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a b s t r a c t 

A synthetic dataset of 12 LG M50 cells was generated using 

physics-based models. The model parameters for this com- 

mercial NMC 811/graphite-SiOx cell were taken from multi- 

ple sources in the literature. In particular, five degradation 

parameters were varied from their default values as param- 

eter sensitivity analysis. The 12 LG M50 cells were identi- 

cally discharged at a 1C galvanostatic profile to 0 % state- 

of-charge (SoC) and then charged at a 1C constant-current 

and constant-voltage (CC–CV) protocol to 100 % SoC. The am- 

bient temperature in the simulation was set to be constant 

at 25 °C. As a result, 4 degradation pathways were identi- 

fied with 4 different configurations of interacting degradation 

mechanisms, i.e., solid electrolyte interphase (SEI) growth, 

particle cracking, lithium plating, and loss of active material. 

The dataset allows for the validation of battery degradation 

diagnosis and prognosis methods with insights into interac- 

tions between multiple degradation mechanisms. One exem- 

plary application of validating a knee identification method 

can be found in Ref. [1]. 
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pecifications Table 

Subject Electrical and Electronic Engineering 

Specific subject area Lithium-ion battery degradation diagnosis 

Type of data Table. 

Processed data. 

Data collection Battery models: A Doyle-Fuller-Newman (DFN) model is used to simulate underlying 

battery states with four degradation mechanisms coupled to the DFN model in Python 

Battery Mathematical Modeling (PyBaMM) [ 2 ]. 

Cycling protocol: A cycle is defined by the following steps: 

(1) CC discharge at 1C until 2.5 V. 

(2) CV discharge until current reaches the cutoff value of 50 mA. 

(3) Rest for 5 min. 

(4) CC charge at 1C until 4.2 V. 

(5) CV charge until the current reaches the cutoff value of 50 mA. 

(6) Rest for 5 min. 

The ambient temperature is set to be constant at 25 °C. The simulation is saved every 

20 cycles in order to reduce the file size. Note that in the processed data, positive 

current defines discharge and negative current defines charge. 

Data source location Institution: Department of Electrical Engineering, Chalmers University of Technology. 

City: Gothenburg. 

Country: Sweden. 

Latitude and longitude for collected data: (57.708870, 11.974560). 

Data accessibility Repository name: Synthetic Degradation Dataset of 12 LG M50 Batteries 

Data identification number: 10.17632/ry6g9cc5bw.2 

Direct URL to data: https://data.mendeley.com/datasets/ry6g9cc5bw/2 

Related research article H. Zhang, F. Faisal, and T. Wik, “Battery capacity knee-onset identification and early 

prediction using degradation curvature,” Journal of Power Sources, vol. 608, p. 234,619, 

2024. 

https://doi.org/10.1016/j.jpowsour.2024.234619 

. Value of the Data 

• The dataset consists of 12 synthetic LG M50 cells with their specific degradation parameters

varied and then identically cycled under one constant-current and constant-voltage (CC–CV)

charging protocol and galvanostatic discharging profile at 25 °C. The simulation results of

these 12 cells cover 4 different degradation pathways. In particular, some cells have knees

that occurred on their capacity fade curves, which significantly shortened the simulation

time. 

• The dataset provides insights into interactions between multiple degradation mechanisms

and the evolution of degradation modes inside LG M50 cells, which can be both time-

consuming and challenging to obtain from experimental data. In particular, battery internal

state trajectories that lead to a knee on the capacity fade curve are useful in understanding

the cause and formation process of capacity knees. Therefore, it can help optimizing battery

design and manufacturing processes and further improving battery lifetime and safety. 

• The dataset can be used in a range of applications, i.e., 1) validating non-invasive battery

degradation diagnosis and prognosis methods with additional physical interpretation in the

laboratory environment; 2) optimizing battery management systems, for example, improv-

ing onboard battery state-of-health (SoH) estimation accuracy and accelerating onboard al-

gorithms development and validation process; 3) improving battery SoH estimation and life-

time prediction models by allowing a faster learning process without the need for complex

architecture thanks to no measurement noise in the synthetic dataset. 

• The dataset can also be used as a research and educational resource for battery researchers

and students to gain insights into different battery degradation processes with respect to

changes of their specific degradation parameters. By analyzing this dataset, large-scale syn-

thetic datasets generation for different chemistries under a wide range of operating condi-

tions can be promoted in the battery community. 

https://doi.org/10.17632/ry6g9cc5bw.2
https://data.mendeley.com/datasets/ry6g9cc5bw/2
https://doi.org/10.1016/j.jpowsour.2024.234619
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2. Background 

The rapid market adoption of lithium-ion batteries has significantly reduced their costs [ 3 ].

Nevertheless, understanding battery degradation processes under a wide range of usage profiles

is critical for them being cost-effective in decarbonization of transportation and power sectors.

The synthetic degradation data provides insights into interactions between multiple degradation

mechanisms, and the evolution of different degradation modes (forming so-called degradation

pathways) inside battery cells with reduced experimental burdens [ 4 , 5 ]. Moreover, to better val-

idate battery degradation diagnosis and prognosis methods on a range of degradation pathways,

synthetic data generated using physics-based models that complement experimental data can be

very useful since the degradation mechanisms are known a priori. Here, a synthetic dataset of 12

LG M50 cells covering 4 degradation pathways has been generated using physics-based models,

of which the particle cracking-induced knee pathway was used for validating the effectiveness

of our proposed knee-onset and knee identification method in Ref. [ 1 ]. As a complement to the

original research article [ 1 ], the full description of this synthetic dataset is provided here. 

3. Data Description 

The synthetic dataset consists of 12 LG M50 cells covering 4 degradation pathways with mul-

tiple interacting degradation mechanisms, i.e., solid electrolyte interphase (SEI) growth, particle

cracking, lithium plating, and loss of active material. The technical specifications of the cells are

summarized in Table 1 . For each degradation pathway, 3 synthetic LG M50 cells are tested. In

the following, we refer to the specific pathway ( ƿ) by the index x = {1,2,3,4}, and the cell ( c ) by

the index y = {1,2,3}. The cell labels for each degradation pathway are summarized in Table 2 . 

The overall structure of dataset files is illustrated in Fig. 1 . In the parent folder

named Synthetic_Dataset_LG_M50_Degradation_Pathways, one can find 1) a single file named

LG_M50_cells_metadata.csv, which describes metadata for all the 12 LG M50 cells covering 4

degradation pathways, and 2) four sub-folders, one for each degradation pathway, which con-

tain time-series and cyclic data of each cell. In each of these sub-folders, the following files can

be found: 
Table 1 

Technical specifications for INR21700-M50 cell [ 6 ]. 

Manufacturer LG Chem 

Model INR21700-M50 

Positive electrode LiNiMnCoO2 [ 7 ] 

Negative electrode Graphite-SiOx [ 7 ] 

Separator Ceramic-coated [ 7 ] 

Size (diameter × height) 21.00 mm × 70.00 mm [ 7 ] 

Weight 68.38 g [ 7 ] 

Nominal capacity 5 Ah 

Nominal voltage 3.63 V 

Charge cutoff voltage 4.2 V 

Discharge cutoff voltage 2.5 V 

Cutoff current 50 mA 

Table 2 

LG M50 cells in each degradation pathway. 

Pathway Cell labels 

1 [p1 c1 , p1 c2 , p1 c3 ] 

2 [p2 c1 , p2 c2 , p2 c3 ] 

3 [p3 c1 , p3 c2 , p3 c3 ] 

4 [p4 c1 , p4 c2 , p4 c3 ] 
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Fig. 1. The structure of dataset files. 

Table 3 

Battery degradation parameters with their default values. 

Degradation mechanism Parameter Default value Unit Ref. 

SEI growth Solvent diffusivity in Fick’s law (Dsol ) 2 . 5 × 10 −22 m2 s−1 [ 9 ] 

Particle cracking Cracking rate in Paris’s law (kcr ) 3 . 9 × 10 −20 – [ 13 ] 

Lithium plating Decay rate for dead lithium formation (γ0 ) 10 −6 s−1 [ 11 ] 

Loss of active material Loss of active anode material proportional term ( β) 2 . 7778 × 10 −7 s−1 [ 11 ] 
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• 3 cell_p_x_c_y_cycle.csv files that store cyclic data with x and y indicating the degradation

pathway and cell number, respectively. 

• 3 cell_p_x_c_y_timeseries.csv files that store time-series data with x and y indicating the

degradation pathway and cell number, respectively. 

Note that, to reduce the size of the saved simulation file for a large number of cycles, the

imulation is saved every 20 cycles. Moreover, only data related to the degradation mechanisms

n this study have been extracted. 

. Experimental Design, Materials and Methods 

To understand interactions between multiple degradation mechanisms and their resulting

egradation pathways inside commercial lithium-ion cells, we generated this synthetic dataset

f 12 LG M50 cells that undergo a range of degradation pathways using physics-based mod-

ls. Specifically, lithium-ion battery states are simulated using a Doyle–Fuller–Newman (DFN)

odel [ 8 ]. Four degradation mechanisms, i.e., solid electrolyte interphase (SEI) growth [ 9 ], par-

icle cracking [ 10 ], lithium plating [ 11 ] and loss of active material (LAM) [ 12 ], are coupled to the

FN model in Python Battery Mathematical Modeling (PyBaMM) library (version 22.9) [ 2 ]. 

The DFN model parameters (i.e., electrode parameters, electrolyte parameters, and separator

arameters) are taken from Chen et al. [ 7 ] for a commercial NMC 811/graphite-SiOx cylindri-

al cell manufactured by LG Chem (INR21700 M50, 5 Ah). These LG M50 cells have a nominal

apacity of 5 Ah with a lower voltage cut-off of 2.5 V and an upper voltage cut-off of 4.2 V.

he degradation parameters were not measured by Chen et al. [ 7 ]. Therefore, we must turn

o PyBaMM for their values. The default values provided in PyBaMM are taken from multiple

ources and are listed in Table S4 and Table S5 in the supplementary information of Ref. [ 11 ].

he default values of key degradation parameters in modeling four degradation mechanisms are

isted in Table 3 . Furthermore, to simulate the possible knee occurrence on the capacity fade

urve, three key degradation parameters corresponding to three degradation mechanisms that

an cause knee occurrence are chosen to vary, i.e., cracking rate in Paris ̓s law (kcr ) in model-

ng particle cracking, decay rate for dead lithium formation (γ0 ) in modeling lithium plating,

nd loss of active anode material proportional term ( β) in modeling LAM. The varying factors of

hese three degradation parameters are listed in Table 4 and are chosen to increase gradually so

hat the capacity fade can accelerate and exhibit a knee. 
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Table 4 

Battery degradation pathways with their varied parameters. 

Pathway Coupled degradation 

mechanisms 

Varied degradation 

parameter(s) 

Varied factors 

( × default value) 

1 SEI growth 

Particle cracking 

Cracking rate in Paris’s law (kcr ) [10 , 30 , 50 ] 

2 SEI growth 

Lithium plating 

Decay rate for dead lithium 

formation (γ0 ) 

[1 , 5 , 10 ] 

3 SEI growth 

Lithium plating 

Loss of active material 

Loss of active anode material 

proportional term ( β) 

[1 , 10 , 20 ] 

4 SEI growth 

Lithium plating 

Particle cracking 

Loss of active material 

Cracking rate in Paris’s law (kcr ) 

Loss of active anode material 

proportional term ( β) 

[k 50 β1 , k 30 β10 , k 10 β20 ] 

Table 5 

Description of the cycling protocol. 

Step Action Exit condition 

1 CC discharge at 1C Voltage reaches 2.5 V 

2 CV discharge Current reaches 50 mA 

3 Rest Time reaches 5 min 

4 CC charge at 1C Voltage reaches 4.2 V 

5 CV charge Current reaches 50 mA 

6 Rest Time reaches 5 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The LG M50 cells are discharged at 1C to 2.5 V and a current cut-off of C/100 (50 mA) fol-

lowed by a rest for 5 min. The cells are subsequently charged at 1C to 4.2 V and a current

cut-off of C/100 (50 mA) and then allowed to rest for another 5 min. The ambient temperature

is assumed to be constant at 25 °C. The step-by-step cycling protocol is described in Table 5 . 

Finally, the simulation was set up for each synthetic LG M50 cell in PyBaMM as follows: 

1. Create a DFN model coupled with specific degradation mechanisms for each pathway listed

in Table 4 . 

2. Vary the values of three key degradation parameters for each pathway listed in Table 4 . 

3. Specify the type of mesh, the number of mesh points, and the type of spatial method to use

on each subdomain. 

4. Select the type of solver to use to solve the model. 

5. Define the experimental conditions to solve the model listed in Table 5 . 

6. Save the simulation into pkl files at the termination of each simulation. 

7. Post-process simulation and save time-series battery usage and internal state trajectories into

csv files. 

Note that SciPy, an open-source scientific computing library for the Python programming lan-

guage [ 14 ], is used for processing the data, such as the linear correlation between knee-onset

and knee in the related research article [ 1 ]. 

Limitations 

In total, 12 LG M50 cells were synthesized with their specific degradation parameters varied,

then cycled under one constant-current and constant-voltage (CC–CV) charging protocol and one

galvanostatic discharging profile. To identify more battery degradation pathways, degradation

data of these LG M50 cells cycled under other charging protocols and dynamic driving profiles

at different ambient temperatures are recommended to be generated in the future. Moreover,

it has been found in existing studies that values of some model parameters (e.g., positive and
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egative solid phase diffusion coefficient and electrochemical reaction rate constant) vary sig-

ificantly with the aging of the battery. Therefore, adaptive approaches to address these model

ncertainties are needed for high-fidelity battery modeling and simulation. 
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