal case, T ge

1 of a qubit should be the double of T ef
1 , however, we measure larger

T ef
1 than T ge

1 , which can be attributed to the weaker coupling of the system to the
environment at ωef

D compared to ωge
D .

2.4 Temporal mode matching and moment denois-
ing

In this thesis, we explore propagating modes generated from the superconducting
qubit. Temporal mode matching is used to isolate the emitted modes from the
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Table 2.1: Experimentally measured parameter values for the devices. Regarding
the readout resonators, fR represents the frequencies of the readout resonators;
κ are the decay rates of the resonator to the transmission line; j is the coupling
rate between the data qubit (coupler) and their readout resonator. Without dc
flux bias, the transition frequencies of qubits (coupler) are represented by ωge;
while with dc biases tuning the flux tunable qubit (coupler) into the operating
points in the experiments, we represent the mode frequencies as ωge′ . α is the
anharmonicity of qubit (coupler). The coupling strength between the qubit and
the coupler is represented by g, while the radiative decay rate from the emitter
qubit into the waveguide is ΓE . The not-existing parameters are marked with –.

Device 1 Device 2

Parameter Data qubit
(fixed-freq)

Coupler
(flux-tunable)

Emitter qubit
(fixed-freq)

Data qubit
(fixed-freq)

Coupler
(flux-tunable)

Emitter qubit
(flux-tunable)

fR/2π (GHz) 6.17 6.72 – 6.19 6.74 –
κ/2π (kHz) 632 772 – 523 752 –
j/2π (MHz) 66.75 43.34 – 69.33 42.34 –
ωge/2π (GHz) 4.771 7.735 4.953 5.05 8.46 6.17
ωge′

/2π (GHz) 4.770 6.0 4.950 5.05 5.79 5.70
α/2π (MHz) -224 -62 – -215 -60 -215
g/2π (MHz) 33.85 – 34.28 37.5 – 46

ΓE/2π (MHz) – – 8.0 – – 8.0

Table 2.2: For both devices, the longitudinal relaxation time T ge
1 (T ge′

1 ) of the
data qubit is measured without (with) dc flux bias, and the transverse relaxation
rate T ge

2 (T ge′

2 ) of the qubit are also measured without (with) flux bias. We have
also measured the relaxation rates between the second- and the first-excited states
of the data qubit, for Device 2. For the coupler in Device 2, T ge

1 and T ge
2 are also

measured. The relaxation rates that are not measured are marked with /.

Device 1 Device 2

Parameter Data qubit Data qubit Coupler

T ge
1 (µs) 25.6 ± 10.4 21.7 ± 3.6 2.3 ± 0.5

T ge′

1 (µs) 28.3 ± 9.2 20.8 ± 2.5 /
T ge

2 (µs) 15.6 ± 4.7 5.7 ± 0.7 1.4 ± 0.4
T ge′

2 (µs) 13.3 ± 3.7 14.0 ± 3.4 /
T ef

1 (µs) / 27.0 ± 3.0 /
T ef ′

1 (µs) / 27.0 ± 3.0 /
T ef

2 (µs) / 4.4 ± 0.5 /
T ef ′

2 (µs) / 8.8 ± 1.4 /

continuum of modes in the waveguide [110]. To extract the time-independent photon
mode, â, from the time-dependent output field measured from the output line
connected to the waveguide after all amplification, âout(t), we apply digitally the
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temporal filter f(t),
â =

∫ ∞

−∞
dtf(t)âout(t) , (2.9)

where âout(t) follows from the input-output relation outlined in Eq. (1.31). The
function of the temporal filter f(t) is defined as,

f(t) = v(t) · ei(ωf t+ϕ), k = 1, 2. (2.10)

Here, we use complex temporal filters f(t), with v(t) representing the real wavepacket
profile and ϕ the constant phase. v(t) should match the temporal shape of the photon
field to achieve optimal matching efficiency. The frequency of the temporal filter,
ωf , is set to the carrier frequency of the emitted radiation. The extracted modes
obey the bosonic commutation relations [â, â†] = 1, which are guaranteed by the
normalization condition of the filter function, given by

∫∞
−∞ dt|f(t)|2 = 1. In our

measurement, temporal mode matching is achieved through the FPGA-based Vivace
microwave transceiver platform [111] in the room-temperature setup (see Sec. 5.1.2).

However, in the measurement, we cannot obtain the mode â directly from the
temporal mode matching, because it is affected by various noise sources, such as
cable loss, added amplification noise, and the inefficiency of the mode matching.
Thus, we denote the measured mode as Ŝ, containing both quadratures X̂ and P̂ ,
and this mode Ŝ includes both the desired photon field mode â and the noise mode
ĥ†,

Ŝ = X̂ + iP̂ := â+ ĥ† . (2.11)

To remove the noise mode ĥ†, we operate an interleaved single-shot measurement,
to sweep between two cases with and without the operating pulse used for propagating-
mode generation. In the first case, we measure the total mode including both the
targeted mode and the noise mode. In the second case, the target mode is left in
the vacuum and the measurement can be served as a reference for the noise mode,
which will be used in the denoising calculation. These two cases alternate in a loop,
repeated for millions of cycles.

The first-order moment of the propagating mode can be simply calculated by
subtracting the noise mode from the total mode Ŝ, and averaging over the repetition,

⟨â⟩ = ⟨Ŝ − ĥ†⟩ = ⟨Ŝ⟩ , (2.12)

since ⟨ĥ†⟩ = 0. Extending this analysis to the second-order moment, we calculate
⟨â†â⟩ as,

⟨â†â⟩ = ⟨(Ŝ − ĥ†)†(Ŝ − ĥ†)⟩ = ⟨Ŝ†Ŝ⟩ − ⟨Ŝ†ĥ†⟩ − ⟨ĥŜ⟩ + ⟨ĥĥ†⟩ . (2.13)

A more general expression for the higher-order moments can be calculated with this
linear expression,

⟨(Ŝ†)mŜn⟩ =
m,n∑

i,j=0

(
m

i

)(
n

j

)
⟨(â†)iâj⟩⟨ĥm−i(ĥ†)n−j⟩ . (2.14)
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When two propagating modes measured and temporally matched, Eq. (2.14) can be
extended as [110],

⟨(Ŝ1
†)m1Ŝ1

n1(Ŝ2
†)m2Ŝ2

n2⟩ =
m1,n1,m2,n2∑
i1,j1,i2,j2=0

(
m1

i1

)(
n1

j1

)(
m2

i2

)(
n2

j2

)

× ⟨(â†
1)i1 âj1

1 (â†
2)i2 âj2

2 ⟩⟨(ĥ†
1)m1−i1ĥn1−j1

1 (ĥ†
2)m2−i2ĥn2−j2

2 ⟩ , (2.15)

where Ŝ1 and Ŝ2 are the total modes of the two propagating modes; ĥ†
1 and ĥ†

2 are the
noise modes. From these expressions, different moments of both a single propagating
mode, ⟨(â†)mân⟩, and two modes, ⟨(â†

1)m1 ân1
1 (â†

2)m2 ân2
2 ⟩, can be calculated.

2.5 Photonic-state tomography
Tomography is a technique used to reconstruct the complete information of a quantum
state or process, which is essential for validating quantum systems. In supercon-
ducting qubit setups, state tomography on propagating microwave modes presents
additional challenges compared to stationary qubit states due to noise photons intro-
duced by the amplification chain in the output line, leading to direct mixing of signal
and noise. In our work, temporal mode matching and interleaved measurements
are necessary to denoise photonic data, as discussed in the previous section, while
stationary qubit states avoid this complexity, as their measurements can target the
qubit’s state directly. In this section, we detail the specific methods we used to
reconstruct both photonic states and processes in our system, after we have obtained
the denoised moments.

2.5.1 State tomography
In this thesis, we employ three distinct techniques for quantum state tomography on
the propagating modes, including least-squares (LS) optimization, compressed-sensing
(CS) optimization, and gradient-descent (GD) optimization, with the moments from
temporal mode matching as input. In Table 2.3, we present a comparison of the
benefits associated with each method, highlighting the paper where each method is
applied and clarifying whether it performs state tomography on a single propagating
mode or two.

Least-squares optimization

The first method, LS optimization [100, 112], reconstructs the optimal density matrix
ρ from the moments of the propagating modes by solving the following convex
optimization problem,

min
ρ

∥∥∥(−→B − A−→ρ )
∥∥∥

ℓ2
, (2.16a)

subject to ρ ≥ 0 , (2.16b)
Tr(ρ) = 1 , (2.16c)
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Table 2.3: Comparison of tomography methods, highlighting their advantages and
their applications in specific papers.

Method Advantages Applied in

LS Most widely-used method among
the three

Paper 1 (single-mode), Paper 2
(two-mode), Paper 3 (two-mode)

CS Suitable for heavily-reduced
datasets

Paper 2 (two-mode)

GD Allows control over the rank of the
reconstructed density matrix

Paper 3 (two-mode)

where −→ρ in Eq. (2.16a) denotes the vectorized form of the density matrix. In this
equation, −→

B is a column vector containing the experimentally measured moments
(⟨(â†)mân⟩ for single-mode tomography and ⟨(â†

1)m1 ân1
1 (â†

2)m2 ân2
1 ⟩ for two-mode to-

mography). The matrix A, often referred to as the sensing matrix [100], is defined
using the operator basis set {Ωl}N2−1

l=0 and the measurement observable set {Πk}M−1
k=0 .

Each component of A is calculated by,

Ak,l = Tr[ΠkΩl] = ⟨j |Πk| i⟩ , (2.17)

where Ωl = Ωi×N+j = |i⟩⟨j| with i, j = 0, . . . , N − 1, and N ×N is the dimension of
the density matrix ρ. The measurement observables Πk are obtained from Sec. 2.4.
For single-mode tomography, they are Πk = (â†)mân, and for two-mode tomography,
they are Πk = (â†

1)m1 ân1
1 (â†

2)m2 ân2
2 , where the exponents m,n (and m1, n1,m2, n2)

correspond to the powers of each creation and annihilation operator in the k-th
measurement observable.

The term ∥ · ∥ℓ2 represents the ℓ2 norm (Euclidean norm), calculated as the
square root of the sum of the squared components of a vector. The constraints in
Eq. (2.16b-2.16c) ensure that the density matrix is completely positive (CP) and
trace-preserving (TP), thus preserving its physical validity. We can also add the
standard deviation −→ϵ of the moments as weights in Eq. (2.16a), so that the data
with larger uncertainty can weigh less in the cost function

∥∥∥(−→B − A−→ρ ) ⊘ −→ϵ
∥∥∥

ℓ2
, with

⊘ representing the element-wise vector division. LS optimization is a widely used
method, we thus used it in all three papers in this thesis.

Compressed-sensing optimization

The mathematical formulation for CS optimization [113] is as follows,

min
ρ

∥−→ρ ∥ℓ1
, (2.18a)

subject to
∥∥∥−→B − A−→ρ

∥∥∥
ℓ2

≤ ∥−→ϵ ∥ℓ2
, (2.18b)

ρ ≥ 0 , (2.18c)
Tr(ρ) = 1 , (2.18d)
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where ∥ · ∥ℓ1 denotes the ℓ1 norm determined by the sum of the absolute values of
the vector’s components. In Eq. (2.18b), the vector −→ϵ , representing the standard
deviation of the moments, corresponds to the uncertainty in the measurement. All
other notations match those used in LS optimization. This method is particularly
advantageous when working with a heavily reduced or noisy dataset, as it allows for
accurate reconstruction by exploiting the sparsity of the density matrix, like our case
in Paper 2 (Sec. 3.4).

Gradient-descent optimization

The last method employed is GD-based QST, which utilizes a rank-controlled ansatz
to reconstruct the density matrix. In this method, Cholesky decomposition is em-
ployed to control the rank—the number of non-zero eigenvalues—of the reconstructed
density matrix, as described in [114],

ρ(T ) = T †T

Tr(T †T ) , (2.19)

where T is an arbitrary complex matrix of dimensions r × n, with n being the
dimension of Hilbert space. The parameter r, satisfying 1 ≤ r ≤ n, acts as the rank
of ρ(T ). The loss function is thus defined as,

L[ρ(T )] =
∑

i

∣∣∣∣∣Bi − Tr
(

Πi
T †T

Tr(T †T )

)∣∣∣∣∣
2

, (2.20)

where {Πi} is the set of moment operators and {Bi} is the set of experimentally
measured moments. In GD, we find the optimal density matrix by iteratively
minimizing the loss function L[ρ(T )] according to,

Ti+1 = Ti − λ∇L[ρ(Ti)] , (2.21)

where ∇L[ρ(Ti)] denotes the gradient of the loss function with respect to T at the
ith iteration, and λ represents the step size, commonly referred to as the learning
rate. The Cholesky parameterization ensures that the reconstructed density matrix
remains valid at each iterative step and that its rank is set to the specified value r.
In particular, setting r = 1 forces the reconstructed density matrix to be pure. We
employed this appraoch in Paper 3 (Sec. 3.3).

2.5.2 Process tomography
We perform Quantum Process Tomography (QPT) in Paper 1 and Paper 3, to
reconstruct the fidelity of the process for the generated propagating modes from a
static qubit. To do that, we initialize the qubit into at least four cardinal states,
and ensure that they are linearly independent. Specifically, we use the states {|g⟩,

1√
2(|g⟩ + |e⟩), |e⟩, and 1√

2(|g⟩ − i |e⟩)}. Four states are sufficient because the process
matrix for a single qubit has only four unknown parameters. By measuring the
outcomes resulting from these input states, we can determine the effect of the process
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on any arbitrary qubit state. More detailed explanations will be provided in the
following paragraphs.

After the state initialization, we then transfer the quantum state from the qubit to
propagating modes and perform QST on these modes for each initial state, separately.
Using the four reconstructed density matrices as input, we employ the Kraus-operator
formalism to represent the quantum process [115, 116],

ρout = Λ(ρin) =
d2−1∑

m,n=0
χmnσmρinσ

†
n , (2.22)

where Λ(·) represents the quantum map of the process. The process matrix χ
characterizes Λ, and χmn are the elements of the matrix. The set {σi} comprises fixed
basis operators, specifically the Pauli operators: {σ0, σ1, σ2, σ3} = {I, σX , σY , σZ}
[Eq. (1.11)]. In our case, we have the dimension of the process matrix to be d = 2n,
with n the dimension of the Hilbert space. In both Paper 1 and Paper 3, we
encode the quantum state from a superconducting qubit into propagating modes.
In Paper 1, the state is encoded into a single propagating mode as α|0⟩ + β|1⟩,
with two-dimensional Hilbert space and resulting in a 4 × 4 process matrix χ. For
Paper 3, the same state is encoded into two propagating modes as α|10⟩ + β|01⟩,
where the quantum information is confined to a two-dimensional subspace of the
four-dimensional Hilbert space. Consequently, the process matrix χ remains 4 × 4 in
this case, as only the subspace spanned by |10⟩ and |01⟩ carries the relevant quantum
information used in the QPT analysis.

Using Eq. (2.22) with the four cardinal states (input probe states) and corre-
sponding photonic states (output states) we can form a system of linear equations
of the form Mχ⃗ = D⃗, where D⃗ is constructed from ρout and χ⃗ represents the vec-
torized form of the χ matrix. The coefficient matrix M—analogous to the sensing
matrix A in Eq. (2.16a)—depends solely on the set of probe states and measurement
observables; in our case, the cardinal states and the moment operators. The method
to reconstruct M can be found in [117].

To calculate a physically valid χ matrix characterizing an underlying CPTP map,
we formulate an LS optimization problem, similar to that in QST,

min
χ

∥∥∥(−→D − M−→χ )
∥∥∥

ℓ2
, (2.23a)

subject to χ ≥ 0 , (2.23b)
3∑

m,n=0
χmnσmσn = I , (2.23c)

where Eq. (2.23b) ensures the complete positivity (CP) of the process, and Eq. (2.23c)
enforces the trace-preserving (TP) condition.

We encode the quantum state from a superconducting qubit into propagating
modes in both papers, so they share the same ideal process matrix (χ), which
characterizes a perfect identity channel that preserves the quantum state during the
encoding process. For such an ideal state-preserving process, the χ matrix expected
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to be χideal =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. However, in Paper 1, we use the Pauli transfer matrix

(R) to denote the process, which is another common representation of the process,
and can be transferred from χ as [115],

R =
3∑

m,n=0
χm,n (σm ⊗ σn) . (2.24)

In our case, the Pauli transfer matrix is expected to be Rideal =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

2.5.3 Analysis of the reconstructed matrix
The fidelity between the reconstructed state and the target state is defined as [118]

F (ρideal, ρ) =
(

Tr
√√

ρidealρ
√
ρideal

)2
, (2.25)

where ρideal is the target density matrix and ρ is the reconstructed density matrix
from the measurement. This formula similarly applies to the process matrix obtained
through QPT,

F (χideal, χ) =
(

Tr
√√

χidealχ
√
χideal

)2
, (2.26)

with χideal (χ) the target (experimentally obtained) process matrix. Additionally,
the purity P of a density matrix ρ is given by,

P = Tr(ρ2) . (2.27)

The contributors to infidelity in our system are the coherent and incoherent errors:

• Coherent errors: These result from factors such as miscalibration of the
π-pulse, template mismatching, and other systematic imperfections in control
operations. Coherent errors can be mitigated by refining characterization
methods, applying precise modelling, and implementing optimal control tech-
niques [119, 120].

• Incoherent errors: These are primarily due to the decoherence of the qubits
and the coupler, including T1 and T2 decay, thermal excitation in the qubit state,
and noise from the environment. We can reduce the effects of decoherence by
eliminating sources of decoherence during sample fabrication and loading, or by
applying faster pulses to minimize interaction time and outrun the decoherence.
Thermal excitation can be mitigated through active or passive qubit reset [121,
122].





Chapter 3

Experiments

This chapter presents experiments from the three appended papers. In Sec. 3.1, we
demonstrate deterministic quantum state transfer from a superconducting qubit to a
propagating microwave mode, by encoding the qubit as a superposition of vacuum
and single-photon Fock states. Although photon shaping enables reabsorption
to be a time-reversed process of the emission (Sec. 3.2), photon loss remains a
major challenge in distributed quantum networks. To address this (Sec. 3.3), we
propose frequency-bin encoding by deterministically encoding qubit information into
two simultaneous photonic modes at different frequencies, enabling effective error
detection by excluding the vacuum state. Finally, in Sec. 3.4, we generate entangled
photonic modes by continuously driving a quantum emitter, showing that temporally
filtered sideband modes are entangled.

3.1 Deterministic single-rail photon emission
Deterministic emission of microwave single photons is an important building block for
realizing distributed quantum computing. In this section, we explain the experiment
to encode quantum information from a superconducting qubit into a single-rail
microwave photon [Paper 1], specifically the transformation (α |g⟩ + β |e⟩) ⊗ |0⟩ →
|g⟩ ⊗ (α |0⟩ + β |1⟩). Here, α |g⟩ + β |e⟩ represents an arbitrary qubit state, with |g⟩
and |e⟩ denoting the ground and excited states of the qubit, respectively, while |0⟩
and |1⟩ are the photon number states corresponding to the vacuum and single-photon
states of the emitted photon, the propagating mode.

Figure 3.1 shows the structure of the device for emitting single-rail photons. We
have a qubit, referred to as the emitter qubit, that is strongly coupled to a coplanar
waveguide, enabling the encoding of quantum states from superconducting qubits into
emitted microwave photons. While this strong coupling facilitates efficient photon
emission and absorption, it presents challenges in preparing the quantum state using
the emitter qubit alone. To address this issue, we introduce an additional qubit,
referred to as the data qubit, for state preparation. The data qubit and the emitter
qubit are interconnected via a flux-tunable coupler, allowing on-demand population
transfer between the two qubits via an iSWAP-like operation.

35
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(a)

(b)

Data qubit

D E

Emitter qubit

Coupler Waveguide

Figure 3.1: Setup for single-rail photon emission. (a) Schematic diagram of the
device designed for generating single-rail photon emission. (b) False-color optical
micrograph of the device.
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Figure 3.2: Two distinct methods for achieving single-rail photon emission using
the device in Fig. 3.1, (a) by applying a parametric drive to the coupler qubit,
and (b) by inducing a second-order transition drive on the data qubit.

With this structure, there are two methods to map quantum information from
the qubit state to the photon state. The first method uses a parametric drive to
induce an excitation-preserving transition between the excited states of two qubits
[Fig. 3.2(a)]. The second method involves a second-order transition between the
qubit’s second excited state (|f⟩) and ground state (|g⟩), in a process that is not
excitation-preserving [Fig. 3.2(b)]. These two methods are described in detail in the
following.

3.1.1 Method 1 – Parametric drive emission

In Method 1, single-rail photons are emitted by applying a parametric drive to the
coupler [Fig. 3.2(b)]. In this case, the coupler, built with a flux-tunable transmon, is a
special qubit that we do not read out. The state to be transferred is initially prepared
in the data qubit as α|g⟩ + β|e⟩. The parametric drive is then applied through the
coupler’s flux line, implementing an iSWAP-type gate between the qubits (referred to
as iSWAP-type rather than iSWAP because the dissipation channel prevents the gate
from swapping the excitation back, making it a one-way operation). This operation
transfers the excitation from the data qubit to the emitter qubit, leaving the data
qubit in the ground state while the emitter qubit enters the superposition state
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α|g⟩ + β|e⟩. The emitter qubit simultaneously decays into the waveguide, emitting
a photon in the state α|0⟩ + β|1⟩ as the qubit returns to its ground state. This
transition is the same one used in our work [Paper 1] and in references [39, 40].

Theoretical model

The photon emission process results from both the system’s Hamiltonian and its
effective non-Hermitian Hamiltonian, which account for dissipative interactions and
decoherence mechanisms. In the entire photon emission process, the coupler remains
nearly unexcited, and we work in the dispersive regime where ∆ ≫ g, with ∆ the
detuning between the coupler and the qubits and g the coupling rate. As a result,
the static Hamiltonian of the simplified system, consisting only of the two qubits, is
given by [39],

H

ℏ
= 1

2ωDσ̂
Z
D︸ ︷︷ ︸

Data qubit

+ 1
2ωEσ̂

Z
E︸ ︷︷ ︸

Emitter qubit

+ Jdc

(
σ̂+

Dσ̂
−
E + σ̂−

Dσ̂
+
E

)
︸ ︷︷ ︸

Coupling

, (3.1)

where ωD and ωE are the angular frequency of the data and emitter qubits, and Jdc

is the coupling strength between the data and emitter qubits,

Jdc(Φdc) = gDgE

2

( 1
∆D

+ 1
∆E

)
, ∆i = ωC(Φdc) − ωi , (3.2)

with i = D,E. The coupler frequency ωC follows a square-root cosine dependence
on the applied dc flux, as described in Eq. (1.21). gD (gE) is the coupling strength
between the data (emitter) qubit and the coupler.

To operate the iSWAP-type gate between the qubits, we apply an ac sinusoidal
flux pulse to the coupler, on top of the dc flux bias,

Φ(t) = Φdc + Acos(ωmt)︸ ︷︷ ︸
Φac(t)

, (3.3)

with ωm = |ωD − ωE|, compensating the frequency detuning between the qubits. By
Taylor expanding the ac flux term and working in a rotating frame of the qubit
frequencies, the Hamiltonian becomes [39],

Ĥ

ℏ
= A

2
∂Jdc(Φ)
∂Φ

(
σ̂X

D σ̂
X
E + σ̂Y

Dσ̂
Y
E

)
. (3.4)

Thus, the effective coupling between the two qubits, denoted as J , is proportional to
both the driving strength A and the slope of the coupling tuning curve.

Upon considering the decay rate of the emitter qubit and the two qubits in the
rotating frame, we obtain an effective non-Hermitian Hamiltonian,

Ĥeff/ℏ =
(

0 J
J −iΓE/2

)
. (3.5)

The radiative decay rate of the amplitude, rather than the power, is taken into
account in the element of the emitter qubit by using ΓE/2.
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We start by preparing the data qubit in the state α|g⟩ + β|e⟩ and the emitter
qubit in the ground state, |Ψ(0)⟩ = α|g, g⟩ + β|e, g⟩, where α and β are complex
coefficients satisfying |α|2 + |β|2 = 1. After evolving for time t, the state of the data
qubit becomes,

|Ψ(t)⟩ = e−i
Ĥeff
ℏ t|Ψ(0)⟩ . (3.6)

The expected output field ⟨âout(t)⟩ of the emitted photon from the emitter qubit can
thus be calculated by,

⟨âout(t)⟩ =
√

ΓE ⟨g, e|Ψ(t)⟩

= − 2iβ√
−16J2 + Γ2

E

(
e−t(ΓE−

√
−16J2+Γ2

E)/4 − e−t(ΓE+
√

−16J2+Γ2
E)/4

)
.

(3.7)

We will discuss more regarding this expression, in connection with the experimental
results.

Photon emission

The photon emission is facilitated by driving the coupler parametrically, which
induces an excitation exchange between qubits. As shown in Eq. (3.2) and (3.3),
we apply both dc and ac flux to the coupler. The dc flux adjusts the coupler
frequency from its sweet spot, the highest frequency, toward the frequencies of the
two qubits, which enhances the coupling between the qubits. When selecting the
dc flux, we balance the following trade-offs: Increasing Φdc lowers the coupler’s
frequency, bringing it closer to the qubit modes and thereby enhancing the coupling
rate between the qubits. However, if Φdc becomes too large, the Purcell decay of the
data qubit may increase due to the high decay rate of the emitter qubit. Taking both
factors into account, we opted to shift the coupler frequency from its highest value,
the sweet spot 7.735 GHz, to approximately 6 GHz (see Sec. 5.2.2 for the Purcell
decay analysis at this point), while the data and emitter qubits have fixed frequencies
at 4.771 GHz and 4.953 GHz, respectively (Fig 3.3).

The ac flux pulse, the parametric drive added on the dc flux bias, is a sinusoidal
wave modulated by an envelope A(t),

Φac(t) = A(t) cos (ωmt) (3.8)

Once the ac flux tone is applied, the population in the data qubit starts to transfer
to the emitter qubit and decays into the waveguide, thus we can characterize the
pulse by measuring the emitted photon field from the waveguide.

We first analyze the case where the ac flux pulse envelope, A(t), remains constant
over time, resulting in a square pulse shape. We initialize the data qubit in the state

1√
2(|g⟩+|e⟩), and then apply the parametric drive to the coupler. We implement three

different drive amplitudes in the modulation pulse, ranging from low to high, and
measure the amplitude of the emitted photons, |âout(t)| (Fig. 3.4). The amplitude of
the photon field exhibits a fast initial increase followed by an exponential decay, which
can be described as Eq. (3.7), the difference between two exponential decays. Initially,
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Figure 3.3: Mode frequencies of the data and emitter qubits, and the coupler as
a function of the applied dc flux, Φdc. Φdc is in the unit of one flux quanta Φ0,
which is calibrated by measuring the coupler resonator while sweeping the applied
flux (see Sec. 5.2.1 for details). The solid curves are the theoretical prediction of
the mode frequencies. The black arrow in the figure marks the operating point of
the coupler.
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Figure 3.4: The amplitude of the emitted photon output field, when the data
qubit is initialized in an equal superposition state of the ground and excited states.
The applied parametric flux pulse to the coupler has a constant driving amplitude
over time. We present three different cases with different driving amplitudes. The
solid black curves represent theoretical fits to the data using Eq. (3.7), with the
coupling strength between qubits, J , as the only adjustable parameter.
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when t is near 0, the dominant decay occurs at a rate of 1
4(ΓE +

√
−16J2 + Γ2

E).
However, over longer durations, the decay rate of 1

4(ΓE −
√

−16J2 + Γ2
E) becomes

more dominant and ultimately defines the photon field amplitude’s decay rate.
In the third scenario (green curve in Fig. 3.4), a second peak emerges because the

Rabi oscillation between the two qubits becomes more dominant than their emission
into the waveguide. This regime is less relevant to our purpose, since our aim is to
route the excitation into the waveguide. The maximum coupling rate J to stay below
this region can be obtained from Eq. (3.7), with Γeff = 1

4(ΓE −
√

−16J2 + Γ2
E). From

this expression, we deduce that the effective decay rate simplifies to Γeff = 4J2/ΓE

when J ≪ ΓE. The fastest effective decay rate Γeff = ΓE/2 is reached when J = ΓE/4.
For J > ΓE/4, a second peak in the emitted photon field starts to appear. In later
measurements, we always stay at lower coupling J ≤ ΓE/4. The relation between
J and the applied ac flux amplitude is shown in Fig. 3.5, obtained by fitting the
photon amplitude curves.
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Figure 3.5: The coupling J between the qubits as a function of the parametric drive
modulation amplitude, extracted from the fits to photon amplitude curves using
Eq. (3.7). The red, yellow and green points correspond to the three curves shown
in Fig. 3.4. The solid curve represents the expected values from the theoretical
model, while the dashed line indicates the maximum coupling rate beyond which
Rabi oscillations between the qubits become more prominent than the emission.

In summary, we employ a coupler parametric drive to facilitate the state exchange
between the qubits. This ac flux pulse is similar to an iSWAP gate; however, different
from an iSWAP gate, the state cannot be swapped from the emitter qubit back to the
data qubit due to the photon decaying into the waveguide. Moreover, by modulating
the strength of the ac flux drive, we can adjust the coupling rate between the two
qubits, ultimately allowing us to control the temporal envelope of the emitted photon,
which will be explained in Sec. 3.2.

Moments of the single-rail photon

By applying temporal mode matching to the emitted photon as described in Sec. 2.4,
we obtain selected-order moments of the output field. We prepare our data qubit in
different superposition states α |g⟩ + β |e⟩, parameterized by the Rabi angle θ, where
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α = cos(θ/2) and β = sin(θ/2), and then apply the parametric drive [Fig. 3.6(a)].
When the data qubit is prepared in an equal superposition of ground and excited
states (θ = π/2), the first-order moment ⟨â⟩, representing the mean field amplitude,
reaches its maximum value [blue curve in Fig. 3.6(b)]. When the data qubit is
prepared in the fully excited state (θ = π), corresponding to the emission of a full
photon, the second-order moment ⟨â†â⟩, representing the mean photon number,
reaches its maximum [orange curve in Fig. 3.6(b)]. However, at this point, the mean
photon amplitude ⟨â⟩ is zero because the emitted state is a statistical mixture with
zero coherence (the off-diagonal elements in the density matrix are zero), leading to
a zero amplitude measurement. The fourth-order moment ⟨â†â†ââ⟩ is expected to be
zero for all θ since a single photonic mode is emitted.

(a)

Data qubit

Pulse on Pulse off

Coupler

Temporal
mode

A(t) = A

(b)

Figure 3.6: (a) Pulse sequence used for measuring the moments of the propagating
mode. The measurement is done interleavedly by sweeping between two cases,
with and without the parametric drive. (b) The first-, second-, and fourth-order
moments of the output field of the emitted photon in the single rail, plotted as
functions of the Rabi angle θ used to initialize the data qubit. The solid curves
represent the ideal theoretical values, which are sin(θ)/2, sin(θ/2)2 and 0 for the
three moments respectively.

The normalized Glauber second-order correlation function at zero time delay is
defined as,

g(2)(0) ≡ ⟨â†â†ââ⟩
⟨â†â⟩2 , (3.9)

which is measured to be 0.024±0.027 for the state 1√
2(|0⟩+ |1⟩) and −0.01±0.001 for

the state |1⟩. These values are very close to zero within experimental uncertainties,
indicating that the probability of simultaneously detecting two photons is negligible.
This demonstrates that both states exhibit strong antibunching behaviour, confirming
that the multiphoton component is significantly suppressed compared to the single-
photon component.

The moments are normalized under the assumption that when the parametric
drive is activated, the decay of the data qubit occurs through two independent
channels: the detected mode of the waveguide and the intrinsic loss mechanisms of
the data qubit, with decay rates Γeff and Γge

D , respectively. Accordingly, when the
data qubit is initialized in state |e⟩ with θ = π, we assume that the second-order
moment is,

⟨â†â⟩ = Γeff

Γeff + Γge
D

, (3.10)
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where Γeff = ΓE/2 is the effective decay rate of the emitted photon into the waveguide
mode, and Γge

D is the longitudinal relaxation rate of the data qubit due to intrinsic
losses, calculated as Γge

D = 1/T ge′

1 = 35 kHz.

3.1.2 Method 2 – Second-order transition emission

The second approach for single-rail photon emission leverages the multi-level structure
of the qubits. As illustrated in Fig. 3.2(b), the data qubit is first transferred from
the arbitrary state α|g⟩D + β|e⟩D to α|g⟩D + β|f⟩D, by accessing the second excited
state |f⟩D. Subsequently, a second-order drive is applied between the states |f⟩D|g⟩E

and |g⟩D|e⟩E via the charge line of the data qubit, facilitating the transfer of the
data qubit’s state from α|g⟩D + β|f⟩D to the emitter qubit’s state α|g⟩E + β|e⟩E.
Due to the emitter qubit’s strong coupling to the waveguide, it immediately decays
to the ground state in a coherent way, deterministically emitting a photon with state
α|0⟩ + β|1⟩ into the waveguide. This type of transition is consistent with the Raman
process described in [25, 35, 52, 53].

Building on this described method, we make a slight modification in our experi-
ments by transferring between different states while still utilizing the second-order
transition. Specifically, instead of driving transitions directly between |f⟩D|g⟩E and
|g⟩D|e⟩E, we drive transitions between |f⟩D and one of the hybridized modes coupled
to the waveguide, denoted as |S⟩ with frequency ωS. This hybridized mode is formed
by the coupling between the coupler and the emitter qubit. This approach yields
results similar to transferring the state to the bare excited state of the emitter
qubit |e⟩E, but with differences in the mode frequency and the decay rate into the
waveguide. The reason for this adjustment, including a detailed explanation of the
hybridized modes, will be discussed further in Sec. 3.3.

Photon emission

The second-order transition drive applied to the data qubit induces an ac Stark shift
in the qubit’s frequency [25]. The stark shift at different driving strengths ζ can be
measured through the population of the data qubit in the state |f⟩D, while applying
the second-order-transition drive with different frequencies and strengths (Fig. 3.7).
The reduction of the population of the data qubit in |f⟩D indicates the transition of
the excitation into the propagating modes. As the drive strength increases, the dip
is broadened, as well as becomes smaller in frequency compared to the dip frequency
with low driving amplitude, ωge

D + ωef
D − ωS due to the Stark shift.

After accounting for the ac-Stark shift at various drive amplitudes, we adjust the
drive frequency accordingly and measure the emitted photon output field. Again, we
present the amplitude photon output field, |âout(t)|, with various constant driving
amplitudes over time (Fig. 3.8). By temporal mode matching the emitted photon, the
moments can be derived in the same manner as for the parametric drive (Sec. 3.1.1),
yielding similar results. Therefore, we do not repeat a similar plot as Fig. 3.6.
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S

Figure 3.7: The population of the data qubit in state |f⟩D, while sweeping the
frequency and amplitude of the second-order-transition drive. The filled circles
represent the measured data and the solid black curve is the fitting from numerical
simulation. The dips in each curve indicate the optimal drive frequency to use for
the corresponding drive amplitude. Each curve is offset by 0.82 compared to the
curve below it.
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Figure 3.8: The amplitude of the emitted photon output field when the data
qubit is initialized in an equal superposition of the ground (|g⟩D) and second-
excited (|f⟩D) states, followed by the application of a second-order-transition
pulse. The figure presents three different cases corresponding to different driving
amplitudes of the second-order transition pulse. The solid black curves represent
the theoretical model.
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3.2 Photon shaping to facilitate reabsorption
To facilitate potential photon reabsorption in a receiver quantum node, we explore
photon shaping during the emission process. Photon shaping is crucial because,
with a constant amplitude in the photon emission drive, the emitted photon profile
initially exhibits a rapid rise, followed by an exponential decay. However, for
future reabsorption by an identical quantum processor, the process should ideally
be the time-reverse of the emission, meaning the photon’s shape would need to be
exponentially increasing, demanding a lot from the receiver side. By dividing the
reshaping process for achieving a time-reversed shape equally between the emitter
and receiver nodes, the entire process transforms into emitting a time-symmetric
photon from one quantum processor and receiving an exponentially increasing photon
at the other, by replicating the emission process in reverse (Fig. 3.9). According
to [34], theoretically, transmitting a time-symmetric photon, compared to without
photon shaping, can increase the reabsorption efficiency from 54% to over 99%.

Figure 3.9: The reshaping process in a distributed QC system including quantum
circuits for both photon emission and reabsorption.

Reshaping the photon envelope involves adjusting both the photon’s amplitude
and phase to achieve time symmetry. In this section, we present our method for
accomplishing both, based on parametric-drive photon emission as explained in
Sec. 3.1.1. The photon’s amplitude is reshaped into a symmetric profile, by tuning
the amplitude of the parametric flux drive applied to the coupler. The photon phase
is compensated to remain nearly zero over time using the I and Q quadratures of the
parametric drive, thereby achieving the time-symmetric shape.

3.2.1 Photon envelope reshaping
In this section, we detail the process of shaping the photon amplitude. As previously
mentioned, the photon emission rate is governed by the strength of the ac flux pulse
driving the coupler. Thus, in principle, an arbitrary photon shape can be realized by
defining the ac flux pulse as a time-dependent function. For instance, by controlling
the pulse to emit more slowly at the beginning and more rapidly later, we can control
the profile of the emitted photon accordingly.

To achieve the desired photon shaping, we first select the target shape for the
photon envelope. We aim for a hyperbolic cosine profile, 1/ cosh(t/τ), where τ
represents the timescale of photon emission. A shorter τ results in faster photon
emission into the waveguide. Based on this choice, the corresponding expression
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for the coupler pulse is then back-calculated [109], resulting in the derived pulse
function,

A(t) = Γeff

4cosh(Γefft/2)
1 − eΓefft + (1 + eΓefft)ΓE/Γeff√

(1 + eΓefft)ΓE/Γeff − eΓefft
, (3.11)

which leads to the desired shape of the emitted photon,

f(t) =
√

Γeff

2 cosh (Γefft/2) , (3.12)

indicating that the timescale of the photon profile is given by τ = 1/Γeff . In this
expression, we set the effective decay rate Γeff/2π ≈ 0.5ΓE/2π = 4 MHz. The
chosen Γeff corresponds to the maximum emission rate to encode information from
the data qubit into the propagating mode for this device (see Sec. 3.1.1 for the
derivation). Exceeding this value would result in the emergence of a secondary
peak in the emitted photon amplitude, caused by Rabi oscillations between the
qubits becoming more dominant than photon emission, as demonstrated in the
previous Sec. 3.1.1. Subsequent research has explored alternative approaches for
reshaping flying qubits, including methods like gradient-descent optimization [123]
and reinforcement learning [33], which build upon and extend the reshaping techniques
used in this work.

By adjusting the coupler’s ac flux pulse from a square template to the custom
template given by Eq. (3.11), we reshape the emitted photon from an exponentially
decaying profile [Fig. 3.10(a)] to a time-symmetric one [Fig. 3.10(b)]. We obtain
τ = 50.5 ns from the fitting, which is close to the fastest case that can be achieved
with Γeff = ΓE/2. An additional advantage of this custom pulse with Eq. (3.11) is
its long tail, which ensures a complete reset of the qubit.

We assess the symmetry of the emitted photon âout(t) using the parameter s,
defined as [35],

s = max
t0

∫
| ⟨âout(2t0 − t)⟩∗ ⟨âout(t)⟩ |dt∫

| ⟨âout(t)⟩ |2dt
, (3.13)

which computes the overlap between the photon wavepacket and its time-reversed
counterpart. The parameter t0 represents a reference time that is swept to find the
optimal time-reversed wavepacket to maximize the overlap. This parameter allows
us to verify whether the photon envelope ⟨âout(t)⟩ is indeed time-symmetric. A fully
symmetric photon envelope will result in s = 1. However, we observe a decrease in
the s parameter. This result, unexpected if we only consider the envelope of the
signal, can be attributed to the presence of a time-varying phase within the system.
Achieving time symmetry in the photon requires not only a symmetric amplitude but
also a symmetric phase in the emitted photon. We will discuss this phase symmetry
requirement and implementation in more detail in the next section.

3.2.2 Photon phase compensation
In this section, we outline the process for compensating the time-varying phase to
achieve a time-symmetric phase profile. We choose to bring it to zero over time,
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Figure 3.10: The pulse sequence for the photon generation and the emitted
photon output field, including both the photon amplitude and the phase. Here we
present the results for three different cases: (a) unshaped, (b) shaped but without
phase compensation, and (c) shaped with phase compensation. We also show the
symmetry parameter s and the fidelity F after reconstructing the density matrix
through quantum state tomography. For each case, the measurement is done
interleavedly by sweeping between two cases, with and without the parametric
drive, but is not shown in the pulse sequence for simplicity.

which is a straightforward case of achieving time-symmetric. Before delving into the
compensation method, we first discuss the source of the time-variation in the phase
observed in Fig. 3.10(b). As shown in Fig. 3.3 and explained in Sec. 3.1.1, a parametric
flux pulse is introduced at the selected dc flux operating point. When shaping the
photon, this parametric pulse slowly varies in amplitude over time, causing a varying
shift in the coupler’s mean frequency due to the nonlinear flux-frequency relationship.
Because of the coupling between the coupler and the qubits, the qubit frequencies
also vary over time [124]. The varying qubit frequencies lead to a phase shift in the
emitted photon, whose frequency is determined by the sum of the varying data qubit
frequency and the constant frequency of the parametric drive applied to the coupler.
The phase variation over time is denoted as Θ(t) = arg[⟨âout(t)⟩]. To solve this slow
variation of phase, in principle, we can make the frequency of the parametric pulse
ωm dependent on the amplitude A(t), resulting in an ac flux pulse dependent on
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time, given by,
Φac(t) = A(t) cos [ωm(t) t] . (3.14)

In our work, we achieve simultaneous temporal variation of both the pulse ampli-
tude and frequency by encoding the frequency shift information into the I and Q
quadratures of the coupler’s parametric drive using vector modulation. This process
begins by decomposing the time-dependent frequency ωm(t) into two parts: one that
remains constant at our fixed coupler drive frequency ωm, and the other that varies
with time δω(t). The pulse can then be split into I and Q components,

Φac(t) = A(t) cos [ωm(t) t] ,
= A(t) cos [(ωm + δωm(t)) t] ,

= A(t)
[

cos (ωmt) cos (δωm(t) t) − sin (ωmt) sin (δωm(t) t)
]
,

= A(t) cos (δωm(t) t)︸ ︷︷ ︸
I(t)

cos (ωmt) + A(t) sin (δωm(t) t)︸ ︷︷ ︸
Q(t)

cos
(
ωmt+ π

2

)
. (3.15)

Thus, the original ac flux pulse in Eq. (3.8), which consists of only one quadrature,
can be decomposed into a pulse with the same high frequency component ωm but
containing two slowly varying quadratures, I and Q, with a π/2 phase shift between
them. The two quadratures in the coupler parametric drive, I(t) and Q(t), can be
used to compensate for the varying phase [Θ(t) in Fig. 3.10(b)], through the encoding
process as,

I(t) = A(t)cos
(

− 2πΘ(t)
)
, (3.16)

Q(t) = A(t)sin
(

− 2πΘ(t)
)
. (3.17)

Any linear phase roll in Θ(t) can be moved by a shift of the high-frequency component
ωm → ωm + ωroll.

After applying the phase-compensation approach, we obtained nearly a constant
phase over time, while maintaining the photon amplitude unchanged [Fig. 3.10(c)].
The symmetry of the emitted photon increased from 69% to 98%. The fidelity of
shaped, phase-compensated photons is slightly lower than that of unshaped photons.
This reduction is primarily due to coherent errors introduced by time-dependent pulse
operations and the longer time delays associated with shaped photons, as there is
more decay of the data qubit during this period. For this phase compensated case, we
perform quantum process tomography (QPT) (Sec. 2.5.2) by preparing the data qubit
in the six cardinal states, |g⟩, |e⟩, (|g⟩ + |e⟩)/

√
2, (|g⟩ − |e⟩)/

√
2, (|g⟩ + i|e⟩)/

√
2, and

(|g⟩ − i|e⟩)/
√

2, exchanging the state to the emitter qubit and measuring the density
matrices of the propagating modes with quantum state tomography. The optimized
Pauli transfer matrix is derived from the six density matrices of the cardinal states,
with process fidelity turned out to be 94.5 %.

In future work, this phase compensation method could be improved by quantita-
tively modelling the system and operations to calculate the optimal phase, eliminating
the need for an initial measurement to determine Θ(t).
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3.3 Dual-rail photon emission in frequency bins
This section focuses on encoding quantum information into two photonic modes to
enable error detection in distributed QC systems. In Sec. 3.1, we deterministically
encode the quantum information from a superconducting qubit to single-rail emitted
photons. However, the photons can easily get lost during propagation in the quantum
channel, which is one of the main limitations of the performance of a distributed QC
system [22, 25, 33]. Dual-rail photon emission, by introducing an additional degree of
freedom to the single-photon output field, enables error-detection heralding protocols
to identify photon loss during transmission. In our approach, frequency bins of
photonic modes serve as the way to introduce this extra degree of freedom, specifically
the transformation (α |g⟩ + β |e⟩) ⊗ |0⟩ω1

|0⟩ω2
→ |g⟩ ⊗ (α |1⟩ω1

|0⟩ω2
+ β |0⟩ω1

|1⟩ω2
),

encoding the quantum state from a transmon to two propagating modes with different
frequencies. In this section, we explain our experiment for generating frequency-bin-
encoded photons.

3.3.1 Setup

Emitter
qubit

Emitter

(a) An obvious solution (b) Our solution

qubit1

Emitter
qubit2

Frequency-bin 
encodeded photons

Data
qubit

Data
qubit

Auxilliary
qubit

Coupler

Waveguide

Hybridized emitter

Waveguide

coupler

coupler

coupler

Figure 3.11: (a) An obvious solution for generating frequency-bin encoded photons,
which needs two emitter qubits coupled to the waveguide. (b) Our hardware-
efficient solution based on the qubit-coupler-qubit architecture.

To implement frequency-bin encoding for photons, where two photonic modes are
emitted simultaneously but at different frequencies, we require two emission states and
two concurrent transitions. An obvious solution to meet this requirement is to extend
the qubit-coupler-qubit system discussed in Section 3.1 by doubling it, resulting in
the four-qubit structure depicted in Fig. 3.11(a). Initially, we use the parametric
coupler to generate an entangled state between the data and auxiliary qubits, yielding
the process from the initial state (α |g⟩D + β |e⟩D) |g⟩A to α |e⟩D |g⟩A + β |g⟩D |e⟩A.
The data qubit then transfers its state to emitter qubit 1 via the coupler between
them, which emits a photon at the qubit frequency ω1. Simultaneously, the auxiliary
qubit transfers its state to emitter qubit 2, which emits a photon at a different
frequency ω2 [Fig. 3.13(a)]. This results in the simultaneous emission of two photons
at distinct frequencies, fulfilling the requirements of frequency-bin encoding.

In our work, instead, we employ the same qubit-coupler-qubit structure as in
Section 3.1 for single-photon emission, where only one emitter qubit is coupled to a
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waveguide. This approach works by forming a hybridized emitter, created by bringing
the coupler and emitter qubit into resonance through proper dc flux biasing. Since
these two qubits are coupled, they form hybridized modes consisting of a symmetric
state |S⟩ and an antisymmetric state |A⟩, both of which are strongly coupled to the
waveguide for propagating mode emission. Additionally, both of these states are
coupled to the data qubit, enabling the transfer of quantum information. The energy
gap between the two hybridized modes is twice the static coupling rate between the
emitter qubit and the coupler, g (Fig. 3.12).

Figure 3.12: Measurement of the hybridized modes from the S21 emitter qubit
spectroscopy (see Appendix 5.1.1 and 5.2.1 for details). By applying a dc flux
of Φdc

C = 0.355Φ0 to the coupler and sweeping the dc flux to the emitter qubit
around Φdc

E = 0.177Φ0, we observe the avoided crossing between the two modes.

By leveraging the multi-level structure of the data qubits, two simultaneous
transitions can occur between the data qubit and the hybridized emitter: one that
preserves excitation and another that does not. In our implementation, the excitation-
preserving transition occurs from the |e⟩D state of the data qubit to the antisymmetric
state |A⟩, while the non-excitation-preserving transition is from the |f⟩D state of the
data qubit to the symmetric state |S⟩. However, it is worth noting that, depending
on the specific energy levels and coupling configurations, these transitions could be
reversed, with |f⟩D transitioning to |A⟩ and |e⟩D transitioning to |S⟩.

This approach enables the simultaneous emission of two photonic modes at
different frequencies while reducing the number of required qubits, compared to
the obvious method. As depicted in Fig. 3.13, the process starts by preparing the
data qubit in a superposition of the ground and first excited states, followed by two
pulses, πef and πge, to bring the qubit into a superposition of its first and second
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Figure 3.13: Energy diagrams of the system for two configurations: (a) the obvious
solution, employing two excitation-preserving drives to control photon emission
to two separate couplers and emission qubits, and (b) our approach, utilizing one
excitation-preserving drive and one non-preserving drive, with only one coupler
and one emission qubit.

excited states. In our work, the excitation-preserving drive is a parametric drive
applied via the coupler (Section 3.1.1), exchanging population from |e⟩D to |A⟩. This
allows the population to decay into the waveguide, emitting a photon at frequency
ωA. Conversely, the non-excitation-preserving drive is a second-order transition
(Sec. 3.1.2), applied through the charge line of the data qubit, enabling the transfer
of population from |f⟩D to |S⟩. This transition also results in a decay into the
waveguide, emitting a photon at a different frequency ωS. Together, this process
allows for the emission of two photonic modes with distinct frequencies at the same
time.

We use the notations (d̂, d̂†), (ĉ, ĉ†), and (ê, ê†) to represent the annihilation
and creation operators of the data qubit, coupler, and emitter qubit, respectively.
The hybridized emitter, formed through the interaction of the coupler and the
emitter qubit, can be described using the symmetric mode âS = (ê+ ĉ)/

√
2 and the

antisymmetric mode âA = (ê − ĉ)/
√

2. In the rotating frame defined by ωDd̂
†d̂ +

ωS â
†
S âS + ωAâ

†
AâA, and restricting to the two lowest energy levels of the coupler and

emitter qubit due to their anharmonicity, the effective Hamiltonian of the system is
given by,

Ĥeff = (ηd̂†âA + η∗d̂â†
A) + (ζd̂†2âS + ζ∗d̂2â†

S) + α

2 d̂
†2d̂2 , (3.18)

where η and ζ denote the amplitudes of the parametric gate (d̂†âA) and the second-
order transition (d̂†2âS), respectively. Note that η corresponds to the same physical
parameter represented by J in Sec. 3.1, both indicating the strength of the parametric
drive. We retain both notations for consistency with their respective papers.

3.3.2 Experiments
In this section, we present the experimental results for the generation and charac-
terization of frequency-bin-encoded photons. In the experimental realization, we
first prepare the states and then simultaneously apply the two transitions via the
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parametric drive and the second-order-transition drive. The parametric and the
second-order drives cause dispersive and ac-Stark shifts on qubit frequencies, respec-
tively, as shown in Sec. 3.1. The frequency shift from the parametric drive is minimal
and barely noticeable, whereas the Stark shift is significantly larger and needs to
be accounted for when setting the drive frequency for the second-order transition
(Fig. 3.7). The generated photonic modes are matched through two temporal mode
filters with their corresponding frequencies (Sec. 2.4).

(a)

(b)

ge geef

Parametric
drive

Second-order
transitionData qubit

Coupler

Figure 3.14: (a) Pulse sequence for generating a frequency-bin-encoded photon
with a non-zero amplitude. (b) Amplitude of the frequency-bin-encoded photonic
modes. Filled circles indicate the measured data with both drives applied simulta-
neously, while the shaded area corresponds to the measured data with the drives
applied individually. The solid black curves represent the theoretical predictions.
The relative amplitude difference between the two photonic modes is calculated
according to the assumption in Eq. 3.19.

We then proceed to present the photon amplitude by examining the first-order
output field of each propagating mode. As explained in Sec. 3.1.1, during parametric
drive photon emission, the amplitude (first-order moment) of a full photon is zero,
while the mean photon number (second-order moment) remains positive. This occurs
because the reduced density matrix of each mode lacks coherence (see Fig.S3 in the
supplementary material of Paper 3 for the reduced density matrices), resulting in
zero first-order moments. To illustrate the amplitude of the emitted photon field as
a function of time, we thus introduce some proportion of ground state into the state
of the data qubit. By applying a sequence of π/2-ge, π/2-ef, and π-ge pulses, and
then simultaneously the parametric drive and the second-order-transition drive [see
Fig. 3.14(a) for the pulse sequence], we generate a frequency-bin-encoded photon
described by the state 1

2 |0⟩ωA
|0⟩ωS

+ 1√
2 |1⟩ωA

|0⟩ωS
+ 1

2 |0⟩ωA
|1⟩ωS

. In this expression,
i (j) in the state |i⟩ωA

|j⟩ωS
represents the number of photons in the antisymmetric

(symmetric) mode. The emitted photon amplitude for both modes is shown in
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Fig. 3.14(b), and the field amplitude difference is attributed to the coefficients before
|1⟩ωA

|0⟩ωS
and |0⟩ωA

|1⟩ωS
in the target state. By tuning the drive strengths of the

parametric drive (η) and the second-order transition (ζ) to fulfil η =
√

2ζ, we achieve
the same speed for the emission of both photonic modes, as the two drives correspond
to one-photon and two-photon transitions, respectively. The observed waveform
exhibits the same shape as the single-rail emission in Fig. 3.4 and Fig. 3.10(a), with
a high rise at the beginning, and then followed by an exponential decay.

3.3.3 Tomography results
After displaying the field amplitude, we remove the vacuum component in the sub-
sequent measurements to transfer the arbitrary state α |g⟩D + β |e⟩D. Temporal
mode filters are then digitally applied to the measured signal to match the generated
propagating modes, which are subsequently analyzed via quantum state tomogra-
phy. The pulse sequence for the state without the vacuum component is shown
in Fig. 3.15(a), incorporating the interleaved measurements for mode denoising as
detailed in Fig. 2.4.

Furthermore, we analyze the moments of the photon field for different initial qubit
states [Fig. 3.15(b)]. The second-order moments correspond to the mean photon
number in the two modes. When the qubit is fully prepared in the excited state
|e⟩D, it ideally emits a full photon at the antisymmetric-state frequency, resulting
in an average photon number ⟨â†

AâA⟩ ∼ 1, with ∼ indicating the experimental
imperfections. While for the prepared state |f⟩D, ideally, a full photon is emitted
at the symmetric-state frequency, resulting in ⟨â†

S âS⟩ ∼ 1 in Fig. 3.15(b). If we
prepare the state in the equal superposition of both excitations, 1√

2(|e⟩D + |f⟩D), we
end up with a maximum entanglement between the two photonic modes [⟨â†

AâS⟩ in
Fig. 3.15(b)]. As expected, the fourth-order moments remain zero, indicating the
emission of a single photon.

The moments are normalized in the same way as in Eq. (3.10), where we assume
that the decay of the data qubit occurs via two channels, the detected modes of the
waveguide with Γeff and the intrinsic losses of the data qubit with ΓD, respectively.
Accordingly, when the data qubit is prepared in the state |e⟩D or |f⟩D for photon
emission at frequencies ωA and ωS, respectively, we assume the second-order moments
to be

⟨â†
AâA⟩ = ΓA

eff
ΓA

eff + Γge
D

and ⟨â†
S âS⟩ = ΓS

eff

ΓS
eff + Γef

D

, (3.19)

where ΓA
eff and ΓS

eff are the effective decay rates of the propagating modes obtained by
exponentially fitting the emitted photon envelopes in Fig. 3.14(b). Γge

D = 1/T ge′

1 =
48 kHz and Γef

D = 1/T ef ′

1 = 37 kHz are the longitudinal relaxation rates of the data
qubit. The other moments are normalized accordingly.

Additionally, we perform joint quantum state tomography on four cardinal states
using two optimization methods, least squares (LS) (Sec. 2.5.1) and gradient descent
(GD) (Sec. 2.5.1). The states investigated are |1⟩ωA

|0⟩ωS
, 1√

2

(
|1⟩ωA

|0⟩ωS
+ |0⟩ωA

|1⟩ωS

)
,

|0⟩ωA
|1⟩ωS

, and 1√
2

(
|1⟩ωA

|0⟩ωS
− i |0⟩ωA

|1⟩ωS

)
. Subsequently, we perform quantum
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Figure 3.15: (a) Pulse sequence for tomography measurements. The measurement
is done in an interleaved manner by sweeping between two cases, with and without
the transition pulses, for moment denoising. (b) Moments of the emitted frequency-
bin encoded photon, with coloured dots representing the measured data and the
solid curves representing the ideal case. The red solid line, denoting the ideal
value of ⟨â†

AâA⟩, is given by cos(θ/2)2; the purple solid line, denoting the ideal
value of ⟨â†

S âS⟩, is given by sin(θ/2)2; and the orange solid line, representing the
ideal value of ⟨â†

AâS⟩, is sin(θ)/2.

process tomography using the LS optimization, utilizing the reconstructed density
matrices of these four cardinal states as input to determine the process matrix χ [116].
For both optimization methods, the average fidelity of the four states reconstructed
from QST and the fidelity of the process matrix obtained from quantum process
tomography are presented in Table 3.1. In the LS optimization method, the infi-
delity of the reconstructed density matrix arises from both coherent and incoherent
errors. In contrast, the GD optimization with a rank-1 ansatz (r = 1) constrains
the reconstructed density matrix to be a pure state (see Sec. 2.5.1 for details). This
constraint effectively mitigates noise and other incoherent errors, resulting in a higher
state fidelity relative to the ideal pure state. By comparing the fidelities obtained
from both optimization methods, we find that our system is primarily limited by
incoherent errors, including qubit decoherence and thermal excitations.

Table 3.1: Average fidelity of the four reconstructed states from QST and process
fidelity from QPT, using LS and GD optimization methods.

Optimization method Averaged QST fidelity QPT fidelity

LS 86.2% 90.4%
GD 97.7% 98.5%

Compared to the single-rail photon emission discussed in Sec. 3.1.1, the fidelity
of the dual-rail emission is lower. One factor contributing to this reduced fidelity
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is the coherent errors in the control pulses used to drive transitions between the
data qubit and the hybridized emitter. Since dual-rail emission involves two pulses
simultaneously, it introduces more errors. Although these coherent errors are not
dominant, they contribute around 2% of the total infidelity. Another significant
factor is the behaviour of the parametric coupler: in single-rail emission, the coupler
remains mostly unexcited, whereas in dual-rail emission, it forms a hybridized
system with the emitter qubit. Specifically, the relaxation of the coupler and the
decay rate of the data qubit during photon emission contributes approximately 5%
infidelity to the overall system performance of the dual-rail emission, with the coupler
contributing more significantly due to its shorter coherence times (T1 = 2.3 ± 0.5µs
and T2 = 1.4 ± 0.4µs). Thermal excitation of the data qubit also contributes to the
infidelity, accounting for a portion of the remaining errors.

3.4 Generation of entangled photons from continuously-
driven TLS

In this section, we present our experimentally demonstrated approach for generating
time-frequency entangled photonic states from the steady-state emission of a quantum
emitter coupled to a waveguide. By using a coherent drive and selecting photonic
modes with digitally applied temporal mode filters, our method provides a simple
and effective way to generate entanglement between two temporally overlapping but
spectrally orthogonal modes from the emitter’s continuum emission.

3.4.1 Experimental setup
In this experiment, we use the same superconducting device as in Sec. 3.1 and 3.2.
However, only the emitter qubit (acting as a two-level system, TLS) and the waveguide
coupled to it are utilized. The emitter qubit is also coupled to a coupler (not used),
which is positioned at its sweet spot and remains far detuned from the emitter qubit,
ensuring that it does not affect the system’s performance. We have the transmon-
type superconducting qubit strongly coupled to a coplanar waveguide, enabling it
to interact with the propagating microwave modes (Fig. 3.16). The waveguide is
connected with a reflection setup, where the coherent and continuous drive is sent
to the qubit through the waveguide, while from the output we can measure the
propagating modes, and characterize the entanglement between the two modes. The
qubit is coupled to the waveguide with a decay rate of ΓE = 8 MHz, making the T1
of the qubit to be around 20 ns.

The pulse sequence employed in our experiment is illustrated in Fig. 3.17. We
continuously drive the qubit at its resonant frequency, ωd = ωge

E , with Ω representing
the Rabi frequency of the coherent drive, which is proportional to the driving
amplitude. After initiating the qubit drive for 200 ns, a duration significantly longer
than the qubit’s T1, we ensure that the qubit reaches the steady state. At this point,
we apply two temporal mode filters, f1(t) and f2(t), on the reflected time trace, in
post-processing.
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Waveguide

Emitter

Waveguide

(b)

Figure 3.16: The superconducting device used for the entanglement generation
from the qubit driven into the steady state. (a) Schematic representation of the
device and the reflection measurement setup. (b) False-color optical micrograph
of the device. A transmon qubit (orange) is capacitively coupled to a waveguide
(red).

Qubit drive on Qubit drive off

Figure 3.17: Pulse sequence for entanglement generation. An on-resonance drive
is applied to the waveguide qubit to bring it into the steady state. Two temporal
filters, f1(t) and f2(t), are then applied simultaneously to match with the reflected
time trace in post-processing, as shown in the insets. As described in Fig. 2.4, the
measurement is done in an interleaved manner by sweeping between two cases,
with and without the drive to the qubit. The same temporal filters are used to
match both cases. For simplicity, the insets corresponding to the case without
the qubit drive have been omitted.
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We determine the conversion between the qubit drive amplitude and the Rabi
frequency Ω through a power calibration of the qubit (Fig. 5.5 in Appendix 5.2.1).
This calibration is essential because it acts as a normalization between the exper-
imental data and the model. By varying the drive amplitude and measuring the
qubit’s single-tone spectroscopy through the waveguide reflection setup, we identify
the critical driving power. At this power level, the input pulse strength satisfies the
condition Ω = ΓE/

√
2 [125]. The driving amplitude corresponding to the largest dip

in the magnitude quadrature of the qubit spectroscopy, denoted as Acritic, represents
this condition. Given the proportional relationship between the drive rate Ω and
the driving amplitude Ain, the drive strength can be expressed in terms of the input
power Pin of the driving pulse as follows,

Ω = Ain

Acritic

ΓE√
2
. (3.20)

3.4.2 Theoretical model
In this experiment, the emitter qubit coupled to the waveguide can be described by
a two-level system (TLS), with transition frequency between |g⟩ and |e⟩ being ωge

E .
In the frame that rotates with the frequency of the TLS, the Hamiltonian of the
TLS driven by Rabi frequency Ω is given by

ĤQ = −iΩ(σ̂+ − σ̂−)/2 . (3.21)

Compared to Eq. (1.29), we omit the detuning term, and add a phase shift in the
imaginary driving term to facilitate fitting to the measured data. Knowing the decay
rate ΓE from the emitter qubit into the waveguide, the dissipative dynamics of the
qubit is described by the master equation [126–128],

dρ̂/dt = −i[ĤQ, ρ̂] + ΓE

2 D[σ̂−]ρ̂ , (3.22)

where the Lindblad superoperator is defined as D[Â] ≡ 2Âρ̂Â† − {Â†Â, ρ̂}.
A diagonalization of ĤQ yields two eigenstates |±⟩ ≡ (|g⟩ ± |e⟩)/

√
2 with corre-

sponding eigenenergies ±Ω, which in the dressed-atom picture can be understood as
hybrid light-matter states between the qubit and the drive. In the strong driving
regime (Ω > ΓE/4), these eigenenergies can be resolved, and the emission spectrum
of resonance fluorescence acquires the Mollow-triplet structure [70, 71, 129], with
two side peaks emerging around a central peak at the drive frequency (see Fig. 3.18).
This structure can be understood as transitions between the dressed eigenstates, the
central peak at ωge

E corresponding to the doubly-degenerate transition |±⟩ → |±⟩,
and the two side peaks at frequencies ωge

E ±Ω corresponding to transitions |+⟩ → |−⟩
and |−⟩ → |+⟩, respectively.

In the experiment, there are two temporal filters applied simultaneously to match
the photonic modes. Reference [130] introduces a method based on the input-output
theory, where the system can be treated as a cascaded quantum system [97], and
the temporal filter can be modelled as a virtual cavity coupled non-reciprocally
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Bare Dressed

Figure 3.18: Origin of the peaks in the Mollow triplet. The three peaks result
from four transitions between the dressed states of a two-level atom interacting
with a strong resonant driving field.

to the system with a time-dependent coupling. Here, we extend this approach to
capture simultaneously two temporal modes by introducing two virtual cavities (with
annihilation operator âk, for k = 1, 2), resulting in the following cascaded master
equation in the rotating frame of the drive,

dρ̂

dt
= −i[Ĥ, ρ̂] + Γ

2 D[σ̂−]ρ̂+
2∑

k=1

|g(t)|2
2 D[âk]ρ̂

−
2∑

k=1

√
Γ
(
g∗

k(t)[â†
k, σ̂−ρ̂] + gk(t)[ρ̂σ̂+, âk]

)
, (3.23)

where gk(t) is the time-dependent coupling encoded by the temporal filters,

gk(t) = − fk(t)√∫ t
0 dt

′|fk(t′)|2
. (3.24)

In our implementation, the profile v(t) of the temporal filters [Eq. (2.10)] is defined
as a normalized boxcar function v(t) = 1√

T
[Θ(t− t0) − Θ(t− t0 − T )], with Θ(t) the

Heaviside step function and t0 the start time of the temporal filters. This results in
the time-dependent couplings g(t) = −1/

√
t− t0.

The condition for the two temporal filters to be orthogonal is∫
f ∗

1 (t)f2(t)dt = 0 . (3.25)

For our case with two filters of the form Eq. (2.10), the orthogonality condition
reduces to (ω2 − ω1)/2π = m/T , where m is an arbitrary integer. In this work,
we use T = 100 ns, so the condition for orthogonality between the two modes is
(ω2 − ω1)/2π = m · 10 MHz. Additionally, modes that are separated by a large
frequency detuning can also be considered orthogonal to a good extent.

3.4.3 Single-mode measurement results
To calibrate the measurement settings, we start from the results from one-dimensional
measurements that characterize the system by matching only a single mode. The
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frequency of the temporal filter, ω1, is swept around the down-converted intermediate
frequency (IF) of the qubit. We conduct two sets of measurements. In the first
case [Fig. 3.19(a)], the template matching duration is held constant while the drive
amplitude to the qubit is varied. During this process, we observe the second-order
moment ⟨â†

1â1⟩, corresponding to the mean photon number. This measurement is
analogous to the Mollow triplet experiment, where increasing power results in the
emergence of side peaks (Fig. 3.18). The separation between the central peak and
the side peaks corresponds to the Rabi frequency, Ω.

Figure 3.19: Moment ⟨â†
1â1⟩ from the single-mode measurement where (a) the

template-matching duration is fixed at T = 100 ns while the drive Rabi frequency
Ω is swept, and (b) Ω = 4.04Γ while T is swept. Each curve is vertically offset by
0.3 relative to the one below it. The black solid curve is the theoretical prediction.
The red vertical lines mark the positions of ±Ω, which match the location of the
side peaks of the corresponding curves.

In the second case, the Rabi frequency of the qubit drive is fixed [Fig. 3.19(b)],
and the template matching duration is varied. When the duration is too short, the
side peaks become indistinguishable due to the broadening of the frequency domain
as a result of the reduced time window. The second curve from the top in Fig. 3.19(a)
and the third curve from the top in Fig. 3.19(b) (marked with black arrows in the
figure) are measured under the same condition, with Rabi frequency set to Ω = 4.04Γ
and the duration of the temporal modes set to T = 100 ns.

The relation between the input and output modes follows input-output theory
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(Eq. 1.31), √
ΓEσ̂

−
1 = âout

1 − âin
1 . (3.26)

The qubit’s emission operator,
√

ΓEσ̂
−
1 , is the difference between the output and

input fields. In Fig. 3.19 and the subsequent measurements, we present results
for the qubit’s emission after subtracting the coherent input field. Reference [131]
implements this subtraction experimentally via a cancellation pulse. Here, we perform
the subtraction by post-processing the measured output mode.

We evaluate the reflected input mode captured by the temporal filter using the
following expression,

⟨âin⟩ = Ω√
Γ

·
∫ T

0
ei(ω1t+ϕ) cos(ωIFt) dt. (3.27)

To isolate the qubit’s emission, we fit the model to the measured output field,
subtracting this expression. This process effectively removes the coherent background
from the output field. This allows us to align the measured and simulated moments,
ensuring consistent normalization and phase across both. The emission operator√

Γσ̂−
1 is isolated, but for simplicity, we denote it as â1 =

√
Γσ̂−

1 in the results. In
the following 2D measurement, we subtract the coherent background for both modes
â1 and â2 in the same way.

3.4.4 Two-mode measurement results
To verify entanglement between the two selected propagating modes, we match the
measured time trace using two simultaneously applied temporal filters, f1(t) and f2(t),
and the frequencies of the filters are swept. We fix the Rabi frequency of the qubit
drive at Ω = 4.04Γ and the duration of the temporal modes at T = 100 ns, which is a
working point where the side peaks are well-resolved according to Fig. 3.19, and start
the 2D mode matching. At this working point, each moment is calculated in each
pixel of a 2D map, where the x- and y-axes correspond to the frequencies of the swept
temporal filters, ω1 and ω2. Figure 3.20(a, b) show the first-order moments, with
results for both the simulation and the measured data, and Figure 3.20(c-h) show the
second-order moments (calculated according to Sec. 2.4). For all moments, the data
are normalized relative to the simulated value of the central peak of the second-order
moments of the two modes, ⟨â†

1â1⟩ and ⟨â†
2â2⟩, which physically represent the mean

photon number.
In the frequency regions around (∆1,∆2) = (−Ω,+Ω) or (+Ω,−Ω), near the

anti-diagonal corners of the 2D maps, the moments ⟨â1⟩ and ⟨â2⟩ are close to zero
[Fig. 3.20(a, b)], while the cross-second-order moment ⟨â1â2⟩ exhibits a peak [yellow
circles in Fig. 3.20(g)]. This indicates the presence of two-mode-squeezing type
entanglement. Conversely, in the region around (∆1,∆2) = (+Ω,+Ω) or (−Ω,−Ω),
along the diagonal of the 2D moment maps, the cross-second-order moment ⟨â†

1â2⟩
shows a peak [green circles in Fig. 3.20(h)], which suggests a beam-splitter type
of entanglement. In this case, the two modes overlap in both time and frequency,
indicating they are identical states and generally non-orthogonal.
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Figure 3.20: First- and second-order moments of the temporally matched modes.
The first row of each subplot shows the measured moment, while the second row
of each subplot shows the simulation.
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1st-order 2nd-order 3rd-order 4th-order

Figure 3.21: First- to fourth-order moments of the temporally matched modes at
the selected point (∆1, ∆2) = (−Ω, +Ω). The red bar is from the measurement,
and the black wireframe is from the simulation.

We focus on the frequency point (−Ω,+Ω), where the two modes belong to
opposite side peaks of the Mollow triplet and satisfy the frequency orthogonality
condition in Eq. 3.25. At this frequency point, we compute and show moments
⟨(â†

1)m1 ân1
1 (â†

2)m2 ân2
2 ⟩ for m1, n1,m2, n2 ∈ {0, 1, 2} and m1+n1+m2+n2 ≤ 4, resulting

in 27 moments excluding conjugation redundancy (Fig. 3.21), which will be further
used for quantum state tomography in the next section.

3.4.5 Tomography result and logarithmic negativity
In this work, we employ two methods to perform joint quantum state tomography
on the two measured photonic modes, described in the following. For each frequency
point within the regions ∆1 ∈ [−40,−10] MHz and ∆2 ∈ [10, 40] MHz, we compute
the 27 moments up to fourth order (as listed in Fig. 3.21). We then reconstruct the
density matrices at each point using least-squares (LS) optimization and compressed-
sensing (CS) optimization, with the 27 measured moments as input (see Sec. 2.5.1 for
details). The density matrices obtained from LS optimization and CS optimization at
the frequency point (−Ω,+Ω) are shown in Fig. 3.22(a) and Fig. 3.22(b), respectively.
We quantify the degree of entanglement between the two temporal modes using the
logarithmic negativity EN , a commonly used entanglement measure for bipartite
systems [132]. Given a general bipartite state composed of subsystems A and B, the
logarithmic negativity is defined as,

EN ≡ log2

(∥∥∥ρTA

∥∥∥
1

)
, (3.28)

where ρTA denotes the partial transpose of the density matrix ρ with respect to
subsystem A, and ∥ · ∥1 is the trace norm. For each frequency point, we calculate the
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Figure 3.22: Tomography result of the entangled photonic modes and the entan-
glement witness. (a-b) Reconstructed density matrices at the point of maximum
logarithmic negativity EN , obtained using LS and CS optimization-based quan-
tum state tomography, respectively. (c-d) Measured distributions of logarithmic
negativity EN , calculated from the density matrices reconstructed via LS and CS
optimizations. (e) Simulated logarithmic negativity distribution EN . (f) Logarith-
mic negativity distribution EN derived from the density matrices reconstructed
using the 27 simulated moments.
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corresponding logarithmic negativity from the reconstructed density matrix, from
quantum state tomography.

While LS optimization effectively reconstructs the density matrix of the two
propagating modes [Fig. 3.22(a)], the resulting EN distribution over the frequency
ranges ∆1 ∈ [−40,−10] MHz and ∆2 ∈ [10, 40] MHz is very noisy [Fig. 3.22(c)]. This
noise is attributed to the limited number of moments used for reconstruction and the
sparsity of the dataset. To overcome these challenges, we employ CS optimization,
which is better suited for sparse datasets and limited moment data. Using CS
optimization, we perform the reconstruction [Fig. 3.22(b)] and compute the EN
distribution [Fig. 3.22(d)]. The EN distribution obtained through CS optimization
shows good agreement with the EN distribution derived from the reconstruction
using the selected simulated moments [Fig. 3.22(f)]. CS optimization effectively
minimizes the noisy coherent components in the reconstructed moments, resulting in
a cleaner EN distribution. However, it also tends to overly suppress the peaks of
⟨00|ρ|11⟩, potentially underrepresenting certain entanglement features.

As explained in the previous paragraph, we compare the measured EN distribution
to the distribution reconstructed using 27 simulated moments, rather than to the
directly simulated distribution. This is due to observed discrepancies between the
reconstructed EN derived from the simulated moments [Fig. 3.22(f)] and the directly
simulated EN [Fig. 3.22(e)]. This discrepancy arises because the reconstruction
process includes only the 27 simulated moments, corresponding to the ones measured
in the experiment. However, when all moments in the Fock space up to a cutoff of
N = 5 are included, the reconstructed distribution from the simulated moments aligns
closely with the simulation, showing the correctness of our optimization methods.
Based on these considerations, we conclude that the maximum EN observed in our
experiment is close to the simulation value of 0.062.

From the positive logarithmic negativity—a recognized measure of entangle-
ment—that aligns with theoretical predictions, we demonstrate that this method
successfully generates entangled photonic states through the application of digital
temporal filters to the continuum field. This approach is hardware-efficient, requiring
only a single emitter, and operates without strict timing constraints due to the
steady-state nature of the driven qubit. Furthermore, the entanglement generation
rate is limited solely by the emitter’s linewidth, enabling high-speed entanglement
production.





Chapter 4

Conclusions

4.1 Summary
In Paper 1, we demonstrated the deterministic transfer of a qubit state into a
propagating microwave photon using a qubit–coupler–qubit device, achieving a
process fidelity of 94.5%. By employing a time-dependent parametric drive, we
shape the temporal profile of the emitted photon to ensure time symmetry and a
constant phase, which allows the receiving processor to implement the reabsorption
process as a time-reversed version of the emission. In Paper 3, instead of encoding
information in the Fock basis of a single propagating mode, we deterministically
generate frequency-bin encoded microwave photons in two modes with a process
fidelity of 90.4%. The use of frequency bins as an additional degree of freedom serves
as a heralding protocol for detecting photon loss.

In Paper 2, we generate entanglement between photonic modes generated by
temporally selected signals reflected from a continuously driven qubit into the steady
state. The resulting entangled photonic modes could be transferred to quantum
memories for quantum information processing and entanglement distribution. This
approach is relevant for the quantum computing, communication, and sensing com-
munities, enhancing the scalability and practicality of entanglement generation across
distributed QC systems.

While the experiments in the papers employ transmon-qubit-based systems, the
approaches are platform-agnostic and can be extended to other systems, such as
trapped-ion qubits [9, 133, 134], neutral atoms [10, 11, 135], semiconductor quantum
dots [12, 13, 136, 137], and color-center qubits [14, 15, 138, 139].

4.2 Outlook
In a distributed QC system, our goal is to establish quantum communication channels
between remotely separated quantum chips using travelling microwave photons
(Fig. 4.1). The quantum information is carried by a photon emitted from one
quantum circuit, which travels through the quantum channel and is subsequently
reabsorbed by the receiving circuit. This process facilitates quantum state transfer
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Data qubit Data qubit

Remote entanglement

Emitter qubit

Processor ProcessorQuantum channel

Receiver qubit

State transfer

Figure 4.1: The potential distributed quantum computing system utilizing modular
building blocks implemented by this thesis.

and enables the creation of remote entanglement between qubits in both circuits.
Additionally, by coupling more qubits to this system, it can be scaled to solve larger
computational tasks.

In this thesis, we present a photon emission system capable of both state transfer
and entanglement generation using single-rail and dual-rail propagating modes, both
implementable on the same device. The dual-rail scheme, utilizing frequency-bin
encoding, supports error detection, while the single-rail scheme operates without it.
This system thus supports photon emission with or without frequency-bin encoding,
providing flexibility to integrate or bypass error detection protocols within the
same device. Although photon reabsorption is not covered in the thesis, it can be
implemented through a time-reversed version of the emission process. Note that
in the receiver device, the receiver qubit should have the same frequency as the
emitter qubit. This frequency alignment can be achieved by making the qubits flux-
tunable using a SQUID. The quantum channel, which physically links the coplanar
waveguides of the emitter and receiver, can be implemented with a coaxial cable [41]
and may include a circulator, as referenced in Sec. 1.1. This provided system has
the potential to serve as a critical building block for future distributed quantum
computing and quantum networks.

In the following sections, we explain the whole process of implementing quantum
state transfer, including both photon emission and reabsorption, with single-rail or
dual-rail propagating modes. For the dual-rail case, we explain why it can function
as an error detection protocol for photon loss. Additionally, we discuss potential
applications of a distributed QC system.

4.2.1 Potential distributed QC system
Single-rail distributed QC without error detection

Building on the single-rail photon emission described in Sec. 3.1 and the photon
shaping technique outlined in Sec. 3.2, we can implement quantum state transfer
and establish remote entanglement between two quantum devices by employing the
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same hardware and utilizing a time-reversed process for photon reception. Figure 4.2
illustrates the gate sequence used to perform quantum state transfer. It is important
to note, however, that with single-rail photons, the system cannot detect errors in
the event of photon loss during transmission.

Figure 4.2: Gate sequence for quantum state transfer in a distributed quantum
computing system (without error detection), including (a) the emitter processor,
and (b) the receiver processor. The Xθ gate initializes the data qubit into an
arbitrary superposition state between states |g⟩ and |e⟩.

Dual-rail distributed QC with error detection

In this section, we explore the quantum state transfer with frequency-bin-encoding
protocol in a distributed QC system, which consists of two quantum processors:
a photon-mode emitter (explained in Sec. 3.3) and a photon-mode receiver. The
distributed QC system can be demonstrated by reshaping the frequency-bin photonic
modes as in Sec. 3.2 and using an identical device for photon re-absorption. In the
emission process, after state preparation, by applying the parametric and second-
order-transition drives simultaneously, the frequency-bin-encoded photon is generated
[Fig. 4.3(a)]. After the transmission of the photon through the quantum channel,
the receiver re-absorbs the photon in the reversed process [Fig. 4.3(b)]. In time-bin
encoding [52, 53], the two time bins are released by sequentially applying the identical
pair of drives. Conversely, in the frequency-bin encoding we utilize, the two frequency
bins are generated at the same time. Thus, in principle, frequency-bin encoding is
twice as fast as time-bin encoding, under the same hardware condition.

If the photon is transmitted successfully, the data qubit at the receiver’s processor
ends in the expected superposition state α |g⟩D + β |e⟩D. However, if any part of the
photon state is lost, similar to time-bin encoding [52, 53], the qubit state will end
up in the |f⟩D state due to the last two quantum gates in the reabsorption process
[Fig. 4.4 and Table 4.1]. A quantum non-demolition measurement [140–142] can
be used to distinguish between the |f⟩D state and the subspace of |e⟩D and |g⟩D,
without disturbing the superposition within the subspace itself. This enables the
detection of photon loss without disturbing the successfully transferred quantum
state, preserving it for further computation.

4.2.2 Applications of distributed QC systems
The distributed QC system can serve as a foundation for modular quantum computing
architectures [143]. Using circuit cutting techniques [144], the system allows dividing
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Figure 4.3: Gate sequence for quantum state transfer using frequency-bin encoded
photon in a distributed quantum computing system, including (a) the emitter
processor, and (b) the receiver processor. The Xθ gate initializes the data qubit
into an arbitrary superposition state between states |g⟩ and |e⟩. The Xπ gates
represent the Pauli-X gate, implemented by π-pulses at the transition frequencies
of data qubit ωge and ωef .

Figure 4.4: By adding another degree of freedom (frequency-bin), the error will
lead to leaving the subspace S of the quantum information mapping.

Table 4.1: Frequency-bin encoding as an error-detection protocol for photon loss. If
any of the two photonic modes is lost during the transmission, we will end up in the
transition of |0⟩ωA

|0⟩ωS
state. Specifically, applying photon annihilation operator

âA ⊗ Î or Î ⊗ âS on the success state results in state |0⟩ωA
|0⟩ωS

. Consequently,
this leads to the collapse of the data qubit into the |f⟩D state in the receiver
processor, instead of the desired superposition state in the information-mapping
subspace {|g⟩D , |e⟩D}.

Transmitted photon state Qubit at the receiver
Success α |1⟩ωA

|0⟩ωS
+ β |0⟩ωA

|1⟩ωS
α |g⟩D + β |e⟩D

Photon loss |0⟩ωA
|0⟩ωS

|f⟩D

complex circuits into smaller, manageable segments that are processed and integrated
efficiently within the distributed QC framework, enabling scalable and flexible
quantum processing. Its capabilities can be further extended by incorporating
microwave-to-optical transducers [17, 18, 21], which facilitate quantum information
transfer over long distances. This extended distributed QC system supports a
variety of applications, including quantum key distribution [145, 146] and quantum
networking [147].

Distributed QC systems offer a promising platform for Ericsson to scalably
explore complex telecommunications challenges such as antenna tilt optimization,
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peak-to-average-power-ratio minimization, feature selection, and compressed feature
representation [148–150]. To effectively leverage these systems, we at Ericsson,
identify relevant telecom use cases, develop quantum/hybrid algorithms, map these
algorithms to the multi-chip QC system, and execute them with the quantum channel
facilitating the inter-chip communication.





Chapter 5

Appendix

This chapter presents an overview of the measurement setups and characterization
techniques employed in this work. Section 5.1 details the room-temperature mea-
surement setups, including the continuous-wave and pulsed configurations. These
setups form the basis for the device characterization procedures discussed in Sec. 5.2,
as well as the experiments shown in Chapter 3.

5.1 Room-temerature measurement setup
This section describes the room-temperature measurement setup used in the exper-
iments, including both continuous-wave and pulsed configurations. Note that all
room-temperature equipment is connected to the same 10 MHz external clock to
ensure phase synchronization.

5.1.1 Continuous-wave setup
In the experiment, when we use the continuous-wave setup, the quantum device is
connected to the room-temperature measurement equipment as shown in Fig. 5.1. In
this configuration, the transmission line of the device is connected to the input and
output ports of a vector network analyzer (VNA). By sweeping the VNA’s probing
frequency around the resonant frequencies of the resonator or qubit, we record the
transmission coefficient S21, defined as

S21 = Vout

Vin
, (5.1)

where Vout and Vin represent the voltage amplitudes at the VNA’s output and input
ports, respectively. Similarly, the reflection coefficient S11 is measured by connecting
the VNA to the input and output ports of a circulator connected to the waveguide
probe line, with S11 defined in the same manner.

This continuous-wave setup allows us to perform single-tone and two-tone spec-
troscopy of the readout resonators and qubits. Single-tone spectroscopy involves
applying a continuous-wave signal at varying frequencies to the readout resonators,
enabling us to observe the resonator’s response and determine parameters including
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Figure 5.1: Continuous-wave setup. The cryogenic components are omitted for
simplicity (indicated by the three dots along each line).

the resonance frequency and the quality factor. Two-tone spectroscopy, on the
other hand, involves sending a second signal to drive the qubit while fixing the first
continuous-wave signal at the resonator’s frequency. This technique helps in probing
the interactions between qubits and readout resonators, and can be used to extract
information about qubit transition frequency, anharmonicity, and coupling strengths.

5.1.2 Pulsed setup
In the pulsed setup [Fig. 5.2], up-conversion and down-conversion techniques play a
critical role in controlling signal frequencies and phases, as well as enabling precise
measurements on the devices. Up-conversion is required to shift low-frequency signals
generated by the arbitrary waveform generator (AWG) to higher frequencies suitable
for driving tones on the device, as typical AWGs cannot directly generate signals
at such high frequencies. This is achieved by mixing the low-frequency signal with
a high-frequency tone from the local oscillator (LO). Conversely, down-conversion
is used to shift high-frequency response signals back to a lower frequency range,
enabling measurement and analysis by producing signals slow enough to be digitized
without the risk of under-sampling. By using the same LO for both up-conversion
and down-conversion, we ensure phase coherence and frequency consistency between
the transmitted and received signals. The IQ mixer plays a central role in facilitating
both up- and down-conversions.

Up-conversion and mixer calibration

In the up-conversion process, an intermediate frequency (ωIF), typically a few hundred
MHz and generated by an AWG, is combined with a LO signal at frequency ωLO
through a mixer. This process produces a radio frequency (RF) signal, which we



Chapter 5. Appendix 73

Q

LO LO

LO LO

RF

RF RF

Up-conversion

I

QI
Arbitrary waveform generator

Analogue-to-digital conerter

Local oscillator

IQ mixer

ADC

Down-conversion

A
W

G

AWG

QI

QI

ADC

AWG

dc voltage source

Bias tee

Amplifier

Attenuation

50Ohm terminator

Low-pass filter
RF

Figure 5.2: Pulsed setup. The cryogenic components are omitted for clarity (indi-
cated by the three dots along each line). Using the Vivace microwave transceiver
platform [111], the Vivace AWG delivers microwave control pulses to drive the
emitter, while the analog-to-digital converter (ADC) samples the data during
readout.

typically chose to be in the range of 4 GHz to 8 GHz, described as,

sRF(t) = cos(ωIFt) cos(ωLOt) = 1
2 [cos((ωLO − ωIF)t) + cos((ωLO + ωIF)t)] , (5.2)

which results in two sidebands at the frequencies of ωRF = ωLO + ωIF (right
sideband) and ωLO −ωIF (left sideband). However, we aim to isolate a single sideband
and use it as the input to our device. Therefore, an IQ mixer, a combination of two
normal mixers with a ±π/2 phase shift between their LO ports, is employed. The
signal then becomes,

sRF(t) = cos(ωIFt) cos(ωLOt) ∓ sin(ωIFt) sin(ωLOt) = cos ((ωLO ± ωIF)t) . (5.3)

We are only left with one single sideband, the left sideband with frequency ωLO −ωIF
or the right sideband with frequency ωLO + ωIF. Note that the resulting sideband
is influenced not only by the phase shift at the IQ mixer’s LO port, which is fixed,
but also by how the two IQ IF signals are connected to the mixer and their relative
phase shifts. This provides us with the flexibility to effectively select the desired
sideband for further processing according to our needs.
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In our experiments, the selected sideband cannot be obtained perfectly as de-
scribed before, due to the inidealities of the physical IQ mixer. LO leakage occurs
when a portion of the strong local oscillator signal bypasses the mixing process and
directly propagates to the sample. Additionally, if the I and Q channels are not
perfectly balanced in phase and amplitude, the unselected sideband can also appear.
We thus need to calibrate the IQ mixers at the frequencies of the device tones. The
calibration is performed on the IQ mixers used for up-conversion to ensure the purity
of the signals transmitted into the device. This calibration is performed by measuring
the RF port of the IQ mixer using a spectrum analyzer while the IQ ports are driven
by an arbitrary waveform generator (AWG) and the local oscillator (LO) is engaged.
Prior to calibration, the frequency spectrum exhibits three distinct peaks: ωLO −ωIF,
ωLO, and ωLO + ωIF. To eliminate the undesired peak at the LO frequency (ωLO),
we adjust the DC bias of the IQ pulses generated by the AWG. Additionally, the
unwanted sideband peak can be suppressed by fine-tuning the amplitude scaling
and phase difference between the IQ pulses. After completing the mixer calibration,
only the desired sideband peak remains in the frequency domain, with the unwanted
peaks effectively suppressed.

Down-conversion and demodulation

In the down-conversion process, the high-frequency RF signal measured at frequency
ωRF is converted to a lower-frequency IF signal (ωIF) using another IQ mixer and the
same local oscillator (LO) signal at frequency ωLO, for the IF signal to be processed
by an analogue-to-digital converter (ADC). In the IQ mixer, the RF signal is mixed
with LO which are propagating out from the I and Q ports of the mixer at (ideally)
±π/2 phase shift, given by,

I(t) = cos(ωRFt) cos(ωLOt) = 1
2 [cos((ωRF + ωLO)t) + cos((ωRF − ωLO)t)] , (5.4)

Q(t) = cos(ωRFt) sin(±ωLOt) = ±1
2 [sin((ωRF + ωLO)t) − sin((ωRF − ωLO)t)] . (5.5)

After applying low-pass filters to remove the high-frequency components at ωRF +ωLO,
the I and Q components become,

ILPF(t) = 1
2 cos((ωRF − ωLO)t) , (5.6)

QLPF(t) = ∓1
2 sin((ωRF − ωLO)t) . (5.7)

When ωRF > ωLO, it corresponds to the right sideband. When ωLO > ωRF, it
corresponds to the left sideband. Combining the I and Q components, we form a
complex signal. Similar to the up-conversion process, the configuration of the IQ
mixer allows us to select the desired sideband during down-conversion.

The filtered I and Q components ILPF(t) and QLPF(t) are then sent to the ADC
module for sampling. The sampled signal, denoted as sDC(t) = IDC(t) + iQDC(t),
where DC indicates down-converted, is subsequently demodulated digitally on the
computer. The demodulation process involves down-converting this signal at the
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demodulation frequency ωdemod = ωIF = |ωRF − ωLO|. This is achieved by multiplying
by treating the IQ parts of s(t) separately,

sdemod1I
(t) = IDC(t) cos(ωIFt) , (5.8)

sdemod1Q
(t) = IDC(t) sin(ωIFt) , (5.9)

sdemod2I
(t) = QDC(t) cos(ωIFt) , (5.10)

sdemod2Q
(t) = QDC(t) sin(ωIFt) . (5.11)

Since IDC(t) and QDC(t) also have a frequency of ωIF, each of the four components in
Eqs. (5.9)–(5.11) contains two frequency components after the demodulation: one at
zero frequency and another at 2ωIF. Digital low-pass filters are used to remove the
double-frequency component, leaving only the zero-frequency component for all four
traces, which represent the baseband information as a function of time. Denoting
the filtered traces as {sfilter1I

(t), sfilter1Q
(t), sfilter2I

(t), sfilter2Q
(t)}, corresponding to

{sdemod1I
(t), sdemod1Q

(t), sdemod2I
(t), sdemod2Q

(t)} respectively, the desired baseband
signal sBB(t) = IBB(t) + iQBB(t) is given by,

IBB(t) = sfilter1I
(t) ± sfilter2Q

(t) , (5.12)
QBB(t) = sfilter2I

(t) ∓ sfilter1Q
(t) , (5.13)

where the ± and ∓ signs depend on the selected sideband.

5.2 Device characterization measurements
In this section, we outline the device characterization process, primarily conducted
on Device 1, with the exception of the measurements of longitudinal and transverse
relaxation time, which are specifically performed on Device 2.

5.2.1 From continuous-wave setup

Single-tone spectroscopy of readout resonators

For the continuous-wave step of the measurement, we connect the device transmission
line to the input and output port of a VNA and record S21. When the VNA power
is set to a low level, the qubit-resonator system is in the dressed state, as illustrated
by the blue curve in Fig. 5.3(a). In this configuration, we operate in the dispersive
regime, where the system dynamics are governed by Eq. (1.24). At high power, the
qubit becomes effectively decoupled from the resonator, and the system is described
by Eq. (1.22), resulting in a shift of the resonator frequency to the bare state basis, as
shown by the red curve in Fig. 5.3(a). The frequency shift of the resonator between
the bare and dressed modes reads χ/2π = (ωdressed

R − ωbare
R )/2π = 3 MHz.

In both cases, the resonator dip exhibits asymmetric shapes, primarily attributed
to impedance mismatching, as discussed in [151]. To model the complex S21 spec-
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(a) Resonator of the data qubit (b) Resonator of the coupler

Figure 5.3: Single-tone spectroscopy of the readout resonator of (a) the data qubit
and (b) the coupler, showing the magnitude quadrature. The blue (red) curve
represents the resonator in a dressed (bare) state. The solid black curves are from
the fitting with Eq. (5.14).

troscopy of the resonator, we use the following expression [151, 152],

S21(ωp) = aeiαe−iωpτ︸ ︷︷ ︸
environment

1 − (Ql/|Qc|)eiϕ

1 + 2iQl

(
ωp

ωR
− 1

)


︸ ︷︷ ︸
ideal resonator

, (5.14)

where the first term counts for contributions from the environment. In the second
term, ωp(ωR) is the probe (resonator) frequency. Ql is the loaded quality factor
and |Qc| is the absolute value of the coupling quality factor, following Q−1

l =
Q−1

i + Re {Q−1
c }, where Qi is the internal quality factor. ϕ quantifies the impedance

mismatching. The total decay rate of the resonator can be calculated through
κ = ωR/Ql.

The spectroscopy of the coupler resonator is measured in the same way, when
the resonator and the coupler are in the dressed (bare) state when applying low
(high) power [blue (red) curve in Fig. 5.3(b)]. Similarly, we compute the frequency
shift between the bare and dressed modes of the coupler’s resonator, χ/2π =
(ωdressed

R − ωbare
R )/2π = −2 MHz. Note that the sign of the dispersive shift χ is

determined by the sign of the detuning ∆ = ωR −ωQ, with ωR the resonator frequency
and ωQ the qubit or coupler frequency. Specifically, the positive χ indicates the
resonator frequency is higher than the data qubit. In contrast, a negative χ indicates
that the frequency of the resonator is lower than the frequency of the coupler.

The flux quanta of the coupler is calibrated by observing the single-tone spec-
troscopy of the coupler resonator as we sweep the dc voltage on the coupler flux line
(Fig. 5.4), which is proportional to the applied dc flux.

Single-tone spectroscopy of the emitter qubit

Unlike the data qubit and the coupler, the emitter qubit is not connected to a
readout resonator, but to an open-ended, one-dimensional waveguide. Therefore, we
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d
c

Figure 5.4: Calibration of the flux quanta of the flux-tunable coupler, with the dc
voltage values corresponding to ±Φ0/2 and 0 highlighted by yellow dashed lines.
The remaining applied voltage levels are normalized based on these reference
points. The avoided crossing observed in the figure arises from the interaction
between the coupler and its resonator during the flux sweep.

characterize it through single-tone measurement obtained from the reflection setup
attached to the waveguide to which the qubit is coupled. The S11 from the reflection
measurement can be modelled by Eq. (1.32), by assuming the pure dephasing rate
Γφ is zero. In the equation, Ω is the drive strength, following [125],

Ω = 2
√
PinAΓE

ℏωE

, (5.15)

where Pin is the input power from VNA and A is the total attenuation in the line.
Utilizing Eq. (1.32) and (5.15) for a global fitting on all curves, the experimentally
obtained S11 can be modelled by employing the detuning ∆, the decay rate ΓE, the
non-radiative decay rate Γnr, and attenuation A as adjustable parameters. Note that
in Eq. (1.32), the radiative decay rate ΓE is denoted as Γ for simplicity.

Two-tone spectroscopy of qubit

To estimate the qubit’s frequency, we read out at the dressed resonator frequency
while applying an additional signal from a local oscillator, tuned around the qubit’s
frequency, through the charge line of the data qubit. A peak in the measured
S21 is expected at the qubit’s frequency, due to the qubit-state-dependent shift
[δωr = − j2EC

∆(∆−EC) , not shown as a figure in this thesis] in the resonator frequency
when the drive signal matches the qubit’s frequency.

As illustrated in Fig. 5.6, when the power applied to the charge line is low, two
distinct peaks are observed (blue curve). The first peak (right) corresponds to the
transition from the ground state to the first excited state of the qubit (ωge

D ), while the
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Figure 5.5: Single-tone spectroscopy of the emitter qubit, while sweeping the
drive power. The solid black curve is from the global fit. The black arrow marks
the S11 magnitude measured at the critical power, which shows the deepest dip
compared to the other powers.

Figure 5.6: Two-tone spectroscopy of the data qubit, with the blue (red) curve
representing the low (high) power.

second peak (left) represents the transition from the first excited state to the second
excited state (ωef

D ). Upon increasing the power (red curve), while the broadening
of the mentioned two peaks, an additional peak emerges in the middle, which is
associated with the two-photon transition between the ground state |g⟩ and the
second excited states |f⟩, mediated by a virtual state. From these observations, the
anharmonicity of the data qubit can be obtained by α = ωef

D − ωge
D .

What is more, knowing the qubit transition frequency ωge
D , we can calculate the

coupling between qubit and resonator, j, through

χ = j2

∆ . (5.16)

Here, χ denotes the frequency shift associated with the state measured above, while
∆ signifies the detuning between the qubit and the resonator.
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Two-tone spectroscopy of the flux-tunable coupler

The coupler on this processor is connected to a SQUID and an inductively-coupled
flux line, allowing its frequency ωC to be tuned by adjusting the flux, following
Eq. (1.21),

ωC(Φ) = ωC,0

√
| cos(πΦ/Φ0) | , (5.17)

where ωC,0 is the coupler frequency with zero dc flux bias, and Φ is the applied
external flux and Φ0 is the flux quantum. By adjusting the dc voltage applied to the
coupler flux line, which is proportional to the flux flows in the SQUID, we tune the
coupler frequency accordingly. Figure 3.3 shows the coupler frequency as a function
of the dc flux, which is obtained from the two-tone spectroscopy of the coupler. We
drive the coupler resonator at its dressed frequency and pump the coupler through
the charge line of the data qubit, as the coupler itself does not have a directly coupled
charge line. Again, we can obtain the coupling strength j between the coupler and
its resonator through Eq. (5.16).

5.2.2 From pulsed setup

Using a pulsed setup, we can measure the single-tone and two-tone spectroscopy
of qubits and resonators; however, to avoid redundancy, we will not present these
results again. In this section, we demonstrate the characterization of the data qubit
by measuring its relaxation and coherence times and evaluating the impact of Purcell
decay.

Time-resolved measurement of the data qubit

In the experiment, we measure the Rabi oscillation, longitude relaxation time (T1),
and transverse relaxation time (T2) of the data qubit between the first-excited and
the ground states, and that between the second- and the first-excited states.

The Rabi oscillation measurement enables us to find the π-pulse for driving the
qubit. A π-pulse is created by combining a sinusoidal signal oscillating at the qubit’s
frequency with an envelope, where the pulse power is controlled by adjusting either
the amplitude or the duration of the pulse. In this experiment, we fix the length and
change the amplitude of the π-pulse, which we will then use to measure T1 and T2 in
the following experiments.

Consistent with our previous experiment, we perform readout at the dressed
resonator frequency after resonantly driving the qubit through the charge line. As
illustrated in Fig. 5.7(a-b), we maintain a constant duration (100 ns) and shape
(Gaussian) for the qubit drive pulse while varying its amplitude. This approach
allows us to observe oscillations in the qubit population between the ground and
excited states. From these Rabi oscillations, we determine the pulse amplitude that
corresponds to a π-pulse of the qubit. Additionally, in Fig. 5.7(c-d), we extend the
measurement by sweeping the drive frequency alongside the pulse amplitude, thereby
acquiring the Chevron pattern.
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(b) Rabi oscillation 

(a) Pulse sequence for Rabi oscillation 

(d) Chevron measurement 

Readout

Data qubit

Resonator

100ns

Sweep amp

(c) Pulse sequence for Chevron 

Readout

Data qubit

Resonator

100ns

Sweep amp, frequency

Figure 5.7: (a-b) Pulse sequence and corresponding measured results of Rabi
oscillations when the drive pulse frequency is on resonance with the data qubit
frequency. The blue dotted points in (b) represent the measured data, while
the solid black line corresponds to the sinusoidal fit. (c-d) Pulse sequence and
measured results of Rabi oscillations while sweeping the drive pulse frequency,
commonly referred to as Chevron measurements. The case highlighted with the
yellow dashed line corresponds to panel (b).

To accurately determine the π-pulse amplitude, we perform a calibration procedure
aimed at identifying the optimal pulse amplitude for subsequent time-resolved
measurements. As illustrated in Fig. 5.8(a), we apply an odd number of π-pulses
to the data qubit and subsequently perform qubit readout. The amplitude of each
π-pulse is finely adjusted within a narrower range, as determined from Fig. 5.7(b).
Regardless of the number of π-pulses applied, a consistent peak emerges at the same
amplitude, indicating the calibrated π-pulse. This optimal amplitude is highlighted
by the yellow dashed line in Fig. 5.8(b).

We then measure the longitudinal relaxation time, T1, of the data qubit, by
reading out the qubit after applying a π-pulse and waiting a certain amount of time
τ [Fig. 5.9(a)]. The π-pulse excites the qubit, which relaxes exponentially during the
time τ . By measuring qubit population at different τ , we can draw the exponential
decay and extract the relaxation time T1 = 19.9µs [Fig. 5.9(b)], by fitting it according
to y = A exp(−t/T1) +B, with A and B the constant scaling and offset.

Similarly, by following the pulse sequence in Fig. 5.9(c), we operate Ramsey
measurement and obtain the transverse relaxation time T2. A Ramsey measurement
involves applying two π/2 pulses separated by a variable delay τ . By measuring the
population of the qubit at different τ , we obtain a series of oscillations that decay
exponentially due to decoherence, and this decay yields T2. By fitting it according
to y = A cos(Bt + ϕ)exp(−t/T2) + C, we extract T2 = 13.9µs, with A,B,C and
ϕ representing the constants for scaling, detuning, offset and phase, respectively.
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(b)   -pulse clibration 

(a) Pulse sequence 

2N+1 Readout

Data qubit

Resonator

...

Figure 5.8: π-Pulse amplitude calibration for the data qubit. (a) Pulse sequence
applying an odd number (2N + 1, with N ranges from 1 to 10) of π-pulses to
the qubit while sweeping the pulse amplitude. (b) Measured qubit population
as a function of pulse amplitude. The yellow dashed line indicates the optimal
amplitude corresponding to a π-pulse.

Ramsey interferometry is a more accurate way of measuring the qubit frequency
than qubit two-tone spectroscopy. When the drive pulse is on the resonance of the
qubit frequency, we can see an exponential-decaying curve [Fig. 5.9(d), red curve];
however, if they are off-resonance, we can see cosine oscillation, which oscillates with
the detuning frequency |ωge

D − ωd|, together with the decay [Fig. 5.9(d), blue curve].
Note that Table 2.2 presents the T1 and T2 statistics, including their means and
standard deviations, obtained from repeated measurements.

In the above paragraphs, we introduce, by default, the measurement of the
relaxation time between the first-excited state and the ground state of the data
qubit. Figure 5.10 illustrates the relaxation time measured between the second- and
first-excited states of the data qubit. Although the decay from the second-excited
state involves sequential relaxation from |f⟩ to |e⟩ and then to |g⟩, we can still fit
the decay curves using the same single exponential expressions as before, when the
readout is selective enough for the |f⟩ state. By doing so, we extract T ef

1 = 25.3µs
and T ef

2 = 4.9µs. We measure larger T ef
1 than T ge

1 , which can be attributed to the
weaker coupling of the system to the environment at ωef

D compared to ωge
D .
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(a) Pulse sequence 

(b) T1 measurement (d) T2 (Ramsey) measurement 

Readout

Data qubit

Resonator

(c) Pulse sequence 

Readout

Data qubit

Resonator

Figure 5.9: Measurement of the T1 and T2 of the data qubit between the first
excited state and the ground state. (a-b) Pulse sequence and corresponding
measured time trace of T1. (c-d) Pulse sequence and corresponding measured time
traces of T2. Note that we measure at two different cases, when the data qubit
is driven on resonance (red) and when the data qubit is driven with detuning
0.25 MHz. The solid black curves are the fit.

Readout

(a) Pulse sequence 

(b) T1 measurement (d) T2 (Ramsey) measurement 

Data qubit

Resonator

(c) Pulse sequence 

Readout

ge ge
ef ef

Data qubit

Resonator

ge ef ge

Figure 5.10: Measurement of the T ef
1 and T ef

2 , relaxation time between the
second and the first excited states of the data qubit. (a-b) Pulse sequence and
corresponding measured time trace of T ef

1 . (c-d) Pulse sequence and corresponding
measured time traces of T ef

2 . Note that we measure at two different cases, when
the data qubit is driven on resonance (red) and when the data qubit is driven
with detuning 0.4 MHz. The solid black curves are the fit.
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Purcell decay from the emitter qubit to the data qubit

The Purcell decay typically refers to qubit relaxation due to its coupling to a readout
resonator, which is in turn coupled to the environment. Here, we extend this concept
to the data qubit, which is coupled to a highly decaying emitter qubit, causing an
unintended decay of the data qubit into the waveguide, regardless of the control pulses.
When estimating the Purcell decay rate, κp, we consider two primary contributions:
the capacitive interaction between the qubits, gDE, and the static coupling rate
between the two qubits, Jdc, achieved after positioning the coupler at its operating
frequency. The Purcell decay rate is given by,

κp = (gDE + Jdc

∆DE

)2 ΓE . (5.18)

The interaction term gDE remains unaffected as we adjust the coupler frequency and
is defined by,

gDE = CDE√
CΣ,DCΣ,E

√
ωDωE (5.19)

where CDE is the mutual capacitance of the two qubits, and CΣ,D (CΣ,E) is the total
capacitance of the data (emitter) qubit. From simulations of the device’s capacitance
matrix, we obtain gDE/2π=0.07 MHz.

In Eq. (5.18), with the coupler set at 6 GHz, the static coupling rate is Jdc/2π
= 1.024 MHz [calculated through Eq. (3.2)]. ∆DE is the detuning between the two
qubits. Based on these values, we calculate the Purcell decay rate as κp/2π =
0.296 kHz, which is negligible compared to the measured longitudinal relaxation rate
of the data qubit. Therefore, in the current setup and with the chosen dc flux bias,
the Purcell decay is not a primary issue, as the lifetime of the data qubit is not
limited by Purcell decay into the emitter qubit.
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