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Abstract
The formalism of composite and intertwined orders has been remarkably successful in
discussing the complex phase diagrams of strongly correlated materials and high-Tc
superconductors. Here, we propose that composite orders are also realized in ferroelectric and
ferromagnetic materials when lattice anisotropy is taken into account. This composite order
emerges above the ferroic phase transition, and its type is determined by the easy axis of
magnetization or polarization, respectively. In multiferroic materials, where polarization and
magnetization are coupled, composites of both orders are possible. This formalism of composite
orders naturally accounts for magnetoelectric monopole, toroidal, and quadrupole orders. More
broadly, composite orders may explain precursor phenomena in incipient ferroic materials,
arising at temperatures above the ferroic phase transition and potentially contributing to the
characterization of currently hidden orders.

Keywords: composite order, multiferroic, magnet, ferroelectric, quadrupole order, landau theory,
critical phenomena

1. Introduction

Condensedmatter consists of amultitude of ions and electrons,
often arranging themselves in regular patterns at low temper-
atures. Some ordering phenomena, such as crystalline, mag-
netic, or ferroelectric orders, have long been known and can
be experimentally verified with high precision. Others, such as
ferrotoroidicity [1–4], have remainedmore elusive. Composite
orders are characterized by an order parameter ⟨AB⟩, com-
posed of two observables A and B. Interestingly, compos-
ite orders can be non-zero ⟨AB⟩ ̸= 0 even if each individual

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

order is absent, i.e. ⟨A⟩= ⟨B⟩= 0 [5]. Examples include odd-
frequency pairing [6–8], composite U(1) orders, such as those
composed of 2-component superconducting order parameters
[9–11], or 2-component bosonic systems [12, 13], and charge
4e superconductors [14, 15]. Recent experiments support the
existence of composite orders [16, 17]. A point group sym-
metry approach to composite orders has been derived [18], and
composite orders have been discussed as a potential class of
hidden orders [8, 19].

For ferromagnets and ferroelectrics, the order paramet-
ers are given by the magnetization M and polarization
P, being vectorial, i.e. multi-component order parameters.
Consequently, composite order describes combinations of
⟨MαMβ⟩, ⟨PαPβ⟩, ⟨PαMβ⟩ (α,β = x,y,z). We show that,
depending on the anisotropy, a composite or multipolar order
emerges in the vicinity of a conventional ferromagnetic or fer-
roelectric phase transition. For cubic crystalline symmetry, we
find that cubic ferroelectrics and ferromagnets undergo a Z2

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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classification scheme with respect to the type of quadrupole
order. Here, the Z2 classification is a direct consequence of
the two possible easy axes for magnetization and polarization
in a fourth order theory. Furthermore, we demonstrate that the
concept of composite orders can be extended to multiferroic
materials, where polarization and magnetization are coupled.
In cubic symmetry, this coupling gives rise to three poten-
tial composite orders, aligning with the well-known multipole
expansion [2, 20, 21]. Hence, we show that the complex phase
diagram of magnetic and magnetoelectric materials is strongly
dependent on composite orders, challenging the idea of com-
peting orders.

2. Cubic ferromagnets and ferroelectrics

The magnetization M is a pseudo-vector, which means that it
is even under inversion and odd under time reversal (table 1).
In contrast, the polarization P behaves as an ordinary vec-
tor, being odd under inversion and even under time-reversal.
In mean field theory and without lattice anisotropy, a phe-
nomenological theory accounts only for the magnitude of
M and P, leading to inversion- and time-reversal-invariant
free energies f(M) = α(T−Tc)M2 +βM4 or f(P) = α(T−
Tc)P2 +βP4, with α,β > 0. At high temperatures T> Tc, the
free energy is minimized by the trivial solutions M= 0 and
P= 0. Below the critical temperature T< Tc, a finite magnet-
ization or polarization appears, indicating a transition into a
ferromagnetic or ferroelectric state.

Beyond mean field theory, polarization and magnetiza-
tion are space-dependent. Furthermore, when lattice aniso-
tropy is considered, the free energy also depends on the dir-
ection of polarization or magnetization. In cubic symmetry, it
is expressed as [22–24]:

f(X,T) = f0 (T)+ c(∇X)2 +α(T−Tc)X
2

+β1
(
X4
x +X4

y +X4
z

)
+β2

(
X2
xX

2
y +X2

yX
2
z +X2

zX
2
x

)
,

(1)

where X= P,M represents either the magnetization M or the
polarization P. In the case of antiferromagnets and antifer-
roelectrics, X=M1 −M2 or X= P1 −P2, denoting the dif-
ference in contributions from two sublattices. Furthermore,
the term f0(T) accounts for the temperature-dependent free
energy contributions independent of X [25]. Assuming
second-order phase transitions and α,β1,β2 > 0, we avoid
higher-order terms to achieve minima at finite values Xi.
The fourth-order terms β1 and β2 determine the aniso-
tropy energy shape. In the ferroic phase (T< Tc), the free
energy is minimized for magnetization or polarization along
the Cartesian axes [100] if 2β1 < β2 (figure 1(a)). In con-
trast, for 2β1 > β2, a magnetization or polarization along
the diagonal [111] is energetically favored (figure 1(b)).
Cubic magnetic anisotropy has long been recognized [26, 27],
with figure 1(a) describing iron and figure 1(b) representing
nickel.

Figure 1. Z2 classification of ferromagnets and ferroelectrics.
Depending on the easy axis, a quadrupole order transforming as Eg
or T2g emerges above the ferroic transition temperature. The
anisotropy of the cubic free energy for a vectorial order X (e.g.
magnetizationM or polarization P) for an easy axis of (a) [100] and
(b) [111]. (c) illustrates the phase diagram depending on two
positive fourth order parameters β1 and β2.

Table 1. Transformation behavior under the fundamental
symmetries time-reversal and inversion.

Time-reversal T Inversion P

Polarization P + −
MagnetizationM − +

Quadrupole electric PαPβ + +
Quadrupole magnetic MαMβ + +
Composite multiferroic PαMβ − −

Coupling to strain + +
Coupling to toroidal moment − −

The corresponding partition function for the free energy (1)
is given by,

Z =

ˆ
D3Xe−β

´
ddx f(X,T). (2)

We argue that equations (1) and (2) also supports a com-
posite order beyond the standard ferroic phases. To do so,
we introduce bilinears ϕk =

∑
ij c

k
ijXiXj. Specifically, for the

point group Oh (full cubic symmetry), we define symmetry-
adapted bilinears: ϕA1g =

1√
3
(X2

x +X2
y +X2

z ), which trans-
forms as the identity representation (A1g), and the quadrupole
orders ϕEg;1 =

1√
2
(X2

x −X2
y) and ϕEg;2 =

1√
6
(X2

x +X2
y − 2X2

z ),
which transform as the two-dimensional representation Eg.
Additionally, ϕT2g =

√
2(XxXy,XyXz,XzXx) transforms as the

three-dimensional irreducible representation T2g.
To introduce the bilinears into our theory, we use the

Hubbard–Stratonovich transformation [28], given by

e
´
ddx a

2 [XMi X]
2

=N
ˆ

Dϕe−
´
ddx 1

2aϕ
2−XMi Xϕ. (3)
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This allows us to write the free energy in two different forms.
First, in terms of the fields ϕA1g andϕEg , equation (1) becomes

f
(
X,ϕA1g ,ϕEg ,T

)
= f0 (T)+X

(
c∇2 + r+ϕA1g +MEg;1ϕEg;1

+MEg;2ϕEg;2

)
X+

1
2(β1 +β2)

ϕ2A1g

− 1
(2β1 −β2)

ϕ2
Eg . (4)

Here, we absorbed the temperature-dependent second-order
coefficient into r

2 = α(T−Tc). The matrices MA1g and MEg;i

are defined to satisfy X ·MEg;1 ·X= 1√
2

(
X2
x −X2

y

)
= ϕEg;1

and X ·MEg;2 ·X= 1√
6

(
X2
x +X2

y − 2X2
z

)
= ϕEg;2, respectively.

Furthermore, ϕ2
Eg = ϕ2Eg;1 +ϕ2Eg;2.

In terms of the fields ϕA1g and ϕT2g , equation (1) can be
brought into a second form, given by

f
(
X,ϕA1g ,ϕT2g ,T

)
= f0 (T)+X

(
c∇2 + r+ϕA1g

+
3∑

i=1

MT2g;iϕT2g;i

)
X+

1
2(β1 +β2)

ϕ2A1g

− 1
(β2 − 2β1)

ϕ2
T2g . (5)

Here, we use matrices MT2g;i according to X ·MT2g;1 ·
X=

√
2XxXy, X ·MT2g;2 ·X=

√
2XyXz, and X ·MT2g;3 ·X=√

2XzXx.
We show that ϕA1g , ϕEg , and ϕT2g are higher rank order

parameters. ϕA1g does not break crystalline symmetries. As
β1 +β2 > 0, it only lowers the free energy for T< Tc and is
therefore not realized. In contrast, for T> Tc the free energy
is lowered by a non-zero value of a quadrupole order, as will be
shown subsequently. A corresponding phase diagram is shown
in figure 1(c).

In the following, we focus on case 1, given in equation (4).
For temperatures above the ferroic transition, T> Tc, the fields
X are fluctuating and can be integrated out, leading to the
effective free energy in the fields ϕA1g and ϕEg (see appendix
for details),

f =
1
2β

logdet
[
c∇2 + r+M1ϕEg;1 +M2ϕEg;2 +ϕA1g

]
+

ϕ2A1g

2(β1 +β2)
−

ϕ2Eg;1

2(2β1 −β2)
−

ϕ2Eg;2

2(2β1 −β2)
. (6)

The effective free energy gives rise to a self-consistent
equation for the fields ϕEg;i, by evaluating the saddle point

approximation δf
δϕEg;i

= 0. Assuming slowly varying fields

ϕEg;i ≈ const one obtains a non-trivial solution if (details in
the appendix),

1=− (2β1 −β2)π

2kBT
√
c3α(T−Tc)

. (7)

Figure 2. Evaluation of the transition temperature into the
quadrupole phase. Tc denotes the phase transition into the
ferromagnetic or ferroelectric phase. The transition temperature to
the quadrupole phase Tq is determined by the blue solid line
∼ (T− Tc)−1/2 (see equation (7)) being equal to 1.

Equation (7) leads to several key conclusions. First, for the
right-hand side to be positive, the condition 2β1 < β2 must
be satisfied. Second, the right-hand side is a real number only
for T> Tc. Therefore, the transition into the quadrupole phase
occurs at a temperature above the critical point for the dipole
phase transition, i.e. the onset of ferromagnetism (antiferro-
magnetism) or ferroelectricity (antiferroelectricity).

More specifically, equation (7) is shown in figure 2. For
2β1 < β2, the right hand side of (7) is a positive and monoton-
ically decreasing function in the interval T> Tc. In particular,
it has a singularity at T= Tc and vanishes for T→∞. Hence,
it always passes through 1 indicating the phase transition into
the quadrupole phase. The difference between the critical tem-
peratures for the dipole phase Tc and the quadrupole phase Tq
depends on the anisotropy 2β1 −β2. Hence, for weakly aniso-
tropic materials 2β1 ≈ β2 the transition temperatures Tq and Tc
coincide and the phase transition is not observed. This indic-
ates, why a quadrupole transition has not been observed in
most simple ferromagnets.

While there is no microscopic theory yet for the phe-
nomenological theory developed in this paper, several materi-
als have been verified with a quadrupole transition occuring
in the vicinity of a dipole transition. For magnetic materi-
als, magnetic anisotropy is driven by strong spin-orbit inter-
action. An example for a strong spin-orbit antiferromagnet
are rare earth hexaborites, with e.g. DyB6 having a Néel
temperature of Tc ≈ 25 K and a quadrupole transition at
Tq ≈ 30.2 K [29].

Another promising example is the cubic canted antiferro-
magnet Ba2MgReO6. According to magnetization, muon spin
relaxation, and neutron-scattering performed by Marjerrison
et al, a magnetic phase transition occurs below 18 K, accom-
panied by a quadrupolar phase between 18 K and≈ 33 K [30].
Both phase transitions can clearly be seen by peaks in the spe-
cific heat. The phase diagram could be verified by synchro-
tron x-ray-diffraction measurements, reported by Hirai et al
[31]. Ba2MgReO6 has been investigated more extensively by
ab initiomethods confirming the strong influence of spin-orbit
interaction in the formation of the quadrupole order [32–34].
Similar behavior is also observed in Ba2ZnReO6 [30], having

3
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a dipole order at Tc ≈ 11 K and a quadrupole order at
≈ 33 K.

Additionally, the cubic spinel selenide GaNb4Se8 shows a
quadrupole phase with a transition temperature of Tq = 50 K
and an antiferromagnetic transition at Tc = 33 K [35]. The
microscopic theory for this behavior accounts for a combin-
ation of strong correlations and spin-orbit interaction.

The composite orders ϕEg and ϕT2g break the cubic sym-
metry and are even under inversion and time-reversal, regard-
less of its origin (magnetization or polarization), see table 1.
Hence, they neither couple linearly to an external electric
nor magnetic field. Instead, the electric or magnetic fields
couple quadratically to their respective order parameters,
which would be visible in a modification of the fourth order
susceptibility, as recently discussed on the example of the
hidden order phase in URu2Si2 [36]. However, ϕEg and ϕT2g
couple linearly to the respective components of the strain
tensor, [37]. Hence, elastic anomalies prior to the phase trans-
ition can be expected.

Such behavior has been verified in ferroelectrics. For
example, in PbSc0.5Ta0.5O3 a precursor regime was identified
ranging over≈ 100K above the ferroelectric transition, exhib-
iting a softening of the shear elastic constant, which was ini-
tially explained by a higher order coupling of coexisting order
parameters [38]. In contrast, the composite ferroelectric phase
couples linearly to the shear strain, potentially explaining the
strength of the effect.

3. Multiferroics

We continue by extending the model of composite orders to
multiferroics [39–45], i.e. materials with coexisting ferroelec-
tric and magnetic ordering. As before, we focus on materi-
als where the high temperature phase (before the ferroelectric
and magnetic phase transition) is cubic. Such a case is realized
in the multiferroic perovskites, e.g. BiFeO3 [46], which has a
cubic crystal structure at temperatures above≈ 1,103 K [47].
The free energy of a multiferroic contains a contribution from
the ferroelectric phase f(P), the magnetic phase f(M), and their
coupling fc,

f(P,M,T) = f(P,T)+ f(M,T)+ fc. (8)

In a time-reversal invariant system with cubic symmetry, the
coupling term contains three linearly independent contribu-
tions, given by

fc = γ1
(
P2
xM

2
x +P2

yM
2
y +P2

zM
2
z

)
+ γ2 (PxPyMxMy+PyPzMyMz+PzPxMzMx)

+ γ3
(
P2
x

(
M2
y +M2

z

)
+P2

y

(
M2
z +M2

x

)
+ P2

z

(
M2
x +M2

y

))
. (9)

As the formation of composite orders in the magnetic and
ferroelectric degrees of freedom has been discussed before,
we now focus on the potential of forming multiferroic com-
posites ⟨PαMβ⟩, emerging from the multiferroic coupling fc.

As before, we decompose fc into symmetry adapted bilinears
ψk =

∑
ij c

k
ijPiMj. Due to the individual symmetries of polar-

ization and magnetization, the bilenars ψk are odd under time-
reversal T and odd under inversion P .

In cubic symmetry, the tensor product of the polarization
and the magnetization gives T+1u⊗T−1g ≃ A−

1u⊕T−1u⊕E−
u ⊕

T−2u. These representations can be interpreted in terms of the
magnetoelectric multipole expansion [2, 20], with A−

1u being
the pseudoscalar describing the magnetoelectric monopole,
T−1u the toroidal moment vector, and E−

u and T−2u the tensor
describing the quadrupole magnetic moment. The correspond-
ing symmetry adapted bilinears in P and M are given in
figure 3(a). As the tensor product of polarization and mag-
netization can be decomposed into terms transforming as
4 irreducible representations (A−

1u,T
−
1u,E

−
u ,T

−
2u), decomposing

the fourth order terms should give rise to four scalars sym-

metric under all cubic symmetries,
(
T+1u⊗T−1g

)2
≃ 4A1g⊕ . . .

However, as the components of P andM commute, only 3 lin-
early independent contributions remain. This becomes appar-
ent from the free energy in equation (9). As a result, the free
energy in (9) can be expressed in three, instead of four bilin-
ears (comparable to the Fierz identity in high energy physics).
For example, eliminating ϕ−A1u

and writing (9) in terms ofψE−
u
,

ψT−1u
, and ψT−2u

the multiferroic coupling fc is expressed as
follows,

fc =
3γ1
2
ψ2
E−
u
+

2γ3 − γ1 − γ2
2

ψ2
T−1u

+
2γ3 + γ1 + γ2

2
ψ2
T−2u
.

(10)

As before, we obtain a free energy with second order contri-
butions in the bilinears, which serve as order parameters of
the three corresponding types of composite multiferroic order.
Assuming that a fourth order theory is sufficient to describe a
system in mind, we require γ1,γ2,γ3 > 0. Hence, while the
coefficients before the second order terms in ψE−

u
and ψT−2u

are always possitive, the toroidal moment ψT−1u
can emerge as

a composite order parameter if γ1 + γ2 > 2γ3. Following the
theory of composite orders, a macroscopic toroidal moment
in the sample [1, 2, 4], can be found as a high temperat-
ure phase in a strongly coupled multiferroic material, or at
low temperatures in incipient multiferroics. By symmetry,
the toroidal order couples to the curl of a magnetic field, ∼
ψT−1u

·∇×B. Furthermore, the toroidal order induces a mag-
netoelectric effect, as can be seen from the polarizability P=
χeϵ0E+ ηB×ψT−1u

[1].
In a similar logic as for the toroidal order, different versions

of the free energy can be derived to stabilize the monopole or
quadrupole orders. For example, by eliminating ϕT−1u the free
energy (9) can be written in terms of ψA−

1u
, ϕE−

u
, and ϕT−2u ,

fc = (γ1 + γ2 − 2γ3)ψ
2
A−
1u
+

2γ1 − γ2 + 2γ3
2

ψ2
E−
u
+ 2γ3ψ

2
T−2u
.

(11)
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Figure 3. Composite multiferroic orders in cubic symmetry. (a) Bilinears for composite multiferroic orders and stability region. (b) Phase
diagram of composite multiferroic orders.

As a result, for γ1,γ2,γ3 > 0, the free energy (11) gives rise
to the magnetoelectric monopole phase for 2γ3 > γ1 + γ2 and
the magnetic quadrupole phase for γ2 > 2(γ1 + γ3).

The phase diagram for all four possible composite phases
is summarized in figure 3(b). Interestingly, while there are
regions where the monopole or toroidal order can be estab-
lished independently, the stability regions for the quadrupole
orders are found to compete with the toroidal and monopole
orders. Under which conditions these orders can be established
would require a separate discussion beyond the scope of this
paper.

4. Summary and outlook

In summary, we showed the existence of composite orders
in ferromagnetic, ferroelectric, and multiferroic materials (the
approach works similarly for antiferromagnets and antiferro-
electrics, respectively). Starting with cubic ferromagnets and
ferroelectrics, we found that a fourth-order Landau expansion
of the order parameter gives rise to a quadrupole order for suf-
ficiently strong cubic anisotropy. For materials with an easy
axis along the [100] direction, the quadrupole order exhib-
its a Eg symmetry while for an easy axis along the [111]
axis, a quadrupole order with T2g symmetry is observed. More
explicitly, we showed that the quadrupole transition temperat-
ure occurs above the dipole transition temperature for an fer-
romagnetic or ferroelectric order, respectively. Using a field
theoretical perspective, we find that the difference between
dipole and quadrupole transition temperatures depends on the
anisotropy energy. As a result it vanishes for most simple
ferromagnets and ferroelectrics. The theory of composite
orders derived here is in qualitative agreement with reports
about quadrupole orders above magnetic phase transitions,
e.g. in Ba2MgReO6 [30, 31], Ba2ZnReO6 [30], GaNb4Se8
[35], and RB6 (R = H, Dy) [29]. By symmetry, the Eg and
T2g quadrupole orders couple to strain applied to the respective
material.

In the second part, we extended the discussion to
multiferroics, using the specific example of a coexisting
polarization and magnetization in a cubic system. While we

primarily focussed on ferromagnetic order, a similar argument
holds for antiferromagnetic or more complex magnetic orders.
Incorporating a fourth order coupling term in the Landau
theory, we showed that the coupling term can be decomposed
into four different bilinears describing electromagnetic com-
posite order, being the magnetoelectric monopole (A−

1u), the
toroidal order (T−1u) as well as magnetoelectric quadrupole ord-
fers (T−2u and E−

u ). In terms of the corresponding composite
order parameters, the free energy can be formulated in four
different variants, giving rise to regions where these orders can
emerge at elevated temperatures.

In summary, we could show that the theory of composite
orders, can be extended to ferroic materials. Our result shows
that the complex phase diagrams in ferroic, multiferroic, and
magentoelectric materials cannot be seen as composed of indi-
vidual competing orders, but instead as strongly dependent
phase transitions. Furthermore, this interpretation becomes
interesting when the primary order is not seen at temperature
above 0 K, e.g. in incipient ferroelectrics. Still, a composite
order above 0 K is allowed. This argument is relevant for the
ongoing discussion of hidden order in the condensed matter.
For example, in URu2−xFexSi2 a clear phase transition occurs
at temperatures above an antiferromagnetic order, in the region
around x≈ 0.1 [48].
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Appendix

A.1. Decomposing the multiferroic coupling in
symmetry-adapted bilinears

The multiferroic coupling between polarization P and mag-
netization M for cubic symmetry is given in the main text,
equation (9). As it contains three linearly independent fourth
order terms, four variants can be derived in terms of a decom-
position into the four allowed symmetry adapted bilinears
ψA−

1u
, ϕE−

u
, ϕT−1u and ϕT

−
2u
. We provide these expressions sub-

sequently. Eliminating ϕ−A1u
, the multiferroic coupling in the

free energy is given by,

f (1)c =
3γ1
2
ψ2
E−
u
+

2γ3 − γ1 − γ2
2

ψ2
T−1u

+
2γ3 + γ1 + γ2

2
ψ2
T−2u
.

(12)

Eliminating ϕ−
Eu , one obtains,

f (2)c = 3γ1ψ
2
A−
1u
+

2γ1 − γ2 + 2γ3
2

ψ2
T−1u

+
2γ3 − 2γ1 + γ2

2
ψ2
T−2u
.

(13)

Eliminating ϕ−
T1u , one obtains,

f (3)c = (γ1 + γ2 − 2γ3)ψ
2
A−
1u
+

2γ1 − γ2 + 2γ3
2

ψ2
E−
u
+ 2γ3ψ

2
T−2u
.

(14)

Eliminating ϕ−
T2u , one obtains,

f (4)c = (γ1 + γ2 + 2γ3)ψ
2
A−
1u
+

2γ1 − γ2 − γ3
2

ψ2
E−
u
+ 2γ3ψ

2
T−1u
.

(15)

A.2. Field theory treatment of composite order

We promote the vector X to a field X(r, t). We start with the
free energy (1) and rearrange as follows

f(X,T) = f0 (T)+
c
2
X∇2X+

r
2
X2 +(β1 +β2)

(
X2)2

+

(
2β1 −β2

2

)(
[XM1X]

2
+ [XM2X]

2
)
, (16)

with c being a constant. For brevity, we introduced
r
2 = α(T−Tc). The matrices M1 and M2 are chosen
to satisfy, XM1X= 1√

2

(
X2
x −X2

y

)
= ϕEg;1 and XM2X=

1√
6

(
X2
x +X2

y − 2X2
z

)
= ϕEg;2, i.e.

M1 =
1√
2

 1 0 0
0 −1 0
0 0 0

 , M2 =
1√
6

 1 0 0
0 1 0
0 0 −2

 .
(17)

The corresponding partition function is given by,

Z =

ˆ
D3Xe−β

´
ddx f(X), (18)

with β = 1/kBT. To introduce the quadrupolar order, we apply
the Hubbard–Stratonovich transformation. This step is based
on the Gaussian integration and the equation,

e
´
ddx a

2 [XMi X]
2

=N
ˆ

Dϕe−
´
ddx 1

2aϕ
2−XMi Xϕ, (19)

with N being a normalization. Identifying a=−(2β1 −β2)
for the fields ϕEg;i and a= β1 +β2 for the field ϕA1g leads to
the following expression of the partition function,

Z =NZ0

ˆ
D3XDϕA1g DϕEg;1DϕEg;2

× exp

[
−β
ˆ

ddxX
(
c∇2

2
+
r
2

)
X+X2ϕA1g

+
ϕ2A1g

2(β1 +β2)
+XM1XϕEg;1 +XM2XϕEg;2

−
ϕ2Eg;1

2(2β1 −β2)
−

ϕ2Eg;2

2(2β1 −β2)

]
. (20)

Here, we absorbed the X-independent part in the free energy,
f0(T) into the term Z0. Above the phase transition into the fer-
roelectric or ferromagnetic state, T> Tc, X is fluctuating and
can be integrated out. As a result, one obtains

Z =NZ0

ˆ
DϕA1g DϕEg;1DϕEg;2

× det
[
c∇2 + r+M1ϕEg;1 +M2ϕEg;2 +ϕA1g

]− 1
2

× exp

[
−β

ˆ
ddx

ϕ2
A1g

2(β1 +β2)
−

ϕ2
Eg;1

2(2β1 −β2)
−

ϕ2
Eg;2

2(2β1 −β2)

]
.

(21)

This gives rise to the free energy, f =−kBT lnZ ,

f =
1
2β

lndet
[
c∇2 + r+M1ϕEg;1 +M2ϕEg;2 +ϕA1g

]
+

ϕ2A1g

2(β1 +β2)
−

ϕ2Eg;1

2(2β1 −β2)
−

ϕ2Eg;2

2(2β1 −β2)
. (22)

This free energy allows us to determine a gap equation
for the composite orders ϕEg;i. We use the saddle point
approximation,

δf
[
ϕEg;i

]
δϕEg;i

= 0. (23)

To evaluate the saddle point equation, we use the iden-

tity: lndet Ĝi
−1

= tr lnĜi
−1

[49] and set Ĝi
−1

= c∇2 + r+
MiϕEg;i. We now derive [49],
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δ

δϕEg;i
tr lnĜi

−1
= tr

[
Ĝi

δ

δϕEg;i
Ĝi

−1
]
. (24)

We evaluate the trace, both in matrix space and in operator
space (tr Â=

∑
k ⟨k| Â |k⟩). We obtain for the two components

of the quadrupole order,

tr

[
Ĝ1
δĜ1

−1

δϕEg;1

]
=

ˆ
ddk

(2π)3
2ϕEg;1

−2(ck2 + r)2 +ϕEg;1
, (25)

tr

[
Ĝ2
δĜ2

−1

δϕEg;2

]
=

ˆ
ddk

(2π)3

×
18ϕEg;2(

−3ck2 +−3r+
√
6ϕEg;2

)(
6ck2 + 6r+

√
6ϕEg;2

) .
(26)

Close to the phase transition into the quadrupole phase we
assume ϕEg;i ≪ k4 for most momenta k in the integral. Hence,
we remove ϕEg;i from the denominator in equations (25)
and (26) and obtain the universal equation,

tr

[
Ĝi
δĜi

−1

δϕEg;i

]
=−
ˆ

ddk

(2π)3
ϕEg;i

(ck2 + r)2
. (27)

The corresponding linearized gap equation follows from
equations (23), (22) and (27),

ϕEg;i =−2(2β1 −β2)

kBT

ˆ
ddk

(2π)3
ϕEg;i

(ck2 + r)2
. (28)

To evaluate (28) we assume ϕEg;i ≈ constant. Hence, ϕEg;i can-
cels on both sides of (28) and the integration of k on the right
hand side can be performed to obtain,

1=− (2β1 −β2)π

2kBT
√
c3r

=− (2β1 −β2)π

2kBT
√
c3α(T−Tc)

. (29)
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