
Benefits of Pod dimensioning with best-effort resources in bare metal cloud
native deployments

Downloaded from: https://research.chalmers.se, 2024-12-20 20:34 UTC

Citation for the original published paper (version of record):
Tonini, F., Natalino Da Silva, C., Temesgene, D. et al (2023). Benefits of Pod dimensioning with
best-effort resources in bare metal cloud native deployments. IEEE Networking Letters, 5(1): 41-45.
http://dx.doi.org/10.1109/LNET.2023.3235106

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

IEEE NETWORKING LETTERS, VOL. 5, NO. 1, MARCH 2023 41

Benefits of Pod Dimensioning With Best-Effort Resources
in Bare Metal Cloud Native Deployments

Federico Tonini , Member, IEEE, Carlos Natalino , Member, IEEE, Dagnachew A. Temesgene,
Zere Ghebretensaé, Lena Wosinska , Senior Member, IEEE, and Paolo Monti , Senior Member, IEEE

Abstract—Container orchestration platforms automatically
adjust resources to evolving traffic conditions. However, these
scaling mechanisms are reactive and may lead to service degra-
dation. Traditionally, resource dimensioning has been performed
considering guaranteed (or request) resources. Recently, con-
tainer orchestration platforms included the possibility of allo-
cating idle (or limit) resources for a short time in a best-effort
fashion. This letter analyzes the potential of using limit resources
as a way to mitigate degradation while reducing the number
of allocated request resources. Results show that a 25% CPU
reduction can be achieved by relying on limit resources.

Index Terms—Cloud native services, pod dimensioning,
Kubernetes, best-effort resources, IaaS, pod as a service, soft-
hard isolation, service degradation.

I. INTRODUCTION

THE PROVISIONING of services in today’s communi-
cation paradigm generally involves two main entities,

the cloud provider and the service provider. Cloud providers
are responsible for the cloud infrastructure maintenance and
updates, including managing physical (e.g., CPUs) and vir-
tual resources (e.g., Virtual Machines (VMs), containers).
These resources are usually rented out to service providers
upon request. The cloud provider charges the service provider
based on the amount and time resources are reserved/used.
Service providers then use the rented VMs/containers to
deploy end-user applications.

Cloud native technologies (e.g., containers) allow to eas-
ily develop, deploy, and manage services in the cloud [1].
Many networking applications such as monitoring, automa-
tion, Radio Access Network (RAN) and core virtualization
have been shown to benefit from using cloud native technolo-
gies and containers [2], [3], [4], [5]. Cloud native services are
handled by cloud orchestrators like Kubernetes (K8s), a widely
used open-source container orchestration platform [6]. In K8s,
each service runs on a set of Pods. Each Pod is a collection

Manuscript received 8 December 2022; accepted 30 December 2022. Date
of publication 9 January 2023; date of current version 3 March 2023.
This work was supported by EUREKA Cluster CELTIC-NEXT Project
AINET-ANIARA funded by VINNOVA. The associate editor coordinating
the review of this article and approving it for publication was L. Foschini.
(Corresponding author: Federico Tonini.)

Federico Tonini, Carlos Natalino, Lena Wosinska, and Paolo Monti are with
the Electrical Engineering Department, Chalmers University of Technology,
412 96 Gothenburg, Sweden (e-mail: tonini@chalmers.se; carlos.natalino@
chalmers.se; wosinska@chalmers.se; mpaolo@chalmers.se).

Dagnachew A. Temesgene and Zere Ghebretensaé are with the Network
Management & Automation, Ericsson Research, 164 40 Kista, Sweden
(e-mail: dagnachew.azene.temesgene@ericsson.com; zere.ghebretensae@
ericsson.com).

Digital Object Identifier 10.1109/LNET.2023.3235106

Fig. 1. Deployment of cloud native services: VM-based vs. bare metal.

of one or more containers, with a given amount of resources
(e.g., memory, CPU, storage). The number of running Pods can
be scaled (i.e., increased or decreased) over time to allow a
service provider to match the time-varying end-user demands.

Pods can be deployed in VMs (Fig. 1(a)) in an
infrastructure-as-a-service fashion, where each service
provider needs to rent as many VMs as needed to compose
its services. This approach ensures hard isolation of resources
among different service providers, which need to pay for
all the resources associated with the VMs, regardless of
the number of running Pods. To fully take advantage of
cloud native technologies, Pods of different services can be
deployed directly over a common bare metal infrastructure
without the need for a virtualization layer (Fig. 1(b)). This
approach reduces the performance penalties introduced
by hypervisors (e.g., for disk and network input/output
operations) [7] while simplifying service deployment and
operations [3]. Additionally, service providers can rent
resources in a Pod-as-a-service fashion, paying only for what
is needed to deploy and operate their Pods. Finally, soft
resource isolation is also offered, allowing the use of both
guaranteed (referred to as request) and shared (referred to as
limit) resources. By doing so, idle (i.e., not used) resources
initially set aside for one service can be used by Pods of
another service when needed, in a best effort way.

Service providers decide the amount of resources assigned
to each Pod they rent. If at any point in time, the
resources/Pods are under-dimensioned and can not satisfy the
end-user demands, the latter may experience degradation, e.g.,
an increased application response time, leading to a poten-
tial loss of revenue for the service provider [8]. On the
other hand, if resources/Pods are heavily over-dimensioned,
the service provider will pay for resources that are most of
the time unused. Leveraging soft isolation might provide a
third and interesting opportunity. A service provider can avoid

2576-3156 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on September 15,2023 at 11:59:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2905-1381
https://orcid.org/0000-0001-7501-5547
https://orcid.org/0000-0001-6704-6554
https://orcid.org/0000-0002-5636-9910

42 IEEE NETWORKING LETTERS, VOL. 5, NO. 1, MARCH 2023

overprovisioning by counting on the use of limit resources
whenever needed. Since these resources are paid only when
used, there is an evident advantage in terms of cost savings.
On the other hand, since limit resources are not guaranteed,
a service provider might face the possibility of higher degra-
dation fees. For this reason, it becomes crucial to investigate
what is the potential cost vs. benefits of soft isolation.

Different techniques for the Pod dimensioning have been
proposed in the past, considering mainly request resources
and different scaling thresholds in VM-based deployments
or bare metal deployments with only hard resource isola-
tion [9], [10], [11]. The scaling can be based on machine
learning and prediction techniques [12], [13], and include also
application-related metrics (e.g., response time) [14], [15], [16]
to improve the service performance. All these works focus
on hard isolation and do not investigate the possibility of
using soft resource isolation and limit resources to mitigate
service degradation and reduce the overall costs. In this let-
ter, we focus on the Pod dimensioning problem in bare-metal
deployments, where the use of limit resources among Pods of
different services is allowed. By leveraging on this, we analyze
the potentials and limitations of using limit resources to reduce
degradation without the need for over-dimensioning, by means
of simulations. A cost analysis is performed by comparing this
approach against a traditional scaling strategy relying only on
request resources and shows when it is beneficial for a service
provider to leverage limit resources.

II. SCENARIO DESCRIPTION AND USE CASE EXAMPLE

In the following, we focus our attention on bare metal
deployments of Pods handled by K8s (Fig. 1(b)). In K8s,
resources such as CPU and memory are assigned by means
of resource request and limit [17]. Request is the amount of
guaranteed resources that each Pod can access at any time dur-
ing its operation (hereinafter referred to as request resources).
K8s assigns Pods to nodes based on the amount of request
resources and the availability of resources on the node. A ser-
vice provider pays for this type of resource even if they are
not fully used by the running Pods (i.e., they are idle). On the
contrary, limit is the amount of resources that are accessed on
a first-come-first-served basis, in a best-effort fashion, only
when two conditions are met: (i) a Pod needs more than
the request resources, and (ii) there are unused resources at
the node. We refer to this amount as limit resources. Limit
resources usually take advantage of unassigned resources at a
node, or unused request resources (idle) left free by other Pods.
The amount of limit resources that Pods can access depends
on the resource contention level at the node, which varies
over time and depends on the amount of available resources,
deployed Pods, and service requests. The service provider pays
for limit resources only when accessed and for the time and
quantity that has been used.

Service providers must solve the Pod dimensioning
problem, i.e., to define the Pod’s size (i.e., in terms of
request and limit resources), the Pod’s scaling parameters (e.g.,
desired average CPU usage), and the minimum and the maxi-
mum number of replicas. Pods can be replicated during the

service operation to allow a service provider to match the
time-varying needs of its end-users. Scale-out and scale-in
operations rely on the monitoring capabilities of K8s and its
built-in Horizontal Pod Autoscaler (HPA). The HPA uses peri-
odical measurements related to a specific metric (e.g., CPU
and/or RAM usage) from each one of the Pods [18] and
computes the number of Pod replicas needed as follows:

dR =

⌈
cR · cMV

dMV

⌉
, (1)

where dR is the (new) desired number of replicas, cR is the cur-
rent number of replicas, cMV is the current metric value, and
dMV is the desired metric value (as specified by the service
provider). In this letter, we consider CPU as the resource and
CPU usage as the metric to drive the scaling operations. In this
case, cMV is the average CPU usage over all current Pods and
dMV is the scaling threshold. In K8s, the threshold is indicated
as the percentage of the request, and can be easily converted
into the corresponding CPU amount dMV. To avoid frequent
scaling operations, K8s establishes a default tolerance value
by which the system does not scale if 0.9 < cMV/dMV < 1.1
When scaling is triggered, some time is needed to adjust to the
new desired state (i.e., to reach cR = dR). This time, referred
to as scaling delay, is required to create/terminate Pods, update
load-balancing components, and set up the service(s) within
the Pod.

Ideally, a service provider would like to dimension and scale
the number of running Pods in a way that allows renting just
enough resources to match the CPU demand (i.e., the CPU
required by the service provider to provide the services to the
end users) over time while avoiding too many idle resources
(i.e., CPUs paid for but unused) and degradation (i.e., number
of CPUs that could not be allocated to Pods, e.g., due to lack
of resources). However, the scaling delay makes it difficult to
always match the CPU demand, thus generating degradation
for the users. As an example, let us consider the CPU demand
over time shown in Fig. 2(a). When the service is running,
the number of Pods is adjusted by the HPA, and CPU alloca-
tion can be categorized as degradation, used, or idle. Fig. 2(b)
shows the CPU allocation for a simple dimensioning case with
1 CPU request per Pod and without the possibility to use
limit CPUs. The effect of the scaling delay (assumed to be 4
Time Units (TUs) in this case) can be observed when the CPU
demand increases (Fig. 2(c)). At time step 93, 4.8 CPUs are
used in total while 0.2 CPUs are idle. The threshold, set 4.25
CPUs, is exceeded, and cMV/dMV > 1.1. As a consequence,
the desired number of replicas is updated using (1), triggering
a scale out of 1 extra replica. Due to the scaling delay, this
new replica is available at time step 98. The demand continues
increasing and in the period between time steps 94 and 98 it
exceeds the request CPUs, resulting in degradation.

Different countermeasures can be taken to mitigate degrada-
tion, depending on the level of degradation that each service
can accept. During the dimensioning phase, the amount of
request resources assigned to each Pod can be set to a higher
value, allowing each Pod to access more resources. Another
option is to select a low(er) scaling threshold, anticipating the

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on September 15,2023 at 11:59:43 UTC from IEEE Xplore. Restrictions apply.

TONINI et al.: BENEFITS OF POD DIMENSIONING WITH BEST-EFFORT RESOURCES 43

Fig. 2. Sample case of a cloud native service operated using K8s. CPU demand varies with end-user traffic. Time is discretized and expressed in Time Units.

scaling out process. However, both options lead to Pod over-
dimensioning, potentially resulting in a higher amount of idle
resources that must be anyway paid for. Another possibility is
to allow the use of limit CPU resources. Considering the exam-
ple in Fig. 2, the area representing the degradation could be
replaced, in part or in full, by limit CPUs. A service provider
could bet on their availability during operation to help reduce
degradation, thus potentially lowering the amount of needed
request CPUs.

III. NUMERICAL RESULTS

In order to evaluate the benefits of using limit resources
while solving the Pod dimensioning problem, we developed a
custom framework written in Python. The framework repro-
duces the HPA behavior explained in the previous section,
with the following general assumptions. We assume a dis-
crete amount of time instants in which we evaluate the service
provider CPU demand, to be divided among the active Pods.
We discretize the time in TUs that represents the monitoring
cycles performed by K8s to obtain the metrics from the Pods
and take actions (e.g., scaling). The CPU demand is consid-
ered to be an average over a time interval and evaluated at
each cycle. This simplification is needed to avoid heavy sim-
ulation of run-time CPU resources scheduling, and it allows
to measure average CPU degradation and idle resources in a
similar fashion as K8s monitoring cycles.

A. Simulation Settings

We consider a service provider with a CPU demand over
time according to the workload pattern shown in Fig. 2(a).
This demand was gathered from Swedish University Network
(SUNET) [19], converted into CPU load and augmented to
mimic a real-world application. The traffic profile divides the
24 hours of a day into 1530 TUs. The obtained results are
an average of 10 days. At each simulation, we add to each
sample in Fig. 2(a) a random uniform value in the interval
of ± 20%. We assume a service composed of a single Pod
type, with two replicas deployed as the minimum number at
time 0. At each time step, the CPU demand is split equally
among the running replicas, simulating a perfect load balanc-
ing scheme. The number of replicas is also calculated at each
time step according to (1), and the scaling delay is set to 4
TUs. Moreover, resources are measured in CPU × TUs.

We use as a baseline a hard isolation deployment scheme
over bare metal with the following configuration. The request
CPU is set to 1 and no limit resources can be used, while the
scaling threshold is set to 85% of the request CPU. We then
analyze separately the two methods to mitigate degradation
based on a higher threshold and a larger CPU request. The
considered scaling thresholds are 85%, 75%, and 60%, while
the Pod request values (hereinafter referred to as sizes) are 1,
2, 5 CPUs.

To assess the potential benefits of limit resources, we simu-
late the case in which Pods can use as many limit resources as
necessary, as long as they are free. A parameter α is used to
represent the amount of available limit resources as a portion
of the request resources allocated for each Pod. For example, if
α = 10% and the CPU request is 1 CPU, each Pod can access
up to 110% of the CPU request resources, i.e., 1.1 CPU.

B. Resource Usage and Degradation Analysis

Fig. 3(a) shows degradation experienced by a service as a
function of different scaling thresholds. We assumed that the
Pod size is 1 CPU. We observe that lowering the threshold
results in a lower degradation (i.e., from 726 to 30 [CPUxTU]
when the threshold goes from 85% to 60%). This can be
expected. With a more conservative value to trigger the scal-
ing, Pods can access more CPU resources during the scale
out process. However, there is a price to pay in terms of
CPUs that stay idle (Fig. 3(b)). 12031 extra [CPUxTU] are
required to reduce the degradation from 726 to 30 [CPUxTU],
which is equivalent to 40% extra request resources required
to reduce degradation by 96% with respect to the benchmark
case. However, 94% of these extra resources are idle, as they
are requested by the extra Pods, but not used most of the
time.

Fig. 4(a) reports the degradation for different (request) Pod
sizes, with a fixed scaling threshold of 85%. Allocating Pods
with more resources results in lower degradation. Fig. 4(b)
reports the corresponding total resources. When the Pod size
increases from 1 to 5 CPUs, the amount of total resources
increases by 2822 [CPUxTU]. This corresponds to 9% extra
request resources to reduce degradation by 52% with respect
to the benchmark case.

In the following, we investigate whether limit resources can
be used to mitigate degradation without impacting significantly

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on September 15,2023 at 11:59:43 UTC from IEEE Xplore. Restrictions apply.

44 IEEE NETWORKING LETTERS, VOL. 5, NO. 1, MARCH 2023

Fig. 3. Hard isolation case: degradation and total resources (in [CPUxTU])
for different scaling thresholds.

Fig. 4. Hard isolation case: degradation and total resources (in [CPUxTU])
for different Pod sizes.

idle resources. Fig. 5(a) depicts the degradation for differ-
ent amount of limit resources that each Pod can access (α).
The Pod request is 1 CPU and the scaling threshold 85%.
When α=10%, the degradation decreases by 60% down to
294 [CPUxTU] with respect to the case with α=0%. When
α=50%, the degradation is 17 [CPUxTU], a value similar
to the case with a 60% threshold in Fig. 3(a), and much
lower than the values in Fig. 4(a). Fig. 5(b) reports the total
resources assigned to the service for different values of α.
The total amount slightly increases with α, due to the larger
amount of resources that can be accessed. When α=50%
the total resources are 31858 [CPUxTU], adding only 1464
extra [CPUxTU] out of which 865 are request (used+idle)
and 599 are limit. In this case, only 5% extra total resources
are needed to reduce degradation by 98% with respect to
the benchmark case. Compared to the value obtained with a
threshold of 60% (Fig. 3(b)), 10566 [CPUxTU] resources can
be saved, i.e., an improvement of 25%. These results show
that using limit resources is potentially more resource effi-
cient than relying on a high number of request resources. A

Fig. 5. Soft isolation case: degradation and total resources (in [CPUxTU])
for different amount of limit resources assigned to each Pod (α).

service provider, instead of using a 60% threshold, could bet
on having access to the required limit resources (α), limit-
ing the extra resources assigned to Pods. However, relying
only on limit resources does not give any guarantees, since
the number of limit resources depends on the actual level of
resource contention at the nodes where the Pods are running.
Therefore, this approach is viable for service providers that
want to improve service performance at a low cost, but can
also accept some degradation. Conversely, service providers
with strict constraints on degradation should rather rely on
the resource over-provisioning strategies, such as using lower
thresholds or larger Pod sizes. The actual level of resource
contention is not under the control of the service provider as
it depends on the effects of the runtime dynamics (e.g., how
Pods are deployed, spikes in the CPU demand). The analysis
of these aspects requires dedicated studies and is outside the
scope of this letter.

To analyze the effects of the scaling delay on the results, we
simulated two additional cases, i.e., when the delay is 2 and
8 [TUs]. Figs. 6(a) and 6(b) report the degradation and total
resources (in [CPUxTU]) for different scaling delays, when
α = 0% and α = 50%, the Pod size is 1 CPU and the scaling
threshold is 85%. Results show that a lower scaling delay
corresponds to a lower degradation. This is due to a faster
response to CPU demand variations, increasing total resources.
By using soft isolation, degradation is compensated with a
small number of limit resources regardless of the scaling delay
value, which confirms the effectiveness of this approach.

C. Cost Analysis

To analyze the costs, we compare an approach based on
limit resources (lim) with one that uses only request resources
(req) and one that just accepts degradation (deg). The lim
approach is beneficial if its cost (Clim) is lower than or equal
to the deg cost (Cdeg) and the cost of the req solution (Creq).
The following system holds:

{
Clim ≤ Cdeg , (2)

Clim ≤ Creq , (3)

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on September 15,2023 at 11:59:43 UTC from IEEE Xplore. Restrictions apply.

TONINI et al.: BENEFITS OF POD DIMENSIONING WITH BEST-EFFORT RESOURCES 45

Fig. 6. Degradation and total resources (in [CPUxTU]) for different scaling
delays in [TUs], when α = 0% and 50%.

TABLE I
AMOUNT OF REQUEST (R), LIMIT (L), AND DEGRADATION (D) IN

[CPUxTU] FOR THE THREE CONSIDERED CASES (lim, deg, req)

Each cost depends on the amount of request resources (R),
limit resources (L), and degradation (D) and their unitary price
(pR , pL, and pD , respectively). For the lim case we have
Clim = RlimpR + LlimpL + DlimpD . Similar formulations
can be derived for Cdeg and Creq . We can use (2) and (3) to
determine the values of pR , pL, pD for which the use of the
lim approach is beneficial. As an illustrative example, let us
consider the case with α=50% in Fig. 5 as lim, the benchmark
as deg and the case with 60% threshold as req (first and last
bars in Fig. 3, respectively). The related amount of resources
is reported in Tab. I. Let us consider the worst case for lim,
i.e., the equalities in (2) and (3). By solving (2) for pD and
substituting it in (3) we find that pL = 18.02pR . Lower values
of pL make the lim approach appealing for a service provider
compared to the req approach. Similarly, we can solve (3) for
pR and substitute it in (2) to find that pL = 1.04pD . For lower
values of pL, using lim is more beneficial than deg (i.e., com-
pensating degradation with limit resources is less costly than
accepting it).

IV. CONCLUSION AND FUTURE WORK

This letter presents a performance analysis of different Pod
dimensioning strategies in cloud native scenarios from a ser-
vice provider perspective. A simulator has been developed to
mimic K8s behavior and evaluate the performance of these
strategies in terms of degradation and idle CPUs. Results show
that degradation can be mitigated by using limit resources
under the assumption that additional α% limit resources can
be accessed by the Pods. In particular, a strategy based only

on limit resources with α=50% can achieve the same level of
degradation as a conventional strategy with a scaling thresh-
old fixed to 60%, while requiring 25% less reserved CPUs.
Moreover, savings can be achieved if the unitary price of a
[CPUxTU] of limit resource is lower than 18 times the price
of a request [CPUxTU] resource. Since limit resources are not
reserved, this approach is viable for service providers that can
tolerate some degradation in case the limit resources are not
available. Nevertheless, intelligent Pod scaling strategies can
be developed to compensate for this, e.g., by monitoring degra-
dation and adding request resources only when needed. Studies
from a cloud provider perspective on how to price resources
and how to increase resource sharing are left as future work.

REFERENCES

[1] “CNCF.” Accessed: May 31, 2022. [Online]. Available: https://www.
cncf.io/

[2] (Red Hat, Raleigh, NC, USA). Kubernetes on Bare Metal: The
Future of RAN. (2020). Accessed: May 31, 2022. [Online]. Available:
https://www.redhat.com/pt-br/blog/kubernetes-bare-metal-future-ran

[3] “Building a cloud native infrastructure,” Ericsson AB, Stockholm,
Sweden, Rep. 3/287 01-FGM10151, Oct. 2020.

[4] L. Sanabria-Russo and C. Verikoukis, “A cloud-native monitoring system
enabling scalable and distributed management of 5G network slices,”
in Proc. IEEE Int. Mediterr. Conf. Commun. Netw. (MeditCom), 2021,
pp. 42–46.

[5] S. Roy, H. Chergui, L. Sanabria-Russo, and C. Verikoukis, “A cloud
native SLA-driven stochastic federated learning policy for 6G zero-
touch network slicing,” in Proc. IEEE Int. Conf. Commun. (ICC), 2022,
pp. 4269–4274.

[6] “Kubernetes.” Accessed: Nov. 15, 2021. [Online]. Available: https://
kubernetes.io/

[7] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight
virtualization: A performance comparison,” in Proc. IEEE Int. Conf.
Cloud Eng., 2015, pp. 386–393.

[8] “The state of online retail performance,” Akamai, Cambridge, MA, USA,
Rep., 2017.

[9] E. Casalicchio, “A study on performance measures for auto-scaling CPU-
intensive containerized applications,” Clust. Comput., vol. 22, no. 3,
pp. 995–1006, Sep. 2019.

[10] V. Millnert and J. Eker, “HoloScale: Horizontal and vertical scaling of
cloud resources,” in Proc. IEEE/ACM Int. Conf. Utility Cloud Comput.
(UCC), 2020, pp. 196–205.

[11] D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of Kubernetes
pods,” in Proc. IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS), 2020,
pp. 1–5.

[12] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling
of container-based applications using reinforcement learning,” in Proc.
IEEE Int. Conf. Cloud Comput. (CLOUD), 2019, pp. 329–338.

[13] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Adaptive AI-based auto-
scaling for Kubernetes,” in Proc. IEEE/ACM Int. Symp. Clust. Cloud
Internet Comput. (CCGRID), 2020, pp. 599–608.

[14] C.-C. Chang, S.-R. Yang, E.-H. Yeh, P. Lin, and J.-Y. Jeng, “A
Kubernetes-based monitoring platform for dynamic cloud resource pro-
visioning,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2017,
pp. 1–6.

[15] S. Horovitz and Y. Arian, “Efficient cloud auto-scaling with SLA objec-
tive using Q-learning,” in Proc. Int. Conf. Future Internet Things Cloud
(FiCloud), 2018, pp. 85–92.

[16] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Automatic scaling for
microservices with an online learning approach,” in Proc. IEEE Int.
Conf. Web Serv. (ICWS), 2019, pp. 68–75.

[17] “Kubernetes resources.” Accessed: Jan. 25, 2022. [Online]. Available:
https://kubernetes.io/docs/concepts/configuration/manage-resources-
containers/

[18] “Kubernetes horizontal pod autoscaler.” Accessed: Feb. 18, 2022.
[Online]. Available: https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/

[19] “SUNET database.” Accessed: Oct. 27, 2021. [Online]. Available: http://
stats.sunet.se/

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on September 15,2023 at 11:59:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

