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Abstract

The upcoming Ice Cloud Imager (ICI) and the recently launched Arctic Weather
Satellite (AWS) mark a new era in cloud ice observations. For the first
time, continuous and global observations of the troposphere will be made at
sub-millimetre wavelengths. Sub-millimetre observations are highly sensitive
to larger ice crystals. These crystals contain a significant fraction of the
ice mass in clouds which, despite their influence on Earth’s climate, remain
poorly understood. As a result, ICI and AWS will offer unparalleled data on
atmospheric ice.

This thesis poses the question: What information on cloud ice can ICI
observations provide? The primary objective of ICI is to provide ice cloud
variables covering the entire atmospheric column. However, vertical information
on ice has never before been derived from a passive microwave instrument. The
question is therefore explored in two contexts: Firstly, how reliably will ICI
fulfil its primary objective? Secondly, can we determine the vertical distribution
of ice from ICI observations?

Since ICI is not yet launched, high-quality radiative transfer simulations of
ICI are required to train the inversion model. Since there will be no co-locations
of ICI with a radar providing cloud ice data, empirical retrievals will not be
feasible after the launch. Consequently, the retrieval model used during ICI’s
operational phase must rely on the simulations. In this thesis, state-of-the-art
simulations are presented, and a quantile regression neural network (QRNN) is
used to produce probabilistic retrieval estimates.

The findings in this thesis indicate that ICI will produce reliable retrievals of
the column-integrated variables: ice water path, mean mass height, and mean
mass diameter, with a sensitivity to ice water paths ranging from 10 gm−2

to 10 kgm−2. The simulations pertaining to the column variables lay the
foundation for the EUMETSAT level-2 ICI product. Vertical profiles of cloud
ice are retrieved from ICI observations, achieving a resolution of ∼2.5 km.

Together, the observations from AWS and ICI will provide benefits to
numerical weather prediction and deepen our understanding of ice clouds. The
long-term cloud ice dataset from ICI will also support climate monitoring and
validation of climate models. Furthermore, ICI could provide a truly novel
dataset of vertical cloud ice, offering insights throughout the entire depth of an
ice cloud.
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1 Introduction

Atmospheric ice plays an important role in Earth’s climate system, driving
weather systems and strongly influencing Earth’s energy budget. High-altitude
ice clouds, such as cirrus and deep convective clouds, impact radiative forcing
through the reflection of solar radiation and the modulation of outgoing long-
wave radiation (Matus and L’Ecuyer, 2017). The radiative properties of ice
clouds depend on several factors, including cloud height and the mass of ice
contained within the cloud. If liquid water coexists with ice in a cloud, the
net effect on radiation is further impacted. Overall, ice clouds lead to a net
warming of the Earth (Matus and L’Ecuyer, 2017).

In addition to its radiative impact, atmospheric ice also plays an important
role in the hydrological cycle through its influence on atmospheric processes.
The formation of ice releases latent heat, which drives atmospheric circulation.
In deep convective systems, this release of heat determines the formation and
the dynamics of storms (Bony et al., 2015). Ice clouds are also central to
precipitation. Through the growth and melting of cloud ice crystals, water is
redistributed through the atmosphere and ultimately reaches the surface. In
fact, over land outside the tropics, ice clouds are involved in 99% of rainfall
events (Mülmenstädt et al., 2015). Although the atmosphere constitutes the
smallest reservoir of water within the Earth system, large amounts of energy,
in the form of moisture and heat, are rapidly exchanged between Earth’s
atmosphere and surface.

Knowledge of atmospheric ice is undoubtably essential for accurate weather
prediction, management of water resources, and understanding Earth’s climate.
As a result, cloud ice has been recognised as an essential climate variable (Space
- WGClimate, 2024). However, despite its importance, our knowledge remains
incomplete. A deeper understanding of the formation and microphysics of
ice clouds is needed. Additionally, we are yet to know how the distribution
and frequency of ice clouds might change in response to a warming of the
planet. Such changes in ice clouds are likely to trigger further shifts in weather
patterns and the wider climate system. However, the extent of this impact
remains unclear; there are still gaps regarding the exact role of atmospheric
ice in the water cycle and the Earth’s radiation budget. According to the
Intergovernmental Panel on Climate Change (IPCC), clouds are the largest
source of uncertainty in climate feedbacks (IPCC, 2021). Therefore, in light of
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4 CHAPTER 1. INTRODUCTION

the current changing climate, improving our understanding of ice clouds is an
urgent issue.

The need for improved understanding is evident in the fact that climate
models have long struggled to represent clouds accurately (IPCC, 2021; Steph-
ens, 2005; Waliser et al., 2009). The ability to evaluate and constrain climate
models under a variety of weather and climate conditions improves if long-term
global cloud ice datasets are used. Such datasets also act as a useful benchmark
for comparisons between climate models.

However, datasets of common cloud ice variables, such as ice water path
(IWP), are limited in number and do not show good agreement (Duncan and
Eriksson, 2018). The disagreement arises partially due to varying sensitivity to
cloud properties; many of the currently operational sensors are unable to detect
all ice particles, either due to the particle size or the particle’s depth within a
cloud. Other contributing factors include differing spatial and temporal cover-
age between satellites, and the need for model assumptions when retrieving
cloud ice information from satellite observations. Finally, even the definition of
atmospheric ice variables can vary. For example, it is often unclear whether a
dataset includes frozen precipitation within a column of atmospheric ice.

We can improve our understanding of atmospheric ice by making progress
in three important areas. Firstly, we need sensors that are specifically sensitive
to cloud ice. This includes sensitivity throughout the entire cloud column, and
across the range of ice crystal sizes. Only a sensor with high sensitivity to ice can
accurately capture variations in ice properties across a variety of atmospheric
conditions. Secondly, it is essential that we have a strong understanding of the
physical processes behind the observations. This is non-trivial, due to factors
such as the complexity of scattering from ice crystals. A strong understanding
of the physics can provide insight into how satellite retrievals behave, and how
any underlying physical assumptions might influence them. Finally, we need
retrieval methods that produce results that are not only accurate, but also
realistically reflect the inherent uncertainties associated with the problem. By
addressing these challenges, we can develop reliable cloud ice datasets. In turn,
these datasets can support climate models and deepen our understanding of
the behaviour and impact of atmospheric ice.



2 Remote sensing of atmospheric
ice

2.1 Introduction to satellite remote sensing

Remote sensing is the process of acquiring information on the characteristics
of a target from a distance. In the context of satellites, the information is
determined using sensors aboard a satellite that measure the interaction and
propagation of electromagnetic radiation.

The use of satellites allows for observations of large areas of Earth, including
inaccessible regions. Observations of a specific area can be repeated regularly,
leading to consistent and long-term measurements. Satellite remote sensing of
the Earth can be employed for many uses, including gathering information on
the atmosphere, the Earth’s surface, oceans, and vegetation. However, it is im-
portant to note that a remote sensing measurement is an indirect measurement.
In other words, remote sensing techniques provide one or more measurements
of electromagnetic radiation, from which an estimate of a geophysical quantity
can be retrieved.

Alternatives to satellite remote sensing include airborne remote sensing
and in-situ methods. In-situ measurements can be useful since they provide
highly detailed information in a localised area. For example, direct in-cloud
measurements can provide information on small-scale cloud features, such as
cloud particle size and shape, but are constrained to a specific location. In
contrast, airborne missions have the benefit of flexibility. Specific areas of
interest can be observed more frequently, since the missions are not limited to
pre-determined orbits as satellites are. However, satellites are indispensable for
providing a consistent and global view, and understanding large-scale dynamics.

Satellites can be categorised in various ways. Often, they are grouped
according to their orbit type. Geostationary satellites have an orbit period
identical to Earth’s orbit, and thus are stationary relative to a specific location
on Earth. This allows for very frequent measurements over the observed area.
Achieving this orbital period requires the satellite to be placed over the equator
at an altitude of ∼36 000 km. As a benefit of their high altitude, the observed
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6 CHAPTER 2. REMOTE SENSING OF ATMOSPHERIC ICE

area can cover a third of the Earth’s surface. However, the spatial resolution of
a geostationary satellite is a limiting factor. The minimum angular separation
of a satellite can be estimated according to the Rayleigh criterion:

θ = 1.22
λ

D
=

x

d
. (2.1)

In the above relation, λ is wavelength, D is the diameter of the satellite antenna,
d is the distance of the satellite from Earth, and x is the satellite on-ground
spatial resolution. It is evident that, due to the high altitude of geostation-
ary satellites and practical limits on antenna size, the spatial resolution at
microwave wavelengths becomes too low to be useful. Therefore, only visible
and infrared sensors are used on geostationary satellites.

Satellites with a low Earth orbit (LEO) are located at much lower altitudes
than geostationary satellites, ranging between 500 km and 850 km. They orbit
the Earth more frequently as a result, but each observation covers a much
smaller area compared to that of a geostationary satellite. The orbits of LEO
satellites can be further divided into two categories: polar orbits and low
inclination orbits. Polar orbiting satellites pass close to the poles in each orbit.
Their orbits are often also sun-synchronous. In a sun-synchronous orbit, a
given area is measured at the same times every day, producing a consistent
view of the target. Satellites with low inclination orbits observe at a lower angle
relative to the Earth’s equator than polar-orbiting satellites do. As such, they
are not sun-synchronous, which provides the benefit of producing information
on the diurnal cycle at a given location.

Satellites can also be grouped according to whether they are active or
passive sensors. Active sensors emit electromagnetic signals and measure how
the signal is reflected from the target back to the sensor. Passive sensors do not
emit a signal. Instead, they measure emitted and reflected radiation originating
either from the Earth’s surface, the atmosphere, or the Sun.

Another, and perhaps the most important, way of categorising satellites
is the frequency of radiation measured. A satellite measures either reflected
radiation sent from the satellite itself, reflected solar radiation, or emitted
radiation. This radiation is measured at one or multiple specific frequencies.
All objects with a temperature more than 0 K will emit radiation. The amount
of emission, and the frequency of the emitted radiation, is proportional to the
emissivity and the temperature of the object. Scattering is also a considera-
tion. Radiation may be scattered by objects it encounters, and the amount
of scattering will depend on the frequency of the incoming radiation and the
properties of the object. Finally, some radiation may be absorbed by a material
it encounters, and the amount of absorption will be dependent on the frequency.

However, simply choosing a frequency such that we are sensitive to a par-
ticular target is not necessarily straightforward. The measured signal must
propagate through the atmosphere to reach the satellite sensor. Clouds, gases
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Figure 2.1: Illustration of the atmospheric absorptivity in the zenith direction
(bottom), ranging from UV to radio wavelengths, accompanied by the species
contributing most to the absorption at a given wavelength. Atmospheric
windows are indicated in blue. In reality, the microwave window extends
to longer wavelengths, evident in the very low absorption occuring up to
wavelengths of more than 10m. However, the range of the microwave window
shown is chosen to correspond to observations of atmospheric water, with
the upper limit associated with precipitation radars. The normalised spectral
radiance Bλ(T ) of two blackbodies (see Section 3.1) is also shown (top). Solar
emission peaks in the visible (V) region of the spectrum. Earth’s emission peaks
in the infrared region, but remains relatively strong at microwave wavelengths,
motivating measurements by passive microwave sensors.

and aerosols are not equally distributed in the atmosphere, and the strength
of the processes of scattering, absorption and emission will vary with altitude.
At some frequencies, one of these processes may be particularly strong, and
the signal will be dominated by the process at that altitude. This leads to
a sensitivity to different levels of the atmosphere that is dependent on frequency.

Observations therefore exploit different parts of the electromagnetic spec-
trum in order to gather the desired information. For high sensitivity to an
object that emits radiation, passive sensors consider frequencies at which rel-
atively high emission occurs. In the case of active sensors, strong backscatter
is desired. Additionally, areas of the spectrum are avoided to reduce loss of
the signal due to absorption. For example, observations of the Earth’s surface
will not be made at frequencies which are associated with strong atmospheric
absorption, since the information on the surface will be lost. Surface measure-
ments instead make use of specific regions of the electromagnetic spectrum
with lower absorption. These are known as atmospheric windows, and are
illustrated in Fig. 2.1. Examples of these windows include the optical window
located between 300 nm and 2µm and the infrared window between 8 µm and
14 µm.
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2.2 Instrument sensitivity to ice cloud proper-
ties

The remote sensing of ice clouds derives information from the fact that at-
mospheric ice absorbs, emits, and scatters radiation at various atmospheric
levels. Therefore, to obtain information on an ice cloud, we desire a signal that
interacts strongly with ice cloud particles, preferably throughout the entire
column of cloud, while minimising atmospheric attenuation.

Active sensors, such as radar and lidar, are able to provide information
on an entire column of cloud. Lidar is particularly sensitive to small liquid
cloud droplets due to its high frequency (Cesana et al., 2023). However, a lidar
signal can be quickly attenuated by thick clouds. On the other hand, radar
is highly suited to measure cloud ice and precipitation. Its lower frequency
compared to lidar translates to higher sensitivity to larger particles. This
includes precipitating hydrometeors and cloud ice, albeit primarily larger ice
crystals. When used together, lidar and radar measurements are powerful;
they can provide detailed information on the vertical structure of both frozen
and liquid atmospheric water. However, these sensors have several limitations.
Firstly, due to a very narrow swath width, the observations have essentially
two-dimensions: along-track and vertical. As a result, many orbits are required
to achieve global coverage. Secondly, radars typically measure at one single
frequency. This corresponds to only one degree of freedom in the observation.
Since the geophysical quantity of interest is only an estimate of a quantity
derived from an observation, further assumptions are generally required to
improve or constrain the estimate. In turn, this can lead to high uncertainties
in the estimated variable.

In the realm of passive sensors, optical, infrared, and microwave frequencies
are often used to observe atmospheric ice. However, this group of sensors
span a wide range of frequencies. Sensitivity to various cloud properties can
therefore vary significantly.

Optical sensors measuring in the visible part of the electromagnetic spec-
trum detect reflected sunlight. The sensitivity of these sensors is comparable
to the human eye. Due to the atmospheric window in the visible region, the
atmosphere appears transparent to our eyes. However, clouds are generally
visible. When visible, they appear nearly or completely opaque, and a often a
bright white colour. This effect arises from strong scattering of sunlight towards
our eyes or, in the case of satellite observations, back towards the sensor. Since
there is such a high contrast between the background atmosphere and the cloud,
optical sensors can provide detailed information on horizontal cloud structure.
However, visible observations have two main limitations: they cannot observe
clouds during the night, and they contain very limited information from below
the cloud top due to strong scattering.
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Since clouds emit thermal infrared radiation, infrared frequencies are ef-
fectively used to observe ice clouds. However, ice clouds are also relatively
opaque at infrared frequencies. Most radiation emitted from the lower lay-
ers of a cloud is absorbed or scattered before it is able to pass up through
the cloud and reach the sensor. As a result, infrared sensors are primarily
sensitive to the cloud top. While infrared sensors can effectively detect the
presence of an ice cloud and be used to retrieve useful information such as cloud
top height, their measurements generally contain limited information on the
full cloud column. However, there do exist successful retrievals of vertical in-
formation from infrared measurements, which is discussed further in Section 2.3.

Decreasing in frequency from infrared to microwave, the signal is able to
penetrate further into the cloud. However, nearly all currently operational
passive microwave sensors measure at frequencies 183GHz and below. This is
equivalent to wavelengths of ∼1.5mm and larger, which are similar in size to
large liquid water cloud droplets or precipitation. Therefore, although most
existing passive microwave sensors are highly sensitive to liquid water, they
are less suited to the detection of smaller ice crystals.

However, there exists a gap in observations. Between the highest frequency
of most current microwave observations and the lowest frequency of infrared
observations lies the sub-millimetre region. This region covers frequencies
greater than ∼300GHz, which corresponds to wavelengths smaller than 1mm.
Observing at these wavelengths increases sensitivity to ice crystals. Despite
the suitability of sub-millimetre sensors for ice cloud measurements, there are a
limited amount of sub-millimetre observations available. However, a new wave
of passive microwave and sub-millimetre sensors are paving the way for better
observations of atmospheric ice.

2.3 Current atmospheric ice mass observations

Many satellite missions have been designed and launched with the aim to ob-
serve ice clouds. These missions provide us with valuable information, including
cloud location, altitude, temperature, thermodynamic phase, structure, and
mass. Knowledge of the mass of ice contained within a cloud is useful due
to its connection to the radiative forcing of ice clouds and to the production
of both frozen and liquid precipitation. The mass of ice can be characterised
using the variable ice water content (IWC), in kgm−3. Alternatively, the total
mass of ice within an atmospheric column is characterised by IWP, in kgm−2.
This section presents a brief summary of some of the key sensors measuring ice
mass, although the list is not exhaustive. The currently operational and future
planned satellite-based sensors discussed in this section are also shown in Fig.
2.2, alongside the region of the electromagnetic spectrum that they observe in.

Currently, the most reliable global source of ice mass data originates from the
CloudSat 94GHz radar and the Cloud-Aerosol Lidar and Infrared Pathfinder
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Satellite Observation (CALIPSO). DARDAR (Delanoë and Hogan, 2010) and
2C-ICE (Deng et al., 2010) are two of the most widely used datasets contain-
ing CloudSat- and CALIPSO-based retrievals of cloud ice properties. Since
the launch of CloudSat and CALIPSO in 2006, DARDAR and 2C-ICE have
provided unparalleled datasets of IWC. However, as discussed in Section 2.2,
retrievals based on a single radar observation must incorporate multiple mi-
crophysical assumptions. Such assumptions translate into relatively high
uncertainties for retrieved IWC in DARDAR (Heymsfield et al., 2008). Both
CloudSat and CALIPSO ceased operations in 2023.

In May 2024, ESA’s Earth Cloud Aerosol and Radiation Explorer (Earth-
CARE) (Illingworth et al., 2015) was launched. Included on board the satellite
is the Atmospheric Lidar (ATLID), measuring at 355 nm, and the Cloud Pro-
filing Radar (CPR), measuring at 94GHz. Together, the radar and lidar will
provide high-resolution information on the vertical structure of both liquid
and ice clouds. The reliable IWC data available with EarthCare observa-
tions provides essential continuity after the decommissioning of CloudSat and
CALIPSO.

There exist multiple passive sensors, measuring at infrared and visible
wavelengths, that offer data on cloud ice. One of which is the Moderate Resol-
ution Imaging Spectroradiometer (MODIS), hosted on the sun-synchronous
Aqua and Terra satellites as part of NASA’s Earth Observing System (EOS).
MODIS measures at both visible and infrared wavelengths (Platnick et al.,
2003). As discussed in Section 2.2, retrievals of IWP from such observations
are generally cloud-top estimates. However, there are recent efforts to de-
velop retrieval schemes that make use of geostationary infrared observations
to retrieve cloud ice profiles. The Chalmers Cloud Ice Climatology (CCIC,
Amell et al., 2024) is a dataset that retrieves IWC, IWP, cloud masks, and
cloud classification from a single infrared observation. This is made possible
by training a neural network to make use of spatial information contained in
geostationary imagery, using 2C-ICE as target data.

Moving into the microwave region of the electromagnetic spectrum, there
are several existing passive microwave observations that provide ice mass in-
formation. For example, IWP estimates are offered by the Goddard Profiling
Algorithm (GPROF, Kummerow et al., 2015), a retrieval scheme based on the
Global Precipitation Measurement Microwave Imager (GMI). However, the
relatively low frequencies of the GMI channels (10GHz to 183GHz) correspond
to low sensitivity to ice hydrometeors. This means that precipitation is its
primary focus, with IWP provided as a secondary output.

The first strides forward into sub-millimetre observations of ice clouds were
made by three limb sounding instruments. Although their objective was to
monitor atmospheric gases, retrievals of ice mass were successfully performed for
Aura MLS (Wu et al., 2006), Odin/SMR (Eriksson et al., 2007), and SMILES
(Eriksson et al., 2014; Millán et al., 2013).
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Several flight campaigns also exist that measure at sub-millimetre wavelengths.
The International Submillimetre Airborne Radiometer (ISMAR) is an airborne
instrument designed to act as a demonstrator for the upcoming Ice Cloud
Imager (ICI) instrument, measuring at frequencies between 118 and 664GHz.
Brath et al. (2018) combined microwave and flight campaign observations,
including ISMAR, and demonstrated that significant improvement in the re-
trievals occurs with the inclusion of the sub-millimetre observations. A similar
conclusion was drawn by Pfreundschuh et al. (2022) when combining radar
measurements with sub-millimetre flight campaign data.

However, it was not until 2024 that the first operational sub-millimetre mis-
sion was launched — the Arctic Weather Satellite (AWS, eoPortal, 2024). AWS
measures at frequencies between 50.3GHz to 325.15GHz. The lower frequency
channels (<89GHz) support temperature sounding. Higher frequency channels
(≥89GHz) are used for humidity sounding and cloud detection. Unlike the limb
sounding missions, AWS is specifically designed to provide cloud observations.
These observations, and in particular the novelty of the sub-millimetre channels,
establish AWS as a mission of high scientific value. AWS was developed by
the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) as a prototype satellite for a full constellation of satellites: EU-
METSAT Polar System – Sterna (EPS-Sterna, EUMETSAT, 2024). Pending
final approval in 2025, the first of the EPS-Sterna satellites is expected to
be launched in 2029. Together, the satellites will observe over 90% of Earth
in approximately 5 hours, offering an unparalleled worldwide dataset of sub-
millimetre observations.

Although AWS measures at a maximum of 325GHz, this is not the upper
limit for frequencies suited to measure cloud ice. Both the aforementioned limb
sounding retrievals and the flight campaign-supplemented retrievals demon-
strate that even higher frequency channels can benefit the retrieval of ice mass.
A channel at a frequency of 664GHz is in fact highly suited to the measurement
of smaller ice crystals due to the comparable size of the wavelength and the
particle radius.

Despite the fact that there are currently no operational sensors with fre-
quencies greater than 325GHz, the future is promising. With the launch of
ICI will arrive observations within a frequency range of 183GHz to 664GHz.
Further details on ICI are given in Chapter 5. While the objective of AWS
is to support numerical weather prediction (NWP), officially offering only
radiances, ICI is designed specifically for the retrieval of column ice mass vari-
ables. The launch of ICI will therefore provide a completely novel dataset on
cloud ice, which will be highly valuable to our understanding of atmospheric ice.
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Figure 2.2: An illustration of the range of the electromagnetic spectrum used
to observe clouds and precipitation, and several of the current operational
sensors measuring within this range. Also shown are examples of various-
sized hydrometeors present in the atmosphere. When radiation wavelength is
comparable to particle size, the sensor is particularly sensitive to the presence
of such particles. Note that rain droplets fall within the range of the spectrum
measured by the Microwave Imager (MWI). This is due to their large diameter,
although the large droplets shown here are relatively rare. In contrast, ICI
covers a wavelength range more suited to the measurement of ice crystals.



3 Microwave radiative transfer

3.1 Emission

The process of emission is fundamental to understanding and interpreting
passive microwave remote sensing observations. Emission refers to the process
by which a body radiates energy in the form of electromagnetic radiation.
All bodies with a temperature greater than 0 K will emit electromagnetic
radiation. Measurement of this radiation by microwave satellite sensors can
provide information on the object’s physical properties.

Emission by a molecule occurs at discrete frequencies, corresponding to a
molecular transition defined as a change in a molecule’s energy state. Such
transitions can be vibrational, rotational, or electronic, where the type of
transition is associated to a certain frequency range. The emission at a specific
frequency is represented as a spectral line along the electromagnetic spectrum.
For a solid consisting of many molecules, such a large number of spectral lines
are present that the emission spectrum appears effectively continuous across a
range of frequencies.

When discussing emission, it is helpful to introduce the concept of a black-
body. A blackbody is defined as an idealised object which absorbs all incident
radiation. A blackbody in thermal equilibrium emits radiation. The intensity
of the radiation emitted by a blackbody is isotropic, and given by Planck’s law:

Bλ(T ) =
2hc2

λ5

(
1

ehc/λkT − 1

)
. (3.1)

Iλ is the intensity at wavelength λ, h is Planck’s constant, k is Boltzmann’s
constant, c is the speed of light, and T is the temperature of the blackbody. The
spectrum of Bλ(T ) as a function of wavelength peaks at a specific wavelength
depending on temperature. At higher temperatures, Bλ(T ) tends towards
shorter wavelengths. Using Eq. 3.1, the temperature of a blackbody body can
be determined by observing the emission at a single wavelength.

Integrating the Planck function over all wavelengths provides the irradiance
F of an object, defined as the rate at which energy is transferred through a

13
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unit area. This is known as the Stefan-Boltzmann law, and is written as

F = σT 4, (3.2)

where F has the unit W m−2 and σ is the Stefan-Boltzmann constant. If the
irradiance from the blackbody is known, its temperature can be calculated.

In reality, most objects are not perfect emitters like blackbodies. To
characterise the intensity of the radiation an object emits relative to that of
a blackbody at the same temperature, we introduce the emissivity ϵλ, where
ϵλ ∈ [0, 1]. The emissivity acts on the blackbody intensity to give the spectral
radiance Iλ of the object:

Iλ = ϵλBλ. (3.3)

The emissivity of an object is dependent on its physical properties, including
surface roughness or moisture content. The emissivity also varies according
to the properties of the electromagnetic radiation being observed, such as the
frequency, the incidence angle, and the polarisation state.

If the object in question is not a blackbody, i.e. not a perfect emitter, then
the inverse of Eq. 3.1 can be used to find the equivalent blackbody temperature.
In other words, it finds the temperature of a blackbody that would emit the
equivalent amount of measured radiance to the non-blackbody. In the context
of microwave remote sensing, this is referred to as the brightness temperature Tb.

3.2 Characterising radiation

Electromagnetic waves carry energy that can be separated into the contributions
from individual wavelengths. The rate of energy E transferred in a given
direction per unit area and unit time and at a specific wavelength λ is expressed
through the monochromatic intensity Iλ as

Iλ =
dE

dΩdλ
, (3.4)

where Ω is the solid angle. The energy emitted by an object generally spans a
broad range of wavelengths. Integrating Iλ over some range of the electromag-
netic spectrum, such as the band of frequencies observed by a sensor, gives us
the intensity, or radiance, I:

I =

∫ λ2

λ1

Iλdλ. (3.5)

The radiance has units W m−2 sr−1.
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The irradiance F is obtained by integrating I over the hemisphere of solid
angle extending over the incident place and the wavelength:

F =

∫ λ2

λ1

∫

2π

cos θIλdωdλ. (3.6)

θ is the angle between the incident radiation and the normal to the plane.

3.3 Radiative transfer in clear-sky conditions

In order to understand how emitted radiation is measured by a sensor, it is
important to consider how radiation behaves as it propagates through the
atmosphere. During propagation, the radiation interacts with atmospheric
components and undergoes changes in energy. The amount of energy trans-
ferred is affected by absorption, emission, and scattering.

To characterise the amount of transmission through the atmosphere in
both clear-sky and cloudy conditions, the optical depth τ can be used. The
transmissivity t of a layer of atmosphere is defined as

tλ = e−τλsecθ, (3.7)

where θ is the zenith angle. τ can be described as a measure of how the
intensity of the radiation would be reduced due to absorption and scattering if
it passes through an atmospheric layer at zenith. Within the microwave region
of the electromagnetic spectrum, the radiation wavelength is long relative to
the size of molecules and aerosols in the air. Therefore, in clear-sky conditions,
scattering effects may be neglected. In this case, τ is governed by the presence
of atmospheric gases and the wavelength of the radiation considered.

Atmospheric gas molecules will absorb incoming radiation. How effective
a single particle, such as a molecule of gas, is at absorbing radiation can be
defined through its absorption cross-section σa. This can be thought of as
an effective area over which the particle absorbs radiation. A monochromatic
beam’s reduction in energy due to absorption by a number of particles per unit
volume N is then given by

dIλ
ds

= −IλNσa. (3.8)

However, σa is a quantity that describes a microscopic property. When consider-
ing a large quantity of molecules within the atmosphere, it is more useful to use
a macroscopic quantity, and therefore we introduce the absorption coefficient
κa as

κa = Nσa, (3.9)

where N is the number of particles per unit volume. The solution to Eq. 3.8
then becomes

Iλ = −Iλ,0e
−

∫ s
0
κa(s

′
)ds

′

, (3.10)
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where κa is dependent on distance s
′
due to the concentrations of gases varying

within the propagation path of the beam from 0 to s. The total fraction of
radiation Iλ/Iλ,0 that is absorbed can be characterised by the absorptivity aλ,
giving

Iλ = aλIλ,0. (3.11)

In the absence of scattering, aλ can be related to the transmissivity tλ by

aλ = 1− tλ, (3.12)

and the optical depth τ is given by

τ =

∫ s

0

κa(s
′
)ds

′
. (3.13)

In this context, τ represents the total amount of absorption occurring along
the path of the beam.

To relate absorptivity and emissivity, we can apply Kirchoff’s law, defined
as

ελ = aλ. (3.14)

Kirchoff’s law is not applicable over the entirety of the atmosphere. The law
requires the assumption of equilibrium, but the atmosphere is not isotropic and
the temperature is not uniform throughout. However, if one assumes a constant
temperature and mean gas concentrations within small localised volumes of the
atmosphere, local thermodynamic equilibrium can be assumed. For microwave
radiation, this is applicable in the atmosphere at altitudes below ∼100 km.

For microwave radiation propagating through cloud-free sky, the intensity
reaching a point s1 is the total emission in the given direction, minus loss
due to absorption. Since emission and absorption are equal under the above
assumptions, the rate of change of intensity with respect to distance is given by

dIλ
ds

= −κa,λIλ + κa,λBλ(T ). (3.15)

This is known as Schwarzchild’s equation. Integrating Schwarzchild’s equation
along the path of propagation results in

Iλ(s) = Iλ,0e
−τλ(s,0)

︸ ︷︷ ︸
Attenuation

+

∫ s

0

Bλ(Tsi)e
−τλ(s,si)dsi

︸ ︷︷ ︸
Emission

. (3.16)

The first term of the above equation represents the intensity of the radiation
at point si = 0 decreasing due to absorption, and finally reaching point s. The
second term represents a sum over thin atmospheric layers that the radiation
passes through. Each ith layer has a temperature T (si) and thus emits radi-
ation. The radiation emitted by each layer is also attenuated as it travels from
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si to s, represented by the factor e−τλ(s,si) in the second term.

Schwarzchild’s equation is a general case and can be applied to both upward
and downward looking radiometers. In the context of a downward looking
satellite, the first term in Schwarzchild’s equation represents radiance from the
surface and the second term represents emission from atmospheric layers, the
received signal contains information on both the surface and the atmosphere.
Furthermore, since the first term also accounts for absorption in the atmosphere,
information in the form of gas concentrations is also contained in this term.
The second term contains additional information on the atmospheric layers,
such as layer temperatures. The strength of the signal from either surface or
atmospheric layer depends on the sensitivity of radiation to the surface or given
atmospheric layer at the chosen wavelength.

3.4 Radiative transfer in the presence of ice

In the presence of larger particles in the atmosphere, such as cloud particles or
precipitation, the scattering of microwave radiation must also be considered.
When a beam of radiation passes through a cloud, the radiation will undergo
a degree of extinction dependent on the concentration of cloud particles and
their effectiveness as scatterers.

The intensity of an electromagnetic wave incident on a single particle will
decrease, as some incident power is absorbed by the particle and some is
scattered. The effectiveness of a particle to absorb or scatter radiation can
be defined in terms of the extinction cross-section σe, which is a sum of the
scattering cross-section σe and the absorption cross-section σe:

σe = σa + σs. (3.17)

The extinction characteristics of a single cloud particle are dependent on
wavelength, refractive index/dielectric constant, and particle radius.

When considering a volume of ice particles, we define the extinction coeffi-
cient κe as

κe = κa + κs. (3.18)

κe can be interpreted as a measure of how effective the particles within a
volume are at decreasing the intensity of incident radiation through absorption
and scattering. The decrease in the intensity of radiation passing through the
volume is analogous to Eq. 3.8, and will therefore decrease according to

dIλ
ds

= −Iλ(λ)Nσe = −Iλκe(λ). (3.19)

Another important parameter used to characterise the particles is the single
scattering albedo ω(λ), defined as

ω(λ) =
κs

κs + κa
. (3.20)
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The above relation summarises the importance of scattering relative to ab-
sorption. Additionally, the asymmetry parameter is useful when describing
scattering. It is defined as

g(λ) =
1

2

∫ 1

−1

P (cos θ
′
) cos θ

′
d cos θ

′
, (3.21)

where g(λ) ∈ [−1, 1]. θ
′
is the angle between the incident radiation and the

scattered radiation. P (cos θ
′
) is the scattering phase function. If the scattered

radiation is isotropic, then g(λ) = 0. Positive values of g(λ) imply that forward
scattering is dominant. For cloud ice particles, g(λ) ∼ 0.8.

Both absorption and scattering are governed by the particle’s complex
dielectric constant ε = ε

′
+ ε

′′
. For ice, the relative permittivity ε

′
in the

microwave region (10MHz to 300GHz) is small relative to that of water. ε
′
is

also close to independent of frequency. The dielectric loss factor ε
′′
is much

smaller than the permittivity ε
′
but displays both a frequency and temperature

dependence. The absorption coefficient can be approximated by

κa ∝ ε
′′

√
ε′
. (3.22)

Therefore, for the microwave range of the spectrum, ice particles are weak
absorbers of radiation. Therefore, the impact of absorption from ice particles
can be largely neglected at microwave frequencies.

The simplest approach to modelling scattering is to assume that the radi-
ation is scattered by a spherical particle with radius r. One can then assign a
size parameter x, defined as

x =
2πr

λ
. (3.23)

If the particle has a size parameter x ≪ 1, it is a relatively inefficient scatterer,
and we are within the Rayleigh scattering regime. For larger x (x ≥ 0.1), we
are in the Mie scattering regime. Most ice crystals are small enough to be in
the Rayleigh regime for microwave radiation. However, there do exist larger
ice crystals which fall within the Mie regime for microwave radiation, and
these larger particles dominate the impact on observed Tb. In the case of these
larger crystals, scattering calculations become more complicated. Analytical
expressions for Mie scattering exist for homogeneous spheres of ice, but are
not applicable to actual ice crystals, which are typically non-spherical. Instead,
numerical methods are required to model scattering.

The intensity of scattered, absorbed, or emitted radiation also depends on
the polarisation state of the incoming wave. To characterise the dependency of
intensity on polarisation, it is useful to define the Stokes vector I whose four
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elements describe the polarisation state of an electromagnetic wave:

I =




S0

S1

S2

S3


 =




⟨E2
0x⟩+ ⟨E2

0y⟩
⟨E2

0x⟩ − ⟨E2
0y⟩

⟨2E0xE0y cos(ϕy − ϕx)⟩
⟨2E0xE0y sin(ϕy − ϕx)⟩


 (3.24)

The brackets ⟨⟩ are time averages and (ϕy −ϕx) is the phase difference between
the x and y components of the wave.

In reality, when an electromagnetic wave is scattered, its direction, intens-
ity, and polarisation may change. These changes are captured in the (4×4)
scattering matrix Z, which modifies the Stokes vector of the incident wave.
The Stokes vector of the scattered wave is related to the incident wave by




Ss
0

Ss
1

Ss
2

Ss
3


 =

1

R2
Z




Si
0

Si
1

Si
2

Si
3


 . (3.25)

The next step is to derive the full equation to describe the change in intensity
along a path s due to absorption, scattering, and emission. Firstly, we move
to a three-dimensional vector formalisation, where r is the position and n is
the direction of propagation. The absorption coefficient is instead represented
by the absorption vector α. Combining Schwarzchild’s equation with the
consideration of scattering, we can define the radiative transfer equation as

dI(λ, r,n)

ds
= −KI(λ, r,n) +αB(λ, r,n) +

∫

4π

Z(λ, r,n,n′)I(λ, r,n′)dn′,

(3.26)

where n′ is the propagation direction towards n. K is the extinction matrix,
which is the sum of the absorption vector and the radiation scattered out of
the direction of propagation. The integral term on the far right represents the
scattering of radiation into the direction of propagation.

3.5 The characterisation of ice clouds

Now that the characteristics of ice particles within a cloud have been defined,
it is also useful to introduce several parameters that characterise the ice clouds
themselves: the particle size distribution, the water content per unit volume,
and the mean volume-weighted diameter.

Ice particles within a cloud vary in size and shape. So far, we have assumed
a spherical particle with radius r. However, characterising the size of an ice
crystal is not as straightforward as assumed in this chapter, primarily because
ice crystals do not have a simple shape. To represent the size, a form of
parameterisation is needed. One example is the use of the volume equivalent
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diameter Dveq, defined as the diameter of a sphere of ice with the same mass
as the crystal under consideration. Dveq is defined as

Dveq =

(
6m

πρ

) 1
3

, (3.27)

where m is the mass of the ice particle, and ρ is the density of ice. There exist
alternative ways to represent the size of ice particles. Therefore, it is important
to note that although the remainder of the expressions given in this section are
formulated using Dveq, the same expressions may be defined differently with
another size parameterisation.

The particle size distribution p(D), or PSD, is a continuous function. It is
defined as the concentration of particles per unit volume and per unit increment
of the particle diameter D.

Moments of the PSD can be used to characterise bulk properties of the
cloud. The water content of a cloud is typically defined separately for each
thermodynamic phase of water present. IWC is proportional to the third
moment of the PSD and calculated, as

IWC =

∫ ∞

0

p(D)m(D)dD =
πρice
6

∫ ∞

0

p(Dveq)D
3
veqdDveq. (3.28)

Note that other particle size parametrisation exist, but the above expression is
only valid if the particle diameter D is taken as Dveq. One can also define the
mean volume-weighted diameter of the cloud ice particles using the ratio of
the fourth and third moments of the PSD:

Dm =

∫∞
0

p(D)D4dD∫∞
0

p(D)D3dD
(3.29)

In this chapter, atmospheric ice is often referred to interchangeably as cloud
ice particles. However, frozen precipitation is also a form of atmospheric ice.
Depending on the context, the variables IWC and its column integral, IWP,
may refer exclusively to cloud ice or may encompass both cloud ice and frozen
precipitation. In the following chapters, IWC and IWP are used to refer to all
ice, i.e. in-cloud and precipitating.



4 The inverse problem

4.1 Solving the inverse problem

Remote observations are useful, but extracting the desired information can be
challenging since the measurements are indirect. The theoretical foundation
of this chapter follows Rodgers (2000), which describes how an atmospheric
remote sensing observation acts a complicated function of the parameter we
wish to know. This function maps the state vector x to the observation vector
y as follows:

y = f(x). (4.1)

The exact measurement y is generally unknown. Instead, we have a meas-
urement accompanied by an error ϵ in the form of random noise. Since the noise
cannot be known exactly and thus cannot be removed, it is instead described
statistically. Furthermore, the function f(x) is difficult to define. Although it
may be possible to model f(x) from first principles, to do so requires a thorough
understanding of our observation. This includes how the sensor operates and
the physics affecting the observation. Since the physics is typically complex,
approximations are usually necessary. Moreover, a computational model is
generally used to model the system, leading to a discretisation of the function.
As a result of these factors, the forward model F (x) replaces the true function:

y = F (x) + ϵ. (4.2)

The state x is the quantity of interest. This leads to the inverse problem —
determining the state x of the physical system that produced the observation
y. Solving the inverse problem is inherently complex. The first consideration
is whether our measurement contains sufficient information. This depends on
the sensitivity of our sensor to x.

A major challenge in solving the inverse problem is that, for atmospheric
states, the problem is nonlinear. Additionally, although the forward model itself
is deterministic, the inverse problem is ill-posed due to noise. In the presence
of noise, the state vector x instead maps onto a region in the measurement
space y. Likewise, when solving the inverse problem, y maps onto a region of
x. Therefore, it is generally not possible to determine the exact solution for
x. In this case, it is more realistic to take a probabilistic approach, describing
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this region with a probability density function (PDF).

A Bayesian approach is a useful solution to the above problem. Bayes’
theorem relates the PDF of the measurement to the PDF of the state vector,
taking into account any prior knowledge:

p(x|y) = p(y|x)p(x)
p(y)

. (4.3)

p(x) is the prior distribution and provides any prior knowledge of the state.
The prior knowledge is then updated with measurement information p(y|x),
including the noise description. p(y) is a normalisation factor equivalent to∫
p(x′|y)dx′. Incorporating prior knowledge about the state therefore allows

the state space to be further constrained. The resulting distribution p(x|y), i.e.
the posterior distribution, represents all the knowledge that we possess, thus
providing better insight into the retrieved estimate.

There are multiple retrieval methods that operate within a Bayesian frame-
work. One of the most commonly used methods is the Optimal Estimation
Method (OEM, Rodgers, 2000). OEM is powerful since it allows one to obtain
the Jacobian. The Jacobian provides insight into the sensitivity of the retrieval
to the true state, and also enables calculation of the resolution of retrieved
atmospheric profiles. However, this could also be considered a drawback, since
calculating the Jacobian is computationally costly. Another disadvantage of
OEM is that it assumes Gaussian statistics for both the posterior distribution
and the measurement noise. Although this approach automatically provides
uncertainty estimates and error correlations within the Gaussian covariance
matrix, assuming a Gaussian is fairly unrealistic in most cases.

A posterior distribution that is not constrained to be a Gaussian is often
preferable. Methods such as Markov Chain Monte Carlo (MCMC) may be
used to compute a non-Gaussian posterior distribution for each retrieval case.
Unfortunately, MCMC is computationally expensive since it requires the for-
ward model to be repeatedly evaluated. Due to this impracticality, MCMC is
generally seen as more useful for validating other retrieval models and their
uncertainty estimates (Evans et al., 2012; Tamminen and Kyrölä, 2001).

Bayesian Monte Carlo Integration (BMCI) is also an effective method to
retrieve posterior distributions. The requirement for BMCI is a precalculated
database of forward model simulations. Although computationally expensive
to initially produce, no further simulations are required for the retrievals them-
selves. However, one drawback to BMCI is that, although a Gaussian posterior
distribution is not assumed, the method still assumes Gaussian measurement
errors. BMCI has been used successfully for remote sensing retrievals, for
example in Evans et al. (2002) and, notably, plans for operational ICI retrievals
at EUMETSAT (Eriksson et al., 2020).
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Figure 4.1: An example of a simple quantile regression neural network (QRNN),
predicting IWP from a single observation. The network takes an input obser-
vation in the form of brightness temperatures across multiple frequencies, plus
ancillary data, e.g. surface type. The inputs are passed through a series of
hidden layers. In this example, the final layer is specific to each output variable.
The output variables are quantiles of a CDF of IWP. One can interpolate
between the predicted quantiles to obtain a continuous CDF, which can then
be transformed into a PDF. Finally, if desired, the mean of the CDF can serve
as a single estimate of IWP.

An increasingly popular alternative to the traditional Bayesian methods
is machine learning. Generally, machine learning requires no assumption on
the distributions of the noise or the target variables. Additionally, it allows for
the easy inclusion of ancillary data. Overall, machine learning has two major
advantages — it is flexible and fast.

4.2 Machine learning as a retrieval approach

Machine learning requires the existence of training data, which serves as the
basis for teaching the model how to map an input x to an output y. It is
important to note that, in the context of machine learning, the terminology
used in Section 4.1 is now reversed, i.e. the input to the model x represents
the observation and the model target, or output, y is the atmospheric state.

One benefit of machine learning is its flexibility; a range of data can be
included in the input, including different sensors and auxiliary data. However,
most machine learning techniques are trained to predict a single estimate for a
given input. As discussed in Section 4.1, the retrieval of an error estimate or a
posterior distribution is preferable for atmospheric observations.

An alternative is to consider the retrieval of a discrete cumulative distri-
bution function (CDF). This can be achieved through the use of a Quantile
Regression Neural Network (QRNN), as described by Pfreundschuh et al. (2018),
who provided the foundations for applying QRNN methods to atmospheric
remote sensing retrievals. The CDF is defined as the integral of the posterior
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distribution:

F(x|y) =
∫ x

−∞
p(x′|y)dx′. (4.4)

The τth quantile xτ of the CDF is defined as

xτ = inf{x : F (x) ≥ τ}, (4.5)

where τ ∈ [0, 1]. Instead of minimising a loss function that targets a single
estimate, such as the mean or the median, as a conventional neural network
may do, QRNN uses a quantile loss function. The quantile loss function is
defined as

Lτ (xτ , x) =

{
τ |x− xτ |, xτ < x

(1− τ)|xτ − x|, otherwise.
(4.6)

The aim is to calculate the loss between the predicted and the target values for
a quantile xτ , and to minimise the expectation of the loss.

The specific quantiles can be pre-specified and predicted independently.
This allows a discrete approximation of the continuous CDF to be obtained.
From the CDF, a PDF can be easily computed. The PDF can be considered to
be a posterior distribution if we consider the knowledge contained within the
training data to be a priori knowledge. An illustration of a simplified QRNN
and a final retrieved PDF and CDF is shown in Fig. 4.1.



5 The Ice Cloud Imager

5.1 Instrument details

The Ice Cloud Imager (ICI) will be hosted as part of the EUMETSAT Polar Sys-
tem - Second Generation (EPS-SG) mission. EPS-SG consists of two satellites:
MetOp-SG A and MetOp-SG B. MetOp-SG A will host sounding instruments,
including visible, infrared, and microwave sensors (EUMETSAT, 2022). MetOp-
SG B will instead host imaging sensors, such as ICI (Mattioli et al., 2019).
The primary objective of the MetOp-SG satellites is to provide observations
in support of NWP and climate monitoring. At the time of writing, the ex-
pected launch date of the Metop-SG B satellite is August 2026 (Fadrique, 2024).

There will be three successive launches of the pair of satellites. Since the
nominal lifetime of each satellite is ∼7.5 years, ICI will provide continuous
coverage for approximately 22 years. The Metop-SG satellites will fly at an
altitude between 823 and 843 km, and will have a sun-synchronous orbit.

The ICI instrument is a conically scanning radiometer that will observe at
an incidence angle of 53±2◦. The observation swath width will be ∼1700 km,
enabling ICI to provide global coverage on a daily basis. Further details on the
instrument are provided in Bergadá et al. (2016) and Eriksson et al. (2020).

The thirteen channels of ICI span a frequency range from 183GHz to
664GHz. The channels can be divided into two groups:

• Water vapour transition channels.
Three groups of channels cover the water vapour transition lines, and are
centred around:

– 183.31GHz.

– 325.15GHz.

– 448.0GHz.

Each of these three groups contains three individual channels, totalling
nine channels. These channels measure at vertical polarisation.

• Window channels.
These channels are named as such since less absorption by atmospheric
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gases occurs at these frequencies, allowing for increased penetration into
the atmosphere relative to the other channels.

– 243.2GHz.

– 664.0GHz.

At each of the above frequencies, there is a channel measuring at vertical
polarisation and a channel measuring at horizontal polarisation, totalling
four channels. The inclusion of multiple polarisations allows observations
to capture the effects of oriented ice particles and polarisation arising
from surface interactions.

Alongside ICI, the Microwave Imager (MWI) will be hosted on the MetOp-
SG B satellite (Lupi et al., 2016). Similarly to ICI, MWI is a conically scanning
radiometer that will observe at a 53◦ incidence angle. ICI and MWI are
designed to compliment each other in their frequency range; MWI will measure
at frequencies between 18.7GHz and 183GHz, extending the total frequency
coverage of the pair of sensors down to lower frequencies. This is motivated
by the fact that MWI will have higher sensitivity to snow and rain, whereas
ICI will be primarily sensitivity to cloud ice. Together, the two sensors achieve
an impressive and unmatched frequency coverage, allowing for observations of
both frozen and solid water.

5.2 ICI data

The ICI measurements offered in the level-1b product at EUMETSAT will
take the form of calibrated and geolocated brightness temperatures. Cloud ice
variables will be provided in the level-2 (L2) product, MWI-ICI-L2, offered by
EUMETSAT. MWI-ICI-L2 is based on both MWI and ICI observations. The
primary variables in MWI-ICI-L2 will be liquid water path (LWP) and IWP.
However, retrievals for each of these variables will be performed separately,
based on the sensor used.

ICI data will be used for retrievals of IWP. As part of the ICI-specific
retrievals, the L2 product will also offer the variables mean mass height (Zm)
and mean mass diameter (Dm). All variables offered in the ICI level-2 product
are column integrated variables; they cover the entire atmospheric column, and
do not contain information on the vertical variability.

To retrieve the L2 products from ICI level-1b data, EUMETSAT will per-
form a series of pre-processing steps. This includes the remapping of the level-1b
data to the same footprint, as presented in Eriksson et al. (2020). Additionally,
bias correction will be applied if any systematic differences arise between real
observations and simulated cases. The full algorithm theoretical basis docu-
ment (ATBD) is provided by Rydberg (2018). After the pre-processing steps,
EUMETSAT will implement BMCI to perform the inversion.
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The main objective of ICI is to provide the aforementioned geophysical
quantities in support of climate applications. One use is to constrain global
climate models, as motivated in Section 1. Information on Dm will be particu-
larly useful, due to the high sensitivity of ICI to particle size, which benefits
climate model representation of particle fall velocity (Buehler et al., 2007).

Another use of the data is climate monitoring. As a result of the relatively
long lifetime of ICI, there will eventually exist an approximately 22 year re-
cord of atmospheric ice mass. A long-term reliable data source may prove to
be valuable either for climate model validation, or for simply improving our
understanding of how the distribution and amount of ice clouds is developing
over time.

Although it is not the main purpose of ICI, level-1b data can be beneficial
to NWP in several ways. Cloudy ICI observations can provide a wealth of
information on ice particle properties, such as particle effective radius, that
can benefit weather models (Geer et al., 2017). These cloudy observations
will therefore be most useful when included in all-sky assimilation (Geer et
al., 2018). However, even clear-sky NWP assimilation methods could benefit
from cloudy observations, despite not assimilating them directly. For example,
sub-millimetre observations have been shown to improve the identification of
cloudy cases (Kaur et al., 2021), enabling such cases to be accurately filtered
out. Furthermore, the higher frequency channels of ICI still provide additional
information on water vapour.

The potential of ICI to provide cloud ice information is not limited to
the official EUMETSAT L2 product. Contained within ICI radiances is likely
information on additional variables. Observations are influenced by a multitude
of factors including, but not limited to, the characteristics of ice hydrometeors
and the distribution of ice within the atmospheric column. In fact, ICI channels
undergo varying degrees of attenuation dependent on altitude. This means that
brightness temperatures measured by different channels are sensitive to ice in
different atmospheric layers. By virtue of the range of frequencies covered by
ICI, the observations may contain information on the vertical distribution of
ice. This raises the question: What more can we learn from the novel data to
be provided by ICI?
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6 Summary of appended papers
and outlook

6.1 Paper 1

Solving the inverse problem requires information on the observations and the
atmospheric state that led to the observation. In the context of ICI, this takes
the form of a retrieval database consisting of pairs of ICI observations and the
geophysical quantities of interest, e.g. IWP. A retrieval database is required
both in preparation for the ICI L2 product, where BMCI will be used as an
inversion model, and in preparation for research-oriented retrievals, where
QRNN will be used.

This raises the issue of how to create such a database in the absence of
real sub-millimetre observations. An empirically-based database is evidently
not possible, necessitating the simulation of ICI observations using radiative
transfer calculations.

The quality of the retrievals will be highly dependent on the quality of the
simulations. The radiative transfer calculations must be detailed and accurate,
and any ancillary data used in the simulation inputs must be of a high standard.
However, the database must also be of sufficient size to successfully train the
inversion model. Therefore, these important factors must be carefully balanced
with the need for computational efficiency in order to generate a high number
of simulations. Finally, for the inversion to perform well under all atmospheric
conditions, all variability must be captured within the database. This means
that the database must be global, represent all meteorological conditions, and
checked to statistically represent reality.

This study presents a framework designed to generate high-quality simula-
tions of ICI, and was developed as part of a EUMETSAT study. The simulation
framework was based upon a preliminary database previously developed (Eriks-
son et al., 2020), but several major changes were made to improve the quality
of the simulations. This includes the consideration of oriented particles, allow-
ing polarised channels to be simulated, and the inclusion of the full antenna
pattern. The appended paper presents a detailed overview of the simulations.
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Additionally, retrievals are performed using a QRNN, where inversions are
performed on a subset of the data that was excluded from the QRNN training.
These retrievals allow us to characterise the expected retrieval performance of
ICI and to investigate the sensitivity of the retrieval performance under various
conditions. Furthermore, they serve as preparation for performing retrievals
with real observations once ICI is launched.

Naturally, it is not possible to validate simulated ICI observations with real
ICI data prior to launch. Instead, the approach was to perform simulations of
existing sensors with similarities to ICI. Four GMI channels were simulated: two
channels at 166GHz, due to these channels measuring at V- and H-polarisation,
and two channels at 183GHz. Additionally, two airborne instruments were
simulated: the Microwave Airborne Radiometer Scanning System (MARSS),
and ISMAR. MARSS and ISMAR serve as demonstrators for ICI, and thus
allow for the validation of sub-millimetre wavelength simulations.

Simulations of GMI, ISMAR and MARSS largely agreed statistically with
observations. This allowed us to conclude that the simulation framework pro-
duces accurate results. Furthermore, the simulations covered the variability of
the observations, which is required for the retrieval model to be able to predict
all possible atmospheric configurations. Therefore, despite the impossibility
of validating ICI observations directly, the validation of the above simulations
demonstrates that the framework successfully simulates polarised microwave
and sub-millimetre measurements.

To explore the information content of ICI observations, the degrees of
freedom (DoF) were calculated as a function of IWP and total column water
vapour (WV). The degrees of freedom ranged between 3 and 10 across the
range of IWP and WV considered, with the highest degree of freedom found
in the region of highest IWP and highest WV. However, even down to 10−4

kgm−2, ICI measurements were shown to still have a DoF of 6 in very dry
conditions.

When characterising the retrievals, ICI was found to have a sensitivity
to IWP over the range of 10−2 kgm−2 to 101 kgm−2. Retrieval perform-
ance was found to vary according to climatic conditions. Retrievals of IWP
performed best at tropical latitudes. Performance decreased with increasing
latitude, which is partially attributed to lower cloud top height. Retrievals
also performed poorer over snow surfaces, attributed to uncertainties about
the emissivity of such surfaces. However, there will be interplay between the
performance under various latitudes and surface types due to the frequency of
snow and sea ice increasing with higher latitudes.

As a result of the simulation database generated in this study, L2 retriev-
als will be available at EUMETSAT from the first day of ICI’s operational
phase. Furthermore, the database provides the base for a research L2 product,
presented in Section 6.2.
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6.2 Paper 2

Information on the vertical distribution of cloud ice is highly valuable to cli-
mate applications. Unfortunately, there are very few datasets that currently
offer reliable estimates. This improves with the recent launch of EarthCARE.
However, non-radar/lidar sensors generally do not provide useful data due to
their limited sensitivity to the entire atmospheric column, although CCIC has
shown that it is possible with machine learning. However, the 13 channels of
ICI undergo varying amounts of attenuation, thus providing information at
different altitudes. Motivated by the need for additional datasets, this study
asks: can ICI provide data on cloud ice profiles?

Radar is considered the gold standard for IWC retrievals. The signal can
penetrate the entire cloud column and provide data at a high vertical resolution.
It cannot be expected that a passive microwave instrument would achieve simil-
arly high quality retrievals at a comparable resolution. However, ICI does have
several advantages. Firstly, the expected combined lifetime of ICI (∼21 years)
is longer than EarthCARE (∼3 years). Secondly, the ICI swath is much wider
than that of a radar, allowing a retrieval to include horizontal information.
Therefore, ICI and EarthCare are not competitors, but rather ICI offers a
complimentary source of data.

In this study, the retrieval database developed in Paper 1 is used to train a
QRNN to predict IWC and vertical profiles of mean mass diameter Dm,IWC.
The profiles are retrieved at a 500m resolution.

A qualitative comparison of retrieved and reference profiles, i.e. the corres-
ponding database cases, reveals that ICI is able to successfully retrieve both
the structure and magnitude of IWC and Dm,IWC. The retrievals are some-
what limited due to performing the profile inversions case-by-case, and thus
neglecting correlations between profiles. This leads to some instability between
neighbouring profiles, caused by statistical fluctuations between retrievals. Re-
trieval performance is investigated for individual altitudes. Performance is
best at mid-altitudes, with sensitivity to IWC ranging between 10−2 gm−3

and 1 gm−3. At the highest and lowest altitudes, the retrieval performance
worsens due to the decreased sensitivity of ICI in these regions. A statistical
comparison to IWC in the DARDAR product shows good agreement.

Since the true resolution of ICI retrievals is expected to be less than 500m,
the question is asked: What is the expected resolution of our retrievals? To
investigate further, an approximation of the averaging kernels is computed on a
near-linear subset of the IWC and Dm,IWC retrievals, following the method in
Rydberg et al. (2009). At mid-altitudes, it is shown that ICI can be expected to
retrieve IWC at a resolution of ∼2.5 km. In the case of Dm,IWC profile retrievals,
the expected resolution tends to increase with altitude, with a minimum of
2.5 km resolution at an altitude of 5 km.
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The conclusion of the study is that ICI observations do contain sufficient
information to retrieve vertical profiles of atmospheric ice. Some instability
arises due to retrieving profiles individually, although this could be approached
in further research by accounting for correlations between profiles when perform-
ing the inversions. ICI could therefore act as a complimentary data source to
existing IWC datasets. Excitingly, such retrievals will be the first of their kind;
no existing dataset provides cloud ice vertical profiles from passive microwave
observations.

6.3 Outlook

6.3.1 AWS

With the launch of AWS in August 2024 came the first operational measure-
ments of the atmosphere at sub-millimetre wavelengths.

The inclusion of sub-millimetre channels on AWS was motivated by their
potential to improve NWP models. The 325GHz channels will be assimilated at
ECMWF (European Centre for Medium-Range Weather Forecasts). Although
sub-millimetre observations will not be assimilated in the near future at SMHI
(The Swedish Meteorological and Hydrological Institute), they will instead be
used for cloud filtering. Cloud filtering is the removal of the impact of clouds
in assimilated observations.

One method of cloud filtering involves identifying cloudy cases using the
difference between an AWS observation (i.e. all-sky) and a clear-sky observa-
tion. Simulating AWS using the same framework as used for ICI, altering for
the sensor geometry and characteristics of AWS, provides a dataset of all-sky
observations and matching clear-sky observations. These simulations can then
be used to train a QRNN to predict a clear-sky antenna temperature when
given a real AWS measurement. Kaur et al. (2021) has shown that the use
of sub-millimetre channels offers a benefit to this method. If the method can
be demonstrated to be successful for AWS, there are plans to incorporate the
approach in SMHI NWP models.

At the time of publication, the first data is arriving from AWS. This takes
the form of level-1b data, i.e. geolocated and calibrated antenna temperatures.
However, there is no L2 product currently planned for AWS. Considering
the ICI retrieval performance demonstrated in May et al. (2024), i.e. Pa-
per 1, it is expected that AWS can also provide reliable estimates of IWP,
Zm, and Dm. We are currently in the early stage of developing retrievals of
IWP, Zm, and Dm from AWS observations, taking the same approach as for ICI.

Performing AWS retrievals has several added advantages. Firstly, our AWS
simulations can be validated against real observations. This means that calib-
rations and adjustments can be made to the simulations if needed. Secondly, it
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will be possible to validate the retrievals themselves through comparison with
existing operational products, such as CCIC.

A comparison of simulated radiances with real radiances may also provide a
better understanding of the approach and assumptions made in the simulation
framework. For example, one can analyse how the chosen microphysical models
affect the simulations relative to the truth. A better understanding of the
impact of choices made in the simulation framework will provide a deeper
insight into retrieval performance, both for AWS and for ICI.
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