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Abstract

Context: The rapid growth of embedded devices and edge computing has
brought new opportunities for creating intelligent systems. However, these
systems face challenges such as limited computational power and the need to
protect user privacy. As a result, there is a need for machine learning methods
that can scale effectively, maintain privacy, and adapt to changing conditions
in embedded applications.

Objective: This thesis focuses on improving the performance of machine
learning models in embedded systems by using federated learning and rein-
forcement learning. The main goal is to develop methods that allow edge
devices to work together without sharing raw data, which helps maintain pri-
vacy. Another goal is to make these systems more adaptable to dynamic
environments, so they can perform better under changing conditions. Addi-
tionally, the research seeks to improve the efficiency of communication and
computation across devices.

Method: The research uses a mix of case studies, simulations and real-world
experiments. Federated learning is applied to allow edge devices to train
models without centralizing the data, keeping sensitive information local. Re-
inforcement learning is used to help devices learn how to make better decisions
by interacting with their environment. These two methods is tested in differ-
ent scenarios to evaluate improvements in model accuracy, resource use, and
adaptability.

Results: The results of this thesis highlight significant advancements in feder-
ated learning (FL) and reinforcement learning (RL) for embedded systems. A
comprehensive literature review identified six key challenges and open research
questions in FL, emphasizing the need for efficient communication, scalabil-
ity, and privacy preservation. Case studies in telecommunications and au-
tomotive applications demonstrated that FL, particularly with asynchronous
aggregation protocols, improves model performance, reduces communication
overhead, and speeds up training in real-time, dynamic environments. Novel
algorithms, such as AF-DNDF and deep RL approaches, further enhanced
decision-making capabilities and adaptability in applications like autonomous
driving and UAV base station deployment for disaster scenarios. The de-
velopment of frameworks like EdgeFL provided practical solutions to over-
come FL’s implementation challenges, offering scalable, low-effort alternatives.
Overall, the integration of FL. and RL into embedded systems resulted in im-



proved model accuracy, resource utilization, and adaptability, making these
approaches highly suitable for real-world industrial use cases.

Conclusion: This research advances the field of edge intelligence by providing
a practical approach to deploying machine learning models that are scalable,
privacy-focused, and adaptive in embedded systems. The work demonstrates
clear improvements in performance and offers a foundation for future research,
which could explore more complex learning approaches and apply these tech-
niques to a wider range of embedded systems.

Keywords: Federated Learning, Reinforcement Learning, Machine Learning,
Software Engineering
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CHAPTER 1

Introduction

The rapid increase in data generated by humans and machines has surpassed
our capacity to process and extract meaningful insights. Artificial intelligence
(AI) plays a pivotal role in takling this challenge by enabling machines to
learn from data and make complex decisions. Al now drives critical advances
in data-driven decision-making and underpins all forms of computer learning
[1]. For example, in a simple game like tic-tac-toe, with its 255,168 possible
moves, humans can still intuitively figure out how to avoid losing [2]. However,
in more complex games like checkers, which has nearly 500 trillion possible
positions, only a few experts can excel. With vast amounts of data, com-
puters, through Al, can efficiently compute these possibilities and make the
best decisions. This showcases how Al can process complex combinations and
optimize outcomes, making it a powerful tool for enhancing various aspects of
human life and business processes [3][4].

In industrial applications, Al is increasingly being integrated to enhance
the intelligence of products and improve user experiences [5]. Rather than ex-
isting as standalone applications, Al technologies are often embedded within
products and services, similar to how virtual assistants like Siri enhance smart-
phones [6]. From security systems to financial analytics, Al-driven solutions
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leverage massive datasets to make smarter predictions and recommendations,
continuously learning from new information to refine their accuracy. The
adaptability of Al is particularly noteworthy; machine learning algorithms al-
low systems to improve over time based on user data [7]. For example, just
as an Al algorithm can learn to play chess, it can also learn to recommend
personalized content to users based on their preferences. The continuous feed-
back loop provided by machine learning ensures that Al systems evolve to offer
more relevant and optimized solutions.

However, despite the significant progress in Al, the integration of these
technologies into embedded systems and edge computing presents several chal-
lenges [8][9]. One of the primary issues is the limited computational resources
and energy efficiency of embedded devices. Edge devices, which often oper-
ate in decentralized environments, must process data locally, requiring algo-
rithms that are both lightweight and efficient [10][11][12]. These devices also
face strict constraints regarding memory, processing power, and real-time re-
sponse, all while handling increasingly complex tasks such as Al inference and
model updates. Additionally, security and privacy are major concerns, espe-
cially when sensitive user data is processed at the edge. Federated Learning ,
for example, addresses privacy by enabling decentralized model training with-
out sharing raw data, but it introduces challenges related to communication
overhead, model accuracy, and heterogeneity across devices [13][14][14].

This thesis contributes to overcoming some of these challenges by explor-
ing the integration of Federated Learning and Reinforcement Learning into
edge and embedded systems. Through a comprehensive analysis of existing
literature and empirical case studies in collaboration with industry, the re-
search highlights several key contributions. The thesis presents novel FL and
RL algorithms that address issues such as communication latency and model
aggregation in decentralized systems. These algorithms, validated in both
telecommunications and automotive applications, demonstrate the potential
to significantly reduce communication overhead while maintaining high model
accuracy in dynamic, resource-constrained environments. Additionally, Rein-
forcement Learning is applied to enhance the decision-making capabilities of
embedded systems, allowing them to better adapt to real-time changes in their
environments, such as autonomous navigation and resource optimization.

The development of asynchronous Federated Learning protocols and frame-
works like EdgeFL enables more scalable and efficient deployment of Al on
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edge devices, further enhancing their capacity to handle complex tasks in
heterogeneous hardware settings. By providing a practical framework for im-
plementing Al in embedded systems, this thesis addresses both the theoreti-
cal and applied aspects of integrating Federated Learning and Reinforcement
Learning into real-world industrial contexts. The results demonstrate sub-
stantial improvements in model accuracy, resource utilization, and system
adaptability, making these approaches well-suited for future Al-driven em-
bedded and edge applications.

1.1 Structure of the thesis

The thesis is structured as follows:

Chapter 2 provides the background necessary to understand the context of
this research. It begins with an exploration of Al and its evolution, discussing
key advancements in machine learning techniques and their application in
various domains. The chapter then dives into edge computing and embed-
ded systems, explaining their role in processing data close to its source, thus
reducing latency and improving responsiveness. It outlines the current chal-
lenges faced by embedded systems, including limited computational resources,
energy constraints, and the need for real-time processing capabilities. Privacy
concerns are also addressed, particularly in scenarios where sensitive data is
generated and processed locally. The chapter further discusses the significance
of integrating Federated Learning and Reinforcement Learning into these sys-
tems, providing an overview of how these techniques can enhance adaptability
and decision-making in dynamic environments. This foundation prepares the
reader for the detailed methodologies and contributions presented in the sub-
sequent chapters.

Chapter 3 details the research methods employed throughout this thesis.
It outlines the research goals and motivations behind each approach used to
address the identified challenges. These methods include both theoretical ex-
plorations and practical applications of Federated Learning and Reinforcement
Learning in edge computing environments.

Chapter 4 presents the core objectives of the thesis, showing how each of the
primary research questions (RQ1, RQ2, and RQ3) is addressed. It provides
an overview of the research contributions, specifically focusing on how the
methods proposed contribute to improving the scalability, performance, and
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adaptability of Federated Learning and Reinforcement Learning in embedded
systems.

The main body of the thesis, comprising Chapters 5 through 13, is based
on the included papers A through I.

e Chapter 5 provides a comprehensive overview of the state-of-the-art in
Federated Learning systems, based on the literature review presented in
Paper A. It categorizes various FL deployments, identifying their chal-
lenges and presenting open research questions. The chapter highlights
six key results regarding the performance, privacy, and communication
efficiency of existing FL systems.

¢ Chapter 6 dives into the real-world obstacles and limitations that pre-
vent industries from fully adopting Federated Learning, drawing on in-
sights from Paper B. This chapter discusses the challenges faced by
companies in implementing FL, such as integration complexity, limited
computational resources, and privacy concerns. It summarizes the case
studies that identify key issues and provides criteria for designing reli-
able FL systems.

e Chapter 7 addresses the various architectural alternatives for Feder-
ated Learning, as explored in Paper C. This chapter compares four
architecture designs—centralized, hierarchical, regional, and decentral-
ized—using empirical performance data. It discusses the trade-offs be-
tween communication latency, model accuracy, and scalability, offering
guidance on selecting the appropriate architecture based on system re-
quirements and use cases.

¢ Chapter 8 introduces a real-time asynchronous Federated Learning me-
thod, as described in Paper D. This chapter focuses on the challenges of
synchronous model aggregation in FL and proposes an alternative ap-
proach suitable for dynamic and heterogeneous hardware environments.
It includes an automotive case study that demonstrates the effective-
ness of asynchronous FL in improving edge model performance while
reducing communication overhead.

e Chapter 9 builds on the work in Paper E, combining deep neural deci-
sion forests (DNDF) with asynchronous Federated Learning to create a
novel algorithm called AF-DNDF. This chapter presents experimental
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results from the automotive industry, showing how AF-DNDF enhances
local edge model quality without sacrificing accuracy, making it highly
efficient for edge computing tasks such as road object recognition.

e Chapter 10 extends the discussion of Reinforcement Learning in edge
environments, as presented in Paper F. This chapter focuses on the use
of deep Reinforcement Learning to autonomously navigate and optimize
the configuration of UAV-based base stations. The proposed algorithm
demonstrates how Reinforcement Learning can be applied in dynamic
environments to improve mission-critical communication services.

¢ Chapter 11 covers the integration of ATl in UAV-based networks, drawing
on Paper G. It explores the use of Reinforcement Learning to optimize
the 3D placement of UAV base stations, enabling them to provide re-
liable connectivity in disaster scenarios. This chapter highlights the
potential of using AI to dynamically adapt to changing conditions in
real-time and maintain consistent service quality.

o Chapter 12 presents the EdgeFL framework, as introduced in Paper H,
which offers a low-effort and efficient solution for decentralized Feder-
ated Learning. This chapter discusses the challenges of scalability and
centralization in FL and demonstrates how EdgeFL overcomes these is-
sues through decentralized aggregation protocols. The chapter also cov-
ers the framework’s impact on improving learning efficiency and model
evolution in edge devices.

¢ Chapter 13 concludes the main body of the thesis with a detailed dis-
cussion of the results and contributions from the included papers. This
chapter reflects on how the novel methods presented throughout the the-
sis address key challenges in edge intelligence, improving the deployment
and performance of Al in embedded systems.

Chapter 13 summarizes the main findings from the research, reflecting on
the novel methods proposed and their impact on the deployment of Al in
embedded systems. The chapter also discusses potential direction for future
research, including further exploration of decentralized learning architectures,
optimizing Reinforcement Learning for dynamic environments, and scaling the
proposed methods to larger industrial applications.






CHAPTER 2

Background

In recent years, artificial intelligence (AI) has transformed various sectors,
driving innovation and efficiency. This chapter explores the evolution of Al,
the role of machine learning, the significance of edge computing, and the
challenges faced by embedded systems. By understanding these foundational
concepts, we can better appreciate the contributions of Federated Learning
(FL) and Reinforcement Learning (RL) in enhancing the capabilities of in-
telligent systems. Section 2.1 presents the evolution of artificial intelligence,
tracing its development from early symbolic reasoning to modern machine
learning techniques. It highlights how the availability of large datasets and
powerful computational resources have driven advancements in Al, enabling
applications across various domains. Section 2.2 discusses the role of machine
learning as a core component of Al, emphasizing its ability to identify pat-
terns and make predictions based on data. It outlines how machine learning
enhances existing products and services, transforming them into intelligent
systems that improve user experiences. Section 2.3 explores edge computing
and embedded systems, explaining their significance in processing data closer
to its source to reduce latency and bandwidth usage. It describes how embed-
ded systems, with their specialized functions and resource constraints, play
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a crucial role in the implementation of edge computing solutions. Section
2.4 highlights the current challenges faced by embedded systems, including
limited computational resources, energy efficiency concerns, and the need for
real-time data processing. It emphasizes the importance of finding effective
solutions to address these challenges, particularly in dynamic environments.
Section 2.5 discusses the significance of Federated Learning and Reinforcement
Learning as innovative approaches to overcoming the challenges in embedded
systems. It explains how Federated Learning enables decentralized training
while preserving privacy and how Reinforcement Learning enhances adaptabil-
ity, contributing to the development of smarter and more resilient systems.

2.1 Evolution of Artificial Intelligence

Artificial intelligence (AI) fundamentally seeks to replicate and simulate human-
like cognitive functions in machines. This journey began in the mid-20th
century, marked by pioneering research in symbolic reasoning and rule-based
systems. Early Al efforts focused on creating algorithms that could mimic
logical reasoning and solve problems using predefined rules [15][16]. However,
these approaches were often limited by their reliance on explicit programming
and a lack of adaptability to new, unforeseen situations.

As technology advanced, the emergence of machine learning, a vital subset
of Al, significantly transformed the landscape of intelligent systems. Un-
like traditional AI methods, machine learning enables systems to learn from
data and improve their performance autonomously without the need for de-
tailed instructions for each specific task [17][18]. This shift has been driven
by the exponential growth of available data and the development of power-
ful computational resources, including GPUs and cloud computing platforms.
Consequently, machine learning algorithms can now process vast amounts of
information, allowing them to identify patterns and make predictions with
increasing accuracy [19].

Deep learning, a specialized branch of machine learning, has gained particu-
lar prominence in recent years due to its remarkable success in complex tasks
such as image recognition, natural language processing, and game playing.
Deep learning leverages artificial neural networks with many layers, enabling
models to learn hierarchical representations of data [20][21]. This has led to
breakthroughs in various fields, including healthcare—where Al aids in dis-
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ease diagnosis and treatment planning—finance, where algorithms enhance
trading strategies, and transportation, which benefits from advancements in
autonomous vehicles [22].

Deep learning, a specialized branch of machine learning, has gained signifi-
cant prominence in recent years due to its remarkable success in solving com-
plex tasks such as image recognition, natural language processing, and game
playing. Deep learning models leverage artificial neural networks with many
layers, allowing them to learn hierarchical representations of data [20][21].
This has led to groundbreaking advancements across various domains.

In healthcare, deep learning is revolutionizing disease diagnosis and treat-
ment planning. For example, convolutional neural networks (CNNs) are em-
ployed in medical imaging for detecting conditions such as cancer, diabetic
retinopathy, and cardiovascular diseases with high accuracy [23]. In genomics,
deep learning models help identify disease-related genetic variants, improving
personalized medicine approaches.

In finance, deep learning is enhancing algorithmic trading by identifying
patterns in vast amounts of market data, helping predict price movements
and optimize investment strategies. Fraud detection systems also utilize deep
learning to analyze transactions in real-time, identifying suspicious activities
and minimizing risks for financial institutions [24].

In transportation, deep learning plays a critical role in autonomous vehi-
cle development. Self-driving cars rely on deep learning models for object
detection, path planning, and decision-making, enabling safe navigation in
complex environments. Companies like Tesla, Waymo, and Uber have inte-
grated deep learning technologies to advance the capabilities of autonomous
driving systems, pushing the boundaries of innovation in this sector [25].

In manufacturing, deep learning is enhancing quality control and predictive
maintenance. By analyzing sensor data, deep learning models can predict
when equipment is likely to fail, allowing companies to perform maintenance
before breakdowns occur, reducing downtime and costs. In addition, visual
inspection systems powered by deep learning are being used to detect de-
fects in products during the manufacturing process with higher precision than
traditional methods [7][26].

These examples illustrate how deep learning has become a transformative
force in numerous industries, driving innovation and improving efficiency in
a wide range of applications. The advancements in AI have paved the way
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for numerous applications that enhance efficiency and decision-making across
diverse industries. As Al continues to evolve, it holds the promise of further
transforming how humans interact with technology, improving quality of life,
and driving innovation in various sectors.

2.2 The Role of Machine Learning

Machine learning serves as the backbone of modern artificial intelligence ap-
plications, providing the tools and methodologies necessary for machines to
learn from data and improve over time. It encompasses a diverse array of
algorithms and models that enable systems to identify patterns, make predic-
tions, and execute complex tasks across various domains [27]. The rise of big
data has been pivotal in this evolution, as the vast quantities of information
generated in our digital age can be harnessed to train more sophisticated and
accurate models.

In industrial applications, machine learning significantly enhances the in-
telligence of products and services. Rather than functioning as isolated solu-
tions, Al capabilities are increasingly being integrated into existing systems,
enriching user experiences and operational efficiencies. For instance, virtual
assistants like Siri and Alexa utilize machine learning algorithms to provide
personalized responses and recommendations based on user interactions, pref-
erences, and context [6]. These systems continuously learn and adapt to im-
prove their performance, demonstrating the dynamic capabilities of machine
learning.

Moreover, machine learning is transforming sectors such as manufacturing,
healthcare, and finance. In manufacturing, predictive maintenance powered
by machine learning algorithms allows companies to foresee equipment fail-
ures, minimizing downtime and reducing costs [7][28]. In healthcare, machine
learning models analyze patient data to assist in diagnosing diseases, per-
sonalizing treatment plans, and predicting patient outcomes [29]. In finance,
algorithms evaluate vast datasets to detect fraudulent activities and optimize
trading strategies [30].

The versatility and adaptability of machine learning make it a critical com-
ponent in the development of intelligent systems. As organizations increas-
ingly adopt these technologies, the potential for innovation and improved
decision-making grows, leading to enhanced efficiency and competitiveness
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in the market.

2.3 Edge Computing and Embedded Systems

Edge computing represents a paradigm shift in how data is processed, empha-
sizing the importance of conducting data analysis closer to its source instead
of relying on centralized data centers [31]. This approach significantly reduces
latency and bandwidth consumption, making it especially suitable for appli-
cations that require real-time processing and immediate responsiveness. By
processing data at the edge of the network, organizations can achieve faster
decision-making, enhance user experiences, and improve overall system effi-
ciency [32].

Embedded systems are specialized computing devices designed to perform
specific functions within larger systems. They play a crucial role in the con-
text of edge computing, as these systems are often deployed in various envi-
ronments, such as industrial settings, smart homes, and healthcare facilities.
Due to their specialized nature, embedded systems typically have limited com-
putational resources, which necessitates efficient design and implementation
strategies [33].

The integration of artificial intelligence within embedded systems has the
potential to enhance performance and enable smarter decision-making [34].
For example, in industrial automation, embedded AI can optimize machine
operations by analyzing real-time data from sensors and adjusting processes
accordingly. In smart home applications, Al-powered devices can learn user
preferences and adapt their functions, providing personalized experiences [35].

However, deploying Al in resource-constrained environments presents unique
challenges [14]. One major concern is computational power; traditional ma-
chine learning models may require substantial processing capabilities that em-
bedded systems often lack. Energy efficiency is another critical issue, as many
embedded devices operate on limited power sources, necessitating algorithms
that can deliver high performance without excessive energy consumption. Ad-
ditionally, the ability to process data in real-time is essential, particularly in
applications where immediate feedback is crucial, such as autonomous vehicles
or healthcare monitoring systems [36].

Addressing these challenges is vital for the successful integration of Al in
edge computing and embedded systems. Ongoing research and development
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efforts are focused on creating lightweight algorithms, optimizing data process-
ing techniques, and enhancing hardware capabilities to ensure that embedded
systems can leverage the power of Al effectively.

2.4 Current Challenges in Embedded Edge
Systems

Despite the significant advancements in artificial intelligence (AI) and edge
computing, several key challenges persist in the effective deployment of em-
bedded systems, particularly when these systems are expected to handle
real-time, dynamic environments. Embedded systems, which are typically
resource-constrained and operate in environments with stringent performance
demands, are integral to sectors like automotive, healthcare, telecommunica-
tions, and smart manufacturing [37][38]. However, the nature of these envi-
ronments brings several challenges that must be addressed for Al at the edge
to realize its full potential.

Latency remains one of the most critical issues for embedded systems, espe-
cially for applications that demand instantaneous decision-making. Systems
like autonomous vehicles, drone navigation, and real-time industrial monitor-
ing require near-instant responses to dynamic, evolving conditions [39][40].
Any delay in processing sensor data or making decisions can result in safety
risks or suboptimal system performance. The need for low-latency process-
ing is complicated by the fact that many machine learning models—especially
deep learning models—are computationally expensive. Balancing the trade-off
between fast decision-making and processing complex models locally presents
a challenge that requires developing optimized algorithms and hardware accel-
eration techniques such as edge TPUs and GPUs [31][41]. These technologies
help in mitigating latency but also require intelligent software design to max-
imize efficiency.

Another pressing challenge is communication costs, which significantly af-
fect embedded edge systems [42]. These systems often rely on transmitting
data between remote devices and centralized data centers, introducing band-
width constraints, increased energy consumption, and potential network reli-
ability issues. Particularly in settings like remote health monitoring or agri-
cultural ToT networks, where reliable connectivity may be intermittent or ex-
pensive, minimizing data transmission becomes crucial [43]. To address this,
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researchers have been exploring methods such as data compression, feature ex-
traction, and selective communication—where only the most relevant data is
transmitted to centralized servers—to alleviate communication burdens while
preserving data integrity and model accuracy [44]. Federated Learning, which
reduces communication by keeping data processing localized to the device, is
another promising avenue that aligns with this objective [45].

The performance of machine learning models is also tightly constrained by
the computational resources available on embedded devices. Many of these
devices operate with limited processing power, memory, and energy capacity,
which makes it difficult to deploy traditional, large-scale AT models [36][35].
As a result, there is a growing need for the development of lightweight models
and model compression techniques such as quantization, pruning, and knowl-
edge distillation [46]. These methods reduce the size and complexity of ma-
chine learning models, making them suitable for deployment on devices with
restricted computational budgets while maintaining acceptable levels of per-
formance. For instance, TinyML has emerged as a field focused on bringing
the power of Al to small, resource-constrained devices by optimizing models
for minimal power consumption and rapid inference [47].

Another challenge facing embedded systems is maintenance, particularly
for systems deployed in remote or difficult-to-access locations such as weather
stations, oil rigs, or satellite systems [48]. These devices must operate reli-
ably over extended periods, often with minimal human intervention. Regular
software updates, security patches, and performance monitoring are essen-
tial to ensuring these systems remain functional and secure [49]. However,
performing these tasks remotely can be both costly and challenging. To ad-
dress this, over-the-air (OTA) updates have become a critical feature, allow-
ing developers to update the software of embedded devices without physical
access. Furthermore, self-diagnosis and self-healing capabilities—where the
system can autonomously detect issues and take corrective actions—are gain-
ing importance in mission-critical systems [50]. Such solutions are essential
for enhancing the reliability and longevity of embedded systems, especially in
contexts where system downtime could have serious consequences.

In summary, addressing the challenges of latency, communication costs,
performance limitations, and maintenance difficulties is paramount for the
successful integration of Al into embedded edge systems. By developing opti-
mized algorithms, reducing data transmission needs, enhancing computational
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efficiency, and implementing effective remote maintenance strategies, ongoing
research is helping to unlock the full potential of embedded systems across
diverse application domains. These advancements will enable embedded sys-
tems to play a crucial role in future intelligent infrastructures, from smart
cities and autonomous transportation to industrial automation and remote
healthcare.

2.5 The Significance of Federated Learning and
Reinforcement Learning

Federated Learning and Reinforcement Learning offer promising strategies to
tackle the unique challenges posed by embedded systems in the context of edge
computing. These approaches address key limitations such as data privacy,
communication costs, and system adaptability, making them well-suited for
real-world applications across various industries [51][52].

Federated Learning allows decentralized model training across multiple edge
devices, enabling each device to learn from local data without transferring it
to a central server [53]. This is especially crucial in applications where data
privacy and security are paramount, such as healthcare, finance, and telecom-
munications [54]. By keeping raw data on the local devices and only sharing
model updates (such as gradients or weight adjustments), FL substantially re-
duces the risk of data breaches and helps organizations comply with regulatory
requirements like GDPR [55][56]. Additionally, this decentralized architecture
mitigates the issues associated with centralized data processing, where bottle-
necks or single points of failure can arise. By distributing the learning process
across edge devices, FL enhances system scalability and fault tolerance [57].

Moreover, communication overhead is a significant concern in edge com-
puting, particularly when devices are deployed in resource-constrained envi-
ronments with limited bandwidth or intermittent connectivity. FL addresses
this by drastically reducing the amount of data that needs to be transmit-
ted between devices and central servers, as only model parameters (which are
typically much smaller than raw datasets) are exchanged [57]. This reduc-
tion in communication not only lowers network congestion but also helps in
extending battery life for devices that operate on limited power, such as IoT
sensors or wearables [54]. In scenarios like smart cities or autonomous vehicle
fleets, where devices are constantly generating data, the ability to minimize
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communication while still improving model accuracy is a critical advantage
[58].

On the other hand, Reinforcement Learning enhances the adaptability and
decision-making capabilities of embedded systems, particularly in environ-
ments where conditions are dynamic and unpredictable [59]. Unlike tradi-
tional machine learning algorithms that rely on static datasets, RL involves
continuous interaction with the environment, allowing the system to learn
from real-time feedback. This makes RL particularly valuable in applications
like autonomous driving, robotic process automation, or smart industrial con-
trol systems, where decisions must be made quickly and adjusted on-the-fly
as new information becomes available [60]. For instance, an RL agent in an
autonomous vehicle can learn to navigate changing road conditions, avoid ob-
stacles, and adjust to traffic patterns—all while optimizing for fuel efficiency
or safety [61].

The synergy between FL and RL presents a hybrid approach that com-
bines the strengths of both methods, making it highly effective for developing
smarter and more resilient embedded systems. For example, in collaborative
environments, such as a fleet of autonomous drones or industrial IoT networks,
FL enables each device to learn from local data without compromising privacy,
while RL empowers devices to make decisions autonomously based on the spe-
cific conditions they encounter [62]. This hybrid approach leads to improved
learning efficiency, reduced data transmission costs, and enhanced respon-
siveness of the system. In telecommunications or smart energy grids, where
devices must operate cooperatively and adapt to changing loads or demands,
combining FL’s decentralized learning with RL’s ability to dynamically adjust
to environmental feedback offers significant performance gains. Both meth-
ods can be key enablers for advancing the capabilities of embedded systems
within edge computing [63][64]. By leveraging FL’s privacy-preserving model
training and RL’s adaptive decision-making, the systems can become not only
more efficient and scalable but also more secure and responsive to real-world
challenges.

2.6 Summary

In summary, this chapter has outlined the evolution of Al and its foundational
role in machine learning, as well as the significance of edge computing and em-
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bedded systems. The challenges these systems face highlight the urgent need
for innovative solutions. Federated Learning and Reinforcement Learning are
key to addressing these challenges, paving the way for the development of ad-
vanced embedded systems that can effectively respond to real-world demands.
The subsequent chapters of this thesis will further explore these methodologies
and their practical applications.
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CHAPTER 3

Research Methodology and Design

The methodology chapter outlines the research design and approaches em-
ployed to investigate the integration of Federated Learning and Reinforcement
Learning within embedded systems and edge computing environments. This
chapter aims to provide a comprehensive overview of the methods utilized to
address the research questions, emphasizing the engineering and deployment
of FL, the exploration of architectural frameworks, and the enhancement of
adaptability through RL. By combining theoretical insights with empirical re-
search [65][66], this methodology seeks to bridge the gap between advanced
machine learning techniques and practical applications in resource-constrained
environments. The subsequent sections will detail the specific methodologies
used in each paper, illustrating how they collectively contribute to advancing
the field of edge intelligence.

3.1 Research Questions
In this section, we outline the primary research questions guiding this study.

These questions are designed to address critical aspects of integrating Fed-
erated Learning and Reinforcement Learning within embedded systems and
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edge computing environments. By focusing on the deployment of FL and
RL methods, this research aims to enhance data privacy, optimize system
performance, and improve the adaptability of embedded systems in dynamic
settings. Each question represents specific challenges and opportunities that
arise in the application of these advanced machine learning techniques, pro-
viding a comprehensive framework for our investigation:

¢« RQ1. How can Federated Learning be effectively engineered and de-
ployed in embedded systems to enhance data privacy, reduce communi-
cation costs, and ensure model accuracy?

¢ RQ2. What architectural frameworks for Federated Learning can opti-
mize scalability and performance in edge computing environments, and
how do these architectures influence model training efficiency?

¢« RQ3. How can Federated Learning and Reinforcement Learning meth-
ods enhance the adaptability and efficiency of embedded systems in dy-
namic environments?

The first research question (RQ1) addresses the need for effective strate-
gies to implement ML in embedded systems. It is crucial as it addresses the
challenges of implementing FL in embedded systems, which often have lim-
ited computational resources and stringent requirements for data handling.
The question emphasizes the importance of balancing three key aspects: data
privacy, communication costs, and model accuracy. One possible solution is
FL. FL allows for decentralized training, which helps maintain data privacy
by keeping raw data localized rather than transmitting it to a central server.
However, this approach must be carefully designed to minimize the commu-
nication costs associated with sharing model updates. Additionally, ensuring
model accuracy is vital, as inaccuracies can lead to poor decision-making in
embedded applications. By investigating these factors, we aim to develop
effective strategies that practitioners can implement when deploying FL in
resource-constrained environments.

The second research question (RQ2) focuses on the architectural aspects
of FL systems. It seeks to explore the various designs and frameworks that
can enhance the scalability and performance of FL in edge computing con-
texts. Scalability is essential as embedded systems often operate in diverse
and dynamic environments, requiring architectures that can adapt to varying
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loads and conditions. Performance optimization is equally important, as ef-
ficient training can significantly impact the responsiveness and effectiveness
of embedded applications. This question aims to identify specific architec-
tural features and design choices that can lead to improved training efficiency,
allowing FL systems to better serve the demands of edge computing while
maintaining performance standards.

The third research question (RQ3) examines the synergy between FL and
RL, focusing on their potential to enhance the adaptability and efficiency of
embedded systems. In dynamic environments, systems must quickly adjust
to changes and uncertainties, making adaptability a critical factor for success.
This research explores how FL and RL can synergize to create smarter and
more resilient embedded systems. The goal is to leverage the strengths of
both methodologies, including FL’s ability to preserve privacy and reduce
data transfer, alongside RL’s capacity for learning optimal actions through
interaction with the environment. Understanding this synergy can lead to
innovative solutions that effectively address real-world challenges faced by
embedded systems across various application domains.

To address these research questions, we employ a multi-faceted approach
that integrates both theoretical and practical perspectives [67][65]. For RQ1,
we begin with a comprehensive literature review to explore existing frame-
works, strategies, and case studies related to the implementation of Federated
Learning in embedded systems. This review is complemented by case study
interviews with industry stakeholders, including engineers, product managers,
and researchers. These interviews provide us with firsthand insights into the
practical challenges and successes encountered in real-world deployments of
FL, allowing us to capture a diverse range of experiences and best practices.
This dual approach ensures that our findings are grounded in established re-
search while being informed by the realities of industry application. For RQ2
and RQ3, we focus on the development and validation of innovative algorithms
and architectural frameworks tailored to enhance the scalability and perfor-
mance of FL. and Reinforcement Learning in edge computing environments.
This involves designing novel architectures that optimize training efficiency
and adapt to the unique constraints of embedded systems. We then apply
these innovations in real-world scenarios through partnerships with compa-
nies that operate in the embedded systems domain. Collaborating with these
organizations allows us to test our proposed solutions in dynamic settings,
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gaining valuable insights into the practical challenges and requirements of
implementing FL and RL.

By working closely with industry partners, we ensure that our research is
not only theoretically robust but also highly relevant to contemporary appli-
cations. This collaborative approach enables us to refine our algorithms and
frameworks based on real-world feedback, ensuring they meet the operational
demands and constraints of embedded systems. Ultimately, this comprehen-
sive methodology aims to bridge the gap between theory and practice, enhanc-
ing the adaptability and efficiency of embedded systems in various application
domains.

3.2 Design Science

This thesis adopts a design science approach, which is well-suited for ad-
dressing the research objectives by focusing on the creation and evaluation of
artifacts—such as models, frameworks, or methodologies—that solve identi-
fied problems within the field of Federated Learning, Reinforcement Learning
and edge intelligence [68] [69]. Design science is inherently a problem-solving
research paradigm, making it an ideal fit for this study, as the core goal is to
generate innovative solutions that enhance the performance, scalability, and
adaptability of machine learning models in embedded systems.

The essence of design science lies in its ability to bridge the gap between the-
oretical exploration and practical application [70] [69]. In this research, the
artifacts developed, such as architectural frameworks and machine learning
models, are designed to address real-world challenges related to data privacy,
computational constraints, and communication efficiency in distributed edge
environments. By leveraging design science, this study focuses on construct-
ing and refining these solutions iteratively, ensuring that they are not only
theoretically sound but also practically viable.

The potential of design science in this context is particularly relevant due
to its iterative nature, where the creation, evaluation, and refinement of so-
lutions are deeply embedded in the research process [71]. This methodology
aligns closely with the research objectives of improving Federated Learning
systems and enhancing decision-making in dynamic environments through
Reinforcement Learning. Specifically, design science allows for the system-
atic exploration of different architectures, model optimization techniques, and
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the deployment of these models in resource-constrained environments [69].

Additionally, the evaluation component of design science ensures that the
proposed solutions are rigorously tested in both simulated environments and
real-world case studies. By incorporating extensive feedback loops—through
workshops, collaborations with industry experts, and validation via simula-
tions—this approach guarantees that the resulting artifacts are not only the-
oretically grounded but also practical and effective in real industrial scenarios
[72].

Design science was selected as the research methodology for this thesis be-
cause it provides a structured framework to develop, implement, and evaluate
innovative artifacts. Its iterative nature, emphasis on solving real-world prob-
lems, and focus on the evaluation of practical outcomes align seamlessly with
the goals of enhancing Federated Learning and Reinforcement Learning in
embedded systems. This research follows the design science framework, which
is structured around six key concepts as outlined by Peffers et al. [72]. These
concepts form a comprehensive approach to addressing complex problems in
a systematic manner:

1. Problem Identification and Motivation: The research begins by identify-
ing specific challenges in embedded system, particularly those related to
privacy concerns, communication costs, and computational constraints
in resource-limited edge environments. The motivation for this work
stems from the need to address real-world issues in industries such as
automotive, telecommunications, and healthcare, where secure and ef-
ficient edge learning is critical. Engaging with industry stakeholders
and conducting a comprehensive literature review allowed us to clearly
pinpoint the gaps, such as the scalability of FL architectures and the
adaptability of Reinforcement Learning models in embedded systems.
This phase ensures the research is tightly focused on solving practical
problems with significant impact.

2. Definition of Objectives for a Solution: After identifying the challenges,
the next step involved defining clear and measurable objectives for the
research. These objectives included reducing communication latency,
enhancing model accuracy while maintaining privacy, and developing
lightweight models, frameworks, algorithms for resource-constrained de-
vices. These objectives were directly aligned with both the academic
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goals of advancing FL and RL methods and the practical needs of in-
dustry partners, ensuring that the research outputs would be relevant for
real-world applications. This step ensured that each artifact developed
was grounded in addressing a specific problem with tangible benefits.

. Solution Design: The design phase involved developing artifacts such as

asynchronous Federated Learning frameworks, architectural alternatives
for FL systems, and Reinforcement Learning algorithms optimized for
edge computing environments. These solutions were tailored to address
the identified challenges, with a focus on reducing resource consumption
and improving scalability and privacy. The design process was iter-
ative, incorporating feedback from early prototypes and simulations to
refine the models. For instance, a key design contribution was the devel-
opment of an asynchronous Federated Learning method that improved
model accuracy while minimizing communication overhead in hetero-
geneous hardware environments, which was demonstrated through an
automotive case study.

. Demonstration: Once the solutions were designed, they were applied

in practical scenarios, including real-world case studies and simulations.
For instance, the asynchronous FL method was tested in a real-time
automotive scenario, where edge devices needed to quickly process sensor
data while communicating with a central server. The demonstration
phase showed that the designed solutions not only worked in theory but
also offered tangible improvements in performance. Demonstrating the
effectiveness of the algorithms in dynamic environments, such as UAV-
based networks and edge computing systems, reinforced the validity and
applicability of the proposed methods.

. Evaluation: Evaluation was carried out using a combination of empirical

testing, quantitative metrics, and industry feedback. Key performance
indicators such as latency reduction, model accuracy, and resource effi-
ciency were measured to assess how well the artifacts achieved the ob-
jectives. In one evaluation, the AF-DNDF algorithm showed significant
improvement in both local edge model quality and resource efficiency in
real-world scenarios like road object recognition. The evaluation phase
was critical in identifying areas for further refinement and in validating
the practical utility of the research outcomes. This ensured that the pro-
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posed solutions were not only innovative but also robust and effective in
meeting industry needs.

6. Communication: The final phase involved the dissemination of findings
through academic publications, workshops, and industry collaborations.
By presenting the results to both academia and industry, the research
contributes to ongoing advancements in the field, while also informing
practitioners of new methodologies that could be applied to solve real-
world problems. This communication ensures that the research out-
comes are accessible and can be further refined or built upon by other
researchers and practitioners.

As noted by Wohlin et al. [73], the essence of design science lies in problem-
solving through the development of artefacts aimed at improving specific sit-
uations. These key concepts can be distilled into three overarching activities:

1. Problem Identification or Conceptualization: This involves recognizing
the issues that require solutions, synthesizing information from various
sources to articulate the core challenges.

2. Solution or Artefact Design and Implementation: This activity encom-
passes the creative and technical processes involved in developing and
implementing artefacts that address the identified problems.

3. Evaluation or Validation: This final activity focuses on assessing the
effectiveness of the solutions through rigorous testing and analysis, en-
suring that they meet the objectives defined in earlier phases.

By applying this structured framework, this research aims to create prac-
tical solutions that not only advance theoretical knowledge but also provide
tangible benefits to practitioners in the field of embedded systems and Feder-
ated and Reinforcement Learning.

3.2.1 Data Collection and Evaluation Methods

The research applied a range of data collection and evaluation methods, in-
cluding literature reviews, semi-structured interviews, empirical case studies,
and simulation experiments, each designed to investigate different aspects
of FL and RL in embedded systems [74]. The literature review provided a
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theoretical foundation, helping to frame the research questions and identify
key challenges in FL. and RL workflows. Semi-structured interviews with in-
dustry experts further contextualized these challenges, while empirical case
studies documented real-world applications. Finally, simulation experiments
evaluated the effectiveness of developed algorithms and frameworks, providing
data on performance in controlled settings.

3.2.2 Data Analysis of Case Studies and Simulations

Data analysis varied by study type, with specific methods applied to different
data sources. For empirical case studies, qualitative analysis of interview tran-
scripts and observational data were conducted to capture industry challenges
and current practices. Thematic analysis was employed to distill insights from
interviews, while case study data was summarized to highlight obstacles in FL
and RL adoption and the corresponding needs in embedded systems [75].

For simulation experiments, quantitative analysis assessed the performance
and adaptability of developed FL and RL algorithms under various scenarios.
By applying statistical methods to measure improvements and validate algo-
rithmic efficiency, the simulations provided quantitative backing for proposed
solutions, allowing us to draw comparisons between baseline and advanced
configurations [73].

3.2.3 Process and Contributions by Individual Papers

Each individual paper contributes to one or more of the aforementioned ac-
tivities. Through literature reviews and case studies, combined with semi-
structured interviews, Papers A and B identify the challenges of Federated
Learning, establish the motivation for this research, and define the objectives.
Papers C, I propose architectures and frameworks that serve as solutions to
the challenges raised in earlier phases, which are then validated using empir-
ical datasets through case studies and simulation experiments. Papers D, E,
F, G, and H focus on advancing the application of Federated Learning and
Reinforcement Learning in embedded systems, providing further insights and
methodologies that enhance adaptability and performance in dynamic envi-
ronments. Additionally, we maintained close collaboration with companies
within the Software Center, organizing seminars and meetings to deepen our
understanding of the challenges faced by practitioners, exchange progress up-
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dates, and gather insights from industry experts. Following the presentation
of our results, we engaged in discussions about the implications of the new
algorithms and frameworks, further refining and enhancing our research.

In summary, this study used a multi-method approach to address FL and RL
challenges in embedded systems, combining theoretical and practical insights
from case studies, interviews, and simulation data. Design science method-
ology was instrumental in structuring the research, as it integrates problem
identification, solution development, and iterative validation. This approach
aligns with the research’s goal of developing artefacts that solve practical
problems in real-world contexts, making it ideal for advancing FL and RL
applications within the embedded systems domain.

3.3 Research Methods

The research techniques employed in this study, including both data collection
and evaluation methods, are essential for gathering empirical data necessary
to analyze actions within real-world contexts [74]. By utilizing methods such
as literature reviews and case studies, this thesis effectively addresses practi-
cal problems and offers a comprehensive understanding of the behaviors and
influences associated with various choices made by researchers and practi-
tioners. Literature reviews provide a solid theoretical foundation, allowing us
to identify existing gaps in knowledge and articulate the significance of our
research questions. Case studies, on the other hand, facilitate an in-depth
exploration of specific instances within the embedded systems domain, reveal-
ing the complexities and nuances of implementing Federated Learning and
Reinforcement Learning. Together, these techniques enable the collection of
rich qualitative and quantitative data, fostering insights that inform the de-
velopment of innovative solutions and enhancing the overall robustness of the
research findings.

3.3.1 Literature Review

A literature review, according to [76][77], provides knowledge that includes
substantive findings as well as theoretical and methodological contributions
to a specific subject. These works are described in relation to the subject
matter under consideration by discovering and utilizing books, scholarly arti-
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cles, and any other materials pertinent to the specific issue, field of research,
or theory. The purpose of the literature review is to lay the groundwork for
the investigation, highlight the research value of the chosen topic, and provide
the research basis for writing the dissertation [78]. The literature review must
provide a thorough examination of the breadth and depth of existing research
on the dissertation topic, as well as the findings and results obtained in order
to identify gaps in previous research or areas of insufficiency and highlight
points of focus and innovation in the researcher’s own research on the topic
[79].

In the context of this research, the literature review is crucial for several
reasons. Firstly, it allows for a comprehensive understanding of the theoretical
foundations and practical applications of Federated Learning and Reinforce-
ment Learning within embedded systems. By examining existing studies, we
can identify successful methodologies, prevalent challenges, and the technolog-
ical landscape surrounding these approaches. This understanding is essential
for framing our research questions and objectives, ensuring they are relevant
and grounded in current knowledge.

In our study, we use a literature review to better understand the concept of
Federated Learning and the limitations and constraints that exist in the cur-
rent Federated Learning systems reported in the literature. The data retrieved
from each study was primarily focused on the area of study and the technical
problems solved by using Federated Learning. We searched papers from vari-
ous high-ranked journals and conferences to give a current literature overview
of Federated Learning in the software engineering research domain. As a re-
sult, it can provide a comprehensive picture of the most recent methodologies
used, as well as the limitations and obstacles in today’s Federated Learning
systems, which can lead our future research path. The technique also validates
the significance of our research inquiries by situating them within the broader
discourse on FL and RL. By referencing established findings, we can articulate
the importance of our study and demonstrate how it builds upon or diverges
from previous work. This establishes a strong rationale for our research and
reinforces its relevance to the ongoing developments in these fields.

In summary, the literature review is an important element of our research
methodology. It not only lays a solid theoretical foundation but also identifies
gaps and trends that inform our research questions. Through this comprehen-
sive exploration, we aim to advance the understanding of how FL and RL can
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be effectively integrated into embedded systems, ultimately enhancing their
adaptability and performance in dynamic environments.

3.3.2 Case Study

A case study is a qualitative research method that provides an in-depth anal-
ysis of a specific phenomenon within its real-world context [80][81]. This
method is especially useful for exploring complex issues where the interplay
between the phenomenon and its environment is critical to understanding the
outcomes. As Yin [82] notes, case studies can serve both exploratory and
explanatory purposes, making them versatile tools for researchers seeking to
uncover the underlying mechanisms of particular events or situations.

The strength of case studies lies in their ability to capture rich, contextual
data through various means, including interviews, observations, and docu-
ment analysis [83]. This multi-faceted approach allows researchers to gather
nuanced insights that may not be readily apparent through quantitative meth-
ods. By focusing on specific instances or cases, researchers can identify pat-
terns, discern underlying factors, and explore the complexities of interactions
involved in the phenomenon of interest [80].

In our study, we adopted a multi-case study approach across both the au-
tomotive and telecommunication domains to investigate the practical appli-
cations of Federated Learning and Reinforcement Learning in embedded sys-
tems. This method enables us to engage directly with multiple case companies
in each domain that have implemented these technologies, allowing us to ex-
plore the real-world challenges and benefits they experience. By examining
diverse organizational contexts, we can gain a comprehensive understanding
of FL and RL, including the obstacles encountered during deployment and the
strategies employed to overcome them. We adopted the case study method
with semi-structured interviews and simulation experiments to thoroughly in-
vestigate the challenges inherent in current machine learning workflows within
the embedded systems domain. Our goal was to not only identify the limita-
tions of existing systems but also to assess the benefits that Federated Learn-
ing and Reinforcement Learning can offer. By employing this multi-faceted
approach, we aimed to uncover the primary constraints and limitations faced
by practitioners, and subsequently propose actionable solutions tailored to
real-world applications of FL, and RL.

The exploratory nature of the case study method enables us to dive deeply
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into the complexities involved in implementing Federated Learning within em-
bedded systems [80]. This approach provides a rich context for understanding
these technologies, the specific challenges encountered by organizations, and
the strategies they employ to navigate these obstacles. Through detailed ob-
servations and interactions with stakeholders, we gain valuable insights into
the nuances of deploying FL and RL in dynamic environments.

In addition to case studies, we conducted semi-structured individual inter-
views to elicit detailed feedback from industry experts and practitioners. This
qualitative data collection technique allowed us to gather diverse perspectives
and experiences, enriching our understanding of the practical implications
of Federated Learning and Reinforcement Learning. We complemented our
qualitative findings with simulation experiments, which provided a controlled
environment to test and validate our proposed solutions. By simulating vari-
ous scenarios and conditions, we were able to evaluate the performance of our
algorithms and frameworks, ensuring they meet the requirements of embedded
systems.

The combination of these research techniques—case studies, interviews, and
simulations—creates a comprehensive framework for understanding the cur-
rent landscape of machine learning in embedded systems. In the following
sections, we will elaborate on the specific methodologies employed for the
interviews and simulation experiments, detailing how these techniques con-
tribute to addressing our research questions and advancing the field.

1) Interviews: The interview technique employed in this research is a semi-
structured format, which strikes a balance between guided inquiry and the
flexibility to explore emerging topics [84][85]. Semi-structured interviews are
characterized by a combination of predetermined questions and open-ended
prompts, allowing interviewees to provide in-depth responses while also giving
the interviewer the freedom to probe further into relevant areas of interest that
may arise during the conversation [86][87].

This method is particularly advantageous in our study, as it facilitates rich,
qualitative data collection from industry experts and practitioners in the em-
bedded systems field. By utilizing semi-structured interviews, we can explore
participants’ experiences, challenges, and insights regarding the implementa-
tion of Federated Learning and Reinforcement Learning in real-world contexts.
This approach encourages interviewees to share their perspectives on the lim-
itations of current machine learning workflows, the potential benefits of FL
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and RL, and the specific constraints they face in their organizations.

The semi-structured format allows for a deep exploration of topics such
as data privacy concerns, communication costs, performance issues, and the
adaptability of embedded systems in dynamic environments. It fosters a con-
versational atmosphere, encouraging participants to discuss their thoughts
and experiences candidly, which can lead to unexpected insights that might
not emerge from more rigid interview formats [84].

To ensure consistency and reliability, we developed an interview guide that
outlines key themes and questions related to our research objectives for re-
search paper A and B during problem identification phase. However, we also
remained open to diverging from the guide when the discussion guaranteed
it [85]. Each interview was conducted in a manner that encouraged dialogue
and elaboration, allowing us to gather nuanced information that enriches our
understanding of the challenges and opportunities in the domain of FL and
RL.

The qualitative data collected through these interviews complement our
case study findings and simulation results, providing a holistic view of the
complexities involved in implementing Federated Learning and Reinforcement
Learning in embedded edge systems[87].

2) Simulation Experiments: In our research, simulation experiments play
a crucial role in validating the proposed algorithms and frameworks related to
Federated Learning and Reinforcement Learning within embedded systems.
Simulation is a powerful technique that allows researchers to model and an-
alyze complex systems in a controlled environment, enabling the exploration
of various scenarios and conditions that may be impractical or impossible to
test in real-world settings [88].

Simulation experiments provide a means to evaluate the performance, scal-
ability, and adaptability of our proposed solutions without the constraints and
uncertainties that come with live deployment [89][90]. By creating a virtual
representation of the embedded systems environment, we can manipulate vari-
ables, test different configurations, and observe the behavior of the FL and
RL algorithms under diverse conditions. This iterative process allows us to
refine our models, identify potential weaknesses, and optimize performance
before implementation in real-world applications [91].

In this study, the simulation experiments focus on key aspects such as com-
munication costs, model accuracy, latency, and the ability to adapt to dynamic
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Questions and
Hypothesis

Draw Conclusion 4—{ Model Validation H Model Training }—

Figure 3.1: The simulation process (cycle)

Method Review —> Data Cleaning —

changes in the environment. By simulating various scenarios, we can assess
how well our solutions perform when faced with real-world challenges, such
as limited computational resources, varying data distributions, and different
operational contexts.

Moreover, simulations provide a platform for conducting “what-if” analyses,
helping us understand the potential impact of different design choices and
algorithmic adjustments [88]. This flexibility is particularly valuable in the
context of embedded systems, where constraints such as power consumption
and processing capability must be carefully balanced.

Through the insights gained from simulation experiments, we are able to
inform our practical implementations and enhance our understanding of how
Federated Learning and Reinforcement Learning can be effectively applied in
the embedded systems domain. In the following sections, we will outline the
specific methodologies employed in our simulations, including the setup, pa-
rameters, and metrics used for evaluation. In this section, we present the simu-
lation techniques (Figure 3.1) used in this thesis, which includes questions and
hypothesis raising, methods review, model training (hyper-parameter seek-
ing), model validation, and conclusion drafting [92].

1. Questions and Hypothesis: In this initial step, we articulate the re-
search questions and hypotheses that align with the objectives of our
study. These questions serve as a foundation for guiding the selection
of technologies and the design of validation cases for the simulations.

2. Methods Review: Following the formulation of research questions and
the preparation of data, we conduct a review of various commonly used
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machine learning algorithms, methods, and frameworks pertinent to our
inquiry. This evaluation considers the diverse purposes these models
serve, as different architectures are optimized for specific types of data,
such as text or images. We also review aggregation protocols tailored to
our case scenarios.

. Data Cleaning: This phase involves implementing data cleaning strate-
gies to eliminate low-variance features, constant values, and outliers. A
key aspect of data preparation is splitting the dataset, typically dis-
tributing it evenly across edge devices. For each local edge device, ap-
proximately 70% of the data will be designated for training the model,
while the remaining 30% will be reserved for evaluation. This separa-
tion is crucial, as using the same data for both training and evaluation
would compromise the fairness of the model’s performance assessment
in real-world applications.

. Model Training: During this step, we focus on training the models. To
ensure the models achieve the desired quality for edge clients, we explore
various hyperparameters using a random search strategy. Throughout
the training process, the quality of the local edge models is continuously
enhanced through the aggregation of models from multiple sources.

. Model Validation: Once the model training is complete, we validate the
model to assess its effectiveness in realistic conditions. A subset of the
evaluation dataset is employed to test the model’s proficiency in scenar-
ios that differ from its training data. If the model’s performance does not
meet expectations, we revisit the hyperparameter settings. Evaluation
is critical in business contexts, allowing data scientists to confirm that
their objectives are being met. If results are subpar, earlier steps must
be scrutinized to identify the causes of underperformance. Inadequate
evaluation may result in the model failing to meet essential business
requirements.

. Draw Conclusion: The final step involves analyzing the performance
metrics and drawing conclusions to address the original research ques-
tions. This analysis helps determine whether the initial research goals
have been met and informs the next steps for future research directions.
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We chose this method to develop new algorithms and frameworks aimed at
addressing the challenges related to Federated Learning and Reinforcement
Learning faced by companies in the embedded systems domain. Addition-
ally, we validated these proposed approaches using empirical scenarios and
datasets. This methodology enables us to acquire in-depth practical knowl-
edge about deploying Federated Learning in real-world contexts.

3.4 Research Design

This section outlines the planning of our research, focusing on the identifi-
cation of challenges within Federated Learning and Reinforcement Learning
systems, as well as the barriers organizations face in integrating these compo-
nents into their embedded systems. Aligned with our research questions, we
first examine how FL and RL can be effectively engineered to enhance data pri-
vacy, reduce communication costs, and ensure model accuracy (RQ1). Next,
we investigate architectural frameworks that can optimize scalability and per-
formance in edge computing environments, and assess how these frameworks
influence model training efficiency (RQ2). Lastly, we explore how the inte-
gration of FL. and RL methods can improve the adaptability and efficiency
of embedded systems in dynamic environments (RQ3). The research is struc-
tured into two main phases: Problem Identification and Solution Proposal
and Validation. An overview of the research activities within these phases is
presented in Table 3.1 and a mapping of research questions, activities, and
papers is illustrated in Figure 3.2.

3.4.1 Problem Identification

The first phase focuses on identifying challenges and gathering insights regard-
ing the current Federated Learning and Reinforcement Learning systems. To
begin, a comprehensive literature review was conducted to establish a foun-
dational understanding of existing research and applications in this domain.
This review helped us formulate our first and second research questions, offer-
ing clarity on the current state of FL and RL systems and their applications.
We posed critical questions such as, "What are the primary advantages of im-
plementing machine learning methods in edge embedded systems?" and "What
are the main obstacles and limitations of existing systems?"
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Table 3.1: Overview of the research activities

Data Collection

Wmmmgor Research Research and Evaluation Case . Humwﬁomwmsdm
Phase Questions Objectives Methods Companies Role
.Eoé can Hum.mmam;mm .bmmw:- To identify the chal- Literature Emmﬁ of Auto-
ing be effectively engineered . . mation and Al
. lenges of the tradi- Review,
and deployed in embedded . . AT Systems
Problem . | tional machine learn- Case Study .
. . systems to enhance data pri- | . . . Ericsson Developer,
Identification . ing workflow and the with semi
vacy, reduce communication Data and
benefits of Federated -structured .
costs, and ensure model ac- . . . Analytic Manager,
Learning interviews
curacy? etc
What architectural frame-
works for Federated Learn-
ing can optimize scalability
. d fi i d . .
Solution anc perlormance m edge | p, propose Case Studies Volvo Cars, Senior Data
computing environments, . . . . . C
Proposal and . solutions and with simulation Scania, Scientist,
Sy and how do these archi- . . . . .
Validation . validate algorithm or experiments Ericsson Analytic System
tectures influence model .
frameworks on Architect,

training efficiency?

How can Federated Learning
and Reinforcement Learning
methods enhance the adapt-
ability and efficiency of em-
bedded systems in dynamic
environments?

empirical datasets

Data engineer,
Software Developer,
etc
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To dive deeper into the barriers hindering industrial implementation of FL
and RL components, we selected Ericsson as our exploratory case company.
An interview-based case study was conducted involving ten experienced engi-
neers from Ericsson, which is actively seeking ways to ensure consistent service
quality for its large-scale and distributed customer base. This company was
chosen due to its extensive experience and its exploration of the potential
applications of both FL. and RL.

During the study, we identified the specific challenges companies face when
deploying FL and RL in an industrial setting. Data was primarily collected
through semi-structured interviews with practitioners at Ericsson who are
involved in designing or utilizing machine learning applications, particularly
those engaged in data engineering or with expertise in both FL. and RL. Draw-
ing from their professional experiences, these practitioners provided insights
into the issues they encounter with traditional machine learning workflows
and shared their perspectives on how FL and RL could serve as solutions for
future intelligent industrial applications.

Additionally, we examined the potential benefits and challenges of integrat-
ing FL and RL, alongside exploring how organizations in the embedded sys-
tems field could transition from conventional machine learning to incorporate
these advanced methods.

3.4.2 Solution Proposal and Validation

In the second phase, we built upon the conclusions and insights gathered from
the first phase to develop comprehensive solutions, analyses, and validations
aimed at assisting companies in integrating Federated Learning and Reinforce-
ment Learning components into their systems. This stage was essential for
translating theoretical understanding into practical applications that address
the challenges identified in the previous phase.

We engaged in a thorough examination of various architectural designs that
could be employed in real-world industrial applications, focusing on how these
architectures can effectively mitigate the challenges associated with imple-
menting FL. and RL. Collaborating closely with industry leaders like Volvo
Cars and Scania allowed us to leverage their expertise and insights, ensuring
our solutions were grounded in practical realities. We organized weekly work-
shops to facilitate the exchange of knowledge, sharing our latest findings and
gathering valuable feedback from senior data scientists, Al system developers,
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and architects. This iterative process fostered an environment of collabora-
tion, ensuring that our work was relevant and directly applicable to industry
needs.

In our analysis, we assessed the performance of different FL architectures,
summarizing their strengths and weaknesses. This involved detailed com-
parisons of how various designs could be deployed across different industrial
scenarios. By identifying architecture alternatives that align with specific
operational requirements, we provided actionable insights that organizations
could use to tailor their approaches to FL and RL integration.

To tackle real-time deployment challenges, we developed an innovative asyn-
chronous aggregation protocol. This protocol is particularly beneficial in envi-
ronments characterized by diverse hardware settings, as it allows for flexibility
and adaptability in the deployment of FL systems. It enhances the robust-
ness of the learning process by ensuring that model updates can be aggregated
efficiently, even when devices have varying computational capabilities or con-
nectivity issues.

Furthermore, we explored methodologies to combine the asynchronous Fed-
erated Learning algorithm with several established machine learning tech-
niques. This approach not only increased the efficiency of model learning
but also minimized communication overhead, a critical concern in federated
settings where bandwidth may be limited. By refining the sharing method,
we were able to optimize the performance of FL systems while reducing the
resource demands on edge devices.

All proposed solutions underwent rigorous validation using empirical datasets,
focusing particularly on high-impact use cases in the autonomous driving sec-
tor. This domain was chosen due to its complex requirements and the critical
need for robust, scalable machine learning solutions. Through our validations,
we demonstrated the practicality and effectiveness of our strategies, provid-
ing clear evidence of how FL and RL can drive significant advancements in
embedded systems.

The second phase of our research not only aimed to address theoretical
gaps but also to create practical solutions that can be readily implemented in
real-world contexts, ultimately contributing to the advancement of Federated
Learning and Reinforcement Learning applications in the embedded systems
domain.
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Table 3.3: Overview of activities during the case study combined with the simulation experiments

Duration

Activities

Details

Reflection

1 week

Presentation of Federated
Learning and Reinforcement
Learning results during the
company workshop

Feedback from the wvarious
teams in Volvo Cars, Scania,
Ericsson

Participants confirmed the con-
cept of Federated Learning, Re-
inforcement Learning and po-
tential applications in their
fields and the challenges they
encountered

1 week

Initiating meeting

Discussion with managers in
Volvo Cars, Scania and Steering
committee at Software Center

Project approval

1 week

Project plan meeting with
the key participants from
Volvo Cars and Scania

Identification of the problems
they encountered and possible
solutions, framework, architec-
ture

Come up with a project plan
and possible outcomes

2 week

Data and case description
meeting

Description of the data and
cases that were going on in the
companies

Decision on the simulation data,
cases and platforms

3-4 months

Weekly presentation to up-
date the progress and collect
feedback

16 Follow-up meetings with
Volvo Cars, Scania, Ericsson
Participants

Analysing the simulation results
and share the algorithm, frame-
works regarding the solution of
Federated Learning

1 week

Conduct a reporting work-
shop to give a final presen-
tation of the result

Follow-up workshop at Volvo
Cars, Scania, Ericsson

Identification of the current re-
sults and the potential improve-
ments for future research
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3.5 Industrial Collaboration

This research was carried out through a close partnership between academia
and industry, facilitated by the Software Center [93]. The Software Center is
a collaborative research initiative comprising 15 enterprises and 5 academic
institutions, dedicated to enhancing the digitalization capabilities of Europe’s
software-intensive industries. Companies within the embedded systems sector
are particularly interested in effectively integrating Al, specifically machine
learning and deep learning, into their systems to accelerate digitization and
enhance service quality.

Throughout the project, the Software Center organized various seminars
and workshops aimed at bridging the gap between researchers and industry
practitioners, thereby deepening our understanding of the challenges faced by
companies in the embedded systems domain. Our research involved collabora-
tion with several organizations from the Software Center, including Ericsson,
Scania, and Volvo, to explore the difficulties they encounter when utilizing
machine learning methods and how Federated Learning could address these
challenges.

Through the case study approach, we gained insights into deploying Feder-
ated Learning and Reinforcement Learning components in real-world contexts,
along with the specific considerations engineers must take into account. In the
problem identification phase, we worked closely with Ericsson to pinpoint the
challenges faced by companies, as well as the limitations and constraints asso-
ciated with Federated Learning. This involved conducting ten semi-structured
interviews with a diverse group of professionals, including four experienced
machine learning engineers, three data experts, two project managers, and
one analytics architect. During these interviews, we discussed the problems,
potential solutions, and necessary enhancements for the practical implemen-
tation of Federated Learning.

To further enrich our understanding, we organized eight follow-up meetings
with participants from Ericsson to analyze the data collected and discuss
insights regarding the Federated Learning solution. The culmination of this
phase was a reporting workshop where we presented our findings.

In the subsequent solution development and validation phase, we collab-
orated with Volvo Cars and Scania to validate our proposed solutions, algo-
rithms, and frameworks through real-world automotive case studies. Through-
out this phase, we held 16 follow-up meetings with representatives from Volvo
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Cars and Scania, which included six machine learning experts and two project
managers. These meetings facilitated discussions on simulation results and the
sharing of algorithms and frameworks for the Federated Learning solutions.
The final stage involved a reporting workshop to present the data, highlight
current findings, and recommend improvements for future research.

The activities undertaken during the case studies, interviews, and simula-
tion experiments in collaboration with these companies are detailed in Tables
3.3 and 3.2.

3.6 Threats to Validity

3.6.1 Construct validity

Construct validity pertains to the extent to which the empirical results reflect
the intended constructs of the study. While the findings presented in this the-
sis are inherently subjective, as they are based on the experiences of selected
participants, the depth of insights is bolstered by the extensive expertise of
these professionals. Consequently, the conclusions drawn are primarily ap-
plicable to the specific domain and scenarios explored in this research [94].
However, the ideas and outcomes may also hold relevance beyond the im-
mediate context. The authors and participants involved possess significant
experience in machine learning, Federated Learning, and data engineering,
which strengthens the credibility of the findings. Additionally, in instances
where industry-specific jargon or specialized terminology might be unclear,
the authors, drawing on their dual expertise in academia and industry, were
able to clarify and contextualize these concepts. Therefore, the risk of con-
struct validity threats is minimized.

3.6.2 Conclusion validity

Conclusion validity concerns the accuracy of the inferences drawn from the
data regarding the relationships between variables [95], [96]. To safeguard
against threats to conclusion validity, several strategies were implemented
throughout the study. First, potential biases arising from researchers’ precon-
ceived notions or similar findings in existing literature were actively mitigated.
In the second phase of research, data were gathered from multiple sources, in-
cluding documentation and simulations, in addition to the interviews and lit-
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erature reviews. This triangulation of data formats helped to reduce bias that
could arise from reliance on a single data collection method. Furthermore, the
Software Center facilitated workshops and seminars where the findings were
presented and discussed with participants from the case companies. These
sessions were instrumental in validating the results, ensuring that interpreta-
tions were accurate and comprehensive. Overall, feedback from participants
overwhelmingly confirmed the findings.

3.6.3 Internal validity

Internal validity refers to the degree to which the study’s design and method-
ology support a causal relationship between the observed variables, minimiz-
ing the influence of confounding factors [96]. To enhance internal validity in
this research, several key measures were adopted. First, participant selection
was carefully controlled, ensuring that all individuals involved had extensive,
relevant experience in machine learning, Federated Learning, and embedded
systems. This selective approach aimed to reduce variability stemming from
differences in participant expertise, thereby strengthening the reliability of
the findings. Additionally, data collection methods, such as semi-structured
interviews and simulation experiments, were standardized to prevent incon-
sistencies that might otherwise affect the results.

The study’s iterative approach further supported internal validity by refin-
ing the research design at each phase based on feedback from workshops and
validation sessions held with case company stakeholders. These sessions pro-
vided an opportunity to clarify ambiguous findings, address potential miscon-
ceptions, and confirm that conclusions accurately reflected the participants’
experiences. Moreover, data triangulation from multiple sources, documenta-
tion, simulations, and participant feedback, helped ensure that interpretations
were well-founded and that potential confounding factors were systematically
addressed. Thus, these combined measures helped to limit threats to internal
validity and strengthen the study’s internal coherence.

3.6.4 External validity

External validity relates to the extent to which the findings can be generalized
beyond the specific context of the study. This research involved close collab-
oration with multiple companies, and data were collected from participants
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across various teams and domains, with simulations conducted on diverse in-
dustrial cases. Terminology used within the companies was standardized, and
the implementation details were thoroughly documented [97]. Nonetheless,
given the focus on embedded systems, caution must be exercised in generaliz-
ing these results to the broader industry. That said, the authors believe that
there are significant parallels between the case studies presented and other
organizations operating in regulated fields, suggesting potential applicability
of the findings in similar contexts.

3.7 Summary

In this chapter, we outlined the research methodology employed to explore
the role of Federated Learning and Reinforcement Learning in enhancing the
adaptability, scalability, and privacy of embedded systems in edge comput-
ing environments. The research was structured around three core objectives:
(1) Engineering and deploying FL for improved privacy and communication
efficiency, (2) Developing scalable architectures for FL, and (3) Enhancing
system adaptability and efficiency using approaches with FL. and RL.

To address these objectives, we utilized a mixed-methods approach, combin-
ing literature reviews, case studies, and empirical experiments. We conducted
nine studies that serve as the foundation of this thesis, with each paper con-
tributing uniquely to the research questions posed. The first set of papers
focused on the design and deployment of Federated Learning systems in real-
world contexts, providing insights into how FL can be engineered to enhance
privacy and reduce data transmission costs. The second set explored the
architectural frameworks required to scale FL in dynamic environments, as-
sessing their impact on performance and model training efficiency. The final
set examined how FL and RL can work in terms of enabling adaptive, effi-
cient systems capable of learning and responding to real-time environmental
changes. A mapping between the research objectives, research questions, and
the papers reviewed was established, ensuring that each study fills a specific
role in addressing the challenges within embedded systems domain.
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CHAPTER 4

Contributions of this thesis

In this chapter, we describe the key objectives that form the core contribu-
tions of this thesis, showing how they address the primary research questions.
Following this, we provide a summary of each included publication, outlining
the methods employed and the main results achieved.

4.1 Overview

Objective 1: Engineering and Deploying Federated Learning for
Enhanced Privacy and Efficiency

The first key objective of this thesis is to design and implement Federated
Learning systems in embedded environments to address key challenges such
as data privacy, communication efficiency, and model accuracy. This objective
responds to RQ1, which focuses on how FL can be effectively engineered and
deployed to meet these critical requirements.

Papers A and B provide a foundational understanding of how FL systems
can be structured and adapted for real-world applications. Paper A offers a
comprehensive review of the engineering challenges and solutions in deploying
FL, highlighting its advantages in maintaining data privacy by keeping sen-
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sitive information local to the device. Paper B takes a case-study approach
within the telecommunications domain, where semi-structured interviews re-
veal the practical concerns and opportunities industries face when transition-
ing to FL systems.

To further address the issue of model accuracy and communication effi-
ciency, Papers D and E introduce asynchronous model aggregation methods.
These methods allow local models to be updated and aggregated at different
times, thereby reducing communication overhead and allowing the models to
better adapt to the local data. By implementing these strategies, FL can sig-
nificantly reduce data transmission and storage costs while maintaining high
levels of model accuracy. This makes FL a powerful tool for embedded systems
where data privacy and limited resources are key constraints.

Through this objective, the thesis shows that FL can be effectively engi-
neered to address the critical concerns of data privacy, communication ef-
ficiency, and model performance in embedded systems, making it a viable
solution for real-world applications with stringent privacy and resource re-
quirements.

Objective 2: Developing Scalable Federated Learning Architectures
The second key objective is to develop scalable architectural frameworks for
Federated Learning that optimize both performance and resource management
in edge computing environments. This objective corresponds to RQ2, which
seeks to understand how different FL architectures can improve scalability,
performance, and model training efficiency in real-world scenarios.

Paper C provides a comparative analysis of several architectural frame-
works, including centralized, decentralized, regional, and hierarchical approach-
es. Each of these architectures offers different trade-offs in terms of scalability,
communication overhead, and fault tolerance. The decentralized architecture,
for example, eliminates the need for a central server, thereby reducing bottle-
necks and improving fault tolerance. This approach enhances the scalability
of the system by allowing more edge devices to participate in model training
without overwhelming a single point of failure.

Paper I introduces the EdgeFL framework, which builds on these architec-
tural principles by proposing a decentralized approach that also minimizes
the coordination overhead associated with FL. EdgeFL allows more efficient
coordination between edge devices, further improving the scalability and per-

44



4.1 Overview

formance of FL in resource-constrained environments. Together, these papers
emphasize the importance of choosing the right architecture to balance com-
munication costs, training efficiency, and system scalability.

By focusing on scalable architectural designs, this thesis contributes to the
growing field of FL, providing insights into how different frameworks can be
implemented to handle the demands of large-scale, real-world edge computing
environments. This makes FL a more practical and efficient tool for industries
that rely on distributed systems.

Objective 3: Enhancing System Adaptability and Efficiency with
Federated and Reinforcement Learning

The third key objective is to explore how the integration of Federated Learn-
ing and Reinforcement Learning can enhance the adaptability and efficiency
of embedded systems operating in dynamic environments. This directly ad-
dresses RQ3, which focuses on how these two learning approaches can be used
to improve system performance in scenarios where environmental conditions
are constantly changing.

Papers F, G, and H propose the application of RL in dynamic, real-time en-
vironments, particularly in the telecommunications and autonomous systems
sectors. For example, Paper G illustrates how deep Reinforcement Learn-
ing can be applied to optimize network configurations in rapidly changing
environments, ensuring that the system adapts to shifting demands in real
time. This adaptability is critical in scenarios such as autonomous vehicles
or telecommunications systems, where conditions can change suddenly, and
systems must respond immediately to maintain performance.

Paper H extends this concept by applying RL to UAV-based communi-
cation networks, demonstrating how RL can autonomously configure system
operations to maintain optimal performance. Meanwhile, Paper F presents a
case study on how deep RL methods can enable dynamic decision-making in
unpredictable environments, such as emergencies or high-traffic situations.

Paper D, E also contributes to this objective by showing how asynchronous
FL techniques allow for real-time updates and more flexible system behavior
in response to changing conditions. Asynchronous learning helps embedded
systems adapt more quickly to local data changes without requiring constant
coordination with a central server.

This thesis demonstrates how these two methods can significantly enhance
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the adaptability and operational efficiency of embedded systems. FL ensures
that systems can learn from distributed data sources without compromising
privacy, while RL enables the systems to make autonomous decisions in real
time. This integrated approach creates a powerful framework for building
intelligent systems capable of responding to complex, dynamic environments.
A mapping of research objectives, research questions, and output papers is
illustrated in Figure 4.1.

4.2 Included publications

4.2.1 Paper A: Engineering Federated Learning Systems: A
Literature Review

4.2.1.1 Summary

This paper provides a comprehensive review of Federated Learning systems,
focusing on their role in distributed edge environments. It emphasizes how FL
enhances data privacy by keeping user data localized and reduces communica-
tion costs by training models directly on edge devices. The paper categorizes
existing FL implementations across various domains and highlights key chal-
lenges such as system scalability, model accuracy, and resource limitations. It
concludes by proposing several open research questions in the field.

4.2.1.2 Research Method

A literature review is conducted, analyzing numerous case studies and aca-
demic papers on Federated Learning. The review spans multiple fields, from
telecommunications to healthcare, examining FL’s deployment across differ-
ent sectors. This methodology involved categorizing solutions based on archi-
tecture, privacy mechanisms, and communication strategies. Additionally, a
comparative analysis of FL’s advantages and limitations was performed.

4.2.1.3 Main Results

The literature review identified common challenges faced by FL systems, such
as model heterogeneity and data distribution discrepancies. It also pointed out
the need for more standardized benchmarks in FL research. Key contributions
include a detailed categorization of FL use cases and a proposal for future
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research directions, including the development of more efficient aggregation
algorithms and frameworks tailored to specific industries.

4.2.2 Paper B: Towards Federated Learning: A Case Study
in the Telecommunication Domain

4.2.2.1 Summary

This paper presents a case study investigating the adoption of Federated
Learning in the telecommunications industry. The study explores the rea-
sons why businesses see FL as promising and identifies the key services that
an effective FL system must offer. It also highlights the difficulties indus-
tries encounter in transitioning to FL and suggests practical guidelines for
implementing reliable FL systems.

4.2.2.2 Research Method

The paper utilizes a semi-structured interview methodology to gather insights
from various companies in the telecommunications industry. Interviews were
conducted with stakeholders involved in decision-making processes related to
the adoption of FL. The qualitative data gathered from these interviews were
analyzed to identify common trends, barriers, and motivations behind FL im-
plementation. The research focused on understanding how businesses perceive
FL’s potential and what obstacles they face in adopting it.

4.2.2.3 Main Results

The case study revealed that companies are attracted to Federated Learning
due to its potential to reduce data privacy concerns and improve efficiency
by processing data locally on edge devices. However, many struggle with in-
tegrating FL. components into existing systems due to technical complexities
and the lack of standardized frameworks. The study identified five key cri-
teria necessary for successfully deploying FL in industrial settings, including
scalability, model accuracy, and system compatibility.
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4.2.3 Paper C: Federated Learning Systems: Architecture
Alternatives

4.2.3.1 Summary

This paper explores various architectural alternatives for Federated Learning
systems, comparing centralized, hierarchical, regional, and fully decentralized
approaches. It discusses the trade-offs involved in each architecture and pro-
vides insights into how system performance, scalability, and fault tolerance
can be optimized depending on the chosen framework.

4.2.3.2 Research Method

We performed a comprehensive analysis of different FL system architectures,
using simulation-based models to compare their performance under varying
conditions, such as communication latency, edge device capabilities, and data
distribution. The architectures were tested in environments that mimic real-
world constraints like limited bandwidth and device heterogeneity.

4.2.3.3 Main Results

The study found that decentralized FL architectures tend to provide better
scalability and fault tolerance compared to centralized and hierarchical al-
ternatives. However, there are trade-offs in terms of communication latency
and model accuracy. For example, while fully decentralized systems reduce
bottlenecks and single points of failure, they sometimes suffer from delayed
convergence. The results suggest that hybrid architectures, which balance
decentralization with some form of hierarchy, may provide the best of both
worlds for most edge computing environments.

4.2.4 Paper D: Real-Time End-to-End Federated Learning:
An Automotive Case Study

4.2.4.1 Summary

This paper examines the application of real-time end-to-end Federated Learn-
ing in the automotive sector, focusing on the use of connected vehicles for au-
tonomous driving systems. The study showcases how FL can enable vehicles

49



Chapter 4 Contributions of this thesis

to continuously learn and adapt to new driving conditions without compro-
mising data privacy, by keeping data localized to each vehicle.

4.2.4.2 Research Method

The methodology involved implementing a Federated Learning system in an
automotive testbed. The system was deployed in autonomous vehicles where
each vehicle trained its local model using real-time sensor data. The models
were then asynchronously aggregated without interrupting vehicle operation.
Metrics for accuracy and latency were collected to compare with a traditional
centralized model.

4.2.4.3 Main Results

The results demonstrated that FL could effectively enable vehicles to learn au-
tonomously while significantly reducing the need for continuous data uploads
to the cloud. The global model, regularly updated with contributions from in-
dividual vehicles, was able to maintain high accuracy in detecting objects and
navigating under changing conditions. However, the study also highlighted
challenges related to network latency and model synchronization, suggesting
the need for future research into optimizing communication protocols for real-
time applications.

4.2.5 Paper E: Asynchronous Federated Learning of Deep
Neural Decision Forests

4.2.5.1 Summary

This paper focuses on the development of an asynchronous Federated Learning
model using Deep Neural Decision Forests (DNDFs). It proposes a solution to
improve learning efficiency by allowing participants in the FL system to up-
date their local models asynchronously, rather than waiting for synchronized
updates from all nodes.

4.2.5.2 Research Method

The proposed algorithm was implemented in a real-world automotive system,
where decision trees were used to classify sensor data. The learning process
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was distributed across several autonomous vehicles, each training its model
locally. Asynchronous updates were aggregated in a federated manner. Met-
rics on communication overhead, classification accuracy, and computational
efficiency were collected and analyzed.

4.2.5.3 Main Results

The asynchronous approach demonstrated a significant improvement in com-
munication efficiency, as devices no longer had to wait for all participants to
synchronize updates. This led to faster convergence times without a notable
loss in model accuracy. The results suggest that asynchronous FL models
could be particularly beneficial in dynamic environments where devices have
varying connectivity or computational power, making them a strong candidate
for real-time applications.

4.2.6 Paper F: Autonomous Navigation and Configuration of
Integrated Access Backhauling for UAV Base Station
Using Reinforcement Learning

4.2.6.1 Summary

This paper explores the use of Reinforcement Learning for autonomous navi-
gation and configuration of Unmanned Aerial Vehicles (UAVs) functioning as
base stations in a 5G network. The study demonstrates how RL can enable
UAVs to dynamically adapt to changing network conditions and user demands,
optimizing their positioning and resource allocation.

4.2.6.2 Research Method

A Reinforcement Learning model was trained using simulated data from UAV
deployments. The algorithm was tasked with adjusting UAV positioning and
configurations to optimize communication under various network load con-
ditions. The model’s performance was validated through simulations that
represented emergency communication scenarios.
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4.2.6.3 Main Results

The results showed that the RL algorithm allowed UAVs to efficiently manage
network traffic and respond to changes in user density and network congestion.
The system significantly reduced network latency and improved overall con-
nectivity in the simulation. The study concluded that RL-based approaches
are promising for future dynamic and flexible 5G networks, where UAVs can
play a crucial role in maintaining high-quality service in challenging environ-
ments.

4.2.7 Paper G: Deep Reinforcement Learning in a Dynamic
Environment: A Case Study in the Telecommunication
Industry

4.2.7.1 Summary

This paper presents a case study that examines the use of Deep Reinforcement
Learning in dynamic environments within the telecommunication industry.
The study focuses on how DRL can help optimize resource management and
service delivery in situations where network conditions and user demands are
constantly changing.

4.2.7.2 Research Method

The case study used a simulated telecommunication network with fluctuating
traffic loads and user mobility patterns. A DRL algorithm was employed to
manage network resources dynamically, with the goal of minimizing service
disruption and maximizing resource utilization. The system was evaluated
based on performance metrics like latency, throughput, and service quality.

4.2.7.3 Main Results

The study found that DRL significantly improved network performance by
enabling the system to adapt in real-time to changes in traffic and user be-
havior. The DRL model outperformed traditional optimization techniques,
achieving lower latency and higher resource efficiency. The paper concludes
that DRL can be a key enabler for telecommunication companies looking to
build more responsive and adaptable networks.
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4.2.8 Paper H: 5G Network on Wings: A Deep
Reinforcement Learning Approach to the UAV-Based
Integrated Access and Backhaul

4.2.8.1 Summary

This paper introduces a novel application of Deep Reinforcement Learning
to UAV-based integrated access and backhaul (IAB) systems in 5G networks.
The goal is to demonstrate how DRL can enhance the performance of UAVs in
maintaining network coverage and optimizing backhaul capacity in dynamic
and challenging environments.

4.2.8.2 Research Method

A DRL algorithm was implemented to allow UAVs to autonomously adjust
their positions and resource allocations in a simulated 5G TAB network. The
algorithm was tested in scenarios involving fluctuating user demands and vary-
ing levels of network congestion. Performance was measured in terms of net-
work coverage, latency, and backhaul capacity.

4.2.8.3 Main Results

The results showed that DRL-enabled UAVs could effectively maintain net-
work connectivity and optimize backhaul resources in real-time, even under
challenging conditions. The study found that this approach not only improved
network coverage but also reduced latency and enhanced overall service qual-
ity. The findings suggest that DRL can be a powerful tool for managing
complex 5G networks in the future.

4.2.9 Paper I: Enabling Efficient and Low-Effort
Decentralized Federated Learning with the EdgeFL
Framework

4.2.9.1 Summary

This paper introduces the EdgeFL framework, a decentralized approach to
Federated Learning designed to reduce complexity and improve efficiency in
edge computing environments. The framework aims to minimize the technical
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overhead required to deploy FL while maintaining high model accuracy and
scalability.

4.2.9.2 Research Method

EdgeFL was deployed in a distributed network of edge devices. The framework
was tested in various edge computing scenarios, where multiple devices with
limited computational resources participated in training a global model. The
framework’s performance was evaluated by measuring communication over-
head, model accuracy, and ease of deployment in different edge environments.

4.2.9.3 Main Results

The study found that EdgeFL successfully reduced the complexity of deploy-
ing FL in decentralized environments. It achieved high model accuracy with
minimal communication overhead, making it ideal for low-power edge devices.
The results suggest that EdgeFL could enable wider adoption of FL in indus-
trial and IoT applications by lowering the barriers to entry for businesses.

4.3 Summary

In this chapter, the primary contributions of the thesis are presented, struc-
tured around three key objectives. The first objective focuses on engineering
Federated Learning systems that enhance data privacy, communication effi-
ciency, and model accuracy in embedded environments. Through papers A, B,
D, and E, the thesis demonstrates how FL can be effectively deployed in real-
world applications by leveraging asynchronous model aggregation methods
to improve system performance and privacy. The second objective, outlined
in papers C and I, explores scalable architectural frameworks for FL, com-
paring different approaches and emphasizing the importance of decentralized
architectures in improving scalability and fault tolerance in edge computing
environments.

The third objective combines Federated Learning and Reinforcement Learn-
ing to improve the adaptability and performance of embedded systems in
changing environments. Papers F, G, and H showcase how RL supports
autonomous decision-making and real-time system adjustments in fields like
telecommunications, while papers D and E highlight the use of FL in au-
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tonomous vehicles within the automotive industry. This thesis advances the
integration of FL and RL, offering a framework for creating intelligent, effi-
cient, and adaptive embedded systems that can respond to complex, dynamic
scenarios.
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CHAPTER b

Engineering Federated Learning Systems:
A Literature Review

This chapter has earlier been published as

Engineering Federated Learning Systems: A Literature Review
Zhang H., Bosch J. and Holmstrém Olsson H.

In International Conference on Software Business (pp. 210-218). Springer,
Cham.

Nowadays, the development of mobile devices, connected vehicles, and data
collection sensors has brought explosive growth of data, which highly power
the traditional Machine Learning methods [98]. However, those common
methods usually require centralized model training by storing data in a single
machine or a central cloud data center, which leads to many problems such
as data privacy, computation efficiency [99], etc.

Due to the development of computing and storage capabilities of distributed
edge devices, using increased computing power on the edge becomes an ap-
plicable solution [100]. In a Federated Learning system, local model training
is applied and data created by edge devices do not need to be exchanged.
Instead, weight updates are sent to a central aggregation server to generate
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a global model. The system solves the problem that models in a traditional
Machine Learning approach can only be trained and delivered on a single cen-
tral server. The theory of Federated Learning has been explored in [101][102].
After the concept was first applied by Google in 2017 [103], there have been
several Federated Learning architectures, frameworks and solutions proposed
to solve real-world issues.

The contribution of this paper is threefold. First, we provide a state-of-art
literature review within the area of Federated Learning systems. We identify
and categorize existing literature into different application domains according
to the problems expressed and solved. Based on the challenges and limitations
identified in our literature review, we propose six open research questions for
future research. This review can recommend a new option for industries and
AT software engineer to solve the problems of traditional AI/ML systems,
like expensive training equipment, computation efficiency, data privacy, etc.
Furthermore, the difficulties are pointed out in this review when deploying
the Federated Learning components into real systems.

This paper is structured as follows. In section 5.1, we describe the research
method we applied. In section 5.2, we summarize the results from the liter-
ature review. In section 5.3, we outline the challenges of current Federated
Learning systems. Finally, we conclude the paper in section 5.4.

5.1 Research Method

This research is conducted following the guidelines presented by Kitchenham
[104]. The purpose of our review is to present an overview of contemporary
research on the empirical results and solutions regarding Federated Learning
that has been reported in the existing literature. In this paper, we address
the following research questions:

¢ RQ1. What are the application domains where Federated Learning
technique is applied?

¢ RQ2. What are the existing Federated Learning systems as reported in
the published literature?

« RQ3. What are the main challenges and limitations identified in those
reported systems?
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5.1.1 Search Process

To provide a state-of-the-art literature review of Federated Learning in the
software engineering research domain, we searched papers from several high-
ranked journals/conferences. During our search process, in order to include
all the papers which are related to our research questions, we started by se-
lecting relevant terms, namely “Federated Learning”, “Distributed Learning”,
“Collaborative Learning” to cover all papers which are related to Federated
Learning and continued with “Case Study”, “Application”, “Solution” and
“Framework” to identify papers that report on empirical study results.

The journals that were included in our search process are top-ranked soft-
ware engineering and computer science journals such as IEEE Transactions on
Software Engineering (TSE), Communications of the ACM (CACM), Machine
Learning (JML), etc[105]. In addition, we used the same queries to search for
relevant conference papers and literature in the well-known libraries, such as
IEEE Xplore Digital Library, ACM Digital Library, Science Direct and Google
Scholar.

5.1.2 Inclusion and exclusion criteria

Each paper that matched the search criteria was reviewed by at least one of
the authors of this paper. During the selection, we firstly checked the key-
words and the abstract to only include papers within Federated Learning field.
After that, we searched and analyzed the application scenario in the body of
the paper to identify the specific engineering problems solved by applying
Federated Learning. We only selected the papers that report on Federated
Learning with empirical results, e.g. Federated Learning on user action pre-
diction, wireless systems, health records, etc. In summary, we included the
paper where engineering Federated Learning systems are the main topic of
the paper.

5.1.3 Results of the Literature Search Process

This section summarizes the results of our literature search process. Although
there were about 253 different papers that initially matched the search criteria
entered in the search engines of the journals and conferences listed in section
5.1.1, we found only 28 papers satisfying the inclusion criteria we specified.
Those papers solve at least one engineering problem and present their empiri-
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cal findings/results in the abstract or in the body of the paper. Based on prob-
lems addressed and solved in each paper, we categorize them into six applica-
tion domains. In our search results, there are 4 papers ([106][107][108][109])
in telecommunication field, 6 papers ([103][110][111][112][113][114]) relates to
mobile applications, 4 papers ([115][116][117][118]) relates to automotive, 5
papers ([119][120][121][122][123]) in IoT and 4 papers ([124][125][126][127])
relates to medical solutions. The rest of the papers ([128][129][130][131][132])
are related to other fields like air quality monitoring, image-based geolocation
recognition, etc.

5.2 Existing Federated Learning Systems

In this section, and in accordance with the RQ2, we present the existing
Federated Learning systems reported in papers we selected. In the rest of the
section, in order to provide clear descriptions, we present each domain in more
details.

5.2.0.1 Telecommunication

A typical telecommunication system usually contains numerous components
and distributes to different places. In our results, most of the research focuses
on constructing an efficient learning framework for federated model training.
Wang et al. [106] define an “In-Edge AI” framework which enables intelligent
collaboration between devices and the aggregation server to exchange learning
parameters for better model training in energy and computation constraint
user equipments. Kang et al. [108] introduce reputation metrics for reliable
worker selection in mobile networks. The solution enhances system safety
while keeping the same prediction accuracy. Yang et al. [109] propose a novel
over-the-air computation based approach for fast global model aggregation via
exploring the super-position property of the wireless multiple-access channel,
which solves the problem of limited communication bandwidth in wireless
systems for aggregating the locally computed updates.

5.2.0.2 Mobile Applications

Because of the explosive growth of smartphones and the evolution of the
wireless network, a statistical Machine Learning model can significantly im-
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prove the mobile applications. However, due to the private data produced by
personal-owned mobile devices, data privacy and security is also an essential
topic in this domain. In order to apply Machine Learning techniques to hu-
man daily life, Yang et al. [103] and Ramaswamy et al. [110] apply Federated
Learning techniques on the Google Keyboard platform to improve virtual key-
board search suggestion quality and emoji prediction. Leroy et al. [112] con-
duct an empirical study for the "Hey Snips" wake word spotting by applying
Federated Learning techniques. Ammand et al. [113] implement a federated
collaborative filter for personalized recommendation system. Liu et al. [114]
propose “FedVision”, an online visual object detection platform, which is the
first computer vision application applied Federated Learning technique.

5.2.0.3 Automotive

Automotive is a prospective domain for Federated Learning applications. Sama-
rakoon et al. [115] suggest a distributed approach of joint transmit power and
resource allocation which enables low-latency communication in vehicular net-
works. The proposed method can reduce waiting queue length without addi-
tional power consumption and similar model prediction performance compared
to a centralized solution. Lu et al. [116] and Saputra et al. [117] evaluate
the failure battery and energy demand for the electronic vehicle (EV) on top
of Federated Learning. Their approaches show the effectiveness of privacy
serving, latency reduction and security protection. Zeng et al. [118] propose a
framework for combining Federated Learning algorithm within a UAV swarm.
The framework proves that it can reduce the number of communication rounds
needed for convergence compared to baseline approaches.

5.2.0.4 loT

Internet of Things is a distributed platform which contains numerous remote
sensors and devices. Different from the wireless system, devices within IoT are
power-constrained. In our search results, most research in this domain focuses
on data privacy and system efficiency problem. Zhou et al. [119] propose a
real-time data processing architecture of the Federated Learning system on
top of differential IoT. Zhao et al. [120] design an intelligent system which
utilizes customer data to predict client requirements and consumer behaviour
with Federated Learning techniques. However, the authors use the blockchain
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to replace the centralized aggregator in the traditional Federated Learning
system in order to enhance security and system robustness. Mills et al. [122]
design an advanced FedAvg algorithm which greatly reduces the number of
rounds to model convergence in IoT network. Savazzi et al. [123] present a
fully distributed or server-less learning approach in a massive IoT network.
The proposed distributed learning approach is validated in an IoT scenario
where a machine learning model is trained distributively to solve the problem
of body detection. Sada et al. [121] give a distributed video analytic archi-
tecture based on Federated Learning. It allows real-time distributed object
detection and privacy-preserving scheme for model updating.

5.2.0.5 Medical

Federated Learning has propelled to the forefront in investigations of this ap-
plication domain. Vepakomma et al. [124] propose “splitNN” which enables
local and central health entities to collaborate without sharing patient labels.
Huang et al. [125][127] present an approach of improving the efficiency of
Federated Learning on health records prediction. Brisimi et al. [126] give
an approach to a binary supervised classification problem to predict hospital-
izations for cardiac events on top of Federated Learning, which demonstrates
faster convergence and less communication overhead compared to traditional
machine learning approaches.

5.2.0.6 Other

In our research, we also identified some other application scenarios. Sozinov et
al. [131] evaluate federated learning for training a human activity recognition
classifier which can be applied to recognize human behaviour such as sitting,
standing, etc. Sprague et al. [130] gives a groundwork for deploying large-scale
federated learning as a tool to automatically learn, and continually update a
machine learning model that encodes location. Verma et al. [129] provide
strategies and results in building AI models using the concept of federated
AT across multiple agencies. Hu et al. [132] propose an inference framework
“Federated Region-Learning” to PM2.5 monitoring. The results demonstrate
the computational efficiency compared to the centralized training method.
Hao et al. [128] evaluate an efficient and privacy-enhanced Federated Learning
scheme for industrial AT solution.
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5.3 Discussion

In the previous section, we can observe that although Federated Learning is a
newly-emerging concept, it has the potential to accelerate the Machine Learn-
ing process, utilize the advantage of distributed computing and preserve user
privacy. However, there are several challenges and limitations associated with
the techniques identified and described in the literature review. One of the
biggest problems is the system failure tolerance, the majority of the Federated
Learning systems presented in our reviewed paper apply a centralized archi-
tecture where edge devices are directly connected to a single central server
and exchange model information. As [106] describe, this may make the sys-
tem face the risk of single-point failure and influence the service availability
of the learning system.

Furthermore, system efficiency is still a crucial problem for Federated Learn-
ing system. There are some proposed approaches to save computation power
and communication resources for Federated Learning systems [109][122][128].
However, the conclusion needs to be further verified in real-world industrial
deployments with the largely increased number of edge nodes. Besides, our
review also identifies challenges of the methods to separate training devices,
since systems reported in our reviewed papers usually utilize all the devices to
participate training, which leads to the waste of the computation resources.

In addition, model validation has to be further improved. Especially for
those safety-critical systems, such as automotive and medical applications
[127][116][126], the quality of the models in all edge devices should be guar-
anteed.

Besides, due to the increasing number of edge devices, the mechanism of
handling devices joining and leaving is one of the limitations in current Feder-
ated Learning systems. As [101] presents, the most common way is to simply
accept new drop broken connections. This may lead to further problems of
system performance such as model performance and model convergence.

Finally, although Federated Learning systems have the advantage of privacy-
preserving, systems still have to face the risk of various security issues such
as Denial-of-Service, malicious model updates, etc, which is also a major lim-
itation and future direction for Federated Learning systems [120].

According to these challenges, we then propose six open questions for future
research:
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1. How to guarantee continuous model training and deployment in an in-
dustrial Federated Learning system?

2. How to efficiently update model weights and deploy global models?
3. How to split edge device sets for model training and testing?
4. How to guarantee model performance on all edge devices?

5. How to handle devices leaving and joining in different industrial scenar-
ios?

6. How to protect Federated Learning systems from malicious attacks?

5.4 Conclusion

To stay competitive, more and more companies have introduced Al compo-
nents into their products. However, although machine learning methods can
improve software service quality, many companies struggle with how to mini-
mize the system training cost and a reliable way to preserve user data privacy.
Due to the model-only exchange and distributed learning features, Federated
Learning is one option to solve those challenges. In order to provide con-
crete knowledge of this kind of learning approach to the industry, in this
paper, we provide a literature review of the empirical results of Federated
Learning systems presented in the existing literature. Our research reveals
that there are several Federated Learning systems used for different applica-
tion scenarios. Those scenarios are categorized into six different application
domains: telecommunication, mobile applications, automotive, IoT, medical,
other. Also, we note that the emerging trend of applying Federated Learning
to mobile applications and identify several prospective domains. We summa-
rize our findings in this article that works as a support for researchers and
companies when selecting the appropriate technique. Furthermore, based on
the challenges and limitations of current Federated Learning systems, six open
research questions are presented.

In our future work, we plan to expand this review to include closely related,
and highly relevant research papers. Also, we plan to validate our findings
in the industry and explore the open research questions we propose in this

paper.

64



CHAPTER O

Towards Federated Learning: A Case Study in the
Telecommunication Domain

This chapter has earlier been published as

Towards Federated Learning: A Case Study in the Telecommunica-
tion Domain

Zhang H., Dakkak, A., Mattos, D.I., Bosch J. and Holmstrém Olsson H.

In International Conference on Software Business (pp. 238-253). Springer,
Cham.

Machine learning has steadily altered the way we live, learn, and work, with
significant advances in speech, image, and text recognition, as well as language
translation [98]. Large corporations like Google, Facebook, and Apple collect
massive amounts of training data from users in order to build large-scale deep
learning networks. However, while the utility of deep learning is clear, the
training data it employs can have major privacy implications: images and
videos of millions of people are collected centrally and stored indefinitely by
major organizations, and individuals have little influence over how the data is
used. Secondly, images and videos are likely to contain sensitive information
such as faces, license plates, computer screens, and other people’s conversa-
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tions [133]. Large companies have a monopoly on ““big data" and they could
reap enormous economic gains as a result.

It is known that as the amount of training data increases, the diversity and
performance of the models trained by machine learning will become better
[134]. However, in many fields, the sharing of personal data is not allowed
by regulations, such as GDPR [135]. Those regulations have put forward
clear requirements for privacy provisions, further improving the protection of
personal information. Therefore, researchers in related industries can only
analyze and mine data sets belonging to their own organizations. If a single
organization (e.g. a particular medical clinic) does not have a very large
amount of data and includes insufficient diversity, then by performing machine
learning on such a dataset, researchers may end up with a less generalized
model. In this case, the limitations of data privacy and confidentiality clearly
affect the effectiveness of machine learning.

On the other hand, with billions of edge devices connected worldwide, these
devices are able to generate large amounts of data. In traditional cloud com-
puting architectures, these data need to be centrally transferred to a cloud in-
frastructure for processing. The traditional method may increase the network
load and cause transmission congestion and delays in the data processing. In
order to solve those challenges, a new learning concept, Federated Learning,
has emerged. Federated Learning refers to the provision of computing and
storage services close to the source of things or data.

Although the concept of Federated Learning has significant benefits, it
is sometimes hard for industries and companies to build reliable Federated
Learning systems [136]. The contribution of this paper is threefold. We pro-
vide a case study in the context of a world-leading company with cutting
edge technology and advanced practices. The study identifies the reasons why
our case company considers Federated Learning as an applicable technique.
Furthermore, based on our results, we summarize the services that a com-
plete Federated Learning system needs to support in industrial scenarios and
identify the challenges that industries are attempting to solve when adopting
and transitioning to Federated Learning. Finally, we suggest 5 criteria for
companies who want to implement reliable Federated Learning systems.

This paper is structured as follows. Section 6.1 presents the background
of this study. In section 6.2, we describe the research method we applied
as our basic principle when searching and collecting data. In section 6.3,
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we summarize the results from the interviews. In section 6.4, we outline the
challenges and the criteria when realizing Federated Learning components into
industrial systems. Finally, we conclude the paper in section 6.5.

6.1 Background

Due to the rapid development of the computation capability of edge devices,
the integration of edge devices and machine learning has become more than
a hypothesis. Due to its characteristics, Federated Learning is proposed to
improve traditional Machine Learning approaches, as it enables edge devices
to collaboratively learn a shared Machine Learning model. The theory of
Federated Learning has been explored in [101][102]. Its major objective is to
learn a global statistical model from numerous edge devices.

With the concept first applied by Google in 2017 [103], there have been
several Federated Learning architectures, frameworks and solutions proposed
to solve real-world applications. In a Federated Learning system, multiple
devices work together in a collaborative manner to train predictive models.
Federal learning can be built on edge devices (e.g., smart phones, video surveil-
lance devices, etc.). Each edge node trains the machine learning model locally
and independently, and the global model is optimized and merged by a cen-
tral server (e.g., aggregation server). In the whole federation process, the
privacy data does not leave the data owner and does not need to be shared
with other nodes, which solves the problems of privacy and data security. In
summary, the advantage of applying Federated Learning is conspicuous. Due
to the mechanism of model training and data distribution, a Federated Learn-
ing system is a privacy-preserving Machine Learning approach. It is capable
to utilize local computation resources, ease the computation pressure of the
central server and provide rapid model evolution due to the local training
fashion

Because of the local training fashion, it is capable of utilizing local compute
resources, easing the computation load of central servers and providing rapid
model evolution [137].
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6.2 Research Methodology

The goals of this study were to explore the benefits for industries implementing
Federated Learning and identify the issues that industries are attempting to
solve when adopting and transitioning their machine learning components to
Federated Learning. These goals were translated into the following research
questions:

RQ1. What are the reasons that companies considers Federated Learning as
an applicable technique?

RQ2. What kinds of services a Federated Learning system needs to support
in the production environments?

RQ3. What are the main challenges and limitations when deploying Federated
Learning components into embedded systems?

To answer these research questions, we designed the research in collabora-
tion with Ericsson AB. This study built on a 6-month (Jan 2021 — July 2021)
case study and applied a case study approach. [138]. In this paper, we chose
a qualitative case study research approach since it allowed us to look at the
current situation with a number of people from a given domain and under-
stand a phenomenon in the industrial context in which it arises [139], [140].
In particular, case studies are considered appropriate for examining real-life
contexts, such as software development and technique evolution, where con-
trolling the context is not possible [141] and where there is a desire to access
the interpretations and expectations of people so that a particular context can
be richly understood [138]. Therefore, the high interdependence between the
industrial context, the benefits of implementing Federated Learning (RQ1),
required services (RQ2) and the faced challenges (RQ3) makes the case study
a suitable choice.

6.2.1 Data Collection and Analysis

We collected data primarily through semi-structured interviews with practi-
tioners who design or use machine learning applications, who involve heavily
in data engineering, or who are otherwise machine learning experts [81]. The
average interview length was around an hour. All of the interviews were
recorded, transcribed, and shared via the case company’s internal network.
Based on our interview protocol, we first asked participants to provide an
overview of their domain and the specifics related to the telecom industry.
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Then, we asked participants to provide their view regarding the machine
learning projects they were currently involved in, the challenges they faced
and the issues that the case company are attempting to solve when adopting
and transitioning their machine learning components to Federated Learning.
Finally, we asked the participants what they considered the key requirements
for building a reliable Federated Learning system.

In addition to the interviews, we collected internal materials to support
some of the interviews in addition to conducting interviews. These documents
were either shared by participants or were available on the internal network
as training, resources, or publications. The use of multiple data sources seeks
to present a more comprehensive picture and improve the accuracy of this
research [80].

The obtained data were processed using inductive thematic coding tech-
nique [142][140]. The authors acquainted themselves with the data by reading
and transcribing the interviews in the first phase. During the interviews, at
least two authors were present and took notes. After conducting all inter-
views, the contents were transcribed by the authors. In the second phase,
the authors developed the initial set of codes by emphasizing significant ob-
servations in relation to the study’s specified objectives. The initial set of
codes were individually created by three of the authors and then combined
later. The authors identified the primary themes in the third phase: machine
learning applications, barriers for the industry to implement Federated Learn-
ing components and move toward Federated Learning. The authors reviewed
these themes in connection to the retrieved codes and the entire data in the
fourth phase. The authors defined and named the themes in the context of
the appropriate material in the fifth phase. The final part entails the creation
of the report, which includes the selection of data and quotes, reflection on
current issues and the summary of methods that help companies step towards
Federated Learning.

6.2.2 Case Company

In this research, we worked in close collaboration with Ericsson. Ericsson is
one of the most well-known ICT (Information and Communication Technol-
ogy) suppliers to service providers. They help clients get the most out of
connectivity by creating game-changing technology and services that are easy
to use, adapt, and scale in a fully connected world. Due to large-scale and
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distributed customers, Ericsson is also seeking a way to deliver reliable service
quality to their customers. Since the company has board experience and tries
to investigate the possibility of implementing Federated Learning, we chose it
as our case company and try to identify the issues for companies to deploy
Federated Learning into an industrial context.

6.2.3 Use Cases and Participants

During the research, we studied three different use cases within Ericsson. As
we listed in Table 6.1, use case A refers to data collection and analysis. This
field is critical for machine learning as well as Federated Learning since the
quality and efficiency of the data collection procedure has a huge impact on
final model performance [143]. Use case B refers to system architecture design
and operation. Since Federated Learning is a distributed system, infrastruc-
ture design requires experience and careful consideration. Use case C refers to
machine learning project design, development and operation, which is highly
relevant to our topic and the experience from those practitioners is valuable
for constructing a Federated Learning system. In total, we interviewed 10
participants in 9 interviews. Participants were gathered through industry
contacts and were selected based on their relevance to the use cases involved
in this study. All participants were experienced architects, senior developers,
team leaders and development managers with at least eight years of experi-
ence, and most were also very experienced in data engineering and machine
learning application development. To maintain confidentiality, we referred to
the participants using labels P1 to P9, reflecting the interview numbers. As
there are several participants in a single interview, we give the label suffixes,
such as P7-1, P7-2. A summary of participants is listed in Table 6.1.

6.2.4 Threats to validity

The findings, like any case study, is primarily applicable to the domain and
situations that were studied in this research [94]. The insights and results
however, can be applicable and relevant also beyond the specific case at hand.
Furthermore, while the empirical results are subjective because they represent
the experiences of the chosen individuals, the possible scope of the results and
their applicability is enlarged due to the extensive experience of the profes-
sional participants.
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Table 6.1: Overview of the interviewees

Parti(];:;pant Role Use Case E)g){i;lf;ce
P1 Global Data Domain Expert A 30
P2 Data and Analytic Manager A 25
P3 Analytic System Architect B 13
P4 Analytic System Architect B 14
P5 Data and Analytic Technical Driver A 8
P6 New Products Operations Director B 25

P7-1 Machine Learning Project Manager C 30
P7-2 AT Systems Developer C 18
P8 Customer data collection expert A 28
P9 Head of Automation and Al C 17

As for the construct validity, both the authors and participants in this
case study have extensive machine learning, Federated Learning, and data
engineering experience. Furthermore, if structures with special nomenclature
within the industries or in academia were not understood, the authors with
experience in both could translate and demonstrate them. As a result, the
presence of dangers in the construct validity is not recognized.

In order to prevent threats to the validity of the conclusions, we took a
number of steps during the study. The first stage was to eliminate bias cre-
ated by individuals who had a similar point of view. To assist eliminate any
personal prejudice, participants from various roles in different project teams
were invited. The second stage was to gather data in the form of documen-
tation to supplement the information gained through interviews, which also
helped to avoid bias from being created by just collecting data in one format.
Finally, direct participant comment on the developing data was obtained to
assist validate the findings.
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6.3 Empirical findings: Towards Federated
Learning

6.3.1 Benefits of Implementing Federated Learning

As we observed in most of the companies, maintaining qualified service has
become more and more expensive with the exponentially increased number
of customers. One of the participants stated that their clients prefer to focus
more on their own strengths while leaving service monitoring and maintenance
to their device supplier.

“Customers want to focus on their strengths, such as marketing, bundling,

and selling. Ericsson will track SLA (Service Level Agreement) to ensure

that this network meets these KPIs and maintains SLA at these levels.” —
Interview P6, New Products Operations Director

However, with the trend of this situation, the challenge appeared. In order
to maintain and monitor a wide variety of equipment and traffic devices,
companies may need to put more resources on products maintenance and
troubleshooting, which turns out to be inefficient and inapplicable.

“It is not wise or feasible to have more people pumped in to monitor these

types of systems as traffic density rises. As a result, Al assistance is required.”
— Interview P2, Data and Analytics Manager

Our case company is a pioneer in the use of machine learning techniques in
its products. As additional improvements in performance and network opti-
mization are required for new demands from industrial applications, machine
learning may help reduce complexity, meet new technologies and case require-
ments, improve network performance and allow for network automation.

“We use machine learning in every aspect of a telecommunication network

you can think of, from the different use cases to the functions of creating a

mobile network. 7 — P7-1, Machine Learning System Project Manager

When it comes to Machine learning, data has become crucial to model
performance and service quality. In general, the addition of large amounts of
reliable data in industrial applications will significantly improve the learning
quality and prediction accuracy of machine learning. As described by the
participants:

“Customer issue: When it comes to machine learning, the right data is like
food to humans.” — PT7-1, Machine Learning System Project Manager
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Nevertheless, the development of machine learning techniques also raises
concerns about data privacy leaks when significant amounts of customer data
are transferred. With the improvement of regulations and the importance of
privacy protection, more constraints have been recognized:

“We also recognize the growing number of constraints on data movement,
such as those imposed not only by data sovereignty concerns, correct? So,
Norway, data stays in Norway, India said, our data stays here, and so on.

Again, more constrained geographies.” — P5, Data and Analytic Technical
Driver

In order to tackle those challenges, industries are trying to seeking a way
to both avoid large data transmission but continuously provide stable service.
One of our participants stated that with commonly applied learning strategies,
such as centralized learning, it is almost impossible to make a quick response
to large-scaled distributed customers when the characteristic of data has been
dramatically changed.

“It’s mearly impossible to respond quickly to large-scale customer changes
without a Federated setting.” — P9, Head of Automation and Al

6.3.2 Transition to Federated Learning

Federated Learning can be a potential solution to those challenges due to its
characteristics. Even though our participants agreed on the increasing inter-
est in developing Federated Learning components into an industrial context,
there are also issues that prevent companies adopt and transiting traditional
learning strategies to Federated Learning.

“We need to think about how we can bring data out in a clever way, and I

believe federated learning can help. Not only from radio base stations but also
from the center.” — P8, Customer Data Collection Expert

One of the problems is a systematic distributed management system. Es-
pecially when industries are trying to collect data and monitor service perfor-
mance from millions of network elements, it will become expensive and painful
to discover the error. The situation may become more crucial if an additional
function is added to edge devices, such as model training and validation.

“We don’t have anything in place to quickly identify, for this one network
element out of the million missed one file or wasn’t available. It’s extremely

expensive because it requires people to manually check the edge to see what is
going on.” — P3, Analytic System Architect
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In addition, the system architecture is another important issue that has
to be considered. Since in most of the scenarios, centralized data collection
architecture is still the major data pipeline and support for current machine
learning model development, as described by one of the participants, different
levels of closeness to the source can be gradually applied when trying to transit
current learning strategy to fully Federated Learning.

“The challenges I see are that there are different levels of closeness to the
source, the different levels may result in different costs of management and
transmission efficiency” — P4, Analytic System Architect

The technique to guarantee model performance is another key issue. The
models may require more capacity for generalization and automated learn-
ing iteration due to varied data features to accommodate rapidly changing
customer environments and decrease the risk of poor service.

“It’s critical for us to not only ensure model performance when it comes to
the inference phase in Federated Learning but also to point out what’s causing
the degradation if any, especially if you’ve made certain data or network
configuration changes in some nodes without informing the supplier.” —
P9, Head of Automation and AI

Even though there are many other steps to be taken in order before a
company transit to fully Federated Learning, our participants mentioned that
it’s a good time to consider now what kind of case studies it needs to be used
and how these types of capabilities can be moved to a network.

“When introducing federated learning, you need to think large, but you proba-
bly also need to identify these small steps because these are the most valuable
steps.” — P6, New Products Operations Director

There are three problems stated by one of our participants that we have
to consider before moving towards and migrating Federated Learning compo-
nents into embedded systems:

“What is the migration story there? How do you go about introducing this
new capability? What type of use cases is suitable for Federated Learning?”
— P6, New Products Operations Director

6.4 Discussion

6.4.1 Benefits

From the empirical data, we identify that there are two major reasons which
drive our case company to explore Federated Learning. One reason is the data
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privacy. As mentioned by our participants, Federated Learning may be one of
the optimal solution to solve data silos and avoid privacy leakage. Since our
case company has large amount of customers, the way of effectively integrating
and analysing data that are scattered in various places is one of their biggest
challenges. In the Federated Learning, as the data doesn’t leave the edge and
the analysts do not have direct access to the data, so the various data-related
problems mentioned above are resolved. The value contained in the data can
be exploited more effectively by the companies while still ensuring the data
security of their customers.

Another reason is that companies may be able to respond to customers more
quickly. Since Federated Learning can improve data collection and model
training efficiency, the learning strategy can assist companies in implementing
real-time functions to consume fresh customer data and adapt to environment
changes, resulting in better service quality and enhanced model performance
for their customers.

6.4.2 Learning Services

When conducting Federated Learning in actual production environment, we
must consider not only the coupling and stability of the system, but also the
business requirements with multiple data sources. Therefore, in order to cope
with complex business requirements for each component of the system, we
need to find a balance between flexibility and convenience. As mentioned by
one of our participants:

“For Federated Learning, a complete training service should support func-

tional features such as pre-checking, mid-term fault tolerance, full-cycle mon-

itoring, and traceability of the results.” — P9, Head of Automation and
AT

According to our empirical results, in Figure 6.1 we have summarized the
services that a complete Federated Learning system needs to support in in-
dustrial scenarios.

Communication services: Since communication is required between the end
customers, we must provide a gateway service to handle service routing and
expose the API interfaces to the outside world in order to reveal as little
information about our services to the other side as possible and to conveniently
invoke training services. All queries from external systems will be routed
through the gateway service for processing.
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Figure 6.1: Services that a complete Federated Learning system needs to support

Task registration and management service: Task registration and manage-
ment should be implemented to assure the service’s high availability. The
service information will be registered to the server when the service is started.
When a training request is sent to the gateway, the gateway will retrieve the
server’s available computing resources and finish the service invocation using
the defined load balancing policy.

Training Service: This service includes a metadata management component,
Federated Learning component, and a validation component. The metadata
management component will be in charge of keeping track of the progress of
each training task, as well as the operating status and configuration param-
eters. In contrast, the Federated Learning component is used to conduct the
numerous functions required during the distributed model training process.
The validation component will be in charge of validating the configuration
settings we submit as well as controlling model quality and performance.

Model management service: When the training task is finished, the training
service provides the trained model information to the model management
service, which then completes the distributed persistent storing, grouping,
and other processes.
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6.4.3 Challenges

Based on our empirical results, we derive the challenges for industries step-
ping towards Federated Learning. Figure 6.2 illustrates five challenges and
problems which a typical system may encounter, including components fail-
ures, inefficient communication, unstable model performance, large-scaled end
customers and incomplete system security.

6.4.3.1 Challenge 1 - Components failures

There are three main components in a typical Federated Learning system, in-
cluding an aggregation server, communication links and remote edge devices.
The architecture applied in current systems may often lead to significant bot-
tlenecks and inevitable single-point failure. The problem can destroy system
service stability and largely influence user experience. Furthermore, due to
a large amount of communication, the link between servers and edge devices
may be fully occupied or disconnected which results in unexpected information
drop. Nevertheless, local edge devices may suffer problems of non-reachable
server, program-stuck, high latency responses, etc.
“From the customer’s perspective, nobody wants to hear what’s going on in

their network in terms of failures and crashes.” — P3, Analytic System
Architect

Based on the characteristic of the Federated Learning technique, the prob-
lem of how to guarantee continuous federated model training and global model
deployment to the edge is highly important to a service-sensitive industrial
Federated Learning system. System robustness and fault tolerance issues are
significantly more prevalent than in traditional distributed system environ-
ments.

6.4.3.2 Challenge 2 - Inefficient Communication

Federated Learning highly relies on a fast network and frequent communica-
tion of weight updates, either between peers or servers. However, the network
situation for different devices may differ a lot. Since distributed edge devices
need to frequently communicate to a central server in order to update model
gradients and deploy fresh global models, the bottleneck and high bandwidth
occupation at aggregation servers are inevitable issues. Imagining hundreds
and thousands of edge devices needs to constantly keep the connection to
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Figure 6.2: Problems and challenges for Federated Learning to be implemented
into service-sensitive systems.
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the servers, communication resources must be constrained due to frequent
model updating and global model deployment. As mentioned by one of our
participants:

“Efficiency is one of the key features. We want to reduce the cost such as

bandwidth utilization but still be able to improve service quality” — P2, Data

and Analytic Manager

Although there are some of the research [101][144] related to communication-

efficient Federated Learning systems, the problems of how to reduce the com-
munication round in real industrial scenarios, how to efficiently utilize network
resources while maintaining or even improving model prediction performance
still need to be searched and verified.

6.4.3.3 Challenge 3 - Unstable Model Performance

For a traditional Machine Learning approach, the main goal of the system is
to provide an accurate prediction or classification based on existing user data
sets.

“Model performance is crucial for Federated Learning. If we cannot guarantee

a sustainable model performance, we then have no reason to adopt it.” —

P5, Data and Analytic Technical Driver

Similar to Federated Learning techniques, this challenge is the most critical

one and also an important metric to evaluate a Federated Learning system.
However, in the real world system, data collected from edge devices are non-
IID and sometimes are unbalanced [136]. This is due to the different scenarios
and environment edge devices exposed. The problem of how to keep or even
improve model prediction performance compared to the traditional centralized
model training approach, how to ensure the model can perform well on all the
edge devices, what is the benchmark tool of evaluating Federated Learning
systems are still tricky and need to be verified in different real-world applica-
tion scenarios as we have described before.

6.4.3.4 Challenge 4 - Large Number of End Customers

As we described before, the Federated Learning system can be considered as
Machine Learning clusters with a distributed configuration.

“We do have a huge number of customers. With Federated Learning, the way
how to properly manage them and handle connections is a question.” — P4,
Analytic System Architect
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Normally, the system contains numerous edge nodes which may frequently
leave and join. In order to achieve system scalability, the mechanism of how
to handle device joining in, how to schedule device utilization and how to
deal with device leaving without influencing system service still need to be
researched and algorithms can be designed.

6.4.3.5 Challenge 5 - Incomplete system security

One of the main advantages of Federated Learning techniques is to prevent
the transmission of sensitive user data. This is also the main reason why
this technique has broad potential in various application domains. A privacy-
preserving system is a big approach to Machine Learning system research.

“In the future, even with Federated Learning, We still have to explore a com-
prehensive approach in complying with applicable privacy regulations and leg-
islation to handle the security and privacy aspects of our products.” — P6,
New Product Operations Director

The question of how to avoid data leakage from global shared weights be-
comes essential. Therefore, a secured Federated System needs to protect not
only local user data but also the transmission data from being damaged or
leaked and forbidding illegal modification, access or usage of system programs,
weight updates and global models. With the increasing attention and focus
on Al-powered industrial solutions, security issues are more essential to the
service provider.

6.4.4 Criteria for a Reliable Federated Learning System

Based on the issues mentioned by our participants that companies need to con-
sider when implementing Federated Learning, we interpret those challenges to
five criteria for a reliable Federated Learning system, including service avail-
ability for model training and improvements, efficient model training and shar-
ing, accuracy assurance on the edge, scalable Federated Learning architecture
and secured connection between edge and cloud. Those criteria are critical for
effective and successful implementation of Federated Learning in embedded
systems.
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6.4.4.1 Service availability for model training and improvements

Availability means the durability of the system and likely to keep operating for
a long period of time. As we described before, customers always need a reli-
able system service that guarantees continuous model training and deployment
(Challenge 1), which is the foundation of model performance improvements.
The problem is crucial in a Federated Learning system since most of the learn-
ing is real-time and fast-evolving. A reliable Federated Learning system needs
to have a fault-dealing mechanism in order to guarantee service availability
once a fault occurs. For example, the interaction between local edge devices
and model aggregation server may suffer high latency, accidentally connection
drop, server stuck due to high concurrence computation, etc.

6.4.4.2 Efficient model training and sharing

Efficiency signifies low resource utilization (CPU, Memory, Disk usage), low
communication round and bandwidth occupation. This criterion relates to
low-cost model training on the edge and efficient communication between edge
and server during weight updating and model deploying procedure (Challenge
2). Furthermore, the way to split training devices is also an important ap-
proach to save computing resources. A reliable Federated Learning system
should consume fewer resources, less bandwidth and communication utiliza-
tion while still keeping an acceptable model performance.

6.4.4.3 Accuracy assurance on the edge

Accuracy is another important criterion. The system has to guarantee model
performance and has the mechanisms to evaluate models on all edge devices
(Challenge 3). Because the main purpose of the machine learning approach is
to provide an accurate model for the corresponding application scenario, a re-
liable Federated Learning system should achieve, guarantee a satisfying model
performance on all edge devices and be applied in the real-world industrial
environment.

6.4.4.4 Scalable Federated Learning architecture

Scalability refers to the ability to handle an increasing number of tasks by
joining more edge devices to the Federated Learning systems (Challenge 4).
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Due to the highly distributed devices, a reliable Federated Learning system
should be able to locate, find and accept asynchronous join of different types of
edge devices and can be extended and cooperate with other learning clusters.

6.4.4.5 Secured connection between edge and cloud

Secured connection implies system data and model safety during local data
collection, weights updating and global model aggregation. As described in
Challenge 5, industrial systems may still need to face numerous kinds of mali-
cious attacks. A reliable Federated Learning system should protect data col-
lected at the edge devices, secure interaction between local edge devices and
aggregation servers and guarantee the integrity of Machine Learning model
transactions.

6.5 Conclusions

In this paper, we present a cutting-edge case study that identifies issues that
industries are attempting to solve when dealing with Machine Learning cases,
as well as the reasons why they anticipate Federated Learning as an appli-
cable technique. Based on our findings, we summarize the services that a
complete Federated Learning system needs to support in industrial scenar-
ios. Furthermore, we highlight the issues that industries are attempting to
address when adopting and transitioning their machine learning components
to Federated Learning, including components failures, inefficient communica-
tion, unstable model performance, large-scaled end customers and incomplete
system security. In addition, we suggest five critical criteria for designing and
operating a dependable industrial Federated Learning system. In the future,
we intend to validate our findings in industry cases and investigate solutions
to the problems identified in this paper.

In summary, as we observed from the interviews from our case company,
although the federated learning idea has considerable benefits, the creation of
a trustworthy and relevant federated learning system is often problematic for
them and may encounter different kinds of challenges. In this context, in the
following section, we concluded the challenges and concerns that the industry
is trying to resolve when adopting and migrating to federated learning.
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CHAPTER [

Federated Learning Systems: Architecture Alternatives

This chapter has earlier been published as

Federated learning systems: Architecture alternatives

Zhang H., Bosch J. and Holmstrém Olsson H.

In 2020 27th Asia-Pacific Software Engineering Conference (APSEC) (pp.
385-394). IEEE.

Federated learning is a new basic technology of artificial intelligence. It was
originally proposed by Google in 2017, with the aim to solve the problems of
local model training and updating in mobile edge devices [145][146])[147]. The
design goal of Federated Learning is to carry out efficient machine learning
among multiple participants or computing nodes on the premise of ensuring
the information security during massive data exchange, protecting the privacy
of terminal data and personal data and ensuring legal compliance. Federated
learning has the potential to be the foundation of the next generation of Al
collaborative algorithms and networks [136].

Federated learning defines a machine learning framework, in which a global
model is designed to solve the problem of collaboration between multiple data
owners without exchanging data [145]. The global model is the optimal model
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which is the aggregated knowledge from all parties. Federated learning re-
quires that the modelling result should be infinitely close to the traditional
pattern, that is, the data belonging to multiple owners should be gathered in
one place for modelling results [148]. Since the data is not exchanged, it will
not take the risk of leaking the user’s privacy or affecting the data specifica-
tion which meets the requirements of legal compliance (such as GDPR [149]).
Figure 1 shows the system architecture of Federated learning with two data
owners (edge A and edge B) as an example. The system can be extended to
scenarios with multiple edge data owners. Suppose that edge A and B want
to train a machine learning model jointly, and their business systems have
the relevant data of their respective users. If A and B are both allowed to
exchange data directly, for example, because of the data privacy and security
issues, we may apply the Federated Learning system to build the model.

However, our research shows the challenges of deploying Federated Learning
into a real-world industrial context. As defined in "Engineering AI Systems: A
Research Agenda" [150], Al engineering refers to AI/ML-driven software devel-
opment and deployment in production contexts. Also, our previous research
shows that the transition from prototype to the production-quality
deployment of ML models proves to be challenging for many com-
panies [99][151]. The situation also applies to Federated Learning systems
[45]. Currently, the majority of deployments utilize a single-server centralized
architecture which may inevitably face the risk of component failure, system
scalability, communication efficiency, etc [136]. Those problems will prevent
the AT/ML components from being continuously serviceable in real-world in-
dustrial deployments, which can compromise the system and lead to terrible
accidents in the end.

To the best of our knowledge, there is limited research that provides an
overview of the different architecture alternatives for the Federated Learning
systems. In this paper, based on our simulation, we describe and suggest sev-
eral applicable scenarios and use cases for four different architecture reported
in this paper which can be applied to an industrial Federated Learning sys-
tem. We conduct the study using two well-known image classification data
sets, MNIST and CIFAR-10. All the training data are distributed to edge
devices that follow a statistical distribution to simulate real-world scenarios.
In order to provide comprehensive suggestions, for each alternative, commu-
nication latency, model evolution time and model classification performance
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are measured and compared.

The contribution of this paper is threefold. First, we introduce four archi-
tecture alternatives which have been or can be applied to a Federated Learning
system and we identify the advantages and disadvantages of each alternative.
Second, we evaluate the system performance, including weights update la-
tency, model evolution speed and model classification performance with each
of the architecture alternatives. Third, by studying the trade-off between
model performance and the overhead of latency and evolution speed, we de-
scribe for which industrial scenario each architectural alternative reported in
this paper is the optimal choice.

The remainder of this paper is structured as follows. Section II introduces
four architecture alternatives. Section III details our research method, includ-
ing the simulation testbed, the method of distributing the training data set,
the utilized machine learning method and the evaluation metrics. Section IV
presents the algorithms utilized in each alternative. Sections V evaluates four
architecture alternatives applied to the data traces. Section VI outlines the
discussion on suitable scenarios and use cases for each alternative. Finally,
Section VII presents conclusions and future work.

7.1 Architecture Alternatives

As described in Section I, current Federated Learning systems may face the
problem of components failure, system scalability, communication efficiency,
etc. Inspired from the empirical results of existing literature [136][145][132][120],
we have defined four alternatives which can be utilized in a Federated Learning
system from a centralized to a fully decentralized approach, that is, central-
ized, hierarchical, regional and decentralized architectures. The terms of each
architecture are derived based on their characteristic. Figure 7.2 illustrates
the concepts.

7.1.1 Centralized Architecture

The centralized architecture is a widely used setting in the majority of current
Federated Learning systems[146][126][116]. In this alternative, there is only a
single central node which is responsible for communicating all edge devices,
aggregating local models, and deploying the global model. The model trans-
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More Centralized

PR ——

More Decentralized

Figure 7.2: Architecture alternatives for Federated Learning systems: centralized,
hierarchical, regional and decentralized architecture. For a centralized
Federated Learning system ((a)), all the edge nodes are connected to
the central aggregation node in order to update local weights and dis-
tribute models. An improved way ((b)) is to add several coordinators,
the regional aggregation nodes, which aims to reduce data exchange
and be in charge of managing local devices. The regional architecture
((c)) will totally remove the central management point in order to re-
move the risk of the single-point of the failure. A more elegant way
((d)) is to completely move the aggregation function to the edge. Each
edge node can perform local training and model aggregation. This is a
potential alternative when a global or regional sever faces the problem
of heavy traffic and then becoming a bottleneck.
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mission within this architecture is smooth and elegant and the single central
node has a dedicated system which can be modified to suit customized needs.
Quick updates become possible and it is efficient for small systems, as the
central systems take limited resources to set up. In addition, any edge node
can be easily detached from the system by removing the connection between
the client node and the server without influencing other active nodes.

However, because of the single management node, the centralized Federated
Learning system will encounter a scalability problem. When thousands of
client nodes join, the server node will not have improved performance even
if the hardware and software capabilities have been optimized. In addition,
communication bottlenecks may appear when the amount of traffic increases
exponentially and the system can easily break down when the server suffers a
Denial-of-Service attack.

7.1.2 Hierarchical Architecture

As shown in Figure 7.2 (b), different from the centralized architecture, a hier-
archical architecture introduces several regional coordination nodes to man-
age different edge clusters, which can ease the work of the central node, such
as model updating and aggregation. This alternative has been introduced
in [146], which solves part of the communication bottleneck problem and is
scalable for a medium system. However, this approach still has the potential
problem of the single-point of failure and being vulnerable to DoS attack since
the central node still exists. In addition, the management cost will increase
and the industrial deployments may need more budgets for more aggregation
servers compared to a centralized architecture alternative.

7.1.3 Regional Architecture

The regional architecture has a similar setting compared to the hierarchical
architecture but removes the central aggregation nodes. FEach edge cluster
will be assigned to a regional aggregation node where models are aggregated
and exchanged. One application which utilizes this alternative is reported
in [132]. The results demonstrate the computational efficiency compared to
a more centralized architecture. The purpose of this design is to avoid the
influence of the central node failure and to increase system robustness. In
addition, after defining the frequency of local model exchange among regional

88



7.2 Research Method

aggregation nodes, a system may have a chance to focus more on their local
sample clusters instead of the whole data set at the edge. However, with the
increasing number of servers, real-world deployments may cost more in terms
of hardware purchases and server configuration management.

7.1.4 Decentralized Architecture

As shown in Figure 7.2 (d), a decentralized Federated Learning system only
contains edges nodes. Compared to the three alternatives above, a decen-
tralized architecture moves the aggregation function to the edge. The idea is
firstly tried and reported in [152]. The system is able to minimize the prob-
lem of performance bottlenecks since the entire load gets balanced on all the
nodes. Furthermore, due to the flexibility of node connections, the system has
better autonomy and is able to quickly adapt its local environment changes.

Nevertheless, decentralized architecture can lead to the problem of coordi-
nation. Since every node is the owner of its own behaviour, it is difficult to
achieve collective tasks and global knowledge. Normally, the models vary a
lot which is not optimal for some scenarios. Additionally, it is not suitable
for small systems since industries cannot benefit from building and operat-
ing small decentralized systems due to inefficient system management and
performance.

7.2 Research Method

In this research, the empirical method and learning procedure described in
Zhang [92] was applied to make a quantitative measurement and comparison
with four architecture alternatives. In the following sections, we present our
simulation testbed, the method used for splitting and distributing data sets,
evaluation metrics and the machine learning methods used in the experiments.

7.2.1 Simulation Testbed

Figure 7.3 outlines our testbed topology. In order to simulate aggregation and
edge functions, we adopted two of the total six machines as our server cluster
and the rest work as the edge. (Table 7.1 shows the hardware setup for all
the servers) Each edge nodes were implemented as a small process running in
one of the edge nodes server cluster (server 3-6).
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Figure 7.3: Topology of the simulation testbed

Table 7.1: Hardware setup for testbed server

CPU Intel Xeon Processor (Skylake, IBRS)
Cores 8
Frequency 2.59 GHz
Memory 32 GB
0OS Linux 4.15.0-106-generic
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More specifically, in the centralized architecture simulation, aggregation
functions were deployed on server 1 while the edge nodes in server 3-6 can
push and request the latest model to or from server 1 to continuously learn
latent patterns.

In the hierarchical architecture, the central aggregation function was de-
ployed in server 1 while we assigned four regional aggregation processes in
server 1 and 2. Edge nodes in each edge server were assigned to one of the re-
gional aggregation processes, which means that those nodes will only contact
their corresponding regional aggregation process.

For the regional architecture simulations, the aggregation functions were
deployed both on server 1 and 2. Similar to the hierarchical architectures
simulation, edge nodes were assigned to one of the aggregation processes once
they joined in the system and only communicated with that unique aggrega-
tion node. In the decentralized simulation, we removed the aggregation server
cluster and moved the aggregation functions to all the edge nodes in order
to simulate decentralized features. In each edge nodes, their neighbour nodes
were predefined based on their edge ID.

7.2.2 Training Data Distribution

For the purpose of this study, we used two kinds of the edge data distribution
to analyze system performance under different architecture alternatives.

7.2.2.1 Uniform Distribution

Under this setting, we distributed training data samples to the edge follows
the uniform distribution, which means the number of data samples of each
target classes is equally likely. Figure 7.4 outlines the data distribution in two
example edge nodes.

7.2.2.2 Normal Distribution

With this setting, in each edge nodes, the number of samples in each class
follows the normal density function as shown below.

X NN(N? 02)

Here, i1 and o are defined as follows:
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Figure 7.4: Uniform training data distribution

p=2N 5=02xN

where k is the ID of each edge node, K is the total number of edge nodes and
N equals to the total number of target classes in training data. The purpose
of this configuration is to provide various distribution in different edge nodes,
where each class can have the probability to have the majority number of
samples in one node. Figure 7.5 outlines the data distribution in two example
edge nodes.
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Figure 7.5: Normal training data distribution
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7.2.3 Machine Learning Method

The models used in this paper were implemented in Python, using torch 1.4.0
[153], torchvision 0.5.0 [154] and scikit-learn [155] libraries for model building.

In order to achieve a satisfying classification result, two different convolu-
tional neural networks (CNN) [156] were trained for the MNIST and CIFAR-
10 data sets. In the MNIST data set experiment, the CNN network contains
two 5x5 convolution layers, (The first layer has 10 output channels, while the
second has 20, each followed with 2x2 max pooling.) a fully connected layer
with 50 units and the ReLu activation, and a linear output layer.

For the CIFAR-10 data set, the CNN network contains four 5x5 convolution
layers, (The first layer has 66 output channels; the second has 128 output
channels and the stride of convolution equals 2; the third has 192 channels;
the fourth has 256 channels and the stride of convolution equals 2.), two fully
connected layers (ReLu activation) with 3000 and 1500 units, and a linear
output layer.

7.2.4 Evaluation Metrics

In order to demonstrate fruitful results of systems under different architecture
alternatives, we selected three metrics including weights update latency, model
evolution time and model classification performance (local and global).

7.2.4.1 Weights update latency

The weights updated latency is defined as the time difference of the model
transmission from edge nodes to the aggregation nodes (In the centralized,
hierarchical, regional architecture, aggregation nodes are central or regional
servers which are responsible for collecting models. In the decentralized ar-
chitecture, since aggregation function is moved to the edge, the aggregation
node can be regarded as the peer node which is ready for receiving the updated
model). The result is the average of all edge nodes during one training round.
This metric indicates the network situation and communication overhead of
each architecture alternatives. The metrics were measured in all the model
receivers by checking the sending and receiving timestamp.
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7.2.4.2 Model Evolution time

Evolution time is defined as the time difference between two different versions
of the deployed global model at the edge nodes. The result is the average of all
edge nodes during one training round. This metric demonstrates the speed of
local edge devices updating their knowledge which is crucial and important for
those systems which need to quickly evolve to adapt to the rapidly-changed
environment. The metrics were measured in all the edge nodes by checking
model deployment timestamp.

7.2.4.3 Model Classification Performance

Classification performance is the most important metric which indicates the
quality of the training model. It is defined as the percentage of correctly
recognized images among the total number of testing images. Furthermore, in
order to have a better understanding of the influence of different architectures
on local edge devices. Here, the local classification performance was tested
on each edge devices by using their updated global model. The test sample
distribution should be the same as the training samples (local test set). The
result of local classification performance is the average value from all edge
nodes. The global classification performance is tested by using the global test
set, where the number of samples in different classes should be equally likely.

7.3 Algorithms used in each architecture
alternative

In order to simulate and compare characteristics of the system with the archi-
tecture alternatives reported in this paper, we select Federated Averaging (Fe-
dAvg) [145] as the base Federated Learning algorithm during our experiments.
This algorithm has been widely used in research and industrial communities
for model aggregation. Thus, it is also compelling to see how FedAvg behaves
with the architecture alternatives introduced in section 7.1. In a centralized
architecture, the original Federated Average algorithm is applied while for
the other three alternatives, the base algorithm is modified to fit different
architectures.
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Algorithm 1: FedAvg - Centralized: In the system, total K edge de-
vices are indexed by k; B is the local mini-batch size; E represents the
number of local epochs, and + is the learning rate.

Function Server_Function():
initialize wg
for each round t = 1, 2, ... do
m <«— maz(C x K, 1);
Sy «—(random set of m clients);
for each client k € S; in parallel do
| wf,, «— Client_Update(w;);
end
wept ¢ Vi kwhi
end
End Function
Function Client_Update(w):
B «—(split Py into batches of size B);
for each local epoch i from 1 to E do
for batch b € § do
| w<+— w—Vi(w;b);
end
end

return w to server
End Function
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7.3.1 Centralized Architecture

The algorithm used in the centralized architecture is outlined in Algorithm
1. Since this architecture has been widely used in various fields, we didn’t
change any components and make the setting remain the same as all existing
research. The steps of FedAvg algorithm in the centralized architecture is
straight-forward:

Step 1: Edge devices locally compute the model; After reaching the number
of local epochs, they send updated model results w to the central
aggregation node.

Step 2: The central node performs aggregation by averaging all updated mod-
els to form a global knowledge of w4 1.

Step 3: The node sends back the aggregated result to each edge device k.

Step 4: Edge device replaces the local model and performs further local train-
ing by using the global deployed model.

7.3.2 Hierarchical Architecture

The algorithm (Algorithm 2) used in this alternative is modified based on the
Federated Averaging algorithm. Since the system has several regional coor-
dination nodes, all the edge nodes send their weights updates only to their
corresponding regional nodes. After receiving local models, a regional coor-
dination node sums all models and counts the number of received models.
Then, these information will then be updated to the central node. Therefore,
the central node only needs to process the information sent from coordina-
tor nodes without contacting numerous edge devices, which largely releases
and balances the computation work at the central point. The steps can be
summarized as follows:

Step 1: Edge devices locally compute the models; After reaching the number
of local epochs, they send updated model results w to the regional
aggregation nodes.

Step 2: The regional nodes perform aggregation by adding all updated models
and calculate the number of updated models. Then, these information
will be sent to the central node to form a global knowledge of w;, 1.
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Algorithm 2: FedAvg - Hierarchical

Function Server_Function():
initialize wg
for each round t = 1, 2, ... do
S; «— (localserverset)
for each local server s € S; in parallel do
| wi,,k® <— Localserver_Update(w;);
end
Kipr = Y0k
Wit1 Zfﬂ ﬁwz{cﬂé
end
End Function
Function Local_Server_Update (wy):
for each round t = 1, 2, ... do
m +— maz(C x K, 1);
Si +—(random set of m clients);
for each client k € S, in parallel do
| wf,, «— Client_Update(k,w;);
end
K k

Wit & Dy Wiy
end
return w1, len(S;) to central server
End Function
Function Client_Update(k, w):
B <—(split Py into batches of size B);
for each local epoch i from 1 to F do

for batch b € B do

| w+— w—~yVi(w;b);
end

end

return w to local server
End Function
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Step 3: The central node sends back the aggregated result to each regional
nodes. Regional nodes will then forward the global model to all reg-
istered edge devices k.

Step 4: Edge device replaces the local model and performs further local train-
ing by using the global deployed model.

7.3.3 Regional Architecture

In order to remove the central node and move the aggregation functions to
the regional nodes, we further modified the algorithm used in hierarchical
architecture. In each training epochs, regional nodes are only responsible for
aggregating models for their registered edge devices. After a certain number of
training iterations, all regional nodes exchange their model information with
each other to form a global knowledge. The algorithm is outlined in Algorithm
3 and the steps can be summarized as follows:

Step 1: Edge devices locally compute the models; After reaching the number
of local epochs, they send updated model results w to corresponding
regional aggregation nodes.

Step 2: The regional nodes perform aggregation by averaging all updated
models to form regional knowledge. In addition, every f iterations,
there is an exchanging iteration in which the node applies another
aggregation function by adding all updated models and calculate the
number of updated models. Then, this information will be spread to
all the regional nodes to form a global knowledge of wy ;. (If the ex-
changing iteration is not reached, regional nodes will only aggregate
a regional model and send it to all the edge nodes)

Step 3: After calculating the aggregated result in each regional nodes. Re-
gional nodes will then forward the global model to all registered edge

devices k.

Step 4: Edge device replaces the local model and performs further local train-
ing by using the global deployed model.
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Algorithm 3: FedAvg - Regional: The new parameter f defined the
frequency of exchanging the models.

Function Server_Update (w;):
initialize wy S <— (all neighbour servers)

for each round t = 1, 2, ... do
K+ 0;

m +— maz(C x K, 1);

Sy «—(random set of m clients);

for each client k € S; in parallel do
wy,, «— Client_Update(k,w;);
K ++;

end

K k

Wit 4 D gy Wi

if t mod f == 0 then

for each server s € S in parallel do
send(Wiy1, K);
wiyq, k® <— Server®_send(wy);
Kt+1 — Zle k*

end

Wit1 Zf:l ﬁwﬂﬁ

else

‘ Wiy < %wurl;
end

end
End Function
Function Client_Update(k, w):
B <—(split Py into batches of size B);
for each local epoch i from 1 to F do
for batch b € 5 do
| w<+— w—VIi(w;b);
end
end

return w to regional server
End Function
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7.3.4 Decentralized Architecture

In order to realize decentralized characteristics, we remove the aggregation
functions from central points but attach them to the edge. Algorithm 4 il-
lustrates the idea. Each edge nodes has an independent process to train,
send and receive model weights. There is also a frequency parameter which
can control edge nodes exchange their model to their neighbours after several
training epochs. The steps can be concluded as follows:

Step 1: Edge devices locally compute training gradients; After reaching the
exchanging iteration, they send updated model results w to their reg-
istered neighbours.

Step 2: After receiving all the models from the neighbours, each node per-
forms aggregation by averaging all updated models.

Step 3: Edge device replaces the old model and performs further local training
by using the updated model.

Algorithm 4: FedAvg - Decentralized

Function Client_Update(k, w):
B <—(split Py into batches of size B);
C +— (all neighbour clients)
for each round t = 1, 2, ... do
for batch b € 8 do

| w1 — wy — YVI(w; b);
end

if ¢ mod f == 0 then

for each client c € C in parallel do

send(Wiy1);
wg,, «— client®_send(w;);
end
Wiyl 20021 mwtﬂ-l;
end
end

End Function
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7.4 Evaluation

In this section, we present the experiment results for four different architec-
ture alternatives and compare them with the system performance in three
aspects (The metrics are defined in section 7.2.4) - (1) Weights update la-
tency: time used to transmit model from edge to the aggregation nodes, (2)
Model evolution time: time used to train and deploy a new global model, (3)
Local and Global model classification accuracy: classification accuracy tested
on the local and global test set.

To have a clear comparison, the MNIST data set was used to measure all
three metrics while CIFAR-10 data set was used to further validate the result
of local and global classification accuracy. During the experiments, we conduct
the simulation with the different number of edge nodes which varies from 10
to 1,000 and all the nodes participate training procedure.

7.4.1 Weights update latency

Figure 7.6 present the result of weights updating latency, which illustrates a
linear increasing trend of weights latency based on the number of connected
nodes and more detailed values are listed in Table 7.2.
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Figure 7.6: Weights latency with different number of nodes in four architecture
alternatives

The above figure shows that centralized architecture has the largest weights
update latency when the number of nodes is bigger than 500. In a centralized
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architecture, a single central node needs to handle all receiving, training and
sending tasks which may highly influence system performance. It can easily
lead to communication bottleneck and single-point failure.

Relatively, in the hierarchical and regional alternatives, after introducing
regional nodes, the load on the central node is balanced by multiple regional
nodes. The red and orange lines show a linearly increasing trend but slower
than the centralized architecture.

Furthermore, in the decentralized architecture, since each node can establish
equal connections, the server work is further distributed to the edge. Since
nodes can only communicate with their neighbours, every node can balance
the weights updating traffic, which leads to the smallest growth rate among
four architecture alternatives.

Table 7.2: Weights updating latency

Latency (sec)
Number of Nodes | Central | Hierarchical | Regional | Decentral
10 0.353 0.324 0.395 0.334
50 0.404 0.389 0.373 0.312
100 0.431 0.406 0.411 0.366
500 0.983 0.621 0.693 0.401
1000 1.482 0.722 0.826 0.452

In addition to weights updating latency, the number of retransmission is also
measured. From Table 7.3, it can be observed that, when dealing with a large
number of edge devices, centralized architecture causes more transmission
mistake and less communication efficiency than other alternatives. It also
proves our findings in weights updating latency.

7.4.2 Model Evolution Time

We then calculated the average model evolution time in all edge nodes, which
is outlined in Table 7.4. In our experiments, the model evolution time is
influenced by model training time and the weights update latency. With the
increasing number of nodes, the training time in each training epoch largely
decreases, due to the distribution of training data in each edge nodes and
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Table 7.3: Average number of model retransmission during one training iteration

Number of Nodes

Central | Hierarchical | Regional | Decentral
10 - - - -
50 - - - -
100 - - - -
500 6 - - -
1000 147 17 21 -

the model training task is separated in numerous workers. However, with the
increasing number of nodes, latency may increase as well. In our results, the
best number of nodes in the previous three alternatives is 500 while evolution
time further increases with the growth of the number of edge nodes.

Table 7.4: Average model evolution time

Model evolve (sec)

Number of Nodes | Central | Hierarchical | Regional | Decentral
10 44.218 45.036 46.020 45.017
50 10.052 10.910 12.741 10.311
100 4.839 4.657 4.166 4.327
500 2.584 2.183 2.031 2.049
1000 3.602 2.990 3.016 1.553

7.4.3 Classification Accuracy

In this section, we present model classification accuracy under two different
training sample distributions. Here we only present the result measured with
100 edge nodes as the number of edge nodes doesn’t have too much obvious

influence on classification accuracy.

103



Chapter 7 Federated Learning Systems: Architecture Alternatives

Table 7.5: Global Prediction performance with MNIST data set follows a uniform
data distribution on the edge

MNIST Global
Number of Epochs | Central | Hierarchical | Regional | Decentral
10 96.63 96.42 96.01 94.91
30 98.10 97.80 97.66 96.87
50 98.55 98.47 98.39 97.08

7.4.3.1 Uniform Distribution

As described in section 13.3.3, the number of classes in each edge device
with this distribution are equally likely. Under this setting, the global model
classification accuracy (with global test set) can reach 98% in MNIST data
set and 88% in the CIFAR-10 data set. The results are outlined in Table 7.5
for MNIST and Table 7.6 for CIFAR-10.

Table 7.6: Global Prediction performance with CIFAR-10 data set follows a uni-
form data distribution on the edge

CIFAR-10 Global
Number of Epochs | Central | Hierarchical | Regional | Decentral
10 78.75 78.42 77.33 75.89
30 83.21 81.94 81.24 80.30
50 87.92 88.01 87.37 86.45

However, we see a slight difference in four alternatives where the regional
and decentralized architecture has 1% worse accuracy, which we explain that
in a more decentral architecture, a model may cost more time to form the
global knowledge due to their algorithm. (Especially in the decentralized
architecture, the model needs more training rounds to spread and aggregate.)
This feature becomes more obvious while the model is trained on the data
which is distributed and follows a normal density function.
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Table 7.7: Global Prediction performance with MNIST data set follows a normal
data distribution on the edge

MNIST Global

Number of Epochs | Central | Hierarchical | Regional | Decentral
10 89.05 88.95 68.72 33.69
30 95.96 94.16 86.22 45.93
50 97.12 96.31 93.70 81.39

Table 7.8: Local Prediction performance with MNIST data set follows a normal
data distribution on the edge

MNIST Local

Number of Epochs | Central | Hierarchical | Regional | Decentral
10 89.51 89.42 92.70 95.84
30 95.48 95.05 93.51 96.91
50 97.07 96.00 95.29 98.02
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7.4.3.2 Normal Distribution

Normal sample distribution is closer to a real-world data set, however, the
accuracy of image classification results is worse than the model which is trained
on the data set with a uniform distribution. We observe 1% lower accuracy
with MNIST global test set under the centralized architecture alternative.
Furthermore, in the decentralized architecture, a model needs more time to
converge and form a global knowledge on the whole training data set. The
results are presented in Table 7.7.

Table 7.9: Global Prediction performance with CIFAR-10 data set follows a normal
data distribution on the edge

CIFAR-10 Global

Number of Epochs | Central | Hierarchical | Regional | Decentral
10 72.14 71.02 63.44 25.51
30 78.74 76.93 71.24 44.34
50 86.82 86.03 80.68 70.65

However, when it comes to model performance on the local test set, we find
that the decentralized architecture outperforms the rest of the architectures.
Compared to architectures with the central aggregation server, the decentral-
ized architecture focuses more on a local data set which results in a slower
process of forming the global model but achieves higher accuracy on local set
classification. The results are outlined in Table 7.8.

In order to further validate our findings, CIFAR-10 data set was also used to
conduct image classification under predefined architecture alternatives. The
results (Table 7.9 and Table 7.10) also shows that a centralized architecture
have quicker global model convergence while a decentralized architecture is
better to perform classification on local edge data sets.

7.5 Discussion
According to experiment results, each architectural alternative demonstrates

its advantages and disadvantages. In order to help industries easily understand
the requirements and suitable scenarios for setting up a Federated Learning
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Table 7.10: Local Prediction performance with CIFAR-10 data set follows a normal
data distribution on the edge

CIFAR-10 Local

Number of Epochs | Central | Hierarchical | Regional | Decentral
10 73.01 71.83 75.22 79.31
30 77.68 75.35 79.56 83.67
50 86.07 86.23 87.95 88.24

system, we summarize our findings and suggestions in the following sections.

7.5.1 Centralized

A centralized architecture is suitable for a small scale Federated Learning
system. Since there is only a single central point which manages all the par-
ticipating nodes and provides model aggregation service. Thus, there is a
high probability to cause the communication bottleneck if further increase
the number of edge nodes.

In other words, companies that would like to speed up training speed and
benefit from parallel training but only have small budgets should consider
applying this alternative. They can also benefit from the advantages of easy
configurations and nodes management with a centralized architecture com-
pared to other options.

As for the model performance, use cases which require centralized knowledge
of all distributed data samples should choose a more centralized architecture.
For example, in a medical system, human activity recognition, etc [124][131],
the number of participated edge nodes is usually small and those cases all need
a common knowledge for the target prediction whose input training sample
has similar distribution in different edge devices.

7.5.2 Hierarchical

A hierarchical architecture is an improved option compared with the central-
ized alternative. It is more suitable for a medium or relatively large scale
system. The traffic of model updating is balanced because of the introduction
of the regional nodes. This architecture is more suitable for companies which
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Table 7.11: Comparison between different architecture alternatives

7 7 Centralized 7 7 Hierarchical
Number of Edge Nodes Small scale Small-Medium scale
Model variation Identical Identical
Weights update latency High Medium
Model evolution Slow Slow

Example Domain

Medical Applications,
Human Activity Recognition

Mobile Applications,
Wireless Systems

Regional Decentralized
Number of Edge Nodes Medium-Large scale Large scale
Model variation Localized Localized
Weights update latency Medium Low
Model evolution Fast Fast
Weather Prediction,
Example Domain Geographic Applications, IoT

Vehicle and Traffic Application
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need their system to be scalable and able to tolerant node failure. For example,
in mobile applications and wireless systems [147], due to numerous connected
devices, management and traffic balance point have to be introduced. Hi-
erarchical architecture is the optimal choice to realize serviceable Federated
Learning system. However, due to those extra servers, the system requires
more budget and needs more resource for system setting and management.

7.5.3 Regional

Different from the previous two options, regional architecture removes the
central aggregation node and replace it with several regional nodes. Similar
to the hierarchical architecture, it supports a medium or relatively large scale
system and needs a medium budget due to more server deployed.

Nevertheless, since the system removes the central point, the aggregated
model could gain more knowledge from the local side, especially for those
nodes whose data samples may have a similar distribution with their neigh-
bours. This feature is most suitable for use cases such as weather prediction,
geographic location detection, vehicle and traffic applications, etc [157][132].
Furthermore, the system can perform a faster model evolution based on local
data but still can partially benefit from global knowledge.

7.5.4 Decentralized

For a decentralized architecture, the aggregation functions are moved to the
edge devices. This option is suitable for a large and scalable system. Systems
such as IoT and network constraint system [120][107] which don’t want to
waste resources on transmitting large amounts of data ought to consider this
alternative. Furthermore, if a system which needs quickly model evolution
and more knowledge from local samples (Sensors, etc. ), it should choose the
decentralized architecture.

However, a decentralized architecture requires a large budget to realize, as
all edge devices need to support the local training and model transmission
functions.
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7.6 Conclusion and Future Work

In this paper, we introduce and compare four architecture alternatives for a
Federated Learning system. We analyze the system performance with three
important metrics, i.e. weights update latency, model evolution time, classi-
fication accuracy. For the model classification accuracy, a centralized system
can formalize the global knowledge which covers all participated data sam-
ples while a decentralized alternative focuses more on local data sets in edge
devices. Additionally, the weights update latency and model evolution time
are much shorter in decentralized architectures than in centralized alterna-
tives. Table 7.11 illustrates some of the insights we gained from the study we
conducted in this paper.

Future work will include algorithm improvement on the architectures, such
as traffic control, peer finding mechanism and neighbour selection methods,
etc. Furthermore, additional efforts in studying hardware cost in those four
architecture alternatives will take into consideration. Finally, we aim to realize
real-world systems based on architecture alternatives reported in this paper.
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CHAPTER 8

Real-time End-to-End Federated Learning: An
Automotive Case Study

This chapter has earlier been published as

Real-time end-to-end federated learning: An automotive case study
Zhang H., Bosch J. and Holmstrém Olsson H.

In 2021 IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC) (pp. 459-468). IEEE.

With the development of distributed edge computer computing and storage
capabilities, using computation resources on the edge becomes a viable option
[100]. Federated Learning has been adopted as a cost-effective solution due to
its model-only sharing and parallel training characteristics. A simple diagram
of a Federated Learning system is shown in Figure 8.1. Local model training
is carried out in this framework, and data generated by edge devices do not
need to be shared. Weight updates are instead sent to a central aggregation
server, which generates the global model. The method overcomes the short-
comings of the conventional centralized Machine Learning approach, which
only conducts model training on a single central server, such as data privacy,
massive bandwidth costs, and long model training time.
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Figure 8.1: A typical Federated Learning System is depicted in the diagram. The
light blue components are related to the model, while the red compo-
nents are related to the data.

This paper builds on our previous research, “End-to-End Federated Learn-
ing for Autonomous Driving Vehicles” [158], in which we discovered that Fed-
erated Learning can significantly reduce model training time and bandwidth
consumption. However, with the synchronous aggregation protocols used in
our previous research and current Federated Learning applications and analy-
sis, such as FedAvg [159], we realized that it is difficult for businesses to incor-
porate Federated Learning components into their software products [45]. Un-
til model aggregation, a synchronous aggregation protocol requires the server
to wait for all of the edge devices to complete their training rounds. Since
real-world systems may include heterogeneous hardware configurations and
network environments [160], the aggregation server cannot expect all partic-
ipating edge devices to upload their local models at the same time. The
situation will become worse and unmanageable with the increasing number of
edge devices. Furthermore, our previous research also identified the challenges
of deploying AI/ML components into a real-world industrial context. As J.
Bosch et al. defined in "Engineering AI Systems: A Research Agenda" [150],
AT engineering refers to AT/ML-driven software development and deployment
in production contexts. We found that the transition from prototype to the
production-quality deployment of ML models proves to be challenging for
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many companies [99] [151].

Therefore, in order to put Federated Learning into effect, in this paper, we
present a novel method for consuming real-time streaming data for Federated
Learning and combining it with the asynchronous aggregation protocol. This
paper makes three contributions. First, we employ Federated Learning, a
distributed machine learning technique, and validate it with a key automotive
use case, steering wheel angle prediction in the field of autonomous driving,
which is also a classic end-to-end learning problem. Second, we present a real-
time end-to-end Federated Learning method for training Machine Learning
models in a distributed context. Third, we empirically evaluate our approach
on the real-world autonomous driving data sets. Based on our findings, we
show the effectiveness of our method over other methods of learning, including
the common synchronous Federated Learning approach.

The remainder of this paper is structured as follows. In Section 8.1, we intro-
duce the background of this study. Section 11.4 details our research method,
including the simulation testbed, the utilized machine learning method and
the evaluation metrics. Section 8.4 presents the real-time end-to-end Fed-
erated Learning approach utilized in this paper. Sections 8.5 evaluates our
proposed learning method to empirical data sets. Section 8.6 outlines the dis-
cussion on our observed results. Finally, Section 8.7 presents conclusions and
future work.

8.1 Background

The first Federated Learning framework was proposed by Google in 2016 [101].
The main goal of it is to learn a global statistical model from a large number
of edge devices. The problem is to minimize the following finite-sum objective
function in particular 9.6:

rrqlli)nf(w), where f(w) := Z i fi(w) (8.1)
i=1

Here, w represents model parameters, n is the total number of edge devices,
and f;(w) is the local objective function which is defined by high dimensional
tensor w of the iy, device. A; (A; > 0 and ), \; = 1) gives the impact of iy,
remote device and is defined by users. This formula is also applied throughout
this research.
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With the advancement of the concept of cloud computing and decentralized
data storage, there has been a surge of interest in how to use this approach to
improve Machine Learning. [146] and [147] present two classic applications.
The researchers implemented Federated Learning on the Google Keyboard
platform to improve the accuracy of virtual keyboard search suggestions and
emoji prediction. Their findings demonstrate the feasibility of using Federated
Learning to train models while avoiding the transfer of user data. However,
since the learning process is synchronous across all edge devices, the aggrega-
tion server must wait for all participating edge devices to complete their local
training round before conducting model aggregation, which is inflexible and
time-consuming while deploying into heterogeneous real-world systems [45].
Furthermore, because of the system environment and difficulties experienced
when applying Federated Learning in various cases, we suggest the real-time
end-to-end method and validate it in a radically different industrial scenario,
steering wheel angle prediction.

8.2 Related Work

8.2.1 Steering Wheel Angle Prediction

One of the first pioneer research of utilizing the neural network for steering
wheel angle prediction is described in [161]. The author used pixel information
from simulated road images as inputs to predict steering command, which
proves that a neural network is able to perform steering angle prediction from
image pixel values. Recently, more advanced networks are utilized to predict
the steering angles. H. M. Eraqi et al. propose a convolutional long short-term
memory (c-LSTM) to learn both visual and dynamic temporal dependencies
of driving, which demonstrate more stable steering by 87% [162]. Shuyang
et al. [163] designed a 3D-CNN model with LSTM layers to predict steering
wheel angles.

The concept of end-to-end learning was first proposed in [164], where au-
thors built and constructed a deep convolutional neural network to directly
predict steering wheel angles and monitor the steering wheel. In this research,
ground truth was directly captured from real-time human behaviour. Their
methods demonstrate that a convolutional neural network can learn steering
wheel angle directly from input video images without the need for additional
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road information such as road marking detection, semantic analysis, and so
on. In order to enhance model prediction accuracy, we use a two-stream model
in our approach. Due to its robustness and lower training cost as compared
to other networks such as DNN [165], 3D-CNN [163], RNN [162], and LSTM
[166], the model was first proposed in [167] and applied in [168]. However,
previous research for this use case has concentrated primarily on the training
model in a single-vehicle. We will use Federated Learning in this paper to
accelerate model training speed and boost model quality by forming a global
awareness of all edge vehicles.

8.2.2 Federated Learning in Automotive

The automotive industry is a promising platform for implementing Machine
Learning in a federated manner. Machine learning models can be used to
forecast traffic conditions, identify pedestrian behaviour, and assist drivers in
making decisions [169][157]. However, since vehicles must have an up-to-date
model for safety purposes, Federated Learning has the potential to accelerate
Machine Learning model development and deployment while protecting user
privacy [170].

On top of Federated Learning, Lu et al. [116] test the failure battery for an
electric vehicle. Their methods demonstrate the efficacy of privacy serving,
latency reduction, and security protection. Saputra et al. [117] forecast the
energy demand for electric vehicle networks. They dramatically minimize the
bandwidth consumption and efficiently protect sensitive user information for
electric vehicle users by using Federated Learning. Samarakoon et al. [115]
propose a distributed approach to joint transmit power and resource allo-
cation in vehicular networks that enable low-latency communication. When
compared to a centralized approach, the proposed method can reduce waiting
queue length without increasing power consumption and achieve comparable
model prediction efficiency. Doomra et al. [171] present a Federated Learning-
trained long short-term memory (LSTM)-based turn signal prediction (on or
off) model. All of these approaches, however, are faced with synchronous
aggregation protocols that are unsuitable for real-world heterogeneous hard-
ware. As a result, in this paper, we present an asynchronous aggregation
protocol combined with Federated Learning and validate it with one of the
most essential use cases in the automotive industry.
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8.3 Method

The analytical technique and research method mentioned in [92] were used
in this study to conduct a quantitative measurement and comparison of real-
time Federated Learning and conventional centralized learning methods. The
article presents some recommendations for applying machine learning meth-
ods to software engineering activities, as well as methods for demonstrating
how they can be conceived as learning problems and addressed in terms of
learning algorithms. The mathematical notations, testbed and hardware con-
figuration, convolutional neural network, and evaluation metrics used to solve
the problem of steering wheel angle prediction are presented in the following
sections.

8.3.1 Mathematical Notations

The mathematical notations that will be used in the paper are introduced
here first:

Ay An image frame matrix at time
t

O; = f(Ag, Ai—1) An optical-flow matrix at time
t

0y Steering wheel angle at time ¢

0, Predicted steering wheel angle
at time ¢

8.3.2 Data Traces and Testbed

The datasets used in this paper are from the SullyChen collection of labelled
car driving data sets, which can be found on Github under the tag [172]. To
conduct our experiments, we chose Dataset 2018 from this collection. The
dataset contains various driving data such as road video clips, steering angle
on roads, and so on. Dataset 2018 is 3.1 GB in size and contains approximately
63,000 files. This dataset tracks a 6-kilometer path along the Palos Verdes
Peninsula in Los Angeles. Our experiment datasets were chosen from the first
40,000 image frames.
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(a) Vehicle 1: Highway & City (b) Vehicle 2: Highway & City

(¢) Vehicle 3: Hill (d) Vehicle 4: Hill & City

Figure 8.2: Driving scenarios in each edge vehicle.

The data streams were simulated on four edge vehicles to provide a compre-
hensive evaluation. The data was divided into four sections and distributed
to edge vehicles prior to our simulation. In each edge vehicle, the first 70%
of data are considered input streaming driving information that was used for
model training, while the remaining 30% are potential stream information. As
shown in Figure 8.2, training datasets for each edge vehicle in our experiment
include a variety of driving scenarios.

Table 8.1: Hardware setup for testbed servers

CPU Intel(R) Xeon(R) Gold 6226R
Cores 8
Frequency 2.90 GHz
Memory 32 GB
0OS Linux 4.15.0-106-generic
GPU Nvidia Tesla V100 GPU (Edge vehicle 1)
Nvidia Tesla T4 GPU (Edge vehicle 3, 4)
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The data distribution in each edge vehicle is depicted in Figure 8.3. When
driving on a hill, the steering wheel angles have a greater range than when
driving on a highway or in a neighbourhood. The majority of driving angles in
edge vehicles 1 and 2 falls within the range [—50°,50°], while in edge vehicles
3 and 4, the range is [—100°,100°]. The graph shows that when driving on a
hill, vehicles may encounter more turns than when driving on a highway or in

a city.
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Figure 8.3: Data distribution in each edge vehicle.

The models were continuously trained based on the recorded data and used
future streaming driving data to perform prediction and validation on the
steering wheel angle information.

The hardware information for all of the servers is given in table 8.1. To
simulate aggregation and edge functions, one of the five servers was designated
as the aggregation server, while the others operated as edge vehicles. In order
to simulate a heterogeneous edge area, GPU settings were only available in
Vehicles 1, 3, and 4 (Vehicle 1: Tesla V100, Vehicle 3, 4: Tesla T4).
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Figure 8.4: The two input branches each have two 3x3 convolution layers in a
convolutional neural network. The first layer has 12 output channels
that are enabled with the ELU function, while the second layer has 24,
which is then followed by 4x4 max pooling. All with stride values of 2
or higher. With the ReLu activation, there are two completely linked
layers with 250 and 10 units after concatenating two branches.

8.3.3 Machine Learning Method

In this paper, steering wheel angle prediction is performed using a two-stream
deep Convolutional Neural Network (CNN) [167] [168]. The architecture is
described in detail in Figure 8.4. Each stream in our implementation has two
convolutional layers and a max-pooling layer. After concatenating, there are
two fully-connected layers activated by the ReLU function.

The model has two distinct neural branches that take spatial and temporal
information as inputs to two streams and then output the expected steering
angle. The model consumes three frames of RGB images for the first stream,
which can be denoted as {A;_2, A1, At }. The second stream is a two-frame
optical flow measured from two consecutive frames O;_1 = f({Ai—2, Ai—1})
and Oy = f({Ai—1, A}).

Optical flow is a typical temporal representation in video streams that cap-
tures the motion differences between two frames [173]. The optical flow calcu-
lation method used in this paper is based on Gunnar Farneback’s algorithm,
which is implemented in OpenCV [174]. Figure 8.5 shows an example optical
flow matrix created by two consecutive image frames.
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The aim of training a local convolutional neural network is to find the model
parameters that result in the smallest difference between the prediction and
ground truth steering angles. As a result, we choose mean square error as the
local model training loss function in this case:

N

1 ~
Loss = + > (0 —6,)? (8.2)

t=1

Here, N represents the batch size while 6; and 0, represent the ground
truth and the predicted steering wheel angle value at time ¢. During the
process of model training in each edge vehicle, all the image frames will be
firstly normalized to [—1,1]. The batch size is 16 while the learning rate is
set to 1075. The optimizer utilized is Adam [175], with parameters 3; = 0.6,
Ba =0.99 and € = 1078,

(¢) O¢ = f({As—1,At})

Figure 8.5: Example of the optical flow (a) Previous Frame (b) Current Frame (c)
Optical flow of current vision frame.
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8.3.4 Evaluation Metrics and Baseline Model

We chose three metrics and three baseline models in order to provide fruitful
outcomes and assessment. The three metrics include angle prediction perfor-
mance, model training time and bandwidth cost:

¢ Angle prediction performance: Root mean square error (RMSE), a
common metric for measuring the difference between prediction results
and ground truth. The metrics will provide a reasonable estimate of the
trained model’s quality in each edge vehicle.

e Model training time: The total time cost for training a model at the
edge vehicles is known as this metric. As a consequence, the average of
four edge vehicles is obtained. This metric shows the pace at which local
edge devices update their model, which is critical for systems that need
to evolve quickly in order to adapt to a rapidly changing environment.
By testing the model deployment timestamp, the metrics were calculated
in all of the vehicles.

¢ Bandwidth cost: The total number of bytes transmitted during the
entire training procedure is known as this metric. This metric shows the
overall cost of communication resources needed to achieve an applicable
convolutional neural model.

The three baseline models include models trained by applying the tradi-
tional centralized learning approach, the locally trained model without model
sharing and the Federated Learning with the synchronous aggregation proto-
col:

o Traditional Centralized Learning model (ML): This baseline model
was trained using a centralized learning method, which is still widely
used in current machine learning research and software applications.
All data from edge vehicles is collected to a single server prior to model
training. The hyper-parameters of this model training are identical to
those of Federated Learning, as described in section 8.3.3. The results
can then be compared to models trained using Federated Learning tech-
niques.

¢ Locally trained model without model sharing (Local ML):

121



Chapter 8 Real-time End-to-End Federated Learning: An Automotive Case
Study

Each edge vehicle is used to train this baseline model. In contrast to
Federated Learning, no models will be exchanged during the training
process. The prediction accuracy can be applied to the Federated Learn-
ing model to see if Federated Learning outperforms those independently
trained local models.

e Synchronous Federated Learning (FL): FedAvg is the algorithm
applied here. It is a synchronous method that is widely used in Federated
Learning research. Before aggregating global models, the server has to
wait for all participants to finish updating their local models.

8.4 Real-time End-to-End Federated Learning

This section describes the algorithm and method used in this article. The
diagram of the learning process in a single edge vehicle is shown in Figure 8.6.
Images are firstly stored in a fixed-sized storage window in order to conduct
real-time end-to-end learning based on the continuous image stream. When
the storage window reaches its size limit, the most recent picture frames are
moved into the training window, while an equivalent number of old frames
are dropped. (In our case, the storage window is 100 images wide and the
training window is 2,000 wide. These values provide us with the highest
model prediction accuracy.) The optical flow information is measured at the
same time. Inside the training window, image frames and optical flow frames
are fed into a convolutional neural network. The network’s performance is
compared to the ground truth for that picture frame, which is the human
driver’s recorded steering wheel angle. Back-propagation is used to adjust
the weights of the convolutional neural network in order to enforce the model
output as close to the target output as possible.

Following the completion of each training epoch, local models in edge ve-
hicles will be updated to the aggregation server, forming a continuous global
awareness among all participating edge vehicles. The following are the steps
of the algorithm used in this paper (Algorithm 5):

Step 1: Edge vehicles compute the model locally; after completing each local
training epoch, they retrieve the global model version and compare it
to their local version. The decision is based on the frequency bound
limits (a; and a,) and the model version difference ver (global model

122



8.4 Real-time End-to-End Federated Learning

"O[OI[A O[SUIS B Ul SUIUIROT POJRIOP] PUS-0)-PUS SWII}-[eal JO WRISRI(] :9°] 2INSII ]

.. &
=

uonebedoid xoeg,

Joug
< [9Buy [9aum

- aibuy > < Buealg

> pajoipaid yiomiaN ﬁ._n:_

SJBD JAY}10 Y}IM [SPOI
a1e60166y pue abueyoxg * +
saweld sawelq
sbew|  moj4 [eondo AR
a@e
saweld plo sawelq MaN

- = jT o

mopuipy Bujuresy mopuip abeiors

123



Chapter 8 Real-time End-to-End Federated Learning: An Automotive Case
Study

Algorithm 5: Asynchronous Federated Learning: In the system, total
K edge vehicles are indexed by k; B is the local mini-batch size; E
represents the number of local epochs, and + is the learning rate.

Function Server_Function():
initialize wg
initialize ver +— q;
while True do
wf+1, very, <— Client_ Update(wy, ver);
w1 — (1 —a) x wy +a xwk
1

Where a= verfverkJrl;
ver «— ver + 1;
end

End Function
Function Client_Update(w, ver):
B <—(split Py into batches of size B);
while True do
for each local epoch i from 1 to E do
for batch b € g do
| w<+— w—~VI(w;b);
end
end
When ready for an update, pull global model version ver from
the server
if ver — very > a, then
// Client version is too old
Fetch w, ver from the server
continue
else if ver — very, < a; then
‘ // Client version is too close to the global
continue
else
| return w, ver to server

end
End Function
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version) and verk (local model version of edge vehicle k). The upper
limit of the model version difference is represented by a,, while the
lower limit is represented by a;. There are three conditions:

o If the local version is out of date (the client version is too old), the edge
vehicle can retrieve the most recent model and conduct local training
again.

o If the local version is too similar to the latest version (Client is too
active), it should stop upgrading and re-train locally.

e Clients should then submit modified model results to the aggregation
server if the local version is between the upper and lower limits.

Step 2: In order to form a global awareness of all local models, the central
server performs aggregation based on the ratio determined by the
global and local model versions.

Step 3: The aggregation server returns the aggregated result to the edge ve-
hicles that request the most recent model.

Since the algorithm is push-based, the aggregation server only deploys the
global model if the edge vehicles request it. When the edge vehicles update
their local models, the server aggregates them based on the local model ver-
sion. The older the model version, the lower the ratio when shaping the
global model. Furthermore, although the model update frequency is entirely
dependent on local hardware settings, there are two bound limits in place to
ensure that the update frequency of local clients is within a reasonable range
[ar, ay]. (In our case, based on the number of the participated vehicles, the
lower frequency bound a; we set equals to 2 while the upper bound a,, is 6.)

8.5 Results

We present the experiment results of the real-time end-to-end Federated Learn-
ing approach to steering wheel angle prediction in this section. The device
output is evaluated based on three factors, as defined in Section 11.4. (The
metrics are described in 13.3.5.) - (1) Angle prediction performance (2) Model
Training Time (3) Bandwidth cost. The results are compared with other three
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Figure 8.7: The comparison of angle prediction performance on four local vehicle
test set with Federated Learning and three baseline models.
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baseline models which are trained by - 1) Traditional Centralized Learning
(ML) 2) Local training without model sharing (Local ML) 3) Synchronous
Federated Learning (FL)

Figure 13.4 compares the angle prediction output of the model trained by
asynchronous Federated Learning (Async FL) to the other baseline models.
The results show that the Federated Learning models (synchronous and asyn-
chronous) may achieve the same or even better prediction accuracy than the
traditional centralized trained model. The Federated Learning model reacts
faster than other learning approaches, particularly at the timestamps that
require rapid changes in steering wheel angle. Furthermore, when compared
to independently trained models, Federated Learning approaches can provide
a much better prediction that is much closer to the ground truth.
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Figure 8.8: Accumulated error on test dataset in 4 edge vehicles with asynchronous
Federated Learning and other baseline models.

To provide a clear view of model output with different approaches, we accu-
mulated the square error between expected angle and ground truth (calculated
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by (6; — 6;)?) and demonstrate it in Figure 8.8. The results provide the same
information as Figure 13.4. We find that asynchronous Federated Learning
outperforms centralized learning and local machine learning. In addition, as
compared to synchronous Federated Learning, our method achieves higher
prediction accuracy in edge vehicles 3 and 4. Table 8.2 displays detailed nu-
merical results, including the regression error (RMSE) on each test dataset in
each vehicle and the overall average accuracy among the test datasets of all
participating edge vehicles.

Table 8.2: Steering wheel angle regression error (RMSE) on test set of each edge
vehicle (4 vehicles in total)

Vehicle 1  Vehicle 2 Vehicle 3 Vehicle 4 Overall

Async FL 4.077 10.358 18.629 6.129 11.275
FL 3.758 9.933 22.967 6.795 12.754
ML 6.422 10.118 21.985 8.264 13.183

Local ML 6.416 16.749 26.196 11.788 16.954

The findings show that asynchronous Federated Learning outperforms other
baseline models in vehicles 3 and 4. In vehicle 1 and 2, models trained by
asynchronous Federated Learning only perform about 0.2 and 0.4 worse than
the synchronous Federated learning method. Based on our findings, we may
conclude that the asynchronous Federated Learning model can provide better
prediction performance than the local independently trained model, and its
behaviour can achieve the same or even higher accuracy level when compared
to centralized learning and the synchronous Federated Learning model.

Furthermore, Figure 8.9 illustrates the shift in regression error with model
training time in order to evaluate model training efficiency. The results show
that the asynchronous Federated Learning method outperforms all of the base-
line approaches in terms of model training efficiency. With the same training
period, our approach can achieve better prediction efficiency (with approxi-
mately 50% less regression error) and converge approximately 70% faster than
other baseline models.

The comparison of total training time and bytes transferred between Fed-
erated Learning and three baseline models is shown in table 8.3. For all the
models, the total number of training epochs is 50. With async FL, FL, and
Local ML learning approaches, model training is accelerated by Nvidia Tesla
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Table 8.3: Total Training Time and Bandwidth cost with different model training
methods (4 Vehicles in total)

Async FL FL ML Local ML

Training Time (sec) 669.2 5,982.8 2143.7 5,903.4
Bytes Transferred (GB) 0.78 0.78 2.02 -

V100 GPU in edge vehicle 1, while model training is accelerated by Nvidia
Tesla T4 GPU in edge vehicle 3, 4. The ML method completes training on a
single server with Nvidia Tesla T4 GPU acceleration. As compared to the tra-
ditional centralized learning approach, the bandwidth cost of both Federated
Learning methods is reduced by approximately 60%. The results for model
training time indicate that asynchronous Federated Learning needs signifi-
cantly less training time than other baseline methods. However, since there is
no GPU available for synchronous Federated Learning and local learning, edge
vehicle 2 becomes the burden of the entire system. Other vehicles must wait
for vehicle 2 to complete its local training round before performing model ag-
gregation and further training tasks, which is inflexible and time-consuming.
The performance of these two methods is even lower than that of the cen-
tralized learning system with GPU acceleration. In summary, as compared to
the traditional centralized learning process, asynchronous Federated Learning
reduces training time by approximately 70% and saves approximately 60%
bandwidth. Since our method consumes real-time streaming data, there is no
need to store and train on a large dataset in a single edge unit, making it
cost-effective and relevant to real-world systems.

8.6 Discussion

Based on the findings of our experiments, our method has major advantages
over widely used centralized learning and synchronous Federated Learning ap-
proaches. Our asynchronous approach achieves the same or better model pre-
diction accuracy while substantially reducing model training time and band-
width costs. Our method not only outperforms synchronous Federated Learn-
ing in terms of forming the global model of entire datasets without requir-
ing any user data transmission, but it also tolerates heterogeneous hardware
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settings of different edge devices and dramatically improves model training
performance. Furthermore, the model quality is greatly improved and can
produce much better results with the model sharing and aggregation process.

Because of these benefits, real-time end-to-end Federated Learning can as-
sist in a number of other meaningful use cases. The technique described in this
paper can be applied not only to self-driving vehicles, but also to other appli-
cations that involve continuous machine learning model training on resource-
constrained edges, such as camera sensors, cell phones, household electrical
appliances, and so on. Furthermore, due to user data privacy and network
bandwidth limitations, our approach can be implemented in systems that need
a constantly evolving model to adapt to rapidly changing environments.

8.7 Conclusion and Future Work

In this paper, we present a novel approach to real-time end-to-end Federated
Learning using a version-based asynchronous aggregation protocol. We val-
idate our approach using a critical use case, steering wheel angle prediction
in self-driving cars. Our findings show the model’s strength and advantages
when trained using our proposed method. In our case, the model achieves the
same or even better prediction accuracy than widely used centralized learn-
ing methods and other Federated Learning algorithms while reducing training
time by 70% and bandwidth cost by 60%. Note that the decrease would be
more visible if the number of participating devices is expanded more, which
proves to be cost-effective and relevant to real-world systems.

In the future, we plan to further analyze our algorithm with different combi-
nations of hyper-parameters, such as the aggregation frequency bound a; and
ay- As the parameter settings become more important with the number of
participating learning vehicles increases, we would like to add more federated
edge users in order to test device output that may differ with these bounds.
In addition, we will test our approach in additional use cases and investigate
more sophisticated neural networks combined with our approach. In addition,
we plan to develop more appropriate aggregation algorithms and protocols in
order to increase model training performance on resource-constrained edge
devices in real-world embedded systems.
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CHAPTER 9

AF-DNDF: Asynchronous Federated Learning of Deep
Neural Decision Forests

This chapter has earlier been published as

AF-DNDF: Asynchronous Federated Learning of Deep Neural De-
cision Forests

Zhang H., Bosch J., Holmstrém Olsson H. and Koppisetty, A.C.

In 2021 47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA) (pp. 308-315). IEEE.

Federated learning is an emerging machine learning methodology that was
first proposed by Google [101] in 2016. The concept was originally used to
solve the problem of local model training and updating in Android mobile
devices [103]. The design goal of Federated Learning is to carry out efficient
machine learning among multiple parties or multiple computing end nodes
with the purpose of protecting the privacy of the end-user personal data dur-
ing big data exchange. Since the edge devices in Federated Learning train the
machine learning models continuously on new data, bottlenecks with central-
ized training and deployment of ML models on edge are minimized. Due to
these characteristics, the advantage of Federated learning is significant. It is

133



Chapter 9 AF-DNDEF': Asynchronous Federated Learning of Deep Neural
Decision Forests

capable to utilize local computation resources and ease the computation pres-
sure of the central server. Furthermore, the system can provide rapid model
deployment and evolution because of the local training fashion [176].

In addition, the machine learning algorithm that can be used in Feder-
ated Learning is not limited to neural networks, but can also include other
important algorithms such as the random forests, etc. With the inspiration
of [177], we further investigate the concept of Deep Neural Decision Forests
(DNDF) and the way to combine it with Federated Learning. As the network
unites deep neural networks and decision forests, the methodology leverages
the robustness of decision trees where the final fully connected layer in convo-
lutional neural networks are sensitive. Thus, it is desirable to be utilized for
classification tasks with the help of Federated Learning.

Although the concept of Deep Neural Decision Forests and training the
model with the Federated Learning method has significant benefits, it is of-
ten a complicated process for industries and companies to build a reliable
and applicable Federated Learning system [99]. Our previous research shows
the challenges of deploying Artificial Intelligent (AI)/Machine Learning (ML)
components into a real-world industrial context. As we defined in “Engineer-
ing AI Systems: A Research Agenda' [150], Al engineering refers to AI/ML-
driven software development and deployment in industrial production con-
texts. We found that the transition from prototype to the production-quality
deployment of ML models proves to be challenging for many companies [151].

In this paper, in order to make the concept to be applicable to real-world
industrial requirements, such as heterogeneous hardware settings and limited
communication bandwidth, we propose a novel algorithm “AF-DNDF". The
contribution of this paper is threefold. First, we combine the asynchronous
Federated aggregation protocol with the concept of Deep Neural Decision
Forests. The asynchronous approach can enhance the model training effi-
ciency among all participated edge devices. Second, we introduce an optimal
method for selecting decision trees based on their classification performance,
which significantly reduces the communication bandwidth when updating lo-
cal models to the aggregation server. Third, we evaluate our approach with
an important automotive use case, road object recognition in the field of au-
tonomous driving. Based on our results, we show that our AF-DNDF al-
gorithm significantly reduces the communication overhead and, at the same
time, accelerates model training speed without sacrificing model classification
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performance, which turns out to be more suitable when deploying the method
in an industrial context.

The remainder of this paper is structured as follows. In Section 9.1, we in-
troduce the background of this study. Section 9.2 details our research method,
including the simulation testbed, the utilized machine learning method and
the evaluation metrics. Section 9.3 presents the Asynchronous Federated Deep
Neural Decision Forests approach proposed in this paper. Sections 9.4 includes
evaluation of the proposed method to data sets that are relevant to industrial
applications. Section 9.5 outlines the discussion on our observed results. Fi-
nally, Section 9.6 presents conclusions and future work.

9.1 Background

9.1.1 Deep Neural Decision Forests

Deep neural decision forests were firstly were first introduced by Kontschieder
et al. [178] in the year 2015. Their results demonstrated that the method out-
performs the baseline convolutional neural network and random forest with
the same individual architectural settings. A DNDF consists of two parts,
namely convolutional neural network and decision forests. Convolutional neu-
ral networks are often used in image classification and object detection because
of their excellent performance without explicit feature extraction. By using
different convolution kernels, features can be extracted from the data source.
The decision forest is also a common machine learning algorithm based on the
tree structure. Due to the low complexity and strong learning ability, deci-
sion forests have been successfully applied to many machine learning problems
[179].

DNDF algorithm is a modification of convolutional neural networks where
the final softmax layer of CNNs is replaced by decision forests. Predictions are
made by applying a certain routing algorithm in the decision tree in order to
reach the last leaf node. Figure 9.1 demonstrate a specific network structure.

In this network, the full connection layer and the previous layer are the
same as the general convolutional neural network, and the mapping from the
full connection layer node to the decision node is the same.

dn (7;0) = o (fu(2;0)) (9.1)
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Figure 9.1: Network Structure of the Deep Neural Decision Forests

where X is the input. 6 represents the parameter. o is the sigmoid function.
The function realizes the mapping from full connection layer to the decision
nodes. In order to reach the leaf node through the tree, we need to plan the
routing algorithm:

pu()0) = [ dn(a;0)< dn(a:0)™ (9.2)
neN
where d,(2;0) = 1 — d,(x;0)<. N is the decision node set. d,,(z;6)<
indicates the route from the current node to the left while [ is the leaf node.
According to the formula, if we want to route to leaf node 4:

pu, = di(2)dz(2)ds () (9.3)
The probability of classifying input x as y is:

Ply|z,0, ] Zﬂ'l wi(z|6) (9.4)

leL

For the decision forests F' = 11,75, ..., T:

k
Z [y 2] (9.5)

Prlylz] =

?ﬂH
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The accuracy of classification can be significantly improved by discriminat-
ing different decision trees in the decision forests.

9.1.2 Federated Learning and Asynchronous Aggregation

Machine Learning has attracted tremendous attention from both research and
society. The main challenge of it is: although the computation capability
continues to increase with time, the computational needs of many Machine
Learning systems grow even faster [99]. For example, when applying deep
neural networks, in order to achieve good model performance, the network
needs to contain millions or even billions of neurons, which may result in the
problem of longer training time and less model flexibility [98].

With the concept of cloud computing and decentralized data storage, Al
engineering [150] has the opportunity to expand to a distributed setting.
Federated Learning is proposed to improve traditional Machine Learning ap-
proaches, as it enables edge devices to collaboratively and continuously learn a
shared Machine Learning model. The theory of Federated Learning has been
explored previously in [101][102] where the main goal was to build a global
statistical model using a variety of edge devices. The challenge is to minimize
the following finite-sum objective function 9.6 in particular:

H}ii)n f(w), where f(w):= Z i fi(w) (9.6)

Here, w denotes model parameters, n the total number of edge devices, and
fi(w) the local objective function defined by the ith device’s high-dimensional
tensor w. A; (A; > 0 and ) . A; = 1) is the impact of the ith remote device
which is defined by users.

With the concept first applied by Google in 2016 [103], there have been
several Federated Learning architectures, frameworks and solutions proposed
to solve real-world issues [136]. A Federated Learning system requires no
transfer of the edge data but only local model updates are sent to a central
aggregation server to form a consensus global knowledge. The model updates
could be performed either by updating the complete model architecture or
just by updating the model parameters and hyper-parameters. Furthermore,
with the local training and validation, a Machine Learning model can be
quickly and continuously verified and deployed, which is more suitable for a
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quick-evolving system.

However, the commonly applied Federated Learning aggregation algorithms,
such as FedAvg [159], assumes that all the participated edge devices have
the same computation power and be able to update the models at the same
time, which is incompatible with the industrial cases. In our previous re-
search [180], we proposed a version-based asynchronous aggregation protocol
to tackle these challenges. With the asynchronous aggregation protocol, the
edge devices no longer need to wait for other equipment to complete their
model training round but directly send the local model to the aggregation
server. In this paper, we will not only combine asynchronous aggregation pro-
tocol with DNDF but also optimize the local model updating procedure by
further reducing the communication overhead without sacrificing the model
classification performance.

9.2 Method

To produce a quantitative assessment and comparison between Federated
Learning and centralized learning techniques, the empirical method and learn-
ing procedure provided in [92] were applied in this study. We also compared
our AF-DNDF approach with the commonly used synchronous Federated
Learning algorithm. In the following sections, we present our testbed, data
traces, the convolutional neural network architecture and hyper-parameters
of decision forests that were utilized in this research.

9.2.1 Data Traces and Testbed

In this research, in order to provide a comprehensive evaluation, we selected
two well-known automotive driving data sets, namely FLIR and BDD 100K
data set.

FLIR dataset is a thermal image data set [181]. With the development of
thermal imaging cameras, the automotive industry has begun to explore the
use of thermal imaging for machine learning to develop advanced driving as-
sistance and autonomous driving systems. The data set contains annotated
thermal images of day and night scenes, from which we extracted three cat-
egories of road objects. Figure 9.2 demonstrate the example samples in the
data set.
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Figure 9.2: FLIR Thermal Sensing Advanced driver-assistance system Dataset

The second data set applied is BDD 100K [182], which was released by
the AI Laboratory of Berkeley University. The data set contains the largest
and most diverse public driving records. The data sets contain 10,000 pieces
of high-definition video. Each video is about 40 seconds while the keyframe
is sampled to get 10,000 pictures. The image size is a 1280x720 RGB image.
Each image file is pointed to a specific number that can be found in every label
image. In order to perform objective recognition, in this paper, we extracted
60,000 samples from the RGB frame images based on the labelled objective
bounding area. The training data contains six different road object classes
with 10,000 samples in each category. Figure 9.3 gives an example of the
selected data set.

Before our simulation, as we included three vehicles in our experiment,
the data from both data sets were divided into three parts and uniformly
distributed to those edge vehicles. In each edge vehicle, the first 70% data
were regarded as the input driving information which was used for model
training while the rest 30% were considered as the test set. All the image
samples were resized to 512 x 512 and normalized to [—1,1].

Hardware information for all of the servers is provided in Table 9.1. In
order to simulate aggregation and edge operations, one server was designated
as the aggregation server, while the others were designated as edge vehicles.
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Figure 9.3: BDD100K: A Large-scale Diverse Driving Video Dataset
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Figure 9.4: Convolutional neural network layer description

9.2.2 Machine Learning Method

In order to find the optimal network, the random search [183] strategy was
applied. The following is the detailed description of the convolutional neural
network architecture and for the forest hyper-parameters, we selected parame-
ters that eventually gave the best classification accuracy. Figure 9.4 illustrates
the convolutional neural network part of our deep neural decision forest archi-
tecture. Three 3x3 convolution layers were set in the input branch, which has
12 output channels. The second layer contains 24 output channels while the
third layer has 36 output channels, followed by 4x4 max pooling. All layers
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Table 9.1: Hardware setup for testbed servers

CPU Intel(R) Xeon(R) Gold
6226R

Cores 8

Frequency 2.90 GHz

Memory 32 GB

0S Linux 4.15.0-106-generic

GPU Nvidia Tesla T4 GPU

are activated with the ELU function [184]. The output is connected to the
decision forests. The convolutional neural network is acting as a feature layer
that can abstract useful features from source images and pass them to the

decision forests.

The optimal model parameters for training a local DNDF network are those
that minimize the following model training loss function:

L(0,;z,y) = —log(Prly|x,0,n]) (9.7)

For the hyper-parameter of decision forests, we list all the settings in the

following table 9.2:

Table 9.2: Hyper-parameter settings for Decision Forests layer

NUMBER_EPOCHS 20
TREE_DEPTH 8
NUMBER TREE 12
FEATURE RATE 0.75
DROPOUT _RATE 0.05

9.2.3 Evaluation Metrics and Baseline Model

We chose three evaluation metrics and three baseline models to give a complete
review. The three metrics reflect three important aspects when deploying ma-
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chine learning methods in an industrial context, namely model performance,
model training efficiency and communication cost for data transfer between
the edge nodes and the central server. [185].
- Classification Accuracy & mean Average Precision: Classification
accuracy and average precision are important metrics that indicate the quality
of the classification model. Classification accuracy is defined as the percentage
of correctly recognized images among the total number of testing images.

T

A = — .
UCC = 7 (9.8)

where T represents the number of correct classifications while F' is the number
of false classifications. Average precision summarizes the precision-recall curve
as a weighted average of the precision obtained at each threshold. Here the
increase of recall from the previous threshold is used as a weight [186][187].

AP =) (R, — R,_1)P, (9.9)
n

where P, and R,, are the precision and recall at the nth threshold. We cal-
culate the mean of the Average Precision among all target classes to evaluate
the quality of the classifier.
- Model training time: This metric represents the cost of training a model
at the edge in terms of time. This metric demonstrates the speed at which
the edge vehicles locally update their knowledge, in this case, gained from the
machine learning models. The metric is crucial for those systems which need
to evolve continuously and adapt rapidly to the changes in data that is caused
by changes in the local environment. The metrics were measured in all the
vehicles by checking the model deployment timestamp.
- Bandwidth utilization: The total number of bytes transferred during
the whole training operation is defined as this metric. This statistic depicts
the overall cost of communication resources required to achieve an applicable
AF-DNDF model.

The three baseline models include the model trained by applying the cen-
tralized learning approach (CL), the independently local learning (IL) and
the synchronous Federated Average algorithm (FedAvg). These baseline ap-
proaches are commonly used architectures used in federated learning systems
and are used to benchmark our proposed AF-DNDF architecture.
Centralized Learning (CL):
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The centralized learning approach is used to train this baseline model. All
data from edge vehicles is gathered to a single server prior to model training.
The hyper-parameters applied are the same as Federated Learning which is
mentioned in section 9.2.2.

Independently Local Learning (IL):

Each edge vehicle is directly used to train these baseline models. Unlike Fed-
erated Learning, however, throughout the training process, there will be no
model exchange between the edge and central nodes. To show how Feder-
ated Learning can outperform those individually trained local models, the
prediction performance may be compared to the Federated Learning model.
Synchronous Federated Average algorithm (FedAvg):

FedAvg [159], a synchronous Federated Learning aggregation protocol that
is frequently used in Federated Learning research, is the method used here.
Before performing global model aggregation, the server must wait for all of
the participating edge vehicles to finish their local training cycles.

9.3 AF-DNDF: Asynchronous Federated Deep
Neural Decision Forests

With the asynchronous aggregation protocol, the vehicle no longer needs to
wait for other equipment to complete its local model training iterations. In-
stead, they can directly send the optimal model to the aggregation server
and fetch the global knowledge, which significantly improves the efficiency of
global model training. Figure 9.6 illustrates the diagram of the learning pro-
cedure in the whole system. In each training cycle, the edge vehicle has to
perform local model training and performance validation locally. In order to
further save the communication bandwidth, in an AF-DNDF network, each
edge nodes will only submit partial decision trees instead of the whole forest.
Figure 9.5 demonstrates how an individual edge vehicle updates its optimal
local model to the aggregation server.

The decision trees are selected based on mean average precision among all
objective categories.

St AP()

AP = =%=———- A1
m e (9.10)

Here, K represent the total number of classes while k represents a specific
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class. The optimal group of decision trees will be selected based on the metric
and updated to the aggregation server together with the feature layer and
form a global knowledge among all participating edge vehicles.

Stage II

Model
Aggregation '

Stage III

Model Deploy

Stage 1

! ’ Model Update

Local Model
Training

Figure 9.6: Three stages of the Asynchronous Federated Deep Neural Decision
Forests

In this paper, as we described in Section 9.2.2, the local model contains 12
decision trees in each vehicle. However, only 4 trees and the local feature CNN
layer were updated to the aggregation server. At the end of the iteration, the
model will be sent back to the vehicle and continuously enhance the local
model.

Figure 9.6 shows the diagram of AF-DNDF updates and aggregation. A

detailed description of the three stages within an AF-DNDF system are listed
below:
Stage I: Edge vehicles calculate the model locally, then pull the global model
version and compare it to their local version value after each local training
session. The model version difference computed by ver (global model version)
and very, (local model version of edge vehicle k) and the frequency bound
limitations (a; and a,) are used to make the decision. The maximum limit
of the model version difference is a,, whereas the lower limit is a;. There are
three requirements:
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o If the local version is out of date (the client version is aged), the edge
vehicle should download the most recent model and restart local train-
ing.

« If the local version is too near to the most recent version (the client is
too active), it should be avoided upgrading and local training should be
performed again.

o Clients can then assess the outputs of all decision trees in the forest if
the local version is between the higher and lower bounds. After that,
the best set of trees is chosen and submitted to the aggregation server,
along with the feature CNN layers.

Stage II: To build a global knowledge of all local models, the central server
executes aggregation based on the ratio computed by the global and local
model versions. The decision forests layer will be replaced by the updated
set of local decision trees in the network, while the feature CNN layer will be
aggregated using the formula:

wegr — (1= ) X wp + a X wiy, (9.11)

where w; represents the global model while w! 11 is the updated local model.

In addition, the ratio « is defined based on model versions:
a= _ (9.12)
very — very

where very is the version of the global model while ver; represents the
updated local model version.

Stage III: The aggregation server updates the global model and sends back
the aggregated result (including the incremented model version) to the edge
vehicles who request the latest model.

The aggregation server only deploys the global model if the edge vehicles
request it as the method is a pull-based algorithm. In terms of aggregation,
once the edge vehicles update their own models, the server will aggregate them
based on their local version. When it comes to merging global knowledge, the
older the model version is, the lower the ratio is. Furthermore, while the model
update frequency is entirely dependent on local hardware settings, there are
two bound limitations to guarantee that local client update frequencies are
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within an acceptable range [a;,a,]. In our paper, based on the number of
participating cars, we set the lower frequency bound a; to 1 and the upper
frequency bound a, to 4. Throughout our experiments, the settings we chose
resulted in the best classification accuracy and model training efficiency.

0.4 Results

9.4.1 Classification Performance

We first compared the classification accuracy of our approach with a pure
convolutional neural network (CNN) and random forest (RF) to demonstrate
the effectiveness of DNDF when encountered the task of object recognition.
The hyper-parameter settings are the same as AF-DNDF. (Random forests
settings are the same as the values listed in Table 9.2 while the CNN network
is demonstrated in Figure 9.4.) The results of the FLIR data set are listed in
Table 9.3.

Table 9.3: Classification Accuracy and mean Average Precision of FLIR Dataset

AF-DNDF RF CNN
AUCC 79.9% 67.3% 74.7%
mAP 0.894 0.751 0.828

From the results, we can observe that after combining the decision forests
and convolutional neural network, the classification accuracy of AF-DNDF
increased 10% compared with RF and about 5% compared with CNN. The
situation also applies to the mean average precision, where the value improved
by about 10% if the DNDF network is applied.

Table 9.4: Classification Accuracy and mean Average Precision of BDD 100K

Dataset
AF-DNDF RF CNN
AUCC 68.6% 49.4% 63.3%
mAP 0.753 0.505 0.705
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Table 9.5: Comparison of Classification Accuracy and mean Average Precision
with three baseline learning approach in two data sets

AF-DNDF FedAvg

o am o
BDD 100K ﬁfpc %5.3%6520 (?;?8
CL IL

e TR
BDD 100K ‘?ff; %9.-7%? %%%‘?

The same conclusion can be obtained with BDD 100K data set. Table
9.4 gives the classifier performance among three different machine learning
methods. The classification accuracy can increase around 18% compared with
RF and about 5% compared with CNN. For the mean Average Precision,
the value can be improved at least 5% with AF-DNDF. The results above
demonstrate the effectiveness of DNDF after combining CNN and decision
forests when performing object recognition with our data sets.

Moreover, in order to analyze the model classification performance, we com-
pared our model training approach with three baseline learning architectures,
namely centralized learning (CL), independently local learning (IL) and syn-
chronous Federated Average algorithm (FedAvg). First of all, Table 11.3 shows
the classifier accuracy and mean Average Precision.

The results show that when compared to centralized learning and syn-
chronous Federated Learning, the AF-DNDF model can achieve the same or
even higher levels of accuracy. If we compare it with an independently trained
model, the AF-DNDF model can provide a more accurate prediction which is
about 20% better with the FLIR data set and 10% better with the BDD 100k
data set.
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9.4.2 Model Training Efficiency

During the evaluation, in order to simulate heterogeneous hardware settings,
we accelerated local model training by Nvidia Tesla T4 GPU in two edge
vehicles while another one is trained without hardware acceleration. Figure
9.7 shows the change of the loss value with model training time. The results
reveal that the AF-DNDF approach surpasses all baseline approaches in terms
of model training efficiency. With the same amount of training time, our
method can converge 60% quicker than other existing baseline models.
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CL
0.8 — L
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= FedAvg
1.1 === AF-DNDF
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— L
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o
|
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(b) FLIR

Figure 9.7: The comparison between model training loss and the model training
time with AF-DNDF and three baseline models
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9.4.3 Bandwidth Utilization

During the experiment, we also recorded bandwidth utilization by applying
each learning approach. Figure 9.8 shows the results for bandwidth utiliza-
tion.When compared to the centralized learning technique, the bandwidth cost
of both Federated Learning methods is lowered by roughly 80%. Moreover,
in our AF-DNDF approach, as our method only selects the optimal part of
the model to update, the bandwidth usage is further reduced by about 60%
compared with the synchronous Federated Learning algorithm.

In summary, AF-DNDF reduces training time by around 60% and saves
bandwidth by about 80% when compared to the centralized learning approach,
which is cost-effective and suitable to real-world systems.
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Figure 9.8: Bandwidth consumption of different learning algorithm with two data
sets
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9.5 Discussion

From our experiment results, our architecture of asynchronous Federated
Learning of deep neural decision forests proves to have significant advantages
compared with commonly used centralized learning and synchronous Feder-
ated Learning methods.

Furthermore, the results demonstrate that AF-DNDF requires much less
model training time than alternative baseline learning architectures. However,
as for synchronous Federated Learning and independently local learning, the
vehicle without access to GPU settings becomes a heavy burden among all
participated learning vehicles. Other vehicles must wait until all edge vehicles
have completed their local training round before performing model aggrega-
tion and additional training, which is rigid and time-consuming. These two
strategies are even less efficient than the centralized learning method.

Without losing model classification accuracy, our asynchronous method may
considerably reduce model training time and bandwidth costs. Our approach
not only outperforms synchronous Federated Learning by forming a global
knowledge of the entire data sets without requiring any user data sharing,
but it also tolerates heterogeneous hardware settings across different edge
vehicles, which improves training efficiency significantly. Furthermore, the
model quality is considerably improved as a result of the model sharing method
and produce much better outcomes.

Because of these benefits, AF-DNDF can be applied in various use cases.
The algorithm introduced in this paper can be used in different applications
involving object detection on resource-constrained edges, such as camera sen-
sors, mobile phones, and home electrical appliances, in addition to self-driving
vehicles. Furthermore, the new aggregation methodology for decision forests
and the neural network combination might stimulate further research and
increase possible commercial applications.

9.6 Conclusion

In this work, we introduce “AF-DNDF", a new technique for DNDF model
training in an asynchronous federated manner. We validate our technique
with a real-world case: recognizing road objects in self-driving vehicles. Our
findings illustrate the model’s strength and benefits by using the method we
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suggest. In comparison to the commonly applied centralized learning approach
and other Federated Learning architectures, the model can achieve at least
equal or even greater prediction accuracy but decreases training time by 60%
and bandwidth cost by 80% in our scenario. We highlight that if the number
of participating vehicles is raised further, the decrease will be more noticeable,
which is cost-effective and suitable to industrial scenarios.

In the future, we would like to add additional edge nodes so that we can
assess the system’s performance on a broader scale. We also intend to identify
more appropriate aggregation protocols to further improve model training
efficiency, reduce bandwidth utilization and enhance edge model quality on
resource-constrained edge devices in real-world embedded systems.
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cHAPTER 10

Autonomous navigation and configuration of integrated
access backhauling for UAV base station using
reinforcement learning

This chapter has earlier been published as

Autonomous navigation and configuration of integrated access back-
hauling for UAV base station using reinforcement learning

Zhang H., Li J., Qi Z., Lin X., Aronsson A., Bosch J., and Olsson H. H.

In 2022 IEEFE Future Networks World Forum (FNWF) (pp. 184-189). IEEE.

Like food, water and medicine, the ability to communicate has proven to
be an essential tool for first responders, governments, and survivors in dis-
aster response and relief. To provide connectivity in areas that cannot be
fully covered by the existing mobile network, for example, when the network
infrastructure is damaged or not available, unmanned aerial vehicles (UAVs)
carrying base stations (BSs) can be used to provide temporary coverage for
users located in the disaster area.

UAV-BS assist wireless communication networks have recently gained in-
creased interest in both academic and public safety communities[188]—[192].
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Thanks to the great mobility and flexibility of UAVs, it is expected that
UAV-BSs can bring fast connectivity for mission-critical (MC) communica-
tions. However, there are a number of challenges that must be addressed
when deploying UAV-BSs in practice. The deployment and configuration of
the UAV-BSs play a critical role in the performance of the target services.
When integrating a UAV-BS into an existing mobile network, a fast and reli-
able backhaul connection between the UAV-BS and on-ground BSs is required
to ensure the end-to-end quality of service (QoS) for the interested users. In
addition, reliable and scalable backhaul links between different UAV-BSs are
needed when multiple UAV-BSs are used to cover a wider area. Therefore,
it is crucial to ensure the good quality of both the access and backhaul links
when optimizing the deployment of UAV-BSs. The deployment optimization
also depends on many other factors such as the limitations on UAV’s flying al-
titude, operation time, antenna capabilities and transmit power, the network
traffic load distribution, and user movements.

While many works on UAV-BS deployment focused on the problems of
UAV placement, trajectory design, and number of UAV-BSs, etc., only a few
previous results have considered the wireless backhaul aspects[193]-[196]. In
[193], the authors investigated how to rapidly deploy the minimum number of
UAV-BSs to assist the existing mobile network to evenly serve as many users
as possible while guaranteeing a robust wireless connection among the UAV-
BSs and fixed on-ground BSs. It is assumed that all UAV-BSs are flying at the
same and fixed height, and the robustness of the backbone network among
the deployed UAV-BSs is guaranteed by ensuring a bi-connection network
topology so that if one UAV-BS fails, there still exists at least one route
between any UAV-BS and a fixed on-ground BS. In [194], a UAV-BS 3-D
placement algorithm is proposed to maximize the total number of served users
or the sum of user data rates subject to capacity constraints of both access
and backhaul links. This work was further extended by the authors in [195],
where a mixed-integer non-linear programming approach is proposed to jointly
optimize a UAV-BS location and the system bandwidth allocation without
exceeding the backhaul and access capacities.

With 5G new radio (NR), there is an opportunity to use the integrated ac-
cess and backhaul (IAB) feature to wirelessly connect multiple UAV-BSs and
integrate them to an existing mobile network seamlessly [188], [196]. The NR
TAB feature supports multi-hop wireless backhaul with a flexible and adap-
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tive network architecture [197]. Figure 1 illustrates an example of UAV-BS-
assisted network deployment using TAB. A macro-BS with a wired connection
to the core network is configured as an TAB donor node, and a UAV-BS is
configured as an IAB node. The UAV-BS connects to a parent or donor node
using wireless backhaul, and it services on-ground users using access links.
The ITAB network topology can adapt to the varying backhaul link conditions
and traffic load situations.

In [196], the authors evaluated the mean user throughput and user fairness
performance of a UAV-based IAB system in millimeter-wave (mmWave) urban
deployments, where the UAV-BS 2-D location is optimized to follow the user
movement using a particle swarm optimization method. They assumed sepa-
rate channels for access and backhaul links as well as dedicated antenna arrays
for each interface. In this work, we consider a UAV-BS-assisted IAB network
for providing temporary coverage to MC users in an emergency area. We as-
sume that the system operates in a mid-band, which provides better coverage
than mmWave bands. The same frequency band and the same antennas are
shared between access and backhaul links to reduce the cost and weight of the
BS carried on the UAV. We investigate how reinforcement learning (RL) can
support autonomous navigation and configuration of IAB for UAV-BS-assisted
networks. A framework and signalling procedure are proposed to support ap-
plying RL in an IAB network architecture. In addition, an RL algorithm is
designed to jointly optimize the antenna configuration and the 3-D location
of the UAV-BS to best serve on-ground MC users while maintaining a good
backhaul connection. System-level simulations are performed to gain insights
into the impact of different optimizing parameters on the considered system
performance, i.e., the throughput and drop rate of MC users. The simulation
data has also been utilized for the RL algorithm design and validation.

10.1 Use Case and System Model

We consider a multi-cell mobile cellular network as illustrated in the right plot
of Figure 10.1. The network initially consists of seven macro-BSs. However,
due to, for example, a natural disaster, the macro-BS located in the middle
of the network map is damaged. Hence, a UAV-BS is temporally set up to
provide wireless connectivity to the MC users in the disaster area (a circle
area with a 350 m radius in the middle of the deployment map). The UAV-
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BS is modelled as an TAB node. To reduce the complexity and weight of
antennas put on the UAV-BS, we assume that the same antennas are used
for wireless access and backhaul links. The UAV-BS measures the wireless
links to the six functioning macro-BSs, and it dynamically selects one of these
macro-BSs that gives the best link quality as its donor node. Then, a wireless
backhaul link is established between the UAV-BS and the selected donor-BS.
Both normal users and MC users are allowed to access the UAV-BS. A user
selects its serving BS (a macro-BS or a UAV-BS) based on the end-to-end
wireless path quality.

It is assumed that all macro-BSs and the UAV-BS have three sectors each,
and they operate at the same carrier frequency of 3.5 GHz with a time division
duplex (TDD) pattern that consists of four time slots, i.e., downlink (DL), DL,
uplink (UL) and DL. The pattern is repeated with a periodicity of 2 ms. The
100 MHz total system bandwidth is shared between the access and backhaul
links. To reduce the complexity and mitigate interference, we further assume
that the UAV-BS operates in a half-duplex mode, i.e., it cannot transmit and
receive signals simultaneously. The UAV-BS’s flying height is assumed to be
below 35 meters so that the rural macro propagation model can be reused for
UAV-BS in this case.

Users are randomly dropped in the map shown in Figure 10.1. In each
time slot, a number of users are activated following a dynamic traffic model
with a predefined traffic arriving rate and a predefined average traffic size.
The DL and UL traffic of activated users are scheduled based on the access
and backhaul link quality, the network scheduling strategy, and the allowed
transmission directions at a given time slot at each BS. The throughput of
each served user is calculated based on its served traffic size and the time
used for delivering the traffic. Note that for a user connected to the UAV-BS,
its throughput depends not only on the access link between itself and the
UAV-BS but also on the wireless backhaul link between the UAV-BS and the
donor-BS. A user will not be served with more traffic than required, and a user
can also be dropped/blocked in case of poor link quality or insufficient radio
resources. User throughput and drop rate are the key performance indicators
considered in our RL algorithm design.
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Figure 10.2: Framework and signaling procedure

10.2 Framework and Signaling Procedure

In this section, we propose a signalling procedure to support applying RL to
the considered use case. The functional framework studied in 5G NR for radio
access network intelligence is used as our reference [198].

The blocks above each entity (UE or BS) shown in Figure 10.2 denote differ-
ent machine learning functionalities, including data collection, model training,
model inference and actor. Data collection is a function that is responsible for
collecting input data for model training and model inference functions. The
model training function performs the training of the learning model while
the model inference function provides the learning output. Finally, the actor
function receives the output from the model inference module and triggers or
performs corresponding actions. Figure 10.2 shows the proposed signalling
procedure, which consists of the following key steps:

1): Data requests triggered by a donor BS: After a UAV-BS completes its net-
work integration procedure, the donor-BS triggers data collection to assist

158



10.2 Framework and Signaling Procedure

{02°0°0¢,0} 7RIS JULLIND WOIJ UOIYISURI) 91R)S d1[} Jo ojdwrexy :g°QT oInS1q

{0z ‘s£1- 0,014}
THg 19835 AN

lenusiod
m [d/R) m
! Tsaavn
1 ’
Aww c.wm“wa« ..xoui 1060403 | » ! wucauﬂ_ M_.:<
SERIRISEEN 5 :9)e}§ JUBLIND B
|enuaiod 1
e
_m_ £z A ap, L
<€ = wapouopy = f—] = = = = = —_
se-Avn se-Avn
e
7 1
7/ 1T
k  :apo) uony
{0€ 00,0}
g ioie35 IMaN
lenuiod

(sanmqissod 18)
T+g 191815 IXAN |eRUI0d

7 {0z ‘sL- ‘0 ‘.0L+}
7 {o£ ‘00 .0}
7 {0z ‘0 ‘s21+ .01}

7 {0z ‘00 .0}

\

lole
clil
1120
LELE

n :s9po)
uonoy

s :a)e)s aLNY

{oz ‘0 ‘0 ‘-0}

159



Chapter 10 Autonomous navigation and configuration of integrated access
backhauling for UAV base station using reinforcement learning

the UAV-BS in optimizing its configuration and deployment by sending a
data request message to the relevant users and BSs.

2): Data collection at UAV-BS: After receiving the data request, MC users,
the donor-BS, and related on-ground BSs will send the requested data to
the UAV-BS. The data collection procedure can include: a) data collected
by the UAV-BS itself, i.e., from its connected MC users, radio measure-
ments, and onboard sensors. b) data is firstly reported from a set of users
and a set of on-ground BSs to the donor-BS and then forwarded to the
UAV-BS.

3): Learning process in the UAV-BS: The UAV-BS processes the collected
data. And the model training and inference functions are initiated using
the processed data. After training, a set of ML-related parameters are
generated corresponding to the trained model. Then, the deployment
strategy and configuration are developed based on the output of model
inference.

4): The UAV-BS takes action: The actor function in the UAV-BS performs
antenna tilt and location adjustment based on the output of the model
inference.

5): The UAV-BS sends feedback to its donor-BS, who can then forward the
feedback or action recommendations to related on-ground BSs.

6): The donor-BS and/or the related BSs adjust their configuration (e.g.,
antenna tilt, transmit power, etc.), using the feedback from the UAV-BS
as input data. Finally, the donor-BS stops requesting data.

Steps 2)-6) can repeat till certain criteria are fulfilled. The donor-BS then
can stop the learning process by sending a stop data reporting message to its
connected users and BSs.

10.3 Reinforcement Learning Algorithm Design
In this section, we design an RL algorithm to jointly optimize the access

and backhaul antenna tilt value and the 3-D location of the UAV-BS in the
considered scenario. We use a deep Q-Network as our base algorithm [199].
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The algorithm is modified and implemented to solve our system optimization
problem.
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Figure 10.4: UAV-BS antenna tilt’s impact on backhaul link rate, MC user
throughput and MC user drop rate

10.3.1 Algorithm Environment
10.3.1.1 State Space

A UAV-BS’s state at a given time instance ¢t has four dimensions and it is
denoted as s; = {0, 2, yt, 2t }, where oy represents the electrical tilt value
of the access and backhaul antenna, and {xt,y:, 2:} denotes the 3-D location
of the UAV-BS at time ¢. The candidate values for the z and y axis are
[—350, —175,0, 4175, +350] meters, which covers the disaster area shown in
Figure 10.1. The candidate values of z axis are [10, 20, 30, 35] meters. The
candidate antenna tilt values are [—30, —20, —10, 0, +10, +20, +30]°, where a
positive tilt value means applying an electrical down-tilt to the access and
backhaul antenna, and a negative tilt value maps to applying an electrical
up-title to the antenna.

10.3.1.2 Action Space

For each state dimension, the UAV-BS can select an action out of three candi-
date options. These three alternative action options are coded by three digits
{0,1,2}, where “0” denotes that the UAV-BS reduces the status value by one
step from its current value; “1” represents that the UAV-BS does not need to
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take any action at this state dimension and it keeps the current value; and
“2” means that the UAV-BS increases the status value by one step from its
current value. For instance, if the UAV-BS is at the space point where the
value of the z dimension is equal to 0 meter, then, an action coded by “0”
for this dimension means that the UAV-BS will select an action to reduce the
value of x axis to -175 meters, an action coded by “1” implies that the UAV-
BS will hold the current value of x axis (0 meter), and an action coded by “2”
implies that the UAV-BS will increase the value of x axis to 175 meters. The
same policy is used for all the dimensions of the state space. Since one state
has four dimensions and each state dimension has three action options, the
action pool contains in total 81 action candidates that can be programmed to
a list of [0000, 0001, 0002, 0010...,2222]. Hence, at a given time ¢, the UAV-BS
can select an action a; from these 81 candidates. Figure 11.2 demonstrates
an example of state transition from a given state s; = {0°,0,0,20}.

10.3.1.3 Monitoring Feature Metrics and Reward Function

For MC communications, it is more important to serve as many MC users as
possible with adequate service quality rather than maximizing the peak rate
of a subset of MC users. Hence, for the reward function design of the RL
algorithm, we have chosen six key feature metrics to reflect the overall quality
of service for MC users, including:

o The drop rates of MC users for UL and DL (8., Ba1), which reflect the
percentage of unserved MC users.

e The 50-percentile throughput values of MC users for both UL and DL
(Qui—50%0d1—50% ), which represent the average performance of the MC
users, and

e The 5-percentile throughput values of MC users for both UL and DL
(Qui—5%, @qi_5%), which represent the “worst" performance of the MC
users.

To balance these key performance indicators, the reward function is de-

signed as a weighted sum of these six feature values as follows. All features
are normalised within the range [0, 1] before model training.
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In addition, we set w1 + ws + w3 = 1 to normalise the reward value such
that Ry is between [0,1]. The weights assigned to each metric signify the
system’s relevance. In our scenario, we placed higher weights on user drop
rates and 5-percentile MC-user throughput features in order to serve and
guarantee acceptable service to all MC users. Thus, the weight values used in
our algorithm are w; = 0.5, wy = 0.3 and w3 = 0.2.

A deep Q-network is used as our base algorithm to achieve better self-
control decisions for the autonomous UAV-BS. At each training episode, the
UAV-BS explores the state space and performs Q-value iterations. An e-
greedy exploration is applied when determining the action to take at the next
time instance. The probability of exploration is given by parameter e. The
exploration probability specifies the likelihood that the agent will execute state
exploration and choose actions at random. Otherwise, the agent will perform
the action that is believed to yield the highest expected reward. The data
for each training step is stored in a replay batch D. Specifically, each row
of D contains the tuple (s, at, 7, St+1), namely, current state, action, reward
and next state. Samples will then be randomly selected and used for Q value
model updating.

10.4 Performance Evaluation

In this section, we firstly investigate the impact of the antenna configuration
and 3-D location of the UAV-BS on the performance of MC users in terms of
throughput and drop rate by using system-level simulations. Then, we evalu-
ate the performance of the proposed RL algorithm using the data generated
from the simulator.
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Figure 10.5: Impact of UAV-BS position on MC user throughput and drop rate

10.4.1 System Performance Analysis

We consider the system model discussed in section II. It is assumed that
all BSs and users have two transmitting and two receiving antennas. The
maximum allowed transmit powers for a macro-BS, a UAV-BS and a user are
configured as 46, 40, and 23 dBm, respectively. Due to space limitations, in
this subsection, we only discuss the DL performance results, considering two
different levels of traffic load in the system (light and heavy load cases with
different user arriving rates). However, both DL and UL metrics discussed in
section IIT have been used when evaluating the proposed RL algorithm.

To gain insights into the impact of UAV-BS antenna tilt and flying height
on the considered performance metrics, we fix the UAV-BS’s 2-D position in
the center of the deployment map and investigate the system performance in
terms of the backhaul link rate, DL throughput and drop rate of MC users
for different traffic load levels, as shown in Figure 10.4. It can be seen from
Figure 10.4(a) that both UAV-BS antenna tilt and height have a significant
impact on the backhaul link rate, while UAV-BS height has a bigger impact
in the heavy load case. Another observation is that the network has a lower
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backhaul link rate in case of heavy load. This is because of the increased
interference levels, and also the UAV-BS needs to share the resource with the
on-ground users connected to its donor-BS (in-band IAB operation). Hence,
increasing traffic load means that more users will share the radio resource with
the UAV-BS for its backhaul traffic delivery.

From Figure 10.4(b), we see that the impact of tilt values on the throughput
performance in the light load case is more visible, while for the high load case,
the impact of tilt values is negligible. Meanwhile, UAV-BS flying height has no
significant impact on the throughput in the considered UAV-BS 2-D location.
Figure 10.4(c) shows that both antenna tilt and UAV-BS height significantly
impact drop rate performance. If the system load is light, the curve for the
UAV-BS height at 10 m overlaps with the curve for the case of 35 m. This
implies that in the current context, UAV-BS height has no discernible effect on
the drop rate of MC users, while UAV-BS antenna tilt plays a more prominent
role. For the heavy load situation, the results imply that flying the UAV-BS
at a higher altitude can reduce the drop rate.

0.8
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Figure 10.6: Reward value with number of training iterations in two different net-
work traffic load scenarios

Figure 10.5 shows the impact of UAV-BS’s 2-D position (x-axis and y-
axis) on the considered performance metrics when the UAV-BS antenna tilt
is fixed to 0° and its flying height is fixed to 10 m. The size of the circles
shown in Figures 10.5(a), 10.5(b) and 10.5(c) represents the exact value of
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Table 10.1: Comparison of the average value of the six system performance metrics during UAV-BS deployment in

two load scenarios

DL 50%0 DL 5%o DL Drop UL 50%0 UL 5%0 UL Drop Reward
Through-  Through-  Percent-  Through- Through-  Percent- ewa
Value
put put age put put age
Optimal State
(Light Load) 106.11 26.03 0% 7.73 2.18 2.4% 0.905
Reinforcement Learning
(Light Load) 105.47 25.56 0.1% 7.7 2.15 2.6% 0.865
Optimal State
(Heavy Load) 35.5 3.51 8.9% 4.68 0.15 2% 0.669
Reinforcement Learning 55 1.55 12% 5.08 0.1 3% 0.617

(Heavy Load)

166



10.4 Performance Evaluation

the 5-percentile throughput, 50-percentile throughput and drop rate of MC
users, respectively. The larger the size is, the higher value is for a considered
performance metric. To make it easier to identify the 2-D location that gives
the highest value of a considered performance metric, in each subplot of Figure
10.5, we use different colours of a circle to represent a relative value of the
considered performance metric. The darker the colour is, the higher value of
the performance metric is.

It can be seen from Figure 10.5 that for a given performance metric, e.g.,
5-percentile MC user throughput, the optimal UAV-BS 2-D location changes
when the network traffic load level changes. We can also observe that the
optimal UAV-BS position is close to the edge instead of the center of the
MC area. This is because the UAV-BS can keep a good backhaul connection
with its donor-BS at the edge of the MC area. In addition, we see that the
optimal UAV-BS position is different when considering different performance
metrics, e.g., maximizing the 5-percentile MC user throughput, maximizing
the 50-percentile MC user throughput, or minimizing the MC user drop rate.
Therefore, the weights selected for different performance metrics in the reward
function will impact the optimal location of the UAV-BS.

10.4.2 Reinforcement Learning Performance Evaluation

In this section, we present the results obtained through our RL algorithm
proposed in Section IV. We compare the result of our algorithm with the
global optimal state, which is obtained by using grid search through the whole
data set. We show the benefits of using the proposed algorithm and its ability
to adapt to the changing wireless environment after model training. During
the training, the learning rate is set to 5x 10~°, the initial starting exploration
probability € is set to 1 while the exploration decay is 0.995 and the number
of training iterations equals 1500.

We first analyze the convergence of the algorithm during the model training.
Figure 11.5 illustrates the reward value as a function of the number of training
iterations. We can observe that, for both the light load and heavy load cases,
the proposed algorithm can learn from the history and eventually approach
the optimal state that gives the largest reward value in both load scenarios.
The same conclusion can also be made by comparing the reward value column
of Table 11.3.

Table 11.3 also shows the performance of the considered six feature met-
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rics during the UAV deployment. Each deployment contains 100 steps for a
UAV-BS to make decisions and take action. We can observe that based on
past experience and a well-trained learning model, the proposed algorithm can
quickly configure and navigate the UAV-BS to optimize the considered per-
formance metrics. Only a limited number of steps are needed for the UAV-BS
to reach a stable state. As shown in Table 11.3, the reward value (a weighted
sum of the six considered performance metrics) achieved by the proposed RL
algorithm is only about 4% to 5% less than that provided by the global opti-
mal solution for the light load and high load scenarios, respectively. Since the
reward value summarizes the overall system performance metrics during the
UAV-BS deployment, our results demonstrate the strength of the algorithm
and the ability to provide fast connectivity to MC users in different traffic
load scenarios.

10.5 Conclusions and Future Work

In this paper, we developed an RL algorithm to autonomously configure and
navigate a UAV-BS to provide temporary coverage for MC users. The UAV-BS
is connected to an on-ground donor BS and integrated into an existing mobile
network using the 5G TAB technology. A functional framework and signalling
procedure are proposed to support data collection, model training and decision
making for the considered use case. An action encoding strategy is introduced
to represent UAV-BS decisions with multiple state dimensions, including the
3-D space location and the access and backhaul antenna electrical tilt. Our
results demonstrate the benefits and efficiency of our proposed algorithm in
different traffic load scenarios. The algorithm can help a UAV-BS quickly find
the optimal 3-D location and its antenna configuration to provide a stable
connection to MC users.

In the future work, we will further investigate various hyper-parameter and
reward function combinations based on different service requirements. We will
also investigate various frameworks and signaling procedures to support the
application of centralized or distributed machine learning for the considered
use case.
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cHAPTER 11

Deep Reinforcement Learning in a Dynamic Environment:
A Case Study in the Telecommunication Industry

This chapter has earlier been published as

Deep Reinforcement Learning in a Dynamic Environment: A Case
Study in the Telecommunication Industry

Zhang H., Li J., Qi Z., Lin X., Aronsson A., Bosch J., and Olsson H. H.

In 2022 48th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA) (pp. 68-75). IEEE.

11.1 Introduction

Reinforcement Learning (RL) is a machine learning method that learns a
model for mapping the present circumstance to an action that maximizes the
numerical payoff signal reward. The agent will not be told what actions should
be taken but discover by itself through trial and error. The agent will then
understand which action may offer the highest reward [60].

This type of learning approach differs from the commonly used supervised
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and unsupervised learning approaches in the field of machine learning, where
supervised learning is performed using a training set with annotations pro-
vided by an external supervisor and unsupervised learning is typically a pro-
cess of determining the implicit structure in data without annotations [200].
Reinforcement learning poses a unique problem in that it requires the intelli-
gence to leverage previous experience while also undertaking explorations that
enables better action choices in the future.

With the rise of this wave of artificial intelligence, the introduction of
AlexNet [156] in 2012, and AlphaGo’s victory over Lee Sedol in the game
of Go [201], reinforcement learning has regained the attention of academia
and industry. However, when applied in a real-world scenario, reinforcement
learning is usually demonstrated to be fragile and unable to generalize to di-
verse contexts. To the best of our knowledge, the majority of reinforcement
learning research places the algorithm in a game environment or assumes a
fixed running space [64][202]. However, since the real world is a complicated
dynamic system rather than a static environment, the reinforcement learning
algorithm’s practicality must also be addressed in real-world applications. As
most reinforcement learning models are built on a static environment, our pro-
posed method allows industry to apply the methods into real-world embedded
systems.

Controlling a UAV is a critical topic that must be addressed if telecom-
munications companies want to ensure continuous operation in an emergency
scenario. The goal of this research is to assist the industry in using reinforce-
ment learning algorithms in real-world scenarios. In this paper, we offer a
novel dynamic reinforcement learning approach for adapting to complicated
industrial environments. We apply and validate our approach to a telecom-
munications use case. A realistic situation is chosen in which we simulate
the wireless base station and drone characteristics in great detail. And be-
cause user movements cause constant change, the throughput and drop rate
values will also change over time. In this context, the reinforcement learning
algorithm will autonomously configure and control an unmanned aerial vehi-
cle base station (UAV-BS) for robust connectivity to the mission-critical user
equipment. The contributions are as follows:

1). We propose a novel dynamic reinforcement learning algorithm to monitor
and adapt reinforcement learning exploration rate when deploying into the
production environment.
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2). We verify the algorithm with a continuous environment in order to explore
if the algorithm can adapt to the dynamic environment and maintain high-
quality service performance.

3). We validate the algorithm in an empirical environment by including
mission-critical user movements.

The remainder of this paper is structured as follows. In Section II, we intro-
duce the background of this study. Section III details our research method,
including validation case and environment, the simulation testbed and the
utilized learning method. Section IV presents the novel algorithm utilized in
this paper. Section V evaluates our proposed learning method to empirical
data sets. Section VI outlines the discussion on our observed results. Finally,
Section VII presents conclusions and future work.

11.2 Background

The concept of a reinforcement learning algorithm is straightforward: the
agent is reinforced to make better decisions based on the past learning expe-
rience. This method is similar to the different performance rewards that we
encounter in everyday life [203].

Reinforcement learning is a machine learning method for comprehending
and automating goal-directed learning and decision issues. It stresses that
an intelligence learns through direct interaction with its environment, with-
out the use of imitable supervised signals or comprehensive modelling of its
surroundings, and hence has a different paradigm than other computational
techniques [200]. The algorithm defines the process by which a learning in-
telligence interacts with its environment using a formal framework of Markov
decision processes. In the algorithm, the agent and the environment are the
two main objects that can be interacted with reinforcement learning. The
agent detects the state of the environment and learns to choose a suitable
action based on Reward feedback in order to maximize overall long-term gain.
The environment receives a series of actions and returns a quantifiable signal
to the agent.

Most reinforcement learning research places the algorithm into static run-
ning spaces. The learning method has been successfully researched and ap-
plied in gaming environments, such as Atari [203], Go game [201], etc. There
are also some empirical applications that applied deep reinforcement learning.
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UAVBS1

mon,%oc/ —3

A Normal UE
A Mission Critical UE

Figure 11.1: Case diagram: With the movement of the traffic on the ground, reinforcement learning algorithm should
control UAV-BS for better serving the traffic as time goes. The controls are made by adjusting the three-
dimensional space location and electrical antenna tilt.
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However, due to the complicated industrial environment, the assumption is
not able to aid in the deployment of a reinforcement learning algorithm into
the real-world embedded systems [204]. The problem then becomes a criti-
cal challenge when practically implementing reinforcement learning. To help
RL adapt to environmental changes and improve its robustness, a continuous
exploration and training strategy can thus be developed. In this study, we
propose a novel dynamic reinforcement learning method to address this prob-
lem. The algorithm is capable of rapidly evolving and adapting to complex
industrial situations.

11.3 Dynamic Environment

The goal of this research is to assist the industry in using reinforcement learn-
ing algorithms in real-world scenarios. The classic RL’s fundamental draw-
back is its low performance in a changing environment. Typically, if the
environment has changed (the environmental values observed by the agent
have changed), the agent must retrain the entire algorithm to catch up with
the environmental changes [204][205]. However, to the best of our knowledge,
limited work has been done to help the algorithm in adapting to changing
environments, and they exclusively focus on relatively static space where the
observation data are rarely modified. The dynamic environment indicates
that the major elements that the agent observed will vary substantially over
time.

In the real-world context, it differs when we compare a gaming environment
to our actual scenario. The observation at the same location in a gaming
scenario will not change or has restricted possibilities throughout time. In a
go game, for example, the same spot only has three choices (black, white, or
none), or in a moon landing game, the situation is fixed since the observation
is a fixed value at each image pixel. In our scenario, however, even at the same
position, the observation value (e.g. throughput, drop rate) will be constantly
changing.

In our situation, user movement would significantly affect throughput and
drop rate values. Thus, a triggering strategy for adaptation and investigation
is a vital component if companies want to ensure high service quality. In our
work, we demonstrated the effectiveness of our adaptability technique and the
efficiency of combining previously trained RL models.
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11.4 Method

The analytical technique and research method mentioned in [92] were used in
this study to conduct quantitative measurement and validation on deep rein-
forcement learning. The article presents recommendations for applying ma-
chine learning methods to software engineering activities, as well as methods
for demonstrating how these can be conceived as learning problems and ad-
dressed in terms of learning algorithms. The mathematical notations, testbed
configuration and the base algorithm used in our research are presented in the
following sections.

11.4.1 Mathematical Notations

The mathematical notations that will be used in the paper are introduced
here first:
Qdl—i% 1% percentile Downlink throughput for
Mission-Critical User Equipments

Qui—i% i% percentile Uplink throughput for
Mission-Critical User Equipments

Bai Downlink percentage of dropped and
blocked Mission-Critical users

Bu Uplink percentage of dropped and
blocked Mission-Critical users

S State Space

A Action Space

R Reward Function for UAV control

x UAV Drone X-axis value

Y UAV Drone Y-axis value

z UAV Drone Z-axis (Height) value

o UAV Drone Electric antenna tilt de-

gree
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11.4.2 Validation Case

Stable connectivity is crucial for improving situational awareness and opera-
tional efficiency in various mission-critical situations. In catastrophe or emer-
gency scenarios, the existing cellular network coverage and capacity in the
emergency area may not be available or sufficient to support mission-critical
communication needs [188]. In these scenarios, deployable-network technolo-
gies like portable base stations (BSs) on unmanned aerial vehicles (UAVs) or
trucks can be used to quickly provide mission-critical users with dependable
connectivity.

In this paper, we consider a mission-critical scenario shown in Figure 11.1,
where a macro BS is damaged due to natural disasters and a UAV-BS is set up
to provide temporary wireless access connection to mission-critical users that
are performing search and rescue missions in the disaster area. The UAV-BS is
integrated into the cellular network by connecting itself to an on-ground donor
BS (e.g., a macro-BS) using wireless backhaul. The same antenna hardware
is used for both the access and the backhaul links.

In a multi-network situation that includes both established BSs on the
ground and temporarily deployed UAV-BS, the deployment and configura-
tion of the UAV-BS are crucial to ensuring the performance of the target
users/services, such as the mission-critical users. It may also have an effect on
the overall performance of the system. Because the UAV-BS is linked to the
core network through wireless backhaul, it is critical to guarantee that both
the backhaul and access lines are of high quality while executing this system
optimization. The limits imposed by the UAV’s flight height, antenna capa-
bilities, and other crucial elements contribute to the optimization difficulty.
The best solution is determined by a variety of criteria such as network traf-
fic load distribution, quality of service (QoS) needs, user mobility, transmit
power, and antenna settings at the time of deployment. As a result, jointly
optimizing these UAV-BS parameters is a difficult system-level optimization
issue that must be handled in a dynamic environment.

In order to best serve the on-ground mission-critical users, and, at the same
time, maintain a good backhaul connection, we apply reinforcement learn-
ing to configure the three-dimensional space location of the UAV-BS and the
electrical tilt for the access and backhaul antenna of the UAV-BS. More im-
portantly, the decision of the reinforcement learning algorithm should also
be able to adapt to the real-time changing environment (e.g., when mission-
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critical traffic moves on the ground), where traditional reinforcement learning
algorithms are not applicable and would result in inappropriate UAV-BS con-
figuration decisions.

11.4.3 Case Environment
11.4.3.1 State Space

As we described in the validation case section, in order to better serve the
traffic as time goes by, the controls of a UAV-BS were made by adjusting the
three-dimensional location in space and the electrical antenna tilt. A state
of a drone is represented by {o,z,y,z} where o represents the tilt degree
of the drone electric antenna while {x,y, 2z} represents the three-dimensional
space location. In our simulation, the range of the x, y axis was restricted
in list [—350,—175,0,+175, +350] meters while z axis values belonged to list
[10, 20, 30, 35] meters. In addition, the range of the tilt values belonged to list
[-30,—20,—-10,0,+10,+20,+30]°. Since we observe obvious feature value
changes in those location and tilt points, the states mentioned above were
included and used for algorithm training and validation.

11.4.3.2 Action Space

There are three different options for each state dimension. The drone can
either decrease, increase state value by one step or hold in the same position.
For example, if the drone is located at the space point where the x axis value
equals -175, the drone can then select the action which can either increase
the x-axis value to 0, decrease the value to -350 or hold the value and stay at
value -175. The policy is the same and applies to all four state dimensions.

In addition, in order to help the drone understand the actions and process
the data, three action options were coded by using digits 0, 1, 2 where 0 repre-
sents decreasing the value by one step, 1 represents holding the current value
and 2 represents increasing value by one step. As each dimension can choose
from three options, there are 81 action combinations in the action pool and
can be coded to list [0000,0001,0002,0010...,2222]. Figure 11.2 illustrates
an example for the UAV-BS transit from one state to another by selecting
different action combinations.
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Action| | 1. 175, -175; 30}
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Figure 11.2: Example of the state transition from current state {-10, 175, -175,
30}

11.4.3.3 Reward Function

We now describe the reward function used in our model. Six crucial features
were selected as the metrics to monitor the quality of the connection to the
mission-critical user equipment, including uplink and downlink percentage of
dropped and blocked Mission-Critical users (8,1, Bai), 50 percentile uplink and
downlink throughput (a,;_50%, @4i_50%) and 5 percentile uplink and downlink
throughput (o, _59, @gi_5%). Those features can demonstrate if the UAV-BS
can provide robust and high-quality connections to the mission-critical user
equipment. Hence, we constructed a weighted combination of those features
in the reward function as follows:

Ry =k x (2= Bat — Bur) + 1 X (Qui—59% + Qa—5%)

(11.1)
+ 10 X (Qu—50% + Qai—50%)

Since connection services are provided to the mission-critical user equip-
ment, more attention should be paid to ensure that all the equipment is con-
nected and at least has acceptable link quality. Hence, we prioritized the
percentage of dropped and blocked Mission-Critical users and 5 percentile
uplink and downlink throughput. Besides, in order to normalise the reward
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value between [0, 1], the sum of the weight ratios x, u, 7 should follow:

k+p+n=05 (k>p>mn) (11.2)

After wide exploration, we eventually set x equal 0.25, u equal 0.15 and 7
equal to 0.1 since this combination can eventually lead to fast model conver-
gence during algorithm training and provide stable performance for UAV-BS
connection.

11.4.4 Data Traces and Testbed

In order to simulate the dynamic environment, we created four phases. The
continuous data traces were generated in those phases by introducing mission-
critical user movement. When entering a new phase, users will move a random
distance on both x and y axes. The distance was selected uniformly from 0
to 10 meters. Therefore, each state will map to a different set of feature
values in those four phases. Due to the environment changes, the optimal
state may also be different in each phase and the algorithm has to adjust its
decision-making model to adapt to the dynamic environment.

During the experiment, phase I was used to train the deep reinforcement
learning model from scratch while the rest three phases are used for dynamic
algorithm validation. Table 11.1 summarizes all the optimal states which
return the best reward value based on our defined reward function in those
four different phases.

Table 11.1: Optimal states in four phases

Optimal State {o,x,y,z} | Reward (r)
Phase I {30, 175, —350, 35} 0.905
Phase II {30, —175,—350, 35} 0.901
Phase 11T | {30, —175, —350, 35} 0.86
Phase IV {30, —175,—350,10} 0.837

11.4.5 Deep Reinforcement Learning Method

In order to achieve better self-control decisions for our validation scenario, we
applied deep g-network as our base reinforcement learning algorithm. The
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algorithm was firstly proposed by Mnih et al. in [203][199] by combining
convolutional neural networks with Q-learning algorithms [206] in traditional
Reinforcement Learning. In order to alleviate the problems of the nonlinear
network representing the value function, two major improvements were made
to the traditional Q-learning [207] algorithm.

1) Experience Replay: The experience samples e; = {s;, a, r¢, St41} obtained
from the interaction between the agent and the environment are stored in the
playback memory M = {eq, e, €3, ...€; } unit during training at each time step
t. The agent will randomly select training samples from the memory and use
the Stochastic Gradient Descent algorithm to update the network parameters.
When training deep networks, samples are usually required to be independent
of each other. This random sampling greatly reduces the correlation between
samples, thus improving the stability of the algorithm.

2) Function Approximation: The deep-Q network uses a deep convolutional
network to achieve an approximate representation of the current value function
and another network is also used separately to generate the target Q-value.
Specifically, Q(s, a|f) indicates the output of the current value network and
the value function is used to evaluate the current state-action pair. Q(s,al6’)
represents the target network value output, namely, the target Q value.

Q' =r+ymaz,Q(s',a'l0") (11.3)

The parameters of the current value network are updated in real-time and
copied to the target value network after every N iterations. The network
parameters are updated by minimizing the mean square error between the
current Q-value and the target Q-value. The loss function is listed below:

L(0) = E(s,a,,)[(Q — Q(s,al0))?] (11.4)

11.4.6 Deep Q-Network Architecture and Hyper-parameters

In order to find the optimal network, the random search [183] strategy was
applied. Figure 11.3 illustrates the neural network part of the deep reinforce-
ment learning model. The four-dimensional state input is connected to two
fully connected layers in the learning model. Each layer contains 16 units. All
layers are activated with the ReLU function. The output contains 81 values
which are corresponding to 81 possible action selections.
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Figure 11.3: Neural network architecture applied in the dynamic reinforcement
learning algorithm

For the hyper-parameters of the deep Q-network, we explored various sets
of combinations in order to achieve acceptable results. During the training,
the exploration probability decay is set to 0.995, the learning rate is set to
5 x 10~° and the number of training iterations equals 1500.

11.5 Deep Reinforcement Learning in the
Dynamic Environment

This section describes the improved dynamic algorithm based on a deep Q-
network for the continuous environment applied in this article. Due to the
environment change, the original deep Q-network should also update its model
in order to fit feature value modification. Hence, we implemented a dynamic
exploration probability which is triggered by a dramatical reward value drop.
Following the completion of each learning iteration, the last reward value will
be checked and compared to the pre-defined drop threshold and the upper
reward threshold. The adjustment will be made to exploration probability e
based on the result. We chose DQN as our foundation because of the algo-
rithm’s generalization. The adaptation can be employed not only in DQN,
but also in other DQN-developed algorithms such as DDQNJ[208], etc due to
the similar exploration processes. The following are the steps of the algorithm
used in this paper (Algorithm 7 in appendix).
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Step 1: UAV-BS explores the space and performs Q-value iterations at each
training episode. An e-greedy exploration is applied when determining
to select the best action or randomly explore the new state. The
probability of exploration is given by parameter e.

Step 2: The data for each training step is stored in a replay batch D. Specifi-
cally, each row of D contains the tuple (s;, at, rt, St+1), namely, current
state, action, reward and next state for a training step. Samples will
be randomly selected and used for QQ value model updating.

Step 3: At the end of each learning iteration, the latest reward value is eval-
uated and compared to a pre-defined drop threshold and an upper
reward threshold that includes three different conditions:

o If the latest reward value is smaller than the previous reward and the
difference is larger than the drop threshold, the exploration probability
will be increased to 0.1.

o If the most recent reward value is larger than the upper reward threshold,
we can conclude that the algorithm has already discovered the ideal
zone that is capable of providing a reliable connection to mission-critical
users. The exploration probability will be set to the ending probability.

e Otherwise, after each learning cycle, the exploration probability will
multiply an exploration decay and be linearly declined.

11.5.1 Baseline Algorithms

In this section, we present two baseline algorithms which were used to compare
our proposed dynamic RL.

¢ Retrained RL: The retrained RL method removes previous knowl-
edge and randomizes the ML model parameters at the start of each new
phase. The exploration rate will be reset to one, and the algorithm
will investigate the newly modified environment and rebuild its model
from the scratch. We picked retrained RL since it is the most com-
monly utilized approach in a wide range of applications. Reinforcement
learning is a highly sensitive technique. If we want the algorithm to

181



Chapter 11 Deep Reinforcement Learning in a Dynamic Environment: A
Case Study in the Telecommunication Industry

be continuously trained, it must closely follow the environment. Other-
wise, earlier trained knowledge may be background noise in the current
context (Drone may then converge into a wrong low-performance posi-
tion). The method is compared to our dynamic RL algorithm in order to
demonstrate that our technique may avoid these issues by closely moni-
toring reward decreasing and responding fast to environmental changes,
as well as the benefits and efficiency of reusing prior information.

¢ Reused RL: The initial model learned during training will be employed
by the Reused RL algorithm. The exploration rate will always be set
to the ending rate value 1le-3 after the training phase, regardless of how
the environment has altered. Using re-used RL means that the algo-
rithm will not explore new states even if monitored metrics show poor
performance. This algorithm is commonly utilized in most empirical
applications. However, it is incapable of dealing with dynamic state
spaces and adapting to environmental changes. The method is utilized
to compare and demonstrate the benefits of our proposed dynamic RL
algorithm for handling environmental changes.

11.5.2 Validation Phases

The validation includes three phases (validation phases IT, III, IV). Each phase
is defined by time which includes a ten-minute walk by mission-critical users.
Since the observed metrics will obviously drop after ten minutes, the reward-
dropping threshold will be triggered and caused the restart of the algorithm
exploration. We compared the performance of several algorithms when they
started and finished their training cycle. The optimal states in each phase are
calculated afterwards, which cannot be known before. After we finished our
simulation, we retrieved all the history records and grid search the best value
of that phase. At the time when we deploy the drone, it has no understanding
of what the values and conditions are in each position, so the algorithm will
help the drone investigate the environment on its own.

11.6 Results

We present the experiment results of the dynamic Reinforcement Learning
(Dynamic RL) algorithm for autonomously controlling UAV-BS in this sec-
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Figure 11.5: Reward Value with number of training iterations
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Table 11.2: Reward value at the end of each phase

Phase [
(Training Phase) Phase II Phase III Phase IV

Optimal 0.905 0.901 0.86 0.837
Dy?{aLmlc 0.905 0.897 0.851 0.828

Re-
trained 0.905 0.616 0.734 0.689

RL
Regied 0.905 0.635 0.645 0.608

tion. The output is evaluated based on two factors - (1) Six features (deter-
mined in Section IV - Validation Environment) which demonstrate link service
quality (2) Model Training in each phase. The results are compared with two
baseline models - (1) Retrained Reinforcement Learning (Retrained RL) in
each phase (2) Reused Reinforcement Learning (Reused RL) method. As we
described before, the experiment contains four different phases. With the
dynamic RL method, the algorithm will train the model from scratch in the
training phase (Phase I) and then constantly improve itself in the subsequent
phases. The past learned experience will be reused and the exploration rate
will be dynamically set based on the comparison of the system reward value.
With the Retrained Reinforcement Learning method, the UAV-BS will clear
the previous knowledge and randomize the model parameters. The algorithm
will retrain the model from scratch in each phase. With Reused Reinforcement
Learning method, no matter how the environment changes, the algorithm will
not perform any modification but continuously use the original model that
was learnt from phase I.

We first compared those six features which demonstrate the link service
quality of our approach with the other two baseline models to demonstrate
the effectiveness of the dynamic reinforcement learning algorithm when en-
countering the changeable environment. Figure 13.4 illustrate the link metrics
comparison between Dynamic RL, Retrained RL and the Reused RL.

From the results, we can observe that with a dynamic reinforcement learn-
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Table 11.3: Comparison of the six link quality metrics with two baseline learning approaches in validation phases

Phase II DL 50% DL 5% DL Drop UL 50% UL 5% UL Drop
Throughput  Throughput Percentage Throughput  Throughput Percentage
Optimal State 108.52 37.62 0% 7.55 2.39 0%
Dynamic RL 105.05 37.62 0% 7.55 2.39 0%
Retrained RL 85.5 17.27 1.5% 6.501 0.62 2.7%
Reused RL 82.2 7.25 0% 8.05 0.05 1.9%
Phase TIT DL 50% DL 5% DL Drop UL 50% UL 5% UL Drop
Throughput  Throughput Percentage Throughput  Throughput Percentage
Optimal State 101.78 26.56 0% 7.35 2.64 0%
Dynamic RL 99.04 27.28 0% 7.09 2.64 0%
Retrained RL 96.83 23.41 1.7% 7.08 1.52 2%
Reused RL 93.87 25.3 0% 6.96 0.224 0%
Phase TV DL 50% DL 5% DL Drop UL 50% UL 5% UL Drop
Throughput  Throughput Percentage Throughput  Throughput Percentage
Optimal State 126.43 25.25 0% 9.26 0.35 0%
Dynamic RL 126.43 23.85 0% 9.26 0.34 0%
Retrained RL 107.98 14.47 1.2% 8.12 0.20 2.5%
Reused RL 116.57 7.7 0% 8.73 0.23 0%
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ing algorithm, UAV-BS can quickly find and reach the optimal state in each
learning phase. However, due to the lack of training time and flexibility, the
drone controlled by baseline models cannot reach the optimal state and may
eventually oscillate between different states. The same conclusion can also be
obtained from the detailed numeric Table 11.2, which compares the metrics of
the six link quality monitoring features between random search, dynamic re-
inforcement learning method and the retrained model in validation phases II,
III, IV. With the dynamic reinforcement learning method, the algorithm can
reuse the previous experience obtained in the past environment and adapt its
exploration probability to explore the new state and update the environment
changes.

The advantage can be observed in Figure 11.5. The result demonstrates
that after the environmental change in each phase, dynamic reinforcement
learning can quickly update its model to the new environment while retrained
RL model may need more time to converge and may not update itself and reach
the acceptable service quality and the Reused RL model may be trapped into
the previous knowledge and not suitable for the current environment. Table
11.2 shows the algorithm reward value at the end of each phase.

11.7 Discussion

From our experiment results, our dynamic reinforcement learning method
proves to have significant advantages and is able to help commonly applied
reinforcement learning methods to adapt to dynamic industrial environments.
The results demonstrate that dynamic reinforcement learning requires much
fewer model training iterations than retraining learning models when the en-
vironment has changed. The overall service performance of a UAV-BS can be
improved by about 20 % with the dynamic reinforcement learning method if we
compare the results with retrained RL and reused RL approaches. In addition,
our suggested algorithm can eventually reach the ideal state in each environ-
mental phase within a short amount of time and provide the best connectivity
to the mission-critical user equipment. Our results prove that in some cases,
our dynamic reinforcement learning method can lead to autonomously im-
provement and continuously update itself without human interaction.
Because of these advantages, the method can be used in a variety of ap-
plications. In addition to wireless autonomous drone control, the technique
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presented in this research can be applied in various applications requiring
self-improving systems. The method can be employed not only in telecom-
munication scenarios but also in other circumstances where the environment
may change dramatically over time. Furthermore, the novel idea of incorpo-
rating reinforcement learning into a continuous real-world environment may
encourage further study and expand potential commercial applications.

11.8 Conclusion and Future Work

In this paper, we present a novel approach to apply reinforcement learning
algorithms in a dynamic real-world environment. We validate our approach
using a critical use case, autonomously UAV-BS control for mission-critical
users. Our findings show the strength and advantages of the algorithm when
trained using our proposed method. In our case, the model can help the
drone quickly reach the optimal state even with environmental changes. The
method can monitor the drone performance and react to changes by self-adapt
exploration probability and requires much fewer model training iterations by
reusing past experience.

In the future, we plan to further analyze our algorithm with different com-
binations of hyper-parameters, such as the upper reward threshold and lower
drop threshold. As the parameter settings are sensitive and crucial for rein-
forcement learning and may behave completely different when use cases are
changed, a more generalized learning method may help the method fit on more
settings. In addition, we will test our approach in additional use cases and
investigate more sophisticated reinforcement learning methods combined with
our approach.

11.9 Appendix: Dynamic Reinforcement Learning
Algorithm
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11.9 Appendiz: Dynamic Reinforcement Learning Algorithm

Algorithm 6: Dynamic Reinforcement Learning with reward value
monitor and adaptive exploration probability

Initialize replay memory D to capacity N
Initialize action-value function @ with two random sets of weights 6, 6’
Initialize exploration probability € to 1
Initialize restarting exploration probability €restart to le-1
Initialize ending exploration probability eg,q to 1le-3
Initialize rprevious €qual to 0
for Iteration =1, M do
fort =1,T do
Select a random action a; with probability
Otherwise, select a; = arg max,Q(st, a; 0)
Execute action ay, collect reward r; and observe next state s¢41
Store the transition (sy,at, ¢, $¢41) in D
Sample mini-batch of transitions (s;, a;j,7;,s;j41) from D
if s;41 is terminal then

Set y; =r;
else

Set y; = r; + ymaxy Q(sj41,0";0")
end if

Perform a gradient descent step using targets y; with respect to the
online parameters 6
Set 6/ < 0
end for
if rprevious - T > Drop threshold then
Set € = E€Restart
else if rp > Upper reward threshold then
Set ¢ = egpa

else
Set ¢ =& x 0.995
end if
Set Tprevious = T'T
end for
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CHAPTER 12

5G network on wings: A deep reinforcement learning
approach to the UAV-based integrated access and
backhaul

This chapter has earlier been published as

5G network on wings: A deep reinforcement learning approach to
the UAV-based integrated access and backhaul

Zhang H., Qi Z., Li J., Aronsson A., Bosch J., and Olsson H. H.

In IEEE Transactions on Machine Learning in Communications and Network-
ing), vol. 2, pp. 1109-1126. IEEE.

12.1 Introduction

Traditional cellular infrastructure provides fast and reliable connectivity in
most use cases. However, when a natural disaster happens, such traditional
wireless base stations (BSs) can be damaged and therefore they cannot provide
mission-critical (MC) services to the users in the disaster area. In this context,
further enhancements of the cellular networks are needed to enable temporary
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connectivity and on-demand coverage for MC users in various challenging
scenarios.

Vehicular networking can be enabled by various vehicle types including not
only cars but also buses, trucks and UAVs. By equipping with a cellular
tower and transceiver on a truck or trailer, cell-on-wheels have fewer cruising
duration constraints and can transmit with a higher power to provide a rel-
atively large coverage area [209]. However, cell-on-wheel placement may be
less flexible for MC operations in rural areas with complex environments, such
as forest firefighting, mountain search and rescue. UAV-BS (cell-on-wings)
on the other hand, can be deployed in a more flexible and mobile manner.
Specifically, UAVs can be used to carry deployable BSs to provide additional
or on-demand coverage to users, thanks to their good mobility and higher
chances of light-of-sight (LOS) propagation. However, there are a number
of challenges when implementing UAV-BS assisted wireless communication
networks in practice [210][211]. The system performance and user experience
are significantly impacted by the deployment and configuration of UAV-BSs,
including the UAV’s 3-D position, operation time, antenna capabilities, trans-
mit power, etc [212]. Using wireless backhaul, UAV-BSs can connect to the
on-ground BSs (e.g., cell-on-wheels or macro BSs) and be integrated into the
cellular system. Hence, it is necessary to jointly optimize the configuration
parameters for the access links (between UAV-BS and on-ground users) and
the backhaul links (between UAV-BSs and on-ground BSs), when optimizing
UAV-BS based wireless communication systems. The optimization problem
becomes even more complicated when considering different system loads and
user movement on the ground. In some cases where multiple UAV-BSs are
needed to cover a wide area, the complexity of providing reliable and scalable
backhaul links will further increase.

Despite the fact that there are numerous applications for UAV-based re-
inforcement learning algorithms, the fundamental drawback of classic RL is
its low performance in a changing environment. If the environment changes
(the environmental values observed by the agent change), the agent usually
has to retrain the entire algorithm to keep up with the environmental changes
[204][205]. In our case, user mobility would have a major impact on the system
performance in terms of MC user throughput and drop rate. As a result, to
ensure good service quality, a triggering mechanism needs to be implemented
for algorithm adaptation and analysis. The dynamic environment, in this
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case, indicates that the states (user throughout and drop rate) that the agent
observed will vary substantially due to wireless communication environment
changes and user movement.
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Figure 12.1: A UAV-BS assisted wireless network design enabled by a half-duplex
TAB operation

12.1.1 Related Work

In recent years, UAV-BS assisted wireless communication networks have at-
tracted significant attention from both industry and academia [188]-[192]. To
guarantee a robust wireless connection between the UAV-BSs and the core
network, more and more research work has started working on improving the
wireless backhaul link [193]-[196], [213]. Authors in [193] assume that all the
UAV-BSs are flying at a fixed height, and a robust backbone network among
UAV-BSs is guaranteed by ensuring that there is always at least one path
between any UAV-BS and a BS on the ground. Then they investigate the
rapid UAV deployment problem by minimizing the number of UAVs to pro-
vide on-demand coverage for as many users as possible. In [194], optimal 3-D
deployment of a UAV-BS is investigated to maximize the number of connected
users with different service requirements by considering the limitation of wire-
less backhaul links. In [195], the limitation of backhaul and access capacities
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is also considered, and a heuristic algorithm is proposed to optimize the UAV
navigation and bandwidth allocation. Similar to [194], the authors in [213]
also investigate a coverage improvement problem enabled by UAV-BS with
backhaul limitation but with a machine learning (ML) based solution.

Enabled by 5G new radio (NR), the integrated access and backhaul (IAB)
feature can be applied to wirelessly integrate multiple UAV-BSs to an existing
cellular network seamlessly [197]. Figure 12.1 shows an example of UAV-BS
assisted network deployment using IAB technology. The macro-BSs who have
connections with the core network are serving the normal users, and some
of them can also be acting as donor-BSs, who can provide wireless backhaul
connections to the flying UAV-BS. Based on the wireless backhaul link, the
UAV-BS is acting as an IAB node, which can be deployed at different locations
to provide on-demand services to MC users and/or normal users who are out
of the coverage of the existing mobile network. To evaluate the performance of
the UAV-assisted wireless system enabled by IAB, authors in [196] propose a
dedicated dynamic algorithm based on the particle swarm optimization (PSO)
method to optimize the throughput and user fairness. By intertwining differ-
ent spatial configurations of the UAVs with the spatial distribution of ground
users, [214] proposes an interference management algorithm to jointly opti-
mize the access and backhaul transmissions. Their results prove that both
coverage and capacity can be improved.

Due to the characteristics of revealing implicit features in large amounts of
data, the ML methodology draws growing attention and has been extensively
applied in various fields. As a sub-field of ML, agent-based reinforcement
learning (RL) features in interacting with the external environment and pro-
viding an optimized action strategy. Hence, it has been used to solve compli-
cated optimization problems that are difficult to be addressed by traditional
methods. As two of the promising technologies for the next-generation wire-
less communication networks, it is natural to combine ML with deployable
UAV-BS to solve high complexity optimization problems [215], [216].

Specifically, ML is frequently used to solve problems on deployment [213],
[217], [218], scheduling [219]-[222], trajectory [223]-[231] and navigation [232]-
[235] in UAV assisted network. In [217], a deep RL-based method is pro-
posed for UAV control to improve coverage, fairness, and energy efficiency
in a multi-UAV scenario. To solve the scheduling problem in a high mobil-
ity environment, the authors in [219] develop a dynamic time-division duplex
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(TDD) configuration method to perform intelligent scheduling. Based on the
experience replay mechanism of deep Q-learning, the proposed algorithm can
adaptively adjust the TDD configuration and improve the throughput and
packet loss rate. From the perspective of distributed learning, [220] proposes
a framework based on asynchronous federated learning in a multi-UAV net-
work, which enables local training without transmitting a significant amount
of data to a central server. In this framework, an asynchronous algorithm is
introduced to jointly optimize UAV deployment and scheduling with enhanced
learning efficiency.

For ML-based trajectory and navigation, the authors in [223] investigate a
trajectory strategy for a UAV-BS by formulating the uplink rate optimization
problem as a Markov decision process without user-side information. The au-
thors in [227] introduces a UAV-based downlink communication model that
addresses UAVs’ limited energy resources by using simultaneous wireless infor-
mation and power transfer technology. By optimizing UAV trajectory, power
splitting ratio, and communication scheduling through a deep reinforcement
learning framework, the approach significantly enhances energy efficiency and
communication quality, outperforming conventional methods. Paper [228]
proposes a novel adaptable integrated sensing and communication mechanism
in UAV-enabled systems, optimizing communication and sensing beamform-
ing along with UAV trajectory to maximize system throughput while ensuring
quality-of-service. Authors in [229] proposes a UAV trajectory optimization
scheme based on reinforcement learning to maximize energy efficiency and
network resource utilization through load balancing. Based on deep reinforce-
ment learning, authors in [230] and [231] both propose solutions to jointly op-
timize the UAV trajectory and resource scheduling in UAV-assisted network.
To enable UAV autonomous navigation in large-scale complex environments,
an online deep RL-based method is proposed in [232] by mapping UAV’s mea-
surement into control signals. Furthermore, to guarantee that the UAV always
navigates towards the optimal direction, authors in [233] enhance the deep RL
algorithm by introducing a sparse reward scheme and the proposed method
outperforms some existing algorithms.

Additionally, the limited battery life of a UAV restricts its flying time,
which in turn affects the service availability that can be provided by the UAV.
Therefore, many works have been focusing on designing energy-efficient UAV
deployment or configuration schemes either with non-ML [188], [236], [237] or
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ML methodologies [226], [238], [239].

12.1.2 Contributions

In this paper, we consider a scenario with multiple macro-BSs covering a large
area, but due to disaster, one of the macro-BSs is damaged, which creates a
coverage hole where the first responders execute their MC operations. The
deployable UAV-BSs are set up to fill the coverage hole and provide tem-
porary connectivity for these MC users. Compared with the related works
and our previous paper[240] navigating only one single UAV-BS, we propose
in this paper a novel RL algorithm combined with adaptive exploration and
value-based action selection algorithms to autonomously and efficiently deploy
multiple UAV-BSs based on the requirements. Furthermore, to extend the al-
gorithm in a scalable manner, a decentralized architecture is proposed for the
collaboration of multiple UAV-BSs. More specifically, the contributions of
this paper include the following aspects:

1) We propose the framework to support applying RL algorithm for the con-
sidered use case in an IAB network architecture.

2) We applied two strategies, i.e., adaptive exploration control and value-
based action selection for the RL algorithm so that the algorithm itself
can adapt to a dynamic environment (e.g., MC user movement and change
of channel characteristics) in a fast and efficient way.

3) We demonstrated deployment in a decentralized method for supporting
multiple UAV-BSs deployment to respond to varied industrial scenarios.

4) We validate the proposed RL algorithm in a continuously changing envi-
ronment with consecutive MC user movement phases. Our results show
that the proposed algorithm can create a generalized model and assist in
updating the decision-making on UAV-BSs and navigation in a dynamic
environment.

The remainder of this paper is structured as follows. Section II introduces
the system model considered in this paper. In section III, we propose a frame-
work to enable ML in an TAB network architecture. Section IV discusses our
proposed ML algorithm. Section V presents the system-level simulation re-
sults and evaluates the proposed RL algorithm. In Section VI, we summarize
our findings and discuss future works.
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Figure 12.2: System model: UAV-BSs assisted network deployment

12.2 System Model and Problem Formulation

12.2.1 System Description

For the system model, we consider a multi-cell mobile cellular network, con-
sisting of a public network and a deployable network, as shown in Figure 12.2.
Initially, seven macro-BSs are serving users uniformly distributed in the whole
area. However, one of the macro-BSs in the center of the scenario is damaged
due to, e.g., a natural disaster that creates a coverage hole. For users in the
central emergency area with a predefined radius (marked as an orange dashed
circle), they might have very limited or no connectivity with the public net-
work. Hence, multiple UAV-BSs, which are integrated into the public network
using TAB technology, can be set up to provide temporary or additional cov-
erage to the users in this emergency area, which is also the research target of
this paper. In this paper, the UAV-BSs are limited only to stay at the dis-
crete points indicated by the colored stars in Figure 12.2. The total number
of discrete points is selected based on the criteria that the simulation data is
large enough to train the proposed model but not too much to spend an ex-
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cessive amount of simulation time. Hence, the navigation in the scope of this
paper refers to trajectory optimization among these discrete location points.
To avoid the UAV-BSs staying too close to cause strong interference to each
other, we split the whole UAV-moving area (inside the black dashed circle)
into three non-overlapping areas denoted by colored discrete points. For ex-
ample, UAV-BS 1 is only allowed to move between location points marked
as red. In the considered scenario, there are two types of users: The users
located in the MC area are marked as MC users, while the others are normal
users. User equipment (UE), either an MC user or a normal user, can select
either a macro-BS or a UAV-BS as its serving-BS, based on the wireless link
qualities between the UE and these BSs.

For the traffic pattern design, we apply a FTP-based dynamic traffic model,
which is commonly used in the Third Generation Partnership Project (3GPP)
[241]. All the users are randomly dropped in the scenario. For each time slot,
the users are activated with a predefined arrival rate. Only these activated
users can be scheduled and initiate fixed-size data transmission based on the
link quality (both access and backhaul links) and system load for downlink and
uplink, respectively. When the data transmission is completed, the user will
leave the system and wait to be activated again. Then the user throughput
can be calculated with actually served traffic and consumed time to deliver
the traffic.

As mentioned before, the UAV-BSs work as the IAB nodes in the current
scenario. They will measure the wireless link to all macro-BSs and select one
with the best link quality as their donor-BSs. Once the wireless backhaul link
between the UAV-BSs and their donor-BSs is established, the three sectors of
the UAV-BSs will share this wireless backhaul link and provide access service
to both normal users and MC users. For the users served by the UAV-BSs,
the corresponding throughput depends not only on the access link but also
on the wireless backhaul link. While selecting the access links, the users
with too bad link quality, for instance, below a certain threshold, will be
dropped. To reduce the complexity and the load-bearing of the UAV-BSs, it
is assumed that the same antenna configuration is applied for both access and
backhaul antennas of the UAV-BSs. The reason to make such an assumption
also includes that the positions of UAV-BSs have more impact on the key
performance metrics (e.g., user throughput and drop rate) than varying the
tilt of access and backhaul antennas. The proposed model is also applicable
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in the real world. The number of discrete points for UAV-BSs can be selected
according to the computing capability of the target system in certain scenarios.
If the UAV-BS supports two separate antenna panels for access and backhaul
links, the antenna configuration (e.g., antenna tilt) for access and backhaul
links can be adjusted respectively to further improve the performance when
the same configuration is applied for both access and backhaul antennas. The
proposed model can handle such cases by adding antenna tilt as a new input
feature.

The system operates under a TDD model, and the time slot pattern consists
of downlink (DL), DL, uplink (UL), and DL, which is repeated with a periodic-
ity of 2 ms [242]. The system bandwidth is 100 MHz, and it is shared between
backhaul and access links. The time slots assigned for UL/DL Access/Back-
haul links are shown in Figure 12.1(b) and (c¢). Two full TDD periods are
required to cover all eight UL/DL Access/Backhaul combinations, which lead
to four interference cases, denoted as: DL1, DL2, UL1, and UL2. As shown in
Figure 12.1(b), for the UAV-IAB node, DL1 and UL1 are reserved for back-
haul link transmission, while DL2 and UL2 are reserved for providing access
services for users. For the donor-BS and all other macro-BSs, all the time
slots can be used for access link transmission. In each interference case, the
interfering nodes for users are different from those in other interference cases.
For example, in the DL1 case where the time slots are used for both back-
haul and access links, the UAVs are acting as users and the interfering nodes
in this case only include marco-BSs. While in the DL2 case where the time
slots are only used for access links, the UAVs are acting as BSs to serve users.
In this case, the interfering nodes in DL include both macro-BSs and UAV-
BSs. These features are all captured in the proposed ML model by importing
the performance metrics(e.g., user throughput and drop rate) in the reward
function, which will be introduced in detail in Section III.

To validate the performance of the proposed algorithm in adapting to a
dynamic environment, we established five distinct phases in the time domain.
Data traces required for training were captured at the beginning of each phase
while the user movement (i.e. changes in user locations) was considered be-
tween phases. Upon entering a new phase, each user moves a random dis-
tance along both the horizontal and vertical directions in two-dimensional
space, with the moving distances uniformly selected from 0 to 10 meters. In
addition to the changes in user locations, the configuration related to chan-
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nel conditions including fading and multi-path components are updated when
switching phases. Consequently, the state of each phase maps to a different
set of feature values across these five phases. Due to these environmental
changes, the optimal state may vary in each phase, requiring the UAV-BS to
adjust its decision-making model to adapt to the dynamic environments.

12.2.2 Transmission Model

For the public network in this paper, we use an urban-macro propagation
model [243], while a refined aerial model from 3GPP standardization is used
for UAV-BS [241]. It is assumed that the network consists of D macro-BS,
M UAV-BSs and N users, denoted by D = {1,2,...,D}, M = {1,2,.... M}
and N = {1,2,..., N}. The whole available bandwidth W is divided into K
sub-channels and each one has a bandwidth denoted by B, = % Assum-
ing that the three dimensional coordinates of the m!" UAV-BS and the n'"
user are (T, Ym, hm) and (T, Yn, hy), respectively. Based on 3GPP channel
model[243], the following formula is applied to represent the probability of
LOS propagation between UAV-BS m and user n:

1, dsp™ < dih
18 i)
[dggm) + exp( 63 )
Prige =4 x(1- )] (12.1)
14 ’ m.n 3
(143676 % C (hy)dlp™
_g(m,n)
exp =) A" > il
where,
, 0, hn, <13
C(hn) =19 gvis . (12.2)
(n13)™ 13 < by, <23

h, € [hﬁm, hﬁ”] denotes the height of user n with meter as a unit, while
™ and h]*%* denote the minimal and maximal height of a user, respectively.
dé’g’m = \/(xm — )% + (Ym — yn)? is the horizontal distance between UAV-
BS m and user n. d} is a 2D distance threshold and its value is 18 meters.
The path loss between UAV-BS m and user n in the case of LOS propagation
and NLOS propagation can also be derived based on [243]:
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PLYSE =28+ 2200g10 (dS™) + 20l0g10(f.) (12.3)

PLY 6 = 13.54 -+ 39.08logio (d ™)
+20l0910(fc) —0.6 (hn — 15)

(12.4)

where dgg’") =/ (Tm — )2 + Ym — Yn)? + (R — hy)? denotes the distance
between the antennas of UAV-BS m and user n, while f. is the carrier fre-
quency. Hence the average path loss between UAV-BS m and user n can be
denoted as:

PLIM = primn) o primn

(12.5)
(1= Prige) x PLYLOS

Similarly, PL(g}\T,L) denotes the average path loss between macro-BS d and

user n, while PLg}\?) denotes the average path loss between macro-BS d
and UAV-BS m. To indicate whether a sub-channel is occupied by a UAV-
BS/macro-BS to serve the users, an occupy indicator is defined, and setting
c¥ as 1 implies that the sub-channel k is occupied by UAV-BS/macro-BS i.
Meanwhile, another indicator is defined where ), = 1 indicating that user n
is served by UAV-BS m. Hence, the SINR between UAV-BS m and user n on
sub-channel £ can be denoted as:

ekt (P = PL{RY)

m

NoBy, + Zi#m C? (Pl - PL§77n)>

"rk _

(n;m) —

(12.6)

where P,, and P; represent the transmit power of UAV-BS m and interfering
node i, respectively. Ny is the power spectral density of the additive Gaus-
sian noise. When the UAV-BSs are serving users, the interference may not
only come from the other UAV-BSs serving users but also from the macro-
BSs serving other UAV-BSs/users. Therefore, PL(Ii’j ) generally denotes the
path loss between user/UAV-BS j and interfering node (UAV-BS/macro-BS)
i. Based on the above-mentioned expressions, the achieved throughput for
MC user can be obtained by:
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K
Cp = zk: AnBrlogs (1 + T’(“n)m)> (12.7)

where A, is the user drop indicator. The user n with an SINR lower than Y,
will be dropped and its corresponding user drop indicator A\, equals zero. For
the drop rate of MC users which will be used in the following sections, it is
defined as:

N
e ) (128)

MC

/BMC =

where N

o is the number of MC users.

The intention of this paper is to generate a generic model, which can be used
to navigate the UAV-BSs to serve MC users in typical MC scenarios. That is
why the statistic model is applied in the transmission model mentioned above
to calculate the user SINR. In comparison, the real map scenario models the
physical objects in a specific environment, which can capture the blockage
effect in the network [244]. If there is a need to apply this generic model in
a specific scenario, the generic model can be further refined to accommodate
such scenario, which is also the next step in our future research.

12.2.3 Problem Formulation

In a multi-network scenario consisting of both existing BSs on the ground and
temporarily deployed UAV-BS, the deployment of the UAV-BS play a critical
role in guaranteeing the performance of the target users/services (e.g., MC
users/services). It can also impact the overall system performance. As the
UAV-BS is connected to the core network using wireless backhaul, it is impor-
tant to ensure the good quality of both the backhaul and access links when
performing this system optimization. Furthermore, the optimal solution de-
pends on many factors like network traffic load distribution, quality of service
(QoS) requirements and user movements on the ground. Therefore, jointly op-
timizing these parameters of UAV-BS is a complex system-level optimization
problem that needs to be solved in a dynamic changing environment.

In order to best serve target users while also maintaining a good backhaul
link quality between UAV-BSs and their donor-BSs, we aim to solve the fol-
lowing research problems: 1) Design an RL algorithm to jointly optimize the
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3-D locations of the UAV-BSs. 2) Find the movement strategy of a UAV-BS
to accommodate the dynamically changing user distribution.

Based on the system model introduced in the previous sub-section, the
target problem we intend to solve is optimizing the 3-D locations of the UAV-
BSs to maximize a weighted sum of the following system key performance
metrics for the MC users:

e Backhaul link rate for UAV-BS: On one hand, the backhaul link rate
reflects the link quality when the UAV-BS is served as a user via its
donor-BS. On the other hand, it also affects the end-to-end throughput
performance of its associated users since the throughput of UAV-served

users is calculated by considering the quality of both the access link and
backhaul link.

e The 5-percentile and 50-percentile of the cumulative distribution func-
tion (CDF) of MC user throughput: The 5-percentile MC user through-
put represents the performance of the cell-edge MC users, i.e., the MC
users with the "worst" throughput performance, while the 50% through-
put indicates the average MC user performance in the simulation area.

e Drop rate for MC users: The ratio of MC users that cannot be served
with the required services. This is an important performance metric for
MC scenarios, since for MC users, keeping reliable connectivity broadly
is more important than guaranteeing high-demand services for specific
users in most MC cases.

Although the performance metrics of normal users is also critical to eval-
uate the overall performance of the network even in an MC scenario, in this
paper, we only focus on improving the performance of MC users because the
performance of normal users is nearly not impacted by broken macro-BS and
deployed UAV-BSs in the system model.

12.3 ML-based Solution

In this section, we describe how we transform and model the considered use
case in an ML environment. Three important components, including the state
space, action space, and reward function, are constructed in order to design
an RL algorithm to jointly optimize the 3-D position of multiple UAV-BSs in
an IAB network.
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12.3.1 Modeling of ML Environment
12.3.1.1 State Space

In our case, a UAV-BS state at a given time instance t has three dimensions,
namely a UAV-BS’s 3-D position.

We use Py = {x¢,ys, 2¢} to denote the 3-D position of a UAV-BS at time
t. Then, a UAV-BS’s state at a given time instance t is denoted as s; =
{4, ys, z¢ }. Table 12.1 shows the candidate values for each UAV-BS:

Table 12.1: Candidate values for each UAV-BS in the simulation environment

3-D position P

UAV1 Candidate Values

Space
x (85,257,428, 600] meters
Yy [—514,—342, —171, 0] meters
z [10, 20] meters
3-D position P UAV2 Candidate Values
Space
T [-600, —428, —257, —85] meters
Y [—514,—342, —171, 0] meters
z [10,20] meters
3-D position P UAV3 Candidate Values
Space
. [—428, —257,—85, 85,257, 428]
meters
y [171, 342, 514] meters
z [10, 20] meters

It should be noted in Table 12.1 that the available height range for all UAV-
BSs is limited between 10 m and 20 m, rather than deploying the UAV-BSs
into a higher altitude. The reason is that, in the scenario considered in this
paper, the UAV-BSs tend to stay at a lower height to maintain good backhaul
links to on-ground donor-BS and also provide better access links to serve on-
ground MC users, which makes the current height range selection reasonable.

The candidate values of 2-D space location x and y axis cover the disas-
ter area shown in Figure 12.2. The location options are selected by three
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deployed UAV-BSs. The 2-D MC area has been divided into 3 parts, with
each UAV-BS covering one part of the area. For UAV1, z and y axis op-
tions are [85,257,428,600] and [—514,—342, —171,0] meters. For UAV2, z
and y axis options are [—600, —428, —257, —85] and [—514, —342, —171, 0] me-
ters. For UAV3, 2 and y axis options are [—428, —257, —85, 85, 257, 428] and
[171,342,514] meters. And the height options for all three UAV-BSs in the z
axis are [10,20] meters. As a result, the total number of state combinations
in this environment is 18928. The computation complexity will be linearly
increased O(n) based on the total number of input states combination.

12.3.1.2 Action Space

In order to enable a UAV-BS to control its state, for each state dimension, we
defined three potential action options and the UAV-BSs chose an action from
three candidate options. These three alternative action options are denoted
by the three digits: —1,0,1, where “-1" indicates that a UAV-BS decreases
the status value at this state dimension by one step from its current value;
“0" indicates that a UAV-BS does not need to take any action at this state
dimension and keeps its current value; "1" indicates that a UAV-BS increases
the status value at this state dimension by one step from its current value.

For example, if the x-axis value of the UAV1 (i.e. the value of the x;
dimension) equals 257 meters, an action coded by “-1" for this dimension
means that the UAV-BS will select an action to reduce the position value
to 85 meters, an action coded by “0" implies that the UAV-BS will hold the
current position (257 meters), and an action coded by “1" implies that the
UAV-BS will increase the position value to 428 meters. The same policy is
applied to all dimensions of the state space.

Since there are three action alternatives for each space state, the action
pool for 3-D position space, the pool has 27 action candidates that may be
programmed to an action list & =[(-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, O,
-1) .., (1, 1, 1)]. As a result, if we combine the action of the 3-D position
space, at any given moment ¢, a UAV-BS can thus choose an action a; from
these 27 alternatives. Figure 12.3 depicts a state transition from the specified
state s, = {257, —342, 10} meters.
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Figure 12.3: Example of the UAV1’s state transition from current state
{257, —342,10} meters
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12.3.1.3 Reward Function Design

It is more critical to serve as many MC users as possible with appropriate
service quality than to maximize the peak rate of a subset of MC users. In
the MC context, ensuring a seamless and reliable communication service for
all users is paramount. The user experience is intricately tied to two key per-
formance metrics: drop rate and throughput, each addressing distinct aspects
of communication quality.

1. Drop Rate (8): The drop rate metric is a critical indicator of connec-
tion reliability. It reflects the percentage of users who remain connected
without disruptions in both uplink (UL) and downlink (DL) commu-
nication. In MC scenarios, where ubiquitous connectivity is essential,
minimizing the drop rate is synonymous with ensuring that every user
remains connected to the communication network. A low drop rate im-
plies a higher level of reliability and availability of the communication
service. This is particularly crucial in MC scenarios where universal ac-
cess takes precedence over-optimizing the communication quality for a
specific subset of users. By minimizing the drop rate, the model priori-
tizes the requirement of connecting every user in the disaster area.

2. Throughput («): Throughput metrics, on the other hand, provide in-
sights into the quality of the communication service. The 50th percentile
and 5th percentile throughput values represent the average and "worst"
performance of MC users, respectively, in both UL and DL. These met-
rics delve into the actual service quality experienced by users. In a
mission-critical context, optimizing communication quality is crucial to
meet the diverse needs of users. Throughput metrics ensure that not
only are users connected, but the quality of their communication ex-
perience is also considered. This is particularly relevant when users in
the disaster area may have continuous communication demands, and the
network must adapt to dynamically changing conditions.

Together, drop rate and throughput metrics provide a holistic view of the
user experience in mission-critical scenarios. A low drop rate ensures univer-
sal connectivity, meeting the fundamental requirement of MC scenarios, while
throughput metrics delve into the aspects of service quality. Balancing both
aspects is essential for delivering a comprehensive and reliable user experience
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that aligns with the needs of MC users in disaster areas. It’s worth noting
that there may be trade-offs between connection reliability and service qual-
ity. Striking the right balance ensures that the communication network not
only connects all users but also provides satisfactory service quality, acknowl-
edging the dynamic nature of MC scenarios. Therefore, a reward function
is constructed for measuring the overall user experience of current service
settings.

As the reward function reflects the overall user experience of the MC users,
the aggregated reward metrics are produced for the reward function design
of the reinforcement learning algorithm to take into account both the impact
of other drones’ actions as well as the quality of services at the local drone.
The reward is calculated using the average of the performance indicators of
local and neighbouring agents. We have selected six key performance metrics
for each local agent to highlight the local quality of service for MC users,
including:

o The drop rates of MC users for UL and DL (8., Ba1), which reflect the
percentage of unserved MC users.

o The 50% throughput values of MC users for both UL and DL (cvy;_50%,
ag1—50%), which represent the average performance of the MC users, and

o The 5% throughput values of MC users for both UL and DL (5%,
ag1—5%), which represent the “worst" performance of the MC users.

The choice of performance metrics in our study is linked to the unique chal-
lenges and priorities inherent in MC scenarios, where the primary objective is
to establish and maintain reliable communication services for all users within
the disaster area. Unlike conventional scenarios that may prioritize maximiz-
ing the peak rate for specific users, our focus is on universal service delivery
and quality. This distinctive prioritization is a direct response to the critical
nature of MC scenarios, where seamless communication can be a matter of
life and death. The selected metrics serve as crucial indicators to address the
specific needs of emergency situations and ensure the effective deployment of
UAV-BSs.

The reward function is built as a weighted sum of these six feature values
to balance these critical performance indicators, as shown below. The reason
why the backhaul link rate is not considered here is that the values of the
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six features all rely on the quality of the backhaul link between the UAV-BS
and its donor-BS. Before the model, all characteristics are normalized using
min-max normalization, thus the values are constrained within the range [0, 1].

1-— 1— 06, 59 =
R, —w; x (1 — Bar) + (1 — Bu) F o X (Qui—5% + Ctar—5%)
2 2 (12.9)
+ ws X (Qui—s50% + Qai—50%)
2

Furthermore, we set weighting coefficients wy 4+ ws + w3 = 1 to normalize
the reward value such that R is between [0, 1]. To emphasize the significance
of supporting all MC users, we assign higher weights to user drop rates and
5% MC-user throughput metrics. This is because, in the MC use cases, we
must first prioritize that all users have access to the communication service
rather than focusing on optimizing the communication quality of a small sub-
set. In this paper, our method uses the weight values w; = 0.5, wy = 0.3 and
w3 = 0.2. The weighting of these metrics in the reward function emphasizes
our commitment to supporting all MC users, as opposed to optimizing the
communication quality for a select group. This intentional emphasis aligns
with the core principle that in MC scenarios, every user’s access to communi-
cation services is of paramount importance. This normalization ensures that
the reward values are representative and comparable across diverse scenarios.
The reward function’s formulation involves a balance of weights assigned to
key performance metrics to optimize the algorithm for mission-critical scenar-
ios. Drop rate (wq) bears the highest weight, underscoring its critical role in
minimizing service interruptions and prioritizing universal access. The weight
for 5th percentile throughput (ws) is selected to address the trade-off between
reducing drop rates and ensuring quality for the worst-performing users. Sim-
ilarly, the weight for 50th percentile throughput (ws) is determined to strike
a balance between providing quality for the majority and not compromising
the performance of the most disadvantaged users. The optimal combination
of these weights is identified through grid search, ensuring the reward func-
tion aligns with the unique priorities of mission-critical scenarios and achieves
peak system performance. In order to know the influence of each UAV-BS,
the reward function will also aggregate the reward values of the neighbour
agents. Hence, the following is the reward function applied in the algorithm:
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P e MM
* len(C)+1
Assuming that C' is the set of register neighbours, M represents the cur-
rent agent’s local system performance, and the M¢ indicates the local system
performance of its neighbour ID c.

(12.10)

12.3.2 RL Algorithm Design

In this section, we design an RL algorithm to solve the optimization problem
of the considered use case. RL is distinct from supervised and unsupervised
learning in the field of ML in that supervised learning is performed from a
training set with annotations provided by an external supervisor (task-driven),
whereas unsupervised learning is typically a process of discovering the implicit
structure in unannotated data (data-driven). RL is suitable for this case since
the method provides a unique feature: the trade-off between exploration and
exploitation, in which an intelligence agent must benefit from prior experience
while still subjecting itself to trial and error, allowing for a larger action
selection space in the future (i.e., learning from mistakes).

In order to achieve better self-control decisions for our scenario, we applied
deep Q-network (DQN) as our base RL algorithm. The algorithm was first
proposed by Mnih et al. in [203][199] by combining convolutional neural net-
works with Q-learning algorithms [206] in traditional RL. The approach has
been frequently used in gaming and static environments. However, the original
approach is incapable of adapting to our MC situation due to environmental
changes. To address these issues, we have proposed two significant schemes in
our autonomous UAV-BSs control algorithm (Algorithm 7): adaptive explo-
ration control and value-based action selection.

12.3.2.1 Adaptive Exploration (AE)

Because of the environmental changes, the original DQN model needs to be
updated to accommodate feature value changes. As a result, we create a
dynamic exploration probability triggered by a substantial decline in reward
value. Following the completion of each learning iteration, the final reward
value is checked and compared to the pre-defined reward drop and upper
reward thresholds. Based on the outcome, the exploration probability € will
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Algorithm 7: Deep Reinforcement Learning in each UAV-BS with
adaptive exploration and value-based action selection

Initialize the agent’s replay memory Buffer D to
capacity M
Initialize action-value function @) with two random sets
of weights 6, 6’
Initialize exploration probability € to 1
Set previous reward value 7, to 0
for Iteration =1, N do
fort =1,T do
Ty, Py < Action_ Selection(ry, 14, €)
ar = {«%7 «@t}
Set rp, =14
Decode a; to action options in four state
dimensions and execute the actions
Collect reward 7; and observe the agent’s next state
Pyt {Te41, Y1, 241}
Set si+1 = {Te41, Pes+1}
Store the state transition (s¢, at, r¢, S¢4+1) in D
As, A, < Action_ Grouping(a;)
Sample mini-batch of transitions (s;, aj,7;,s;41) from buffer D
if s;41 is terminal then

Set y; =7;
else

Set y; = r; + ymaxy Q(sj41,0";0")
end if

Perform a gradient descent step using targets y;
with respect to the online parameters 6
Set 6’ < 0
¢ < Adaptive Exploration(ry, r¢, €)
end for
end for
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be adjusted.

Each UAV-BS initially explores the state space and then performs Q-value
iterations at each training episode. When deciding whether to take an action
that gives the maximum reward value or randomly explore a new state, a
e-greedy exploration is used. The parameter € determines the likelihood of
exploration. Each training step’s data is saved in a replay batch D. Each
row of D holds the tuple (s, at, 74, S¢+1), which represents the current state,
action, reward, and next state for a training step. Samples will be chosen at
random and used to update the @ value model.

The most recent reward value is reviewed and compared to a pre-defined
reward-drop threshold and an upper reward threshold. Then, the exploration
probability is updated by checking the following three conditions: (Algorithm
8):

e If the most recent reward value is less than the prior reward, and the
difference is greater than the reward drop threshold, the exploration
probability is increased to 0.1.

o If the most recent reward value exceeds the higher reward threshold, we
can conclude that the algorithm has already located the optimal zone
capable of delivering a reliable connection to MC users. The likelihood
of exploration will be matched to the probability of completion.

e Otherwise, the exploration probability will multiply by an exploration
decay and fall linearly after each learning cycle.

12.3.2.2 Value-Based Action Selection (VAS)

Although the e-greedy algorithm can strike a reasonable balance between ex-
ploration and exploitation, in some cases the approach utilized for exploration
is redundant and time-consuming. The algorithm will choose actions at ran-
dom throughout the searching stage, which may lengthen the search time.
However, when dealing with a large action and state space, random action
selection is clearly not an effective strategy and may cause decision-making to
be delayed, which is unacceptable in most time-critical businesses. Therefore,
we propose a novel value-based action selection strategy (Algorithm 9) which
can lead to fast decision-making for a UAV-BS when determining its 3-D space
location.
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Algorithm 8: Adaptive Exploration Algorithm (AE)

Set restarting exploration probability €gestart
to 0.1
Set ending exploration probability €g,q to 0.0001
Set exploration decay g to 0.995
Function Adaptive_Exploration(ry,, r¢, €):
if r, - r, > Drop threshold then
Set ¢ = €Restart
else if r; > Upper reward threshold then
Set € = €gna
else
Sete=exp
end if
L return ¢

As described in the previous section, an agent’s 3-D position state at a
given time instance t is denoted as P; = {xy, y¢, 2¢ }. Since each position state
has three dimensions and each state dimension has three action options, the
action pool contains in total 27 action candidates that can be programmed to
a list of action space [(—1,—1,-1),(—-1,-1,0),(-1,—1,1),...(1,1,1)]. Each
element in this list can then be regarded as an action vector.

Figure 12.4 depicts a probable set of next actions with the same or opposite
consequence. The consequence is defined as the reward value (or monitored
performance metrics) change after an action has been executed. The algo-
rithm will analyze the outcome of past actions. If the prior action decision
has a positive outcome (the reward value increases or monitored performance
metrics become better) as defined above, the algorithm will choose actions
from a pool of following actions with the same consequence. The dot product
between two action vectors determines the result. If the dot product is larger
than 0, this action vector can be assumed to have the same outcome as the
prior action option.

If the previous action decision results in a negative consequence (the re-
ward value decreases or monitored performance metrics become worse), the
algorithm will select actions from the pool consisting of potential next actions
with the opposite consequence. The opposite consequence is determined by
the dot product of two action vectors that is smaller than or equal to 0. The
actions in this pool will result in an opposite consequence compared with the
previous action decision. Assume that the previous action vector is @t while
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Algorithm 9: Value-based action selection (VAS)

Set grouping threshold 3 to 0
Function Action_Grouping(a;):
t@t — ay = %, e@t
for all potential next action &1 do
if ﬁt'ﬁt+1 >ﬂthen
Append ﬁﬂ_l to As
else .
Append Z, 1 to A,
end if
end for
| return A, A,

Function Action_Selection(ry, ¢, €):
if ry > r, then
Select a random action &2; with probability
from the same consequence 3-D position
action pool A,
else
Select a random action &Z; with probability
from the opposite consequence 3-D position
action pool A,
end if
Otherwise, select a; = argmax,Q(s¢,a;0)
| return 7, %

the next potential action vector is @le

(12.11)

Py Py >0 Same consequence as previous
Py P11 <0 Opposite consequence as previous

In Figure 12.4, the red vector represents the previous action decision. The
angle between the previous action vector (red vector) and the green vectors
is less than 7, which can be represented by a dot product greater than zero.
As a result, the green vectors represent actions that may result in the same
consequence as the red vector. Similarly, the angle between the previous
action vector (red vector) and the brown vectors is greater than or equal to
5, which is represented by a dot product value less than 0. As a result, the

brown vectors may have the opposite consequence.
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Figure 12.4: Diagram of a potential set of next actions with same or opposite
consequence
During the UAV-BSs deployment, the algorithm monitors a set of critical
system performance values (the reward value). Based on the current and a set
of previous performance values, the algorithm will evaluate the consequences
caused by the previous action. The algorithm will thus select the action set
which will potentially result in positive consequences.

12.3.3 Decentralized Reinforcement Learning

In some circumstances, a single UAV is not capable of being extended to cover
a larger area. As shown in Figure 12.1(a), multiple UAV-BSs are deployed to
work together to service the MC users. An extensible decentralized method
for deploying numerous UAV-BSs is therefore designed. The concept is illus-
trated in Figure 12.5 where we relocate the central server operation function
from the central entity and attach it to the edge entity on UAV, as opposed
to the typical single-agent reinforcement learning algorithms, to achieve de-
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centralized characteristics.

Figure 12.5: Decentralized Architecture for Multi-UAV Coordination

The system has two different kinds of data for exchanging information,
namely the system-related data (including location information and system
KPIs) and the model data. The location will communicate with nearby
drones regarding the connection performance and UAV-BS system-related
data. These kinds of data can assist each drone in understanding how their
movements affect the others and in being aware of one another’s surround-
ings. Following each UAV-BS decision, the information will be continuously
exchanged and used as a guide for the subsequent choice. The local model of
each UAV-BS will be shared with its neighbours via the model data channel.
Each UAV-BS has a separate procedure to train, communicate, and receive
model weights and service metrics during the learning process. Each UAV-
BS will share its learning experiences as a result, and the others can gain
information from the experiences of the others. Information is exchanged
asynchronously through active listening to neighboring UAV-BSs for receiv-
ing models and service metrics, rather than requesting them. This push-based
communication mechanism helps avoid interruptions from malfunctioning or
slow neighbors. After multiple training epochs, the UAV-BSs can swap their
model with their neighbours under the control of a frequency parameter. The
process is described in Algorithm 7. The procedures can be summarized as
follows:

Step 1: Each training episode will begin with each UAV-BS exploring and lo-
cating its neighbours before moving on to exploring the environment
and doing Q-value iterations. When deciding whether to choose the
best action or to randomly explore the new state, a e-greedy explo-
ration is used. The parameter € specifies the likelihood of exploration.

216



12.8 ML-based Solution

Algorithm 10: Transmission functions of the decentralized reinforce-

ment

learning algorithm (DecRL)

for Iteration =1, N do

fort =1,T do
After action selections:
for each client ¢ € C' in parallel do
send {s¢41, M};
receive {sf,,, M}
end fors;11 = {(x¢41, yr41)¢ for cin C}
Store the state transition (s¢, at, r¢, S¢41) in D
Learning in each UAV-BS: fapgvas(St, as, T4, St+1)
end for
if t mod f == 0 then
for each client ¢ € C' in parallel do
send 07, ;
receive 6,
end for
b1 +— Sy W s
end if

end for
End Function

Step 2:

Step 3:

Step 4:

After making a choice, each UAV-BS will notify its neighbours of the
state and local performance indicators. The agent will simultaneously
listen to the other neighbours, and get ready to receive their states
s¢, 1 and local performance metrics M¢. A global system metric value
that can direct each UAV-BS to take future actions will be formed
when all metrics have been received and the reward has been calcu-
lated based on the reward function Rj.

A replay batch D contains the data for each training stage. The tuple
(8¢, a¢, 74, S¢+1), or the current state, action, reward, and next state
for a training step, is contained in each row of D. For the purpose of
updating the @ value model, samples will be chosen at random. The
current state reward pairs will also be distributed to the other agents
after each decision round.

A UAV-BS will send the updated model results, ', to its registered
neighbours for model aggregation after it has reached the predeter-
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mined exchanging iteration. Each UAV-BS will simultaneously listen
to its neighbours in order to receive models and service metrics instead
of requesting models from the others, which results in a push-based
communication mechanism to avoid interruptions from malfunction-
ing neighbours.

Step 5: Each node executes aggregation by averaging all updated models de-
pending on the aggregation function, 6}, <— Zle m 1, af-

ter receiving all the models from the registered neighbours.

Step 6: The updated model is used by the edge device to replace the outdated
one and to carry out additional local training. We’ll repeat the steps
from above.

12.3.4 Complexity and Robustness Analysis

The Adaptive Exploration algorithm takes three parameters: 7, (prior re-
ward), r; (current reward), and e (exploration probability). The function con-
tains three conditional branches based on reward comparisons. Each branch
contains constant time operations: setting € to a constant value or updating
it using multiplication. The time complexity of this function is constant, i.e.,
O(1).

The Action Selection algorithm takes three parameters: r, (prior reward),
r¢ (current reward), and e (exploration probability). It performs conditional
branching based on reward comparisons and selects actions accordingly. The
time complexity is O(1) since the operations inside each branch are constant.

Both AE and VAS algorithms have constant time complexities for their core
functions. The overall complexity is dominated by the number of iterations
in the main training loop, which is specified as N. Therefore, the overall time
complexity of the algorithms is O(1) for each iteration, and O(N) for the entire
training process.

The overall time complexity of the DecRL algorithm is influenced by the
number of iterations N, the number of clients C, and the frequency parameter
f- The transmission functions contribute a significant portion of the complex-
ity, especially when considering parallel communication with each client. The
model update and aggregation steps also have a complexity that depends on
the number of clients and the frequency of model updates. The algorithm’s
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complexity is not fixed and can vary based on the specific values chosen for
parameters.

Furthermore, the Decentralized Reinforcement Learning (DecRL) algorithm’s
robustness against communication failures and potential UAV-BS malfunc-
tions is underpinned by the push-based communication approach. This ap-
proach ensures dynamic adaptation as UAV-BSs actively listen to updates
from the network, avoiding the situation that one needs to wait for the re-
sponse from a malfunctioning edge, which can avoid accidental disconnections
and maintain system engagement. In the face of communication disruptions,
the push-based strategy facilitates adaptive reconfiguration, allowing UAV-
BSs to adjust positions and communication parameters for continuous connec-
tivity. Additionally, the monitoring function can be enabled by the push-based
model aids in detecting UAV-BS malfunctions, prompting dynamic decision-
making to redistribute tasks or optimize resource deployment.

12.4 Simulation Results and Analysis

In this section, the simulation configuration and scenario deployment are in-
troduced firstly. We then investigate the impact of the 3-D location of mul-
tiple UAV-BSs on the performance of MC users in terms of backhaul link
rate, throughput, and drop rate based on system-level simulations. Finally,
we present the results of proposed RL algorithms for autonomous UAV-BS
navigation.

12.4.1 Simulation Configuration

To evaluate the performance of the proposed RL algorithm in solving the for-
mulated problem, we build a multi-cell scenario by considering the predefined
system model, and a simulation is executed with a system-level simulator.
With the output of the simulation, the proposed RL algorithm can be applied
for UAV-BS to build a well-trained model, based on which optimal UAV-BS
position and antenna configuration can be found rapidly.

In the simulation, we drop 500 users in the area as shown in Figure 12.2.
The circle area with a 350m radius around the UAV-BS is defined as the MC
area. The users located in the MC area are marked as MC users, while the
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Figure 12.6: Impact of UAV-BSs’ Positions on average backhaul link rate

others are normal users. All users follow an arrival model and only arrived
users can be considered as activated.

To investigate how a well-trained RL model performs in a dynamic envi-
ronment, we design a set of different user distributions to simulate the case of
slow-moving users.

The detailed simulation parameters are shown in Table 12.2. Specifically,
the typical inter-site-distance (ISD) is 500 meters for the mid-band urban-
macro scenario in NR. To create a coverage hole and clearly show the impact
of introducing UAV-BSs to cover bad-quality MC users, the ISD is set to
1000 meters and a macro-BS is removed from the center of the map due to
malfunction. For the radius of the MC area, 350 meters is selected to create
an area that is large enough for three UAV-BSs to jointly serve but not too
large to introduce excessive candidate positions which significantly impacts
the simulation efficiency. The user arriving rate per simulation area is used
to control the system load in the network, and its value is selected by keeping
the drop rate of the users in a reasonable range between 0% and 10%. The
simulation time denotes the time duration between the network beginning
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and stopping to serve users with one set of configuration parameters, which
comprises the 3D positions of three UAV-BSs. Hence, in this paper, one
epoch means running a 2-second simulation with one specific combination of
positions of three UAV-BSs. During this time, the users are activated based
on a predefined arrival rate, as defined in the system model. The value of
other parameters is selected based on the typical setting used in a mid-band
urban-macro scenario.

12.4.2 System-level Performance Evaluation

To evaluate the impact of UAV-BSs’ positions on the user performance, Fig-
ure 12.6 shows the range of achieved average backhaul link rates when the
three UAV-BSs are deployed at all possible combinations of different candi-
date positions. Around the MC area denoted by orange circle, 40 candidate
2D-positions of UAV-BS (colored stars shown in Figure 12.2) are selected and
mapped to the centers of the colored circles in Figure 12.6. Each colored
UAV-BS can only be deployed at the position marked with the same color.
The radius of each circle denotes the normalized average backhaul link rate of
three UAV-BSs who are located at current positions. For one specific candi-
date position in blue where one UAV-BS is deployed, the other two UAV-BSs
can be placed at all possible combinations of green and red candidate posi-
tions. This explains why there are multiple circles at each candidate position.
Hence the smallest and largest circle radiuses at one candidate position de-
note the lower and higher bounds of the backhaul link rate when the UAV-BS
is placed at the current location. If connecting the centers of three circles
with the largest radiuses which represents the highest backhaul link rate, one
triangle marked with a solid purple line can be observed. As shown in Figure
12.6, if three UAV-BSs are deployed at the vertexes of the purple triangle,
the average backhaul link rate in the system is the highest. Based on the
distribution pattern of three UAV-BSs, it seems that the optimal UAV-BSs’
positions to maximize the backhaul link rate tend to be near the edge of the
MC area. This is because the UAV-BSs can keep good backhaul link quality
when located near the donor-BSs. Similarly, if three UAV-BSs are deployed
at the vertexes of the black triangle, the lowest average backhaul link rate is
reached.

Since the backhaul link rate decides the level of user throughput, the users
can not be served well if the backhaul link quality is poor. Thus the UAV-
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Table 12.2: Simulation Parameters

Parameter ‘ Value
Carrier Frequency ‘ 3.5 GHz
Bandwidth | 100 MHz
Duplex Mode ‘ TDD
TDD DL/ UL DDUD
Configuration
Radius of MC Area 350 m

Inter-Site-Distance (ISD) | 1000 m
Number of BSs |

Macro-BS: 6; UAV-BS: 3

BS Transmit Power Macro-BS: 46 dBm; UAV-BS:
40 dBm
Noise Figure ‘ 7dB
. Macro-BS: 32 m; UAV-BS:
BS Height 10-300 m
Number of Sectors per
. 3
Site
Number of MC&Normal
500
Users
User Arriving Rate per
Simulation Area 270 users/s

User Speed | 3 km/s

Minimum Distance

between BS and Users 30 m

Simulation Time ‘ 2's
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BS can not only pursue a high backhaul link rate while ignoring the user
throughput, and vice versa. By considering the weight for each metric in the
reward function, the proposed RL algorithm can provide optimal locations
of UAV-BSs to achieve the highest reward value. For example, if the weight
of 5th percentile throughput or drop rate of MC users is high, the UAV-BSs
navigated by the proposed RL algorithm tend to move to locations where the
performance of low-quality users can be improved as much as possible.

Based on the above observation, the optimal UAV-BSs’ positions are differ-
ent if different performance metrics are considered with different weights in
the reward function. Hence, optimizing the performance metrics in the reward
function to achieve global optimization by adjusting UAV-BSs’ positions is a
complicated problem, for which ML-based solutions can be applied to find the
implicit structure from the collected data.

12.4.3 Machine Learning Performance Evaluation

In this section, we present the experimental results of Decentralized Reinforce-
ment Learning with Adaptive Exploration and Value-based Action Selection
(DecRL-AE&VAS) for autonomously controlling multiple UAV-BSs. For the
UAV-BSs deployment, different from the single UAV case introduced in the
previous section, more candidate positions are allocated around the MC area
for the multi-UAV case. As shown in Figure 12.2, the available positions for
each UAV-BS don’t overlap with others, which means each UAV-BS covers a
certain geographical area with a total of 18928 combinations. The result is
evaluated using two criteria: (1) six features (specified in Section IV - Model-
ing of ML Environment) that demonstrate link service quality, and (2) model
learning quality in each phase as demonstrated by system reward value. The
results are compared to several baseline models. As we described before, the
experiment contains five validation phases incorporating MC user mobility.
When entering a new phase, the algorithms will use the data collected during
the new phase to learn and update themselves. During the simulation, the
DecRL-AE&VAS method trains the model from scratch in the training phase
and then continuously improves itself in the succeeding validation phases.
The previously learned experience will not be removed from the subsequent
sessions. During the model learning, for each agent, the test bed provides
an 8-core Intel Xeon Processor with 8 GB memory. The average CPU con-
sumption is lower than ~ 1% while the memory usage is about 300 MB. The
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communication overhead of one agent within one epoch is ~ 410 KB while
the learning time of each epoch takes ~ 0.3 second, which is suitable for
quick response to real-time user movement and can be easily implemented on
resource-constraint devices.

There are two baseline methods used to compare the performance of DecRL-
AE&VAS and demonstrate the effectiveness of the decentralized architecture
and the convergent efficiency in the training phase, namely, baseline CRL and
baseline IRL method. For the baseline IRL algorithm, these baseline models
are explicitly trained using each edge UAV-BS. There will not be any model
or information exchange between the edge and central nodes during training,
in contrast to decentralized reinforcement learning. The service quality per-
formance can be compared to the decentralized reinforcement Learning model
to demonstrate how it can outperform those locally trained individual mod-
els. For the baseline CRL, this baseline model is trained using the centralized
learning strategy. Prior to model training, all data from the edge are collected
into a single server, and learn the action strategy step by step.

In the validation phase, in order to prove the performance in a dynamic
environment, two baselines are utilized, namely, the retrained DecRL and
baseline CRL. The retrained DecRL algorithm removes the past information
and randomizes the ML model parameters but with the same decentralized
setup. When entering a new phase, the algorithm will retrain the model from
scratch. The difference between retrained DecRL and DecRL-AE&VAS is
the utilization of AE and VAS strategies. These strategies have been proven
to be useful when deploying UAV-BSs into dynamic environments. Last but
not least, the baseline CRL algorithm in the validation phases will constantly
learn and employ the new data when entering the new phase but with a cen-
tralized algorithm that controls all deployed UAV-BSs but without improved
strategies.

For the learning hyper-parameters of our method, we explored various sets
of combinations using random search in order to achieve the best results. Ran-
dom search efficiently explores a wide range of hyper-parameter combinations,
making it more likely to discover effective configurations compared to a more
constrained grid search. During the training, the network architecture for a
DQN is set to [4 — 16 — 16 — 81]. The architecture choice balances the com-
plexity of the model with the capacity to represent the relationship between
state and action. The exploration probability decay is set to 0.995. The ex-
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ploration probability decay determines how fast the exploration probability
€ decreases over time. A high decay rate is selected in our case to allow the
agent to explore more in the early stages of training and gradually shift to-
wards exploitation as training progresses. The learning rate is set to 5 x 107°.
The learning rate determines the step size during the weight updates in the
training process. The selected learning rate strikes a balance between con-
vergence speed and stability. Lastly, the number of learning iterations at the
training phase and validation phases equals 1500 and 500, respectively. The
number of iterations determines how much exposure the algorithm has to the
training data. The values are selected to balance the learning time and the
model quality.
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Figure 12.8: Reward value with the number of learning iterations in the training
phase

We first analyze the algorithm’s convergence performance during the model
training phase. Figure 12.8 depicts the reward value as a function of the
number of learning iterations. Compared to the baseline CRL algorithm, we
can see that the VAS method can help the UAV-BS quickly discover the near-
optimal position and converge at a high-quality level.

Training the algorithm in a decentralized way can also be converged and
reach a high reward value before 400 training rounds. The convergent re-
ward value of the DecRL-AE&VAS is approximately 5% higher than that of
the centralized training method in the initial learning iterations which results
in higher training efficiency. When compared to the independent learning
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Figure 12.9: Average Reward Value in each validation phase

method, the algorithm does not converge after 1500 learning iterations. It
is difficult for agents to share knowledge and collaborate since the algorithm
stops them from exchanging information. Throughout the training procedure,
the Baseline IRL algorithm performs poorly. Because the reward value repre-
sents the overall system performance of the three UAV-BSs, we can conclude
that the DecRL-AE&VAS algorithm enables the UAV-BSs to provide the best
wireless connection service when compared to the other two frequently utilized
baseline approaches in the training phase.

When entering the validation phases (Figure 12.7 Phase I - V), the pro-
posed algorithm can learn from the past and finally reach the optimal state
that provides the highest reward value in the validation scenarios using the AE
method. Even if the environment has changed and the quality has dropped
dramatically, the algorithm can assist the UAV-BS in quickly adjusting and
returning to ideal performance. When we look at the baseline CRL approach,
the method failed to respond to environmental changes in a short period due
to the slow-paced state exploration. When we compared the baseline results
to the retrained DecRL and DecRL-AE&VAS, the results showed that our
suggested VAS-AE approach can enable UAV-BS to quickly converge in most
of the validation phases. However, with the retrained DecRL, a significant
impact may occur on the algorithm and service stability if not using previous
existing knowledge. When we integrated RL with adaptive exploration and
the value-based action selection strategy, the algorithm showed the best per-
formance in terms of convergence speed, the ability to adapt to environmental
changes, and stable service quality of our suggested DecRL-AE&VAS method.

The average reward value changes during the validation phases are depicted
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in Figure 12.9. Because the reward value encompasses all of the essential cri-
teria that must be evaluated during the deployment of the UAV-BS, the value
clearly demonstrates the model’s quality at each stage. As shown in the figure,
our proposed DecRL-AE&VAS method can assist the UAV-BS in maintain-
ing the ideal service quality, but the baseline model failed to discover a state
that can give reliable and satisfactory service to MC users. The suggested
DecRIL-AE&VAS algorithm gives a reward value (a weighted sum of the six
assessed performance measures) of only about 5% to 6% less than the global
best solution in each validation phase.

12.5 Discussion

In summary, in this paper, we show that when compared to the baseline RL
approaches, the DecRL-AE&VAS model can efficiently assist the UAV-BS
in finding the near-optimal location and converging at a high-quality level.
Utilizing the model-sharing and information-exchange technique, the proposed
algorithm can learn from the past and eventually arrive at the optimal state
that provides the best reward value, the proposed DecRL-AE&VAS method
can achieve the same or even higher levels of system quality than the Baseline
CRL approach in both training and validation phases. Because the reward
value shows the system’s performance, we may conclude that the DecRL-
AE&VAS can help UAV-BS provide better service than the other baseline
models. Our findings show that the algorithm has the capacity to link MC
users swiftly and adequately, allowing drone systems to self-learn without
centralized interaction. In Figure 12.10, we also demonstrate the effectiveness
after deploying multiple UAV-BSs in the MC use case. The "7 Macro-BSs"
denotes the scenario where 7 marco-BSs are serving the whole scenario, while
the "6 Macro-BSs without UAV-BS" denotes the scenario where one macro-BS
is broken and no UAV-BS is deployed. The case "6 Macro-BSs with 3 UAV-
BSs RL" describes the situation which three UAV-BSs are deployed to fill the
coverage hole created in case "6 Macro-BSs without UAV-BS". The results
in case "6 Macro-BSs with 3 UAV-BSs Opt" is derived based on grid search
to be compared with the RL case. It can be observed that when one macro-
BS breaks down, the MC users experience severe performance degradation.
Compared with the "6 Macro-BSs without UAV-BS" case, deploying 3 UAV-
BSs as in the case "6 Macro-BSs with 3 UAV-BSs RL" can improve about
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80% system performance (including 5%, 50% throughput and drop rate) for
MC users in both DL and UL. Furthermore, the suggested DecRL-AE&VAS
algorithm gives a throughput of 10 Mbps and a drop rate of only about 2%
to 3% less than the global best solution indicated in the "6 Macro-BSs with
3 UAV-BSs Opt" case. In conclusion, deploying UAV-BS can greatly improve
the performance of MC users who are experiencing coverage loss. However,
due to the BS capability difference, deploying 3 UAV-BS, in this case, can
not guarantee that the MC users have similar performance in the case when
no emergency happens. The only exception is that the UL 5% throughput
performance of MC users served by 3 UAV-BSs is better than that served
by one macro-BS before the disaster happens. This is because three UAV-
BSs can be deployed in dispersed locations which increases the probability
for an MC user to be close to its serving BS and the UL 5% throughput
performance of MC users is improved accordingly. The 5th percentile, 50th
percentile, and drop rate of normal users are also investigated, but they are
nearly not impacted by broken macro-BS and newly deployed UAV-BSs. That
is because most normal users are not served by the broken macro-BS before
the malfunction. In some cases, deploying UAV-BSs even leads to lower 5th
or 50th percentile throughput of normal users compared to the case where
there are no UAV-BSs, due to the introduced interference from UAV-BSs.

The proposed model, initially designed for UAV-based communication in
mission-critical scenarios, holds promise for adaptation and scalability across
diverse disaster types and alternative use cases. Examining these dimensions
is pivotal for the model’s real-world applicability beyond the specific disaster
context considered in this study. When considering different disaster types,
such as natural disasters, man-made incidents, and public health emergencies,
it is imperative to assess the adaptability of the model. Varied communica-
tion needs and environmental challenges associated with each type of disaster
may require nuanced adjustments to the model’s parameters and strategies.
By understanding how the model can flexibly adapt to a range of disaster
scenarios, its practical utility can be enhanced.

12.6 Limitations

While our proposed deep reinforcement learning algorithm for the three-
dimensional placement of UAV-BSs in MC scenarios demonstrates promis-
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ing results, it is crucial to acknowledge several limitations and challenges as-
sociated with the decentralized nature of the approach. The utilization of
decentralized architecture and model delivery mechanism introduces unique
considerations that require further research.

Communication Overhead: The independence of edge entities in completing
tasks introduces communication overhead among the UAV-BSs. Aseach UAV-
BS makes decisions based on local observations and interacts with others, the
need for frequent information exchange arises. This can lead to increased com-
munication latency and potential congestion in scenarios with a large number
of UAV-BSs. The need for frequent information exchange arises and follows
equation n? +n where n equals the number of participated edge entities. This
can lead to increased communication latency and potential congestion in sce-
narios with a large number of UAV-BSs. In our paper, we have parameters to
control the number of UAV-BSs communicated in each learning iteration and
the frequency of model exchange. However, the trade-off between the control
parameter and the quality of the model requires further research.

Coordination Complexity: The decentralized approach requires efficient co-
ordination mechanisms among UAV-BSs to avoid conflicts and optimize their
collective behavior, especially when the number of participated UAV-BSs is
largely scaled up. Ensuring seamless interaction without a central orchestrator
poses challenges, particularly in dynamic environments where the on-ground
user movement and network conditions may change rapidly.

In conclusion, while our approach showcases the benefits of decentralized
control in UAV-BS placement, the outlined limitations underscore the need
for further research and development. Addressing these challenges will be cru-
cial for the practical implementation of our proposed solution in real-world
scenarios, particularly in dynamic environments that require a large number
of UAV-BSs deployed.

12.7 Conclusions and Future Work

In this paper, we presented a data collection system and machine learning
applications for an MC use case, a novel RL algorithm, as well as a decen-
tralized architecture to autonomously pilot multiple UAV-BS in order to offer
users temporary wireless access. Two novel strategies, i.e., adaptive explo-
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ration and value-based action selection, are developed to help the proposed
RL algorithms work efficiently in a dynamic real-world context, incorporat-
ing MC user movements and a decentralized architecture to support multi
UAV-BSs deployment. Note that the number of participated UAV-BSs can
be further extended based on the industrial requirements due to the charac-
teristics of the decentralized architecture. We show that the proposed RL
algorithm can monitor the MC service performance and quickly respond to
environmental changes via self-adapting exploration probability. In addition,
it requires far fewer model training iterations by reusing previous experiences
and the value-based action selection strategy. Therefore, the proposed method
can well serve the MC users by autonomously navigating multiple UAV-BSs
despite environmental changes.

In the future, we will consider separating the configuration for access and
backhaul antennas of the UAV-BS, as well as modelling drone rotation in the
horizontal domain as an additional parameter for the UAV-BS configuration.
We also intend to examine other hyper-parameters and reward function com-
binations based on different service requirements and further refine the model
to accommodate specific real-map scenarios. Last but not least, we will also
investigate the energy efficiency problem for deploying UAVs with machine
learning components in the real-world context.
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CHAPTER 13

Enabling Efficient and Low-Effort Decentralized
Federated Learning with the EdgeFL Framework

This chapter has been submitted as:

Enabling Efficient and Low-Effort Decentralized Federated Learning
with the EdgeFL Framework

Zhang H., Bosch J., and Olsson H. H.

In Information and software technology, p.107600.

13.1 Introduction

Federated Learning (FL), a revolutionary machine learning approach, enables
model training across decentralized data sources while upholding the funda-
mental concepts of data privacy and security. A frequent technique in tradi-
tional machine learning is to centralize all relevant data into a single location
for model training. However, this traditional strategy frequently confronts
formidable obstacles. These obstacles cover a wide range of issues, from data
privacy concerns and severe regulatory requirements to computationally com-
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plex demands. To address these restrictions, FL provides a novel approach
by allowing models to be trained locally on the devices or servers from which
the data originated, eliminating the need to send data to a central repository.
[99].

The most significant advantage of FL is its data privacy preservation. This
strategy assures that data remains on client devices or servers, eliminating
any concerns or suspicions about data leakage or the unintended exchange of
critical information [57]. Instead of sending raw, unaltered data, FL relies on
the communication of only model parameter changes, which are frequently
encrypted or anonymised. This decentralized training paradigm empowers or-
ganizations, researchers, and individuals to form collaborations in the pursuit
of model improvements without sacrificing the integrity and security of their
data resources.

In addition to data privacy protection, FL adds a new level to collabora-
tive model training. The approach extracts collective knowledge that is more
powerful than the sum of its individual parts by encapsulating data and knowl-
edge scattered across several nodes or devices [245]. The federated method
supports the integration of various sources of data, resulting in the construc-
tion of models that are not only more accurate but also robust, which can be
adaptable to a wide range of real-world scenarios.

FL can be applied to applications in various domains, such as health-
care, finance, automotive, Internet of Things (IoT), and edge computing
[116][132][126][246][247][248]. One of its advantages is its ability to enable
enterprises to exploit the collective knowledge contained within distributed
datasets without violating severe privacy requirements or exposing sensitive
information to unnecessary risks. This capacity to combine knowledge while
adhering to data privacy regulations is especially important in fields such as
healthcare and finance, where patient or financial data confidentiality is cru-
cial [249]. Furthermore, FL appears as a powerful tool for reducing reliance
on costly and bandwidth-intensive data transfers.

13.1.1 Challenges of FL development

However, while FL offers significant advantages, it also poses distinctive chal-
lenges for Al engineers, as highlighted in the research by Lwakatare et al.
[151]. These challenges revolve around the intricate design and implementa-
tion of distributed systems. Engineers are tasked with creating systems ca-
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pable of efficiently managing communication, coordination, and synchroniza-
tion between numerous clients and a central server. This involves overcoming
challenges such as scalability and fault tolerance to accommodate extensive
deployments [250].

Existing FL frameworks, whether from academia or industry, tend to be
complex to use. FL involves various components like distributed systems,
optimization algorithms, privacy techniques, and machine learning models
[251][252]. When these elements are combined into a single framework, it can
result in intricate systems with numerous dependencies and configurations.
This complexity can be challenging for users, especially those without a strong
background in distributed systems or machine learning [253].

Additionally, FL is applied in diverse domains and use cases, each with its
unique requirements and constraints [254]. Designing a platform or framework
that can accommodate this diversity can add to the complexity. It becomes
a challenge to strike a balance between providing flexibility for customization
and maintaining simplicity for ease of use [255]. As indicated in previous
research [136], software engineers must understand and implement FL algo-
rithms and optimization techniques such as Federated Averaging and adap-
tive learning rate strategies. The development of algorithms that efficiently
converge towards high-quality models while consuming the least amount of
resources represents an overwhelming task that software engineers must face
within the context of FL. These diverse duties highlight the complexities of
FL and the skill set required for its successful implementation [256].

Last but not least, software engineers may face difficulties because of the
lack of comprehensive tools and frameworks designed expressly for FL. To
meet their special objectives, they may need to adapt current tools, create
customized solutions, or contribute to open-source initiatives [62][257]. Con-
structing simplified workflows, putting in place effective debugging mecha-
nisms, and creating monitoring tools that fit FL systems are all challenging
tasks that require careful attention and expertise. This diverse landscape
emphasizes the complexities of integrating FL. with edge devices and IoT con-
texts, where resource efficiency and adaptability are critical.

In summary, the challenges can be concluded into four aspects:

e Scalability and Decentralization in FL: Existing FL frameworks pre-

dominantly rely on centralized aggregation, which introduces a single
point of failure and limits scalability. The challenge lies in designing
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a decentralized architecture that can effectively eliminate the central
server while maintaining model accuracy and reducing communication
overhead.

o Customization and Flexibility in Aggregation Functions: Current FL
frameworks often lack the flexibility needed to customize aggregation
functions to suit specific use cases. The gap here involves developing an
approach that allows for adaptable aggregation functions, which can be
fine-tuned to optimize performance across different domains and data
distributions.

o Efficient Model Evolution and Latency Reduction: The latency associ-
ated with weight updates and model evolution in FL systems has been
a significant bottleneck. The gap is in devising methods that can re-
duce this latency while ensuring rapid model convergence, especially in
scenarios with unequally distributed datasets.

¢ Complexity of Implementation: Implementing FL systems is often com-
plex due to the need to integrate multiple components such as dis-
tributed systems, optimization algorithms, and privacy techniques. The
challenge lies in simplifying this implementation process to make FL
more accessible to engineers without deep expertise in these areas.

13.1.2 Contributions

To tackle these challenges, in this paper, we introduce EdgeFL, an efficient and
low-effort FL framework tailored for edge computing environments. EdgeFL
addresses the challenges associated with centralized aggregation by adopting
an edge-only model training and aggregation approach. This eliminates the
need for a central server and allows for seamless scalability across various use
cases. The framework offers a simple integration process, requiring only four
lines of code (LOC) for software engineers to add FL functionalities to their
AT products. Moreover, EdgeFL supports the customization of aggregation
functions, giving engineers the flexibility to adapt them to their specific needs.
Therefore, the contributions of this paper are as follows:

1) We identify the challenges by evaluating existing FL frameworks in six cate-
gories, including line of code, system design, architecture settings, aggregation
type and deployability.
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2) To tackle these challenges, we introduce EdgeFL!, a scalable and low-effort
edge-only FL framework. To accomplish easy-implementation and scalable
model training capacity, simple API design and learning flow abstraction are
built.

3) We propose a decentralized FL architecture and learning method that en-
ables asynchronous model training to speed up industrial FL training and
support large-scale node communication along edges. The architecture can be
used as a template for future edge-only FL development and research.

4) We validate EdgeFL using two well-known datasets, namely MNIST and
CIFAR-10 and compared them with five existing FL frameworks/algorithms.
Furthermore, a real-world case, the distributed sentiment analysis on the
IMDB Dataset of 50K Movie Reviews, is constructed and used to validate
the empirical deployment of the EdgeFL framework.

The remainder of this paper is structured as follows. In Section II, we in-
troduce the background and related work of this study. Section IIT details
our research method, including the implementation, data distribution, ma-
chine learning methods applied and evaluation metrics. Section IV presents
the system design of our proposed EdgeFL. Section V evaluates our proposed
framework and compares it with existing FL frameworks. Section VI outlines
the discussion on our observed results. Finally, Section VII presents conclu-
sions and future work.

13.2 Background and Related Work

13.2.1 Federated Learning

FL is a machine learning approach that enables multiple decentralized de-
vices or entities to collaboratively train a shared model without sharing their
raw data [51], [137], [145]. In traditional machine learning methods, a cen-
tral server or data aggregator gathers and stores training data from different
sources and then trains a global model using this combined data. However,
this centralized approach raises concerns related to data privacy, security, and
the practicality of transferring large data volumes to a central location [136].

In the context of the growing use of edge computing and distributed data
sources, there is an increasing need to utilize data that is distributed across

Thttps://github.com/HarryME-zh/EdgeFL.git
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various devices or entities while respecting data ownership and privacy [258].
FL addresses this challenge by allowing local devices, such as smartphones,
ToT devices, or edge servers, to train a shared model using their locally stored
data [259]. This process is illustrated in Figure 13.1 and typically involves the
following steps:
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Figure 13.1: Diagram of FL training process

1) Initialization: In the first step, the central server kicks off the process by
initializing a global model and distributing it to the participating devices or
entities.

2) Local Model Training: Each device or entity then takes the initiative to
train the global model using its own local data independently. Importantly,
this is done without sharing the raw data. The local model undergoes training
using techniques like gradient descent or other optimization methods. This
involves updating the model parameters based on the device’s individual data.

3) Model Aggregation: Following the local training phase, the devices or
entities transmit their locally computed model updates, which can include gra-
dients, to the central server. The central server collects and aggregates these
updates using methods such as Federated Averaging or Secure Aggregation,
resulting in an improved global model.

4) Tterative Process: The model training and aggregation process iterates
over multiple rounds, allowing the global model to improve over time. Each
round typically includes local model training, model aggregation, and com-
munication between devices and the central server.
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FL utilizes the power of collaborative learning from a diverse range of de-
vices or entities, each with its unique data distribution and characteristics.
This diversity plays a crucial role in enhancing the global model’s generaliza-
tion and robustness by capturing a more comprehensive representation of the
data.

13.2.2 Existing FL Frameworks

There are several existing FL frameworks available that facilitate the devel-
opment and deployment of FL systems:

1. TensorFlow Federated (TFF): Google’s open-source research-centric frame-
work that is designed to extend TensorFlow’s capabilities into the field
of FL. It excels in providing a flexible programming model and a rich set
of APIs, making it a strong choice for researchers experimenting with
FL algorithms. [260]. However, TFF’s focus on research and simulation
may limit its practical deployment in industrial settings, particularly in
edge environments where scalability and ease of deployment are crucial.

2. PySyft: PySyft focuses on privacy-preserving FL and secure multi-party
computation and is built on top of PyTorch. Its high-level API is excel-
lent for leveraging differential privacy and secure aggregation, making it
suitable for applications where data privacy is important. PySyft facili-
tates collaborative learning with remote data and models while preserv-
ing privacy [261]. Nevertheless, PySyft’s complexity in setting up and
its emphasis on privacy might make it less straightforward for developers
who prioritize ease of use and broad scalability.

3. FATE: FATE is an industrial-grade FL framework developed by We-
bank Research, that provides a secure and adaptable infrastructure for
collaborative model training across distributed entities. This framework
places a strong emphasis on data privacy. It is particularly well-suited
for industries like finance and healthcare that require strict data privacy
controls. However, FATE’s comprehensive feature set and its focus on
data privacy can add to its complexity, potentially making it challenging
to integrate with simpler, lightweight FL applications, especially in edge
computing scenarios. [262].
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4. LEAF: LEAF, developed by NVIDIA is an experimental FL framework
that provides tools for evaluating FL algorithms. While LEAF is valu-
able for benchmarking and experimenting, it lacks the production-ready
features required for deploying FL in real-world, large-scale environ-
ments. The absence of strong support for edge deployments and limited
flexibility in customization can be considered as weaknesses in compar-
ison to our proposed EdgeFL framework. [263].

5. PaddleFL: PaddleFL is a deep-learning framework that supports large-
scale FL. models with a focus on distributed infrastructure. It offers
various optimization algorithms and communication protocols, making it
a strong candidate for large-scale deployments. However, PaddleFL may
not be as straightforward to implement in heterogeneous environments
or where the need for custom aggregation functions is critical. [264].

Compared to the existing frameworks, EdgeFL is designed specifically to
address practical challenges that are not fully resolved by the above-mentioned
frameworks:

¢ Scalability and Ease of Integration: Unlike TFF and FATE, which may
be complex to deploy in large-scale, real-world applications, EdgeFL is
designed to be lightweight and easily integrable, requiring only four lines
of code to implement.

e Decentralization and Edge Suitability: While frameworks like PySyft
and FATE emphasize privacy, they often rely on centralized components
for aggregation, which can be a bottleneck. EdgeFL eliminates the need
for a central server, enhancing scalability and making it more suitable
for edge environments where decentralized operations are necessary.

o Customization and Flexibility: Unlike PaddleFL and LEAF, which may
have limited support for custom aggregation functions and edge deploy-
ments, EdgeFL offers customizable aggregation mechanisms and sup-
ports asynchronous node joining, making it adaptable to a wide range
of use cases.

While many decentralized FL. models discussed in the literature focus pri-
marily on aggregation algorithms and model training strategies [265][266][258],
EdgeFL distinguishes itself by offering a comprehensive, implementation-ready
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framework. Unlike these models, which often lack complete infrastructure sup-
port, EdgeFL provides a robust API and end-to-end infrastructure that facili-
tates node communication, decentralized learning, and real-world deployment.
This focus on practical application and ease of integration makes EdgeFL a
valuable tool for software engineers, allowing them to implement FL systems
tailored to their specific requirements, while also addressing challenges related
to scalability, fault tolerance, and efficient model updates.

13.2.3 Problem Description

Despite the various functionalities of these FL frameworks, the current FL
frameworks available in academia and industry are often complex to use, de-
manding a thorough understanding of FL concepts. The majority of these
systems demand a deep understanding of FL concepts and require the imple-
mentation of over 100 lines of code (LOC) to deploy an FL application. This
often limits flexibility in terms of customizing aggregation functions and lacks
support for asynchronous communication schemes, as summarized in Table
13.1. These constraints raise considerable challenges for software engineers
aiming to seamlessly integrate FL into production environments.

Moreover, the complexity of existing FL frameworks extends beyond just the
initial deployment phase. Maintenance and adaptation become obstacles as
well. With numerous dependencies and configurations, updating or modifying
an existing FL system can be a daunting task [253][250]. This complexity not
only increases the risk of introducing errors or vulnerabilities but also impedes
the agility needed to respond to evolving requirements or emerging research
advancements in the FL. domain.

Additionally, the steep learning curve associated with these frameworks can
deter potential adopters, particularly those without a strong background in
distributed systems or machine learning [267]. The intricate interplay between
various components such as distributed systems, optimization algorithms, and
privacy techniques necessitates a deep understanding of FL concepts, making
it challenging for newcomers to navigate and harness the full potential of FL
technology.

Furthermore, the lack of standardization across existing FL frameworks ex-
acerbates the problem. Each framework may have its own set of APIs, data
formats, and communication protocols, further complicating interoperability
and hindering the development of reusable components or libraries [267]. This
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fragmentation not only fragments the community but also impedes collabora-
tion and knowledge sharing, slowing down the overall progress in the field of
FL.

13.3 Research Method

In this research, we adopted the empirical methodology and learning proce-
dure outlined by Zhang [92] to conduct a comprehensive quantitative mea-
surement and evaluation of our proposed EdgeFL framework in comparison
to existing FL frameworks [66]. The empirical methodology is particularly
well-suited for evaluating the performance and practical utility of software
frameworks. It allows for systematic observation, measurement, and com-
parison in controlled environments, ensuring that the results are both robust
and generalizable. The methods we employed includes a combination of ex-
periments and a case study [268][269][80]. These methods were chosen as
they offer a comprehensive way to evaluate the performance and practicality
of EdgeFL in both controlled and real-world settings. Firstly, we conducted
a series of controlled experiments to systematically evaluate EdgeFL’s per-
formance against existing FL frameworks. The experiments were designed
to simulate real-world conditions, focusing on key metrics such as accuracy,
communication overhead, computational efficiency, and latency. These ex-
periments allowed us to quantitatively measure and compare the scalability,
efficiency, and ease of use of EdgeFL and its competitors. The choice of these
metrics is critical because they directly reflect the core challenges in FL de-
ployment, particularly in edge computing environments. To complement the
experimental findings, we implemented a case study involving a real-world
machine learning task—sentiment analysis on the IMDB dataset. The case
study was chosen to demonstrate how EdgeFL performs in a practical appli-
cation, highlighting its integration process, usability, and overall effectiveness
in a real-world scenario. The combination of these methods provides a robust
evaluation process. The experiments offer precise, repeatable measurements
in a controlled setting, while the case study provides practical insights into
EdgeFL’s applicability and effectiveness in real-world situations. Together,
they ensure that our findings are both rigorous and practically relevant. In
the subsequent sections of this paper, we present the details of the selection
process and criteria for the selected frameworks. We provide a detailed insight
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into our implementation approach. This includes our methodology for dataset
partitioning and distribution, which is crucial for conducting heterogeneous
simulations. We also present the metrics that were utilized to evaluate the
performance of our framework. Additionally, we provide an in-depth explo-
ration of the machine-learning techniques employed during our experimental
analysis.

13.3.1 Search Process

We employed a structured search strategy to identify all existing FL frame-
works. Initially, we conducted a literature review, searching academic papers,
conference proceedings, technical documentation, and industry reports related
to FL technologies [270]. Key search terms included 'Federated Learning
Frameworks," "FL Platforms," "Distributed Machine Learning," and "Collab-
orative Learning Systems." This search strategy aimed to capture a diverse
range of frameworks used in both research and industry settings.

Building upon insights gained from the literature review, we formulated cri-
teria and metrics to guide the evaluation process. These criteria were designed
to assess the functionality, privacy preservation capabilities, scalability, ease
of use, and adoption/community support of FL frameworks but also the com-
prehensiveness of their infrastructure and implementation readiness. Those
frameworks demonstrating robust features, privacy preservation mechanisms,
scalability, user-friendliness, substantial adoption in research or industry, and
integration with other application development and implementation environ-
ments were prioritized for further evaluation [271]. Additionally, emphasis was
placed on evaluating frameworks that provided a complete infrastructure with
APIs that allow software engineers to implement FL solutions tailored to spe-
cific requirements, including node communication, decentralized learning, and
deployment. By considering these key aspects, we aimed to ensure that the
selected frameworks would be suitable for addressing the research objectives
effectively and the comparison with our proposed EdgeFL framework.

13.3.2 Implementation

To comprehensively assess the performance and capabilities of the EdgeFL
framework, we conducted a series of experiments using two machine learning
applications: digit recognition and object recognition. For these experiments,
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we leveraged the MNIST and CIFAR-10 datasets, which are extensively ap-
plied in the research field. To enable deep learning training and testing, the
PyTorch backend is utilized. One of the features of the EdgeFL framework
is its simplicity in integration. With the integration of EdgeFL, the FL func-
tionality is seamlessly integrated into these machine-learning applications with
the addition of only four lines of code (LOC). Furthermore, we containerized
the applications, enabling easy deployment on edge devices while maintaining
their functionality and performance.

The flexibility of the EdgeFL framework allows it to be constructed on
various container orchestration clusters, such as Kubernetes, Docker Swarm,
etc. For the purposes of this study, we adopted Docker Swarm as our preferred
cluster management solution [272]. Docker Swarm provides an efficient and
scalable environment for handling containerized applications. The services
within Docker Swarm facilitate smooth communication among containers, and
an internal DNS resolver ensures seamless peer node service communication.
By leveraging Docker Swarm’s capabilities, we were able to establish a robust
and scalable deployment environment for the EdgeFL framework, ensuring its
suitability for edge devices and distributed computing scenarios.

13.3.3 Dataset Distribution

For the purpose of this study, we used two kinds of edge data distribution to
analyze system performance for heterogeneous simulation.
13.3.3.1 Uniform Distribution

Within this experimental setup, the training data samples were distributed
among the edge nodes following a uniform distribution. This distribution
ensured an equal likelihood of data samples from each target class.

13.3.3.2 Normal Distribution

Within this configuration, the number of samples in each class within each
edge node follows a normal density function. Mathematically, this can be
expressed as:

X NN(N702)

where p and o are defined as:
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In the above equations, k represents the ID of each edge node, K denotes
the total number of edge nodes, and N corresponds to the total number of
target classes in the training data. This configuration aims to provide varied
distributions and different numbers of samples among different edge nodes,
allowing each class to have a probability of having the majority of samples in
a specific node.

13.3.4 Machine Learning Method

The implementation of the models in this study utilized Python and relied
on the following libraries: torch 1.6.0 [153], torchvision 0.7.0 [154], and scikit-
learn [155], which were applied in model construction and evaluation.

To achieve satisfactory classification results, two distinct convolutional neu-
ral networks (CNN) [156] were trained for the MNIST and CIFAR-10 datasets.
For the MNIST application, the CNN architecture comprised two 5x5 convo-
lutional layers (with 10 output channels in the first layer and 20 in the second),
each followed by 2x2 max pooling. Additionally, a fully connected layer with
50 units employing the ReLU activation function and a linear output layer
were included.

For the CIFAR-10 application, the CNN architecture featured four 5x5 con-
volutional layers (with 66 output channels in the first layer, 128 in the second
with a stride of 2, 192 in the third, and 256 in the fourth with a stride of 2).
Furthermore, two fully connected layers utilizing the ReLU activation func-
tion, with 3000 and 1500 units respectively, were incorporated along with a
linear output layer.

13.3.5 Evaluation Metrics

To assess the effectiveness of EdgeFL, three key metrics were selected: weights
update latency, model evolution time, and model classification performance
[271][273]. The choice of these metrics is grounded in their ability to provide
comprehensive insights into the performance and efficiency of the system while
addressing the characteristics of EdgeFL’s decentralized architecture.
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13.3.5.1 Weights update latency

Weights update latency was chosen as a primary metric due to its direct
relevance to the network and communication aspects of the FL process. In
traditional FL systems using centralized architectures, where a central aggre-
gation server collects and processes model updates, the measure of latency is
relatively straightforward. However, in the case of EdgeFL, which adopts a
decentralized architecture, the aggregation function is moved to the edge, and
a peer-to-peer model update exchange is facilitated. Measuring the time it
takes for these updates to be transmitted across edge nodes is a key indicator
of the system’s efficiency and responsiveness.

This metric offers insights into the network conditions, communication over-
head, and overall efficiency of different FL architecture options. It helps de-
termine how quickly the system can adapt to new data and how effectively
it can disseminate model updates. By calculating the average weights update
latency across all edge nodes during a training round, EdgeFL’s performance
in a dynamic, decentralized environment is effectively evaluated. This metric
is measured by comparing the sending and receiving timestamps in all model
receivers, shedding light on the speed at which EdgeFL can accommodate
changing data patterns.

13.3.5.2 Model Evolution time

Model evolution time was included as a critical metric to gauge the speed
at which local edge devices can adapt and update their knowledge. In the
context of FL, it’s essential for systems to quickly evolve their models to adapt
to rapidly changing environments or data distributions. This is especially
crucial for real-time applications and industries where up-to-date information
is important.

Similar to weights update latency, the average model evolution time across
all edge nodes during one training round is measured. This metric provides
insights into the responsiveness of EdgeFL, indicating how swiftly the deployed
models at the edge nodes are updated. By examining the timestamps of model
deployment, the system’s ability to keep pace with evolving data patterns is
effectively quantified.
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13.3.5.3 Model Classification Performance

Model classification performance serves as a fundamental metric to assess
the quality of the trained model, a vital consideration in machine learning
applications of our testbed.

This metric evaluates the percentage of correctly recognized images among
the total number of testing images. The evaluation is performed on each edge
device using their updated models, ensuring that the test sample distribu-
tion aligns with the training samples. The average classification performance
across all edge nodes is reported, offering a comprehensive measure of how
well EdgeFL’s decentralized learning approach fares in terms of model quality
and accuracy.

13.4 System Design of EdgeFL

In this section, we offer a complete and in-depth explanation of the system
design of EdgeFL, providing a full insight into its architectural design and
operational structure. This part also includes a thorough presentation of the
extensive set of APIs and functions available to EdgeFL users. It goes into the
EdgeFL learning life-cycle, explaining the steps and processes that define its
functioning, and providing a comprehensive understanding of the framework’s
usefulness and adaptability.

13.4.1 System Design

Within the FL process, EdgeFL provides a seamless path to achieving scala-
bility, fault tolerance, and customised flexibility. This framework is made up
of two main components: FL Edge Nodes and Registration Nodes, inspired
by the architectural principles that underpin successful systems like Skype
[274]. The FL Edge Nodes allow users to connect directly, thus minimiz-
ing the reliance on a central server for data transmission. In EdgeFL, the
FL Edge Nodes collaborate seamlessly, harnessing their collective computing
power and data while preserving the privacy of each individual contributor.
Parallel to this, the Registration Nodes act as critical coordination centers,
facilitating the connection and interaction of FL. Edge Nodes. They enable the
decentralized architecture of EdgeFL by providing the necessary mechanisms
for Edge Nodes to identify and communicate with each other independently.
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This decentralized architecture enables Edge Nodes to identify and interact
with one another independently, enabling a durable and flexible ecosystem for
FL processes.

o FL Edge Nodes: The FL. Edge Nodes, which are strategically deployed
on edge devices, play an important function within the FL framework,
with each Edge Node serving as an active participant contributing to
the efficacy of the FL process. These nodes play an important role
in executing the FL training process, permitting model exchanges with
other nodes, and performing critical local model updates. In practice,
the FL. Edge Node code is developed using the Flask framework, which
is well-known for its efficiency and dependability. This code architecture
provides machine-learning model files on demand, enabling smooth and
efficient interactions across all peer nodes.

o Registration Nodes: Registration Nodes serve as essential coordinators
for participated FL edge nodes. Their primary responsibility is to man-
age a catalogue of active peers, as well as to provide important services
for the registration, unregistration, and retrieval of relevant peer in-
formation. With their functionalities, these Registration Nodes act as
catalysts, allowing FL edge nodes to discover and engage with one an-
other in a fully decentralized manner. The registration nodes are built
on a solid architecture with the Flask framework, which is well-known
for its dependability and efficiency. This infrastructure exposes a vari-
ety of APIs, each precisely designed to streamline and improve the FL
process, hence strengthening the framework’s operational efficiency and
effectiveness.

13.4.2 APIs and Services

Table 13.2 summarises the most important APIs and services for EdgeFL,
including edge node registration and registration, peer information retrieval
and model file serving.

e Registration API: FL. Edge Nodes initiate the registration process by
sending a registration request via this API to the Registration Nodes.
The hostname of the FL. Edge Node is included in the request. After
successful registration, the Registration Nodes add the newly added peer
information to their lists of active peers.
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Table 13.2: APIs and services of EdgeFL

Name Endpoint Method
Registration API /register POST
Unregistration API /unregister POST
Peer Information Retrieval API: /peers GET
Model File Serving API /latest_model ~ GET

o Unregistration API: When FL Edge Nodes stop participating in the FL

process, they use this API to send unregistration requests to the Regis-
tration Nodes. The hostname of the outgoing FL Edge Node is specified
in these requests. In reaction, the Registration Nodes remove the related
peer information from their lists of active participants immediately.

Peer Information Retrieval API: FL. Edge Nodes can employ this API to
query the Registration Nodes for the list of active peers. The Registra-
tion Nodes promptly respond with the desired active peer information.
This functionality empowers FL Edge Nodes to seamlessly discover and
establish communication channels with their peers.

Model File Serving API: FL. Edge Nodes expose this API to handle re-
quests for machine-learning model files. When a peer requests the latest
model, the responding FL Edge Node delivers the requisite machine-
learning model file via an HTTP response, ensuring the efficient sharing
of critical model data.

The example function usage has been listed in Appendix 13.9. The EdgeFL
framework simplifies the integration of FL capabilities into Al applications,

requiring only four lines of code (LOC) for implementation. This ease of use
allows software engineers to quickly deploy FL functionality without substan-
tial code modifications or complex re-engineering. The framework provides

a streamlined process, beginning with the creation of a Peer instance, which

manages configuration, registration, and communication with other FL nodes.

The peer instance facilitates key functions such as model aggregation through

peer.aggregation__func() and ensures orderly participation and withdrawal

from the FL system via peer.start() and peer.unregister_peer(), which al-

lows seamless participation in the EdgeFL ecosystem.
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13.4.3 EdgeFL Learning Life-Cycle

The life cycle of the EdgeFL framework contains several essential steps for an
individual edge node to seamlessly become part of the collaborative process,
including joining, model training, knowledge sharing, model aggregation, and
optionally departing from the FL process. Algorithm 11 outlines the detailed
FL learning process of an individual edge node. Here’s a detailed description
of each step:

1. Edge Node Joining: The process begins with the edge node initializing
itself by creating an instance of the Peer class and a background instance
for handling model requests. The node then connects to the registration
nodes, essentially announcing its presence and status as an active par-
ticipant. In return, it receives information about other peers and their
participation in the FL process.

2. Model Training: With its registration complete, the edge node dives into
the FL training process. It begins model training using its locally stored
dataset. Through iterative updates, the node refines its local model to
enhance its performance.

3. Sharing Models: The FL client node takes an active role in knowledge
sharing, retrieving models from fellow peers within the FL framework.
It identifies these peers through the registration nodes, fetching the most
recent models. These models are then seamlessly integrated into their
own local model updates. Notably, this model retrieval process operates
asynchronously, ensuring that ongoing local model training remains un-
interrupted. This asynchronous model aggregation mechanism allows
the FL client node to simultaneously contribute to and benefit from the
collaborative learning process.

4. Model Aggregation: The FL client node performs an aggregation func-
tion, which combines locally updated models with models provided by
other peers. The aggregation function combines several models to cre-
ate a new aggregated model that incorporates the collective knowledge
of all participating nodes. It is crucial to note that the EdgeFL frame-
work’s aggregation function can be tailored to individual analysis and
case requirements, giving software engineers the freedom to define and
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Local Model ﬂ

Teiing Model Sharing

Edge Node __. If > Edge Node
Joining Decided

Leaving

Model Aggregation

Figure 13.2: The Learning Life-Cycle of EdgeFL, including joining the FL process, model training, sharing, aggrega-
tion, and eventual node leaving. These stages collectively define the operational flow of EdgeFL within
an edge node.
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implement various aggregation algorithms that meet their specific re-
quirements. For general performance analysis, this study employs a
default averaging function.

5. Edge Node Leaving: In the event that an edge node decides to exit
the EdgeFL system, the FL client node notifies the registration node of
its intent to leave, providing its hostname for identification. The regis-
tration node promptly updates the active participant list, removing the
departing edge node. It’s worth noting that some edge nodes may choose
to stay in the system even after completing their learning process. By
choosing to stay, they contribute by providing their completed learn-
ing models, which proves beneficial for newcomers entering the EdgeFL
framework. This approach ensures that the system retains the availabil-
ity of fully learned models, simplifying the onboarding process for new
participants.

This life cycle is repeated as additional edge nodes join the FL framework,
contribute to the training and aggregation processes, exchange their models,
and eventually leave when they decide to discontinue their involvement. While
protecting the privacy and autonomy of individual edge nodes, the EdgeFL
enables continual collaborative learning and model development.

13.4.4 Containerization and Scalable Deployment

To facilitate effortless deployment on a wide range of edge devices, the EdgeFL
framework underwent containerization, employing the robust containeriza-
tion technology known as Docker. This process involved the encapsulation
of all essential components, dependencies, and configurations of EdgeFL into
a lightweight and portable container image. This containerization approach
delivers the flexibility for EdgeFL to be deployed seamlessly across diverse
edge devices, regardless of the specific underlying operating system or hard-
ware architecture.

The architectural diagram showcased in Figure 13.3 provides a representa-
tion of the streamlined and scalable deployment architecture of the EdgeFL
framework. Within this architectural framework, each edge node container
includes a range of services, such as model training, model aggregation, and
model serving. Concurrently, the registration node container is equipped
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Algorithm 11: EdgeFL - In the system, « represents the ratio of
aggregated peers; C' is the active peer list; B is the local mini-batch
size; E represents the number of local epochs, and  is the learning
rate.

Initialize wy
Initialize o as the ratio of aggregated peers
Initialize C' as the active peer list
Function Server_Function():

for each round t = 1, 2, ... do
Node_ Training(w_ t)
Retrieval active peer list C'
m <— maz(len(C) x a,1);
N <—(random set of m peers from C);
for each node kK € N; do

Threads.start()

Fetch wy,
Threads.end()
end for .
Wil & Dpmy KWL
end for

Function Node_Training(w):
B <—(split Py into batches of size B);
for each local epoch 7 from 1 to E do
for batch b € 8 do
w +— w — yVI(w; b);
end for
end for
return w for model sharing
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Figure 13.3: Containerized architecture for seamless and scalable deployment of
the EdgeFL framework

255



Chapter 13 Enabling Efficient and Low-Effort Decentralized Federated
Learning with the EdgeFL Framework

with services for handling registration and peer discovery tasks. This inter-
connected setup ensures smooth communication among all nodes within the
EdgeFL framework. An important feature to highlight is the ability to expand
the number of registration nodes in alignment with the growth of participating
edge nodes. This scalability enables efficient coordination and management
within the EdgeFL framework, ensuring smooth coordination.

By containerizing EdgeFL, software engineers benefit from the ease of dis-
tributing and deploying the framework on edge devices, alleviating concerns
about intricate installation procedures or compatibility issues. The container-
ized EdgeFL image includes all the necessary software libraries, frameworks,
and configurations, creating a self-contained environment for running the FL
client nodes. Furthermore, containerization ensures that the EdgeFL frame-
work remains isolated and independent, effectively preventing conflicts with
other software components residing on the edge device. This approach not
only simplifies deployment but also improves the stability and reliability of
the EdgeFL framework in diverse edge computing environments.

13.4.5 Comparison to Existing FL Framework

EdgeFL employs a decentralized architecture where FL. Edge Nodes collab-
orate directly, eliminating reliance on a central server and significantly en-
hancing fault tolerance. This decentralized approach reduces the risk of single
points of failure and provides a robust, flexible framework suited to dynamic
edge environments. In contrast, frameworks like TensorFlow Federated (TFF)
and FATE rely on a central server for managing model aggregation and co-
ordination, which can become a bottleneck and a potential single point of
failure. PySyft supports decentralized learning but often still involves some
central coordination, while LEAF’s reference implementations may also be
central-server dependent. PaddleFL, while supporting decentralized setups,
typically defaults to a central coordination model, which can limit fault tol-
erance compared to EdgeFL’s fully decentralized approach.

In addition, EdgeFL is designed with scalability in mind, allowing edge
nodes to operate independently and interact directly with one another. This
architecture supports a scalable ecosystem that can grow dynamically with
minimal overhead. Registration Nodes facilitate peer discovery and manage-
ment in a decentralized manner, adapting well to varying network conditions
and device capabilities. On the other hand, frameworks like TFF and FATE
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face scalability challenges due to their central server-based models, which can
become bottlenecks and affect performance in large-scale, heterogeneous net-
works. PySyft’s scalability may be constrained by its reliance on central coor-
dination, and LEAF’s benchmark-oriented design does not inherently address
scalability in real-world deployments. PaddleFL’s central coordination model
can similarly limit its scalability and flexibility compared to the decentralized
design of EdgeFL.

EdgeFL is tailored to operate effectively in heterogeneous edge environ-
ments, accommodating devices with varying computational power, storage,
and connectivity. Its support for asynchronous communication and model
aggregation ensures efficient performance across diverse conditions. The con-
tainerization of EdgeFL further enhances its adaptability, enabling seamless
deployment across different hardware and software platforms. Conversely,
traditional frameworks like TFF and FedProx may struggle in heterogeneous
settings due to their reliance on synchronous updates and assumptions of ho-
mogeneous device capabilities. PySyft’s adaptability is enhanced by privacy-
preserving techniques but may still face challenges in highly diverse environ-
ments. FATE’s robustness in privacy comes with the cost of less flexibility in
heterogeneous settings, while LEAF’s benchmark focus might not address the
nuances of real-world adaptability. PaddleFL’s adaptability is also affected by
its default central coordination model.

Last but not least, EdgeFL emphasizes ease of use with its streamlined
implementation and user-friendly APIs, allowing for rapid integration into ex-
isting Al solutions with minimal re-engineering. This simplicity is particularly
advantageous in fast-paced development environments. In contrast, other FL
frameworks often require more extensive setup and configuration. For in-
stance, TensorFlow Federated (TFF) and FATE can involve complex config-
urations and integration efforts. PySyft, while offering privacy features, may
necessitate additional setup for privacy and security configurations. LEAF,
being a benchmarking tool, does not prioritize ease of integration, and Pad-
dleFL, despite its robust features, can involve a more involved setup process
compared to the straightforward integration offered by EdgeFL.
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13.5 Evaluation Results

This section presents the experimental results obtained from the EdgeFL
framework, with a specific focus on three aspects outlined in Section 13.3.5.
1)Weights Update Latency: This metric quantifies the time required to trans-
mit model weights from one node to another. 2) Model Evolution Time: This
aspect measures the duration it takes to acquire a new version of the model.
3) Classification Accuracy: The evaluation of model performance on the edge
dataset is a key element of this analysis. To ensure that our experiments pro-
vide robust and meaningful results, we conducted simulations with a total of
10 nodes. In these simulations, all nodes actively participated in the train-
ing procedure for both MNIST and CIFARI10 applications. This setup was
designed to ensure an adequate number of samples on each edge node, facili-
tating a comprehensive analysis and evaluation of the EdgeFL framework and
offering insights into the real-world performance and effectiveness of EdgeFL
in practical scenarios.

Firstly, we examine two performance metrics: weights update latency and
model evolution time. Our experimental findings, as presented in Table 13.3,
showcase the comparisons among the EdgeFL framework and existing FL
frameworks across both MNIST and CIFARI10 applications.

In the domain of weights update latency, EdgeFL consistently demonstrates
its efficiency. It exhibits reduced delays in transmitting model weights between
edge nodes, underscoring the efficacy of its decentralized architecture. These
improvements in weights update latency can be attributed to the streamlined
communication processes inherent to EdgeFL. The decentralized nature of the
framework allows for rapid sharing of updated models among nodes.

EdgeFL also excels at achieving rapid model evolution in scenarios with un-
equally distributed datasets. EdgeFL leverages its decentralized architecture
and a pull-based model-sharing mechanism to facilitate quick model evolution.
This mechanism empowers edge nodes to promptly enhance their local models,
effectively adapting to the available data. Consequently, EdgeFL reduces the
time required for model evolution, especially when dealing with imbalanced
dataset distributions.

These findings demonstrate the advantages of EdgeFL over traditional FL
methods. Its better performance in terms of model delay and evolution time
can be attributed to its efficient communication and aggregation processes. By
utilizing the potential of edge computing, EdgeFL minimizes network overhead
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Table 13.3: Comparison of weight update latency and model evolution time by leveraging existing FL frameworks
and our proposed EdgeFL framework

FL Frameworks MNIST

Weights Update Model Evolution

Weights Update

Model Evolution

Latency (sec) Time (sec) Latency (sec) Time (sec)
TFF~* - 7.76 - 16.372
PySyft 0.0247 9.05 0.0311 18.292
FATE 0.0326 13.868 0.0473 31.689
LEAF* - 10.239 - 27.362
PaddelFL 0.0258 11.667 0.0412 25.581
EdgeFL 0.0092 5.093 0.0148 10.753

* TFF and LEAF frameworks do not include actual server and client implementations but rather provide

simulations of the FL process. Therefore, measuring weight latency is not feasible within these frameworks.

260



13.5 Evaluation Results

and streamlines the model update process, leading to quicker and more respon-
sive knowledge sharing across the edge network. The observed enhancements
in model delay and evolution time carry substantial implications for real-world
applications. Reduced delays enable the quick exchange of updated models,
ensuring timely access to the latest knowledge throughout the edge network.
Furthermore, the reduced evolution time enables edge devices to promptly
adapt to evolving data characteristics. These characteristics make EdgeFL
well-suited for use cases that demand rapid model evolution and responsive-
ness to dynamic environmental changes.

In addition to evaluating weights update delay and model evolution time,
we conducted extensive accuracy comparisons between EdgeFL’s decentral-
ized averaging and the widely used FedAvg algorithm [145] found in exist-
ing FL frameworks. Figure 13.4 illustrates the accuracy comparisons. The
results demonstrate that EdgeFL’s decentralized averaging approach outper-
forms the centralized FedAvg method when it comes to evaluating models
on edge devices. The average accuracy achieved through EdgeFL’s decen-
tralized averaging is approximately 2% higher for MNIST and 5% higher for
CIFAR-10 datasets. These findings underscore the accuracy improvements
made by EdgeFL’s decentralized averaging approach. The observed increase
in accuracy demonstrates the effectiveness of EdgeFL’s decentralized averag-
ing mechanism in enhancing model performance. By utilizing the collective
knowledge and insights gained from distributed edge devices, EdgeFL facili-
tates improved model convergence.

Figure 13.5 illustrates the model distribution latency of the decentralized
EdgeFL algorithm in comparison to other algorithms as the number of edge
nodes increases from 10 to 100. From the figure, PySyft and PaddleFL ex-
hibit slightly higher latency, particularly with more nodes. FATE records the
highest latency, especially in larger networks, which results in greater commu-
nication overhead. EdgeFL’s latency shows a gradual rise with node expan-
sion, indicating manageable overhead for larger networks due to decentralized
characteristics. This scalability is achieved because each node can establish
equal connections, distributing server workload more evenly to the edge, and
effectively balancing updating traffic. Consequently, EdgeFL demonstrates
the most modest growth rate among the compared algorithms, showcasing its
scalable performance, particularly in large-scale machine learning applications
and edge computing scenarios.
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Figure 13.5: Model distribution latency with the increasing number of edge nodes
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Moreover, our study demonstrates the effectiveness of EdgeFL’s asynchronous
join feature, which enables new nodes to seamlessly integrate into the existing
system and swiftly acquire the latest knowledge without necessitating a full
retraining process from scratch. As depicted in Figure 13.6, our observations
reveal that when new nodes (node id: 11, 12) join the system midway through
the training process, they rapidly achieve the same level of accuracy as the
overall system. This outcome illustrates EdgeFL’s capability to facilitate effi-
cient knowledge transfer and rapid model convergence for newly joined nodes.

The asynchronous join functionality within EdgeFL offers advantages in
terms of scalability and time-to-adaptability. By allowing new nodes to im-
mediately benefit from the collective intelligence of the system without the
need for extensive training, FEdgeFL reduces the computational burden and
time required for onboarding new participants. This attribute proves its value
in dynamic environments where nodes frequently join and depart from the sys-
tem.

This demonstration of the asynchronous join capability within EdgeFL un-
derlines its potential for real-world deployments, especially in scenarios where
rapid knowledge transfer and swift integration of new nodes are crucial. By
leveraging the existing knowledge base and facilitating the seamless assimi-
lation of new nodes, EdgeFL empowers FL systems to adapt and evolve ef-
ficiently over time. These findings underscore the advantages of EdgeFL’s
asynchronous join mechanism, highlighting its potential to enhance the scal-
ability and flexibility of FL within dynamic edge computing environments.

13.6 Case Study

In addition to the comparisons, we conduct a case study to apply the EdgeFL
framework to a practical machine learning application. In this case study,
we leverage the EdgeFL framework to tackle the task of sentiment analysis
on the IMDB Dataset of 50K Movie Reviews, a well-known benchmark for
binary sentiment classification [275]. This dataset comprises 50,000 movie
reviews for training and testing, providing a substantial amount of data for
our analysis. Our objective is to perform sentiment classification, distinguish-
ing between positive and negative sentiments within the movie reviews. To
address this task, a Long Short-Term Memory (LSTM) network is utilized,
which is known for its ability to capture sequential dependencies and nuances
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Figure 13.7: Training Loss with training time consumed by EdgeFL and Central-
ized ML

within textual data [276][277]. LSTM networks are particularly well-suited
for natural language processing tasks like sentiment analysis.

We simulate ten distinct movie review sites, each represented by an indi-
vidual user end node. This decentralized setting not only allows for paral-
lel processing and training on diverse data sources locally. The decentral-
ized architecture of EdgeFL ensures that each server node trains an LSTM
model locally, making updates based on the reviews available at its respec-
tive sites. These local models are then collaboratively aggregated with the
function "peer.aggregation__func()" to create a global model that encapsu-
lates insights from all nodes. This FL process enables the collective model to
benefit from the diversity of reviews across different movie sites, resulting in
a more robust sentiment analysis model.

Figure 13.7 and 13.8 illustrated the result of the sentiment analysis appli-
cation with the EdgeFL framework compared to traditional centralized ma-
chine learning. For the result of training loss, the figure illustrates a no-
table efficiency gain achieved by the EdgeFL framework in comparison to
traditional centralized machine learning. Specifically, EdgeFL demonstrates
approximately five times greater efficiency in terms of training time. This effi-
ciency is evident in the faster convergence of the training loss curve, indicating
that the model improves significantly in less time.

Figure 13.8 depicts the comparative performance of sentiment analysis train-
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ing using two approaches: EdgeFL and traditional centralized machine learn-
ing. The test accuracy of EdgeFL is the average value among all participated
end nodes. The results illustrate that EdgeFL achieves faster training times,
approximately five times more efficient when performing rapid model training
and inference, indicating its superiority in scenarios involving decentralized
data sources or resource-constrained environments.

Through decentralized training across ten server nodes, we achieve robust
sentiment classification while respecting data privacy and security, making this
approach highly suitable for large-scale, distributed natural language process-
ing tasks, especially in scenarios involving user-generated content and edge
computing environments. In this case, we build a practical prototype of a
decentralized FL system with the EdgeFL framework that can be seamlessly
deployed to container orchestration platforms such as Docker Swarm, Kuber-
netes, etc.

13.7 Discussion

This paper focuses on analyzing and interpreting the results obtained from the
experiments conducted with the EdgeFL framework. We evaluated EdgeFL
using a range of metrics. Firstly, the EdgeFL outperformed existing FL frame-
works in terms of weights update delay. EdgeFL managed to reduce weights
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update delay by roughly 50%, surpassing centralized alternatives. When deal-
ing with unevenly distributed datasets, EdgeFL demonstrated its benefit as
well. EdgeFL’s decentralized architecture addresses key limitations of tradi-
tional FL frameworks, such as centralized aggregation and scalability chal-
lenges. Unlike FedAvg and similar approaches that rely on a central server,
EdgeFL employs decentralized model training and aggregation, enhancing
fault tolerance and reducing latency. This approach aligns with the broader
shift towards decentralized systems in distributed computing, offering a new
perspective on how FL can be implemented in edge environments. The impli-
cations of this work include a rethinking of model aggregation strategies in FL,
moving away from server-dependent methods to a more resilient, peer-to-peer
system. EdgeFL’s pull-based model-sharing mechanism introduces a dynamic
way for nodes to access the latest updates, contributing to faster convergence
and adaptation in non-IID environments, which could inspire further research
into adaptive and asynchronous FL methods that better accommodate the
heterogeneity of real-world data and network conditions.

Compared to previous FL frameworks, EdgeFL’s contributions lie in its
ability to achieve faster weight updates and model convergence without sac-
rificing accuracy. The framework’s decentralized averaging technique consis-
tently outperforms Fed Avg, particularly in scenarios with unevenly distributed
datasets, demonstrating that EdgeFL can achieve more efficient and accurate
learning in diverse edge environments. Furthermore, EdgeFL enables faster
model training and evolution, making it a solution for applications where data
is generated and processed locally, such as IoT devices, smart cities, and au-
tonomous systems. The ability of EdgeFL to seamlessly integrate new nodes
without requiring complete retraining further underscores its scalability and
adaptability, which are crucial for real-world deployment. Additionally, the
case study on sentiment analysis with the IMDB dataset demonstrates how
EdgeFL can be practically applied to enhance the performance and efficiency
of machine learning tasks, particularly in scenarios with decentralized data
sources.

However, throughout our studies, it’s important to note that, despite the
multiple benefits provided by EdgeFL, we observed two major limits that
deserve consideration.

Firstly, we observed a notable increase in bandwidth cost as the number
of nodes in our decentralized network grew. This escalation in connectivity
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demands is a natural consequence of decentralization, and while it can be par-
tially managed through parameters such as the connection parameter « (which
determines the number of models shared in each round), it’s important to note
that adjusting this parameter may have an effect on the final quality of the
model. Addressing this trade-off is crucial because excessive bandwidth con-
sumption can limit the scalability of EdgeFL and increase operational costs,
particularly in environments with constrained network resources. Research
focused on optimizing communication protocols, such as developing efficient
data compression techniques, adaptive bandwidth management strategies, and
novel aggregation methods, is essential. These advancements would enable
EdgeFL to maintain high model accuracy while minimizing bandwidth de-
mands, making it more practical and cost-effective for large-scale, real-world
deployments.

Second, we encountered computational constraints while training large neu-
ral networks, particularly when dealing with resource-constrained edge de-
vices. The inherent limitations of these edge devices, such as low processing
power and memory, caused difficulties in carrying out complicated training
operations. These constraints can severely impact the performance and feasi-
bility of FL processes on such devices. The need to perform intensive computa-
tions and manage large models can lead to inefficiencies and slowdowns, which
in turn affect the overall effectiveness of the FL system. These highlight the
importance of ongoing research efforts focused on reducing computation com-
plexity and developing novel ways for accommodating resource-constrained
contexts. By addressing these computational constraints, EdgeFL can be-
come more versatile and capable of operating effectively on a wider range of
edge devices, thus enhancing its practical value and usability in diverse edge
scenarios.

13.8 Conclusion

This paper introduces EdgeFL, a novel decentralized FL framework designed
exclusively for efficiency and low-effort implementation. EdgeFL effectively
addresses scalability, integration, and efficiency challenges by utilizing an edge-
only model training and aggregation approach, eliminating the need for a cen-
tral server. The framework ensures seamless scalability across a diverse range
of use cases. The framework offers a straightforward integration process, re-
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quiring only four lines of code (LOC) for software engineers to incorporate
FL functionalities into their Al products. Furthermore, EdgeFL offers engi-
neers the flexibility to customize aggregation functions to meet their specific
needs, enhancing the framework’s adaptability and versatility. Our experi-
ments and evaluations demonstrate the strengths and advantages of EdgeFL.
In numerous aspects, EdgeFL outperforms existing FL frameworks. It ex-
cels in reducing weight update latency and model evolution time by 50%,
enhancing classification accuracy by 2% for the MNIST dataset and 5% for
the CIFAR dataset compared to other FL frameworks. In a real-world case
study, EdgeFL demonstrated remarkable efficiency gains, achieving training
times approximately five times faster than traditional centralized machine
learning, all while maintaining a comparable level of model quality. These
findings highlight EdgeFL’s potential in practical applications, particularly in
industrial settings where timely and accurate model updates are crucial.

Our future work aims to validate and extend the capabilities of EdgeFL
with a broader range of use cases. We also plan to explore resource opti-
mization techniques, such as model compression and quantization, to enhance
communication efficiency for edge devices in EdgeFL. Additionally, we will
investigate adaptive aggregation strategies that dynamically adjust the ag-
gregation process based on network conditions, device capabilities, and data
heterogeneity.
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13.9 EdgeFL Function Details and Example Usage

The proposed EdgeFL framework provides software engineers with an easy
way to integrate FL capabilities into their Al solutions. In contrast to the
complexity commonly associated with FL frameworks, EdgeFL offers a con-
cise implementation that requires only four lines of code (LOC). This ease of
use enables software engineers to quickly include FL functionality into their
existing AT applications, with no need for substantial code changes or complex
re-engineering efforts. The following Listing 1 demonstrates an example with
which EdgeFL can be deployed.

Listing 13.1: Usage example of EdgeFL.

# —— Continue from node training part —
# —— Initialize peer instance ——
peer = Peer(config)

# —— Start peer instance ——
peer.start()

for epoch in range(number_of epochs):
# —— Pull model from active peers and start
# aggregation
w__latest = peer.aggregation_ func()
model.load state_ dict(w_latest)
train (model, torch.device("cpu"), train_loader,
optimizer , epoch)
test (model, torch.device("cpu"), test_loader)
scheduler.step ()

torch .save(model.state_dict (), "model—latest.pth")

# —— unregister from the registration node if leave
peer.unregister__peer()
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peer = Peer(configs): The procedure begins with the creation of an instance
of the Peer class, a component of the EdgeFL architecture that represents an
active participant in the system. During this initialization, an array of configu-
rations is created, which includes elements such as registration node addresses
and specific settings for the aggregation function. This phase ensures that the
FL edge node is precisely configured, allowing for flawless connection with
registration nodes and competent involvement in FL training and aggregation
efforts. Once the Peer class instance is established, the Peer class instance
serves as a handle, supporting interactions between the FL edge node and its
peer entities. The FL edge node gains the ability to do a variety of actions
via this peer object, including model retrieval, registration with registration
nodes, and model aggregation.

peer.start(): This function initiates the execution for the FL edge node’s
active participation in the EdgeFL framework. When called, it triggers a series
of mandatory steps that prepare the FL edge node for seamless participation in
the FL process. These steps include the registration of the FL edge node with
the registration nodes, the establishment of connections with its peer entities,
and the activation of a background instance ready to handle asynchronous
file requests from peers. By calling “peer.start()”, the FL edge node actively
participates in the collaborative model learning process, while leveraging the
computational capabilities in edge devices. By using this function, the FL
edge node integrates easily into the EdgeFL ecosystem, establishing its role
as a contributor to the system of FL.

peer.aggregation_ func(): This function is in charge of orchestrating the
aggregation process, which is a cornerstone of the EdgeFL system. When
triggered, it starts a multidimensional series of operations aimed at increasing
the collective intelligence of the FL system. First, the function requests models
from fellow FL edge nodes specified by the registration nodes. Following that,
it employs the aggregation method, expertly combining these models into a
single updated model. The aggregation function facilitates the collaborative
nature of FL. It combines the inputs of various peer entities, harmonizing
their knowledge to improve the quality and performance of the model. The
FL edge node takes an active role in this iterative model aggregation process by
calling “peer.aggregation_ func()”, effectively becoming a contributor within
the EdgeFL framework. This not only encourages the FL system’s collective
intelligence but also improves the overall quality of the model.
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peer.unregister_peer(): This function supports the FL edge node’s seamless
exit from the EdgeFL framework. When invoked, it performs the role of noti-
fying the registration nodes of the approaching unregistration while providing
the necessary information, including the FL edge node’s hostname. The func-
tion, "peer.unregister_ peer(),"
FL client node from the list of active participants maintained by the registra-

effectively starts the process of removing the

tion nodes. This action ensures the proper management of participants within
the EdgeFL framework and allows for efficient resource allocation and coordi-
nation among the remaining active peers, adding to the EdgeFL framework’s
overall resilience and stability.
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CHAPTER 14

Concluding Remarks and Future Work

In this chapter, we will summarize the main findings from the research pre-
sented in this thesis, focusing on the key questions we aimed to answer. Our
exploration of Federated Learning and Reinforcement Learning in embedded
systems has revealed important ways to improve edge intelligence. By looking
at the nine papers included in this work, we will answer the research questions
and highlight the main contributions of this thesis. These contributions not
only deepen our understanding of these techniques but also provide practical
approaches for their use in real-world situations.

14.1 Discussion

The research presented in this thesis builds on the foundation of Federated
Learning and Reinforcement Learning and explores their application in the
context of embedded systems and edge computing. By analyzing various case
studies and frameworks, this research provides novel insights into how these
learning techniques can be adapted to address the unique challenges of decen-
tralized systems operating in dynamic environments.

Compared to previous work, such as the studies on FL in embedded de-
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vices and on RL in real-world environments, this thesis extends the discussion
by examining the synergies between the two methods. While previous re-
search [116][117][115][171] primarily focused on enhancing data privacy and
communication efficiency through FL, our research delves deeper into how
asynchronous FL models can improve the timeliness of updates, especially in
scenarios where real-time decision-making is crucial. The asynchronous pro-
tocols proposed in Papers D and E show significant advancements in reducing
communication overhead while maintaining high model accuracy, offering a
more dynamic approach to the traditional FL frameworks described in earlier
studies.

Moreover, our exploration of RL complements previous findings by high-
lighting its value in continuously adapting to real-world challenges. While
existing research primarily [203][201][204] demonstrates RL’s ability to opti-
mize decision-making in complex environments, this thesis adds to the field by
integrating RL with FL, showing how the combination of these techniques can
further enhance the performance of embedded systems. For example, in Pa-
pers F and G, RL algorithms are applied to autonomous systems, like UAVs,
to improve operational efficiency, a departure from more static applications
seen in prior studies.

The contributions of this research not only addresses the technical chal-
lenges of deploying FL. and RL in embedded systems but also offers practical
solutions, such as the EdgeFL framework, which simplifies the adoption of
decentralized learning in edge environments. In this sense, the research adds
to the existing body of knowledge by providing actionable methodologies that
developers and researchers can use to improve the scalability, efficiency, and
adaptability of embedded systems.

In reflecting on the results, it becomes clear that while the combination
of FL and RL holds great promise, there are still areas requiring further ex-
ploration. For instance, how these methods can be applied to other domains
beyond the current use cases discussed in this thesis remains an open ques-
tion. Additionally, future research should focus on addressing the limitations
identified in edge devices with constrained computational resources, ensuring
that the advanced algorithms proposed can be universally deployed without
significant trade-offs in performance or latency.

Therefore, the research questions framed in Chapter 3 are addressed as fol-
lows:
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RQ1. How can Federated Learning be effectively engineered and
deployed in embedded systems to enhance data privacy, reduce com-
munication costs, and ensure model accuracy?

Federated Learning can be effectively engineered and deployed in embedded
systems by taking advantage of its decentralized structure. This approach al-
lows model training to happen directly on devices, such as smartphones or IoT
sensors, without the need to send sensitive user data to a central server. This
local training significantly enhances data privacy, as sensitive information re-
mains on the user’s device, reducing the risk of data breaches and complying
with privacy regulations. Papers A and B emphasize these benefits, demon-
strating how Federated Learning not only protects user data but also addresses
the growing concerns around data privacy in various applications.

Moreover, Federated Learning helps to reduce communication costs by min-
imizing data transmission. Instead of sending large datasets over the network,
only the updates to the model—derived from local data—are communicated
back to a central server. This approach is particularly beneficial in environ-
ments with limited bandwidth, where transferring large amounts of data can
be slow and expensive.

To further improve model accuracy, asynchronous model aggregation meth-
ods can be employed, as discussed in Papers D and E. These methods allow
devices to update the central model more flexibly and efficiently. Instead of
waiting for all devices to complete their training before aggregating results,
updates can be sent as soon as they are ready. This leads to more timely ad-
justments based on local data and helps the model adapt better to real-time
changes in the environment. By combining local insights with global learning,
Federated Learning enhances the overall accuracy and robustness of models
deployed in dynamic embedded systems.

RQ2. What architectural frameworks for Federated Learning can
optimize scalability and performance in edge computing environ-
ments, and how do these architectures influence model training ef-

ficiency?

The research identifies several architectural frameworks for Federated Learn-
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ing that are designed to optimize scalability and performance in edge com-
puting environments. Paper C provides a detailed comparison of four main
architectures: centralized, hierarchical, regional, and decentralized. It high-
lights that decentralized frameworks are particularly advantageous, as they
reduce the risks associated with single points of failure often found in central-
ized systems. By distributing the workload across multiple devices, decentral-
ized architectures enhance scalability, allowing for the integration of a larger
number of edge devices without compromising performance.

Additionally, Paper C examines the trade-offs between communication la-
tency and model performance. It underscores the importance of selecting the
appropriate architecture to maintain high training efficiency, particularly in
environments where network conditions may vary. The findings suggest that
decentralized architectures not only improve system performance but also ef-
fectively manage the limitations inherent in edge devices, such as limited pro-
cessing power and intermittent connectivity.

Furthermore, Paper I introduces the EdgeFL framework, which aims to ad-
dress some of the challenges faced by existing Federated Learning implemen-
tations. By providing a more efficient and low-effort approach to decentralized
Federated Learning, EdgeFL enhances scalability and reduces the complexity
often associated with traditional frameworks. This framework supports faster
model updates and reduces latency, thus improving overall model training
efficiency. Together, the insights from these papers illustrate that choosing
the right architectural framework is essential for optimizing the deployment
of Federated Learning in edge computing environments, ensuring that the sys-
tems remain adaptable, efficient, and responsive to real-world demands.

RQ3. How can Federated Learning and Reinforcement Learning
methods enhance the adaptability and efficiency of embedded sys-
tems in dynamic environments?

Federated Learning and Reinforcement Learning methods can significantly
enhance the adaptability and efficiency of embedded systems by enabling them
to learn from their environments in real-time. This capability is especially
crucial in dynamic scenarios where conditions can change rapidly, such as
during emergencies or in environments with variable network connectivity.
Papers D, E, F, G, and H illustrate how these techniques can be effectively
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applied in such contexts.

Papers D and E highlight the importance of asynchronous Federated Learn-
ing methods, which further enhance adaptability by enabling timely updates
based on local data. In Paper D, the authors propose an asynchronous model
aggregation protocol that allows edge devices to send updates to the central
model as soon as they are ready. This flexibility is crucial for maintaining
high accuracy in rapidly changing environments, as it reduces the latency be-
tween data collection and model improvement. Paper E extends this concept
by introducing an asynchronous federated aggregation protocol for deep neu-
ral decision forests, showcasing how these approaches can accelerate model
training while ensuring high classification performance.

In Paper F, the authors discuss the deployment of an unmanned aerial ve-
hicle (UAV) base station in disaster-stricken areas. Here, deep Reinforcement
Learning algorithms are used to autonomously navigate the UAV and optimize
its operations based on real-time feedback from the environment. This ability
to adapt ensures that the UAV can maintain connectivity for mission-critical
users, demonstrating how Reinforcement Learning can improve responsiveness
and service quality under challenging conditions.

Similarly, Paper G, H present dynamic Reinforcement Learning algorithms
tailored for the telecommunications industry. These research show that the al-
gorithm can adjust the position and antenna tilt of a drone-based base station
to adapt to fluctuating user demands and environmental changes. The results
indicate a substantial improvement in service performance, underscoring how
deep Reinforcement Learning allows embedded systems to evolve in response
to complex, real-world challenges.

The integration of Federated Learning and Reinforcement Learning tech-
niques equips embedded systems with the capability to respond effectively to
real-world challenges, ultimately leading to improved adaptability and oper-
ational efficiency. By leveraging these advanced learning methods, embedded
systems can continuously learn and adjust their behaviors, ensuring optimal
performance even in dynamic and unpredictable environments.

14.2 Key Contributions

This thesis makes a significant contribution to the field of edge intelligence
by providing a comprehensive exploration of Federated Learning and Rein-
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forcement Learning. It highlights the potential of these advanced learning
techniques to enhance the functionality and adaptability of embedded sys-
tems. By examining various applications and scenarios, the research deepens
the understanding of how these methods can be effectively integrated into
real-world systems.

A key aspect of this work is the identification and comparison of several
architectural frameworks for Federated Learning. The analysis, particularly
presented in Paper C, demonstrates the advantages of decentralized architec-
tures. These frameworks mitigate the risks associated with single points of
failure while improving scalability and performance in edge computing en-
vironments. This contribution is crucial for optimizing the deployment of
Federated Learning, ensuring that systems can grow and adapt without com-
promising their effectiveness.

Another important contribution of the thesis is the introduction of inno-
vative asynchronous model aggregation techniques. Papers D and E explore
how these methods enhance real-time learning capabilities and reduce com-
munication overhead. By allowing for more efficient updates, these techniques
ensure that embedded systems can respond promptly to changing conditions,
thus maintaining high accuracy and performance.

The research also includes practical applications of Federated Learning and
Reinforcement Learning in dynamic environments, as demonstrated in Pa-
pers F, G, and H. These case studies illustrate how embedded systems can
autonomously adapt to real-world challenges, such as disaster response and
variable network conditions, ultimately improving service quality and oper-
ational efficiency. The development of the EdgeFL framework represents a
significant contribution to the field. This framework provides a low-effort, effi-
cient approach to decentralized Federated Learning, addressing key challenges
related to implementation and scalability. It serves as a valuable resource for
developers and researchers aiming to adopt Federated Learning in practical
applications.

Finally, the thesis identifies several open research questions related to the
deployment of Federated Learning in embedded systems. By outlining these
questions, it sets a foundation for future studies and encourages further explo-
ration in this rapidly evolving area, fostering ongoing innovation and advance-
ment in edge intelligence. In summary, the main objectives of contributions
are as follows:
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o Investigated the integration of Federated Learning and Reinforcement
Learning techniques to enhance the adaptability and efficiency of em-
bedded systems in dynamic environments.

e Analyzed and compared different architectural frameworks for Feder-
ated Learning, identifying their strengths and weaknesses in optimizing
scalability and performance in edge computing.

e Developed innovative asynchronous aggregation methods that improve
real-time learning capabilities while minimizing communication over-
head in embedded edge systems.

o Established a practical framework, EdgeFL, that simplifies the imple-
mentation of decentralized Federated Learning, addressing challenges
related to complexity and scalability, and providing a resource for de-
velopers and researchers.

14.3 Future Work

While this thesis has made significant contributions to the fields of Federated
Learning and Reinforcement Learning, numerous avenues remain open for
further exploration. Future research can build on the findings presented in
this work to enhance the adaptability, efficiency, and scalability of embedded
systems across various dynamic environments.

One promising area for future investigation is the optimization of Feder-
ated Learning algorithms tailored for heterogeneous devices. As edge devices
exhibit a wide range of computational power, storage capabilities, and com-
munication bandwidth, developing adaptive learning techniques that can ac-
commodate these differences is crucial. Future studies could focus on refining
asynchronous aggregation methods or exploring novel strategies for resource
allocation during the training process. By enabling Federated Learning sys-
tems to dynamically adjust based on the capabilities of connected devices,
researchers can enhance both model performance and energy efficiency.

Another important direction is the integration of Federated Learning with
advanced Reinforcement Learning techniques. Exploring hybrid models that
leverage the strengths of both learning paradigms could lead to more robust
systems capable of effectively responding to real-time changes in their envi-
ronments. Future research might investigate the development of frameworks
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that facilitate this integration, enabling embedded systems to make informed
decisions based on local data while continually learning from their interactions
with dynamic contexts. Empirical studies validating the effectiveness of these
hybrid approaches in practical applications will be essential for demonstrating
their value.

The EdgeFL framework introduced in this thesis also presents numerous
opportunities for further enhancement and application. Future research can
dive into its potential in different industries, such as healthcare, finance, and
smart cities, assessing its performance and scalability under varied operational
conditions. Investigating user-centric approaches to Federated Learning could
provide insights into optimizing system design and usability, particularly in
sectors that handle sensitive data. Additionally, exploring the role of user
feedback in refining Federated Learning models could foster a more adaptive
and responsive system.

As privacy concerns continue to escalate in today’s data-driven world, there
is a pressing need to develop Federated Learning methods that incorporate
advanced privacy-preserving techniques. Future research could focus on com-
bining differential privacy and encryption with Federated Learning to ensure
that user data remains secure while still enabling effective model training.
Such advancements could enhance public trust in these technologies and fa-
cilitate wider adoption across industries.

Moreover, exploring the broader societal implications of deploying these
technologies will be essential. Future studies could investigate ethical consid-
erations, regulatory frameworks, and the potential impacts on job markets and
privacy rights. Engaging with policymakers, industry leaders, and the pub-
lic can help ensure that advancements in edge intelligence align with societal
values and needs, ultimately fostering responsible innovation.

Lastly, conducting longitudinal studies that examine the long-term impacts
of Federated Learning and Reinforcement Learning systems in real-world ap-
plications could provide valuable insights. These studies could assess how
these technologies evolve, adapt, and perform over time, offering critical data
for refining existing models and frameworks.

Through these diverse directions, future research can further advance the
understanding and application of Federated Learning and Reinforcement Learn-
ing in embedded systems. By addressing these challenges and opportunities,
researchers can pave the way for innovative solutions that tackle real-world
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problems and contribute to the development of smarter, more adaptive sys-
tems.
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