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Abstract 

As automotive technology advances, particularly in combustion-engine (CV) and electric vehicles 
(EV), ride comfort has become a critical attribute for future car development. A multitude of factors, 
including seat, sound, and vibration, significantly influence the perceived ride comfort in passenger 
cars. Despite numerous studies on human responses to sound and vibration, there is a noticeable gap in 
research investigating real occupants’ experiences under various real-world driving scenarios. 
Additionally, there is a lack of clear guidelines for utilizing advanced technologies in the study of ride 
comfort. 

This thesis aims to bridge this gap by examining human experiences of sound and vibration in 
conventional passenger cars, developing methodologies to assess their impact on perceived ride 
comfort. The primary purposes of this thesis are as follows: (1) to define ride comfort from the 
occupant’s perspective, identifying factors that influence it, (2) to investigate how sound and vibration 
specifically affect ride comfort, and (3) to propose guidelines and a framework for using advanced 
technologies in studying ride comfort. 

The research methodology encompasses a literature review, a field study on sound and vibration 
experienced during various driving scenarios, an interview study on the use of driving simulators, the 
development of a machine learning framework, and a focus group study to evaluate the proposed 
framework.  

The literature review reveals that while significant findings are available from laboratory settings, 
studies integrating all parameters affecting overall ride comfort in real-world contexts are limited. 
Furthermore, there is a need to delve deeper into how sound and vibration influence occupants' overall 
ride comfort. 

To address this, the field study was conducted using eight typical driving scenarios with ten participants 
in both a CV and an EV. Results indicated similarities in initial comfort aspects such as seat adjustment 
and body room but differences in dynamic discomfort, with body movements being a concern in the 
CV, and sound annoyance more prominent in the EV. Moreover, induced body movements dominated 
vibration discomfort, while sound annoyance consistently compounded over time, making relaxation 
difficult for occupants. 

In addition to field studies, this thesis also explores the role of driving simulators in user performance, 
experience, and ride comfort studies. Through an interview study involving 14 participants, guidelines 
for using high-level driving simulators were proposed. The research acknowledges the advantages of 
simulators, such as improved safety, repeatability, controllability. Furthermore, it emphasizes their 
capability to isolate variables and conduct experiments with fewer physical constraints, along with 
enabling rapid transitions between components, structures, and vehicle models. However, the research 
also addresses limitations, including space constraints and communication difficulties. 

To tackle the challenges of traditional ride comfort evaluations, this thesis proposes a machine learning 
framework to overcome limitations such as data quality and quantity, cross-study comparison, and 
model interpretability. This framework aims to augment existing data, propose suitable performance 
metrics, and improve the accuracy and reliability of ride comfort prediction models. Additionally, a 
focus group study evaluates the feasibility of these machine learning methods, identifying their 
advantages of enhancing prediction performance and refinement methods that could be integrated. 

In conclusion, this thesis provides a set of guidelines derived from field studies, driving simulator 
research, and innovative machine learning approaches to address the multifaceted nature of ride comfort 
in automotive design. 
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Chapter 1: Introduction 

1.1 Background 

With the continuous advancements in vehicle refinement, ride comfort has become a significant 
focus in the development of new vehicles and platforms. Modern consumers now have elevated 
expectations for ride comfort in contemporary cars (Harrison, 2004; Sheng, 2012). A comfortable 
riding experience is essential for improving driver performance, reducing occupant fatigue, and 
enhancing safety and long-term health (Wang et al., 2020b). Consequently, both industry engineers 
and academic researchers are increasingly engaging in studies focused on ride comfort. 
 
Human perception of ride comfort is influenced by ambient, dynamic, and ergonomic elements. 
Ambient factors include air temperature, air quality, and sound, while dynamic factors encompass 
vibration, impact, ride motion, and acceleration. Ergonomic factors cover visibility, functionality, 
seat architecture, seatbelts, and seat-human interfaces (Wang et al., 2020b). These factors interact 
with one another; for instance, higher-magnitude vibrations can mask discomfort caused by lower 
noise levels and vice versa (Huang, 2012). 
 
Research on ride comfort for seated occupants has predominantly focused on discomfort. Helander 
and Zhang (1997) established that comfort and discomfort can function as independent factors. 
Comfort is associated with well-being and relaxation and remains relatively constant over time, 
whereas discomfort is primarily linked to physical constraints and poor biomechanics. Other 
studies have also highlighted that experienced vibrations and ride motion (Wang et al., 2020b), as 
well as perceived sound levels and sound characteristics (Sheng, 2012), correlate with discomfort. 
Helander and Zhang (1997) further observed that experiences of discomfort are cumulative over 
time, leading to varying perceptions of discomfort between shorter and longer rides. Kamra et al. 
(2017) differentiated static comfort/discomfort, pertaining to perceptions in a stationary vehicle, 
from dynamic comfort/discomfort, related to perceptions in a moving vehicle.  
 
A variety of studies have investigated human responses to vibrations and the vibrations in real 
vehicles.  Wang et al. (2020b) summarized that vibration experiences in passenger cars can degrade 
overall ride comfort, induce motion sickness, and interfere with activities during the ride. The 
review of laboratory studies indicated that seated humans are most sensitive to vertical vibrations 
in the range of 4–6 Hz and horizontal vibrations in the range of 1–4 Hz. Weighted vibrations in 
passenger car seats were typically significant below 20 Hz in the lateral and vertical directions and 
below 30 Hz in the fore-and-aft direction.  
 
Human responses to sounds and the sounds in real vehicles have been another focus of study. 
Studies on human responses to sound have revealed that both the frequency and amplitude of noise 
significantly impact perceived annoyance and discomfort (Sheng, 2012). Low-frequency noise 
below 250 Hz is particularly bothersome, leading to increased annoyance and reduced task 
performance (Waye and Rylander 2001a), while high-frequency sounds can cause irritation and 
concentration difficulties (Pawlaczyk-Luszczynska and Dudarewicz, 2020). Higher sound 
pressure levels correlate with greater annoyance (Nilsson, 2007), and fluctuating noises are more 
disturbing than constant ones (Plack, 2018). Tonal noises are moreover perceived as louder and 
more annoying than broadband noise (Fastl and Zwicker, 2007). Individual differences, including 
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noise sensitivity, also play a crucial role in how sound is perceived, with more sensitive individuals 
experiencing greater annoyance at lower levels (Zwicher, 1977).  

Clark et al. (2006) indicated that cabin sound can lead to annoyance and discomfort. Qatu et al. 
(2009) showed that in combustion-engine vehicles (CVs), the major energy of interior sound is 
concentrated in low frequencies, with overall interior A-weighted sound pressure levels at wide-
open throttle typically ranging between 45 and 80 dBA. Qatu (2012) concluded that tire noise 
dominates cabin sound at constant speeds in the range of 40–85 km/h, while wind noise becomes 
prominent at constant speeds above 75 km/h. Zeitler and Zeller (2006) found that sound discomfort 
in CVs is mainly associated with constant speed noise, and occupants often perceive sound during 
acceleration as contributing to the sportiness of the vehicle.  

Ride comfort in electric vehicles (EVs) presents unique challenges and opportunities compared to 
CVs. The absence of a torque converter can lead to torsional vibrations that significantly impair 
ride comfort (Karikomi et al., 2006). He et al. (2010) found that, in certain EVs, vibrations were 
more pronounced compared to combustion-engine vehicles (CVs) due to resonance between the 
traction motor and the vehicle driveline. 

Sound perception inside EVs also differs from that in CVs. Fang et al. (2015) found that in EVs, 
the main energy of A-weighted sound is concentrated between 1000 and 2500 Hz. Furthermore,  
Qin et al. (2020) noted that sounds generated by electrical components in EVs can be more 
noticeable than in CVs due to the lack of internal combustion engine noise, while Berge and 
Haukland (2019) indicated that tire noise becomes audible at speeds around 20 km/h in EVs. He 
et al. (2010) concluded that at low speeds, sound radiated by the differential is the primary source 
of noise, while at high speeds, noise from the electric motor predominates. 

Recent research has investigated the application of advanced technologies to predict and assess 
ride comfort. For instance, driving simulators have been utilized to study ride comfort in a 
controlled and safe environment (Bellem et al., 2017). By providing a consistent and adjustable 
setting, simulators allow researchers to explore various aspects of ride comfort without the 
variability present in real-world conditions. Different types of driving simulators, such as shaker-
based and hexapod-based configurations, have been used to analyze vibrations. A review by (Xue 
et al., 2023) has systematically outlined numerous studies investigating the impact of amplitude, 
frequency, and direction of vibration on human responses using shaker-based simulators. 
Hexapod-based driving simulators offer a broader range of motion compared to conventional 
systems. These simulators can replicate dynamic driving conditions more accurately, making them 
ideal for studying complex motion patterns encountered in real-world scenarios (Bellem et al., 
2018). Technological advancements have further enhanced hexapod systems, enabling the 
simulation of multidirectional movements that closely mimic actual driving experiences (Bellem 
et al., 2017). 
 
Machine learning has emerged as a powerful tool in ride comfort studies, offering new avenues 
for data analysis and prediction. This technology allows researchers to handle vast amounts of data 
and uncover complex patterns that traditional methods might miss. By using machine learning 
algorithms, researchers can analyze various factors influencing ride comfort, such as vibration, 
noise, and seat ergonomics, and predict occupant comfort levels with greater accuracy. For 
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example, a study by (Cieslak et al., 2020) demonstrated how machine learning models could 
effectively predict ride comfort by analyzing occupant anthropometric data and measured 
vibrations. Similarly, Nguyen et al. (2021) predicted real-time comfort ratings of bus occupants 
using collected seat vibrations and driving speeds. The integration of machine learning not only 
enhances the precision of comfort predictions (Nguyen et al., 2021) but also aids in the 
development of adaptive systems that can adjust vehicle settings in real-time to optimize comfort 
(Yu et al., 2023).  
 
Most previous studies have investigated the influence of single factors, such as sound or vibration, 
under specific scenarios like constant speed. However, real-world rides involve various 
simultaneous inputs that vary across different driving scenarios and vehicles. Wang et al. (2020b) 
summarized that human responses to sound and vibration vary depending on their frequency and 
amplitude, and these factors can interfere with each other. Moreover, few studies have examined 
how sound and vibration influence perceived ride comfort in EVs. The differences in overall ride 
comfort between CVs and EVs have yet to be clearly identified. 
 
Additionally, while driving simulators have been utilized to generate various vibrations in 
laboratory studies and replicate dynamic driving conditions and complex motion patterns in the 
real-world, comprehensive assessments of the overall benefits and challenges associated with 
employing driving simulators in studies regarding ride comfort have been infrequent. Moreover, 
previous research has often overlooked the distinctions in methodological approaches between 
studies utilizing driving simulators and those employing real vehicles.  
 
Furthermore, some frameworks of machine learning used in previous studies were limited by small 
data volumes, hindering the models' ability to learn data diversity, affecting their generalization 
and robustness. The widely used evaluation metrics vary with different rating scales, complicating 
comparisons across studies. Additionally, some studies lack cross-validation, essential for 
assessing and ensuring generalization capability, leading to potential overfitting. Moreover, the 
absence of model interpretation reduces trust, hinders optimization, and makes it harder to detect 
biases and errors, increasing the risk in real-world applications. 
 
In summary, field tests, driving simulators, and machine learning each offer unique strengths and 
limitations in the study of ride comfort. Field tests provide essential real-world data, driving 
simulators offer controlled environments for detailed studies, and machine learning enables 
sophisticated data analysis and prediction. However, these methods face significant limitations: 
field tests are resource-intensive, driving simulators may not fully replicate real-world conditions, 
and machine learning models struggle with small data volumes and a lack of cross-study 
comparison, reducing their reliability and applicability.  
 
1.2 Aim and research questions 

The five-year research project aims to provide the automotive industry with targets and guidelines 
for developing future mobilities characterized by high comfort levels. The central hypothesis 
underpinning this work is that single factors, such as sound or vibration, influence occupants’ 
perceptions differently depending on the driving scenario (e.g., road profile and speed). This 
variability can be leveraged to reduce experienced discomfort.  
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Research question 1: What is the definition of ride comfort from occupants’ perspective? 
 
The first research question focuses on defining ride comfort from the occupant’s perspective and 
the methodology used to identify factors significantly affecting overall ride comfort. Passenger car 
occupants are exposed to various factors and interact with the vehicle's components during the ride. 
These inputs are perceived and responded to by the occupants. Investigating these passenger 
experiences helps to delineate what constitutes ride comfort. Moreover, examining both subjective 
assessments and objective measurement data across different scenarios enhances our 
understanding of how various factors influence perceived ride comfort. It is important to clarify 
that defining ride comfort in this context involves understanding the interplay of sensory 
experiences, physical interactions, and emotional responses that together create the overall 
perception of comfort for the occupant.  
 
Research question 2: How is ride comfort influenced by sound and vibration? 
 
The second research question aims to specify the influences of sound and vibration on ride comfort. 
Since sound and vibration vary with different driving scenarios, the resulting ride comfort 
experienced by occupants also varies. A methodology that correlates subjective assessments with 
objective measurements of sound and vibration is necessary to determine how occupants’ 
experiences change in response to variations in sound and vibration. 
 
Research question 3: How could advanced technology be utilized in ride comfort, specifically 
vibration discomfort prediction and assessment?  
 
The third research question explores the application of advanced technologies in ride comfort 
studies. This includes evaluating the benefits and constraints of high-level driving simulators and 
investigating feasible and unfeasible study designs in user experience research. The goal is to 
propose guidelines for using high-level driving simulators to study user-experienced ride comfort. 
Additionally, this question aims to develop a framework addressing the challenges of studying ride 
comfort using machine learning, including limited data availability, model interpretation, and 
cross-study comparisons. By using data augmentation and proposing suitable performance metrics, 
the framework seeks to enhance the accuracy and reliability of ride comfort prediction models, 
provide insights into influencing factors, and ensure accurate model evaluation and meaningful 
comparisons between models. 
 
This thesis analyses the accumulated literature concerning the initial phases of research 
development. It begins by identifying the factors influencing both ride comfort and discomfort. 
Subsequently, the thesis aims to establish guidelines and frameworks for integrating advanced 
technologies in ride comfort studies. This approach facilitates a thorough exploration of the 
underlying causes of ride comfort issues and offers practical methodologies for their investigation 
and improvement. 
 
The thesis includes five papers. Paper A analyses previous studies to investigate the definition of 
ride comfort and the impact of vibration on discomfort. Papers B and C examine the effects of 
sound and vibration under various driving scenarios in both combustion engine and electric 
vehicles, where the correlation between subjective assessments of ride comfort and objective 
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measurements of sound and vibration is discussed to enhance the understanding of perceived ride 
comfort. Paper D outlines guidelines for designing ride comfort studies using advanced driving 
simulators, and Paper E presents a framework for predicting ride comfort based on measured sound, 
vibrations, and occupant demographics. Figure 1 illustrates the connections between research 
studies, papers, and research questions in this thesis. 
 

 
Figure 1. Connections between research studies, papers, and research questions. 

 
1.3 Outline 

The thesis is organized into three main sections. The first section introduces the topic and 
comprises literature reviews along with a discussion on the methodology, covered in Chapters 1, 
2, and 3. The second section delves into the ride comfort experiences of front-seat occupants in 
both combustion and electric vehicles, as presented in Chapter 4.1. This section also explores the 
application of advanced driving simulators (Chapter 4.2) and machine learning techniques 
(Chapter 4.3) in studies of vibration annoyance. The third section addresses the research questions 
in Chapter 5 and outlines guidelines for conducting field studies, driving simulator studies, and 
machine learning studies in Chapter 6. Chapter 7 provides an examination of the strengths and 
weaknesses of the study methods used, as well as the generalizability of the study's findings. The 
thesis wraps up with a summary of the results in Chapter 8.  
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Chapter 2: Theoretical framework 

The theoretical framework encompasses sound, vibration, and human factors. It includes reviews 
of human responses to sound and vibration in both laboratory and real-world vehicle settings and 
examines the influence of sound and vibration on ride comfort. Additionally, it explores the 
utilization of driving simulators and machine learning techniques in studying and predicting ride 
comfort, providing an approach to understanding and enhancing occupant experiences.  

2.1 Comfort and discomfort  

The concepts of comfort and discomfort in the vehicular context have been extensively studied, 
yet they remain inherently subjective and multifaceted.  

Comfort is generally defined as a pleasant state or relaxed feeling of a human being in reaction to 
its environment, often resulting from the harmonious integration of factors such as seat ergonomics, 
thermal environment, and acoustic conditions (Grandjean and Kroemer, 1997). Grandjean and 
Kroemer (1997) present a comprehensive overview of comfort, emphasizing the importance of 
ergonomic design in mitigating physical strain and enhancing overall well-being. The interplay 
between seat design, posture, and anthropometric factors is highlighted as crucial to achieving 
comfort in automotive settings.  

In contrast, discomfort is characterized by sensations of unease or stress, often attributed to 
prolonged exposure to adverse physical conditions or sensory stimuli (Helander and Zhang, 1997). 
Branton (1969) provides an early examination of discomfort, focusing on the negative impacts of 
poor seating design and improper posture. His research identifies key discomfort factors, including 
pressure points, restricted movement, and inadequate support, which can lead to musculoskeletal 
issues over time. Furthermore, Corlett and Bishop (1976) discuss the role of seating postures in 
discomfort, illustrating how prolonged and awkward postures can lead to increased 
musculoskeletal discomfort. Griffin and Erdreich (1991) moreover provide a comprehensive 
framework for understanding human vibration and its impact on discomfort, where they 
distinguish between whole-body vibration, experienced through the seat, and localized vibrations, 
felt in the hands or feet. 

These foundational studies underscore that comfort and discomfort are influenced by a complex 
interplay of factors, requiring a holistic approach to their assessment and mitigation in the 
automotive industry. Zhang et al. (1996) suggested a conceptual model of comfort and discomfort, 
which has the transitions between comfort and discomfort in the intersection of two orthogonal 
axes, while Makris et al. (2024) proposes a holistic model for car ride comfort, categorizing 
influential factors into physical, psychological, and functional aspects.  

Measuring comfort and discomfort involves both subjective assessments and objective metrics. 
Subjective assessments often rely on self-reported questionnaires and interviews. Tools like the 
self-reported questionnaires (Hart, 1988) and the Likert scale (De Looze et al., 2003) are widely 
used to gather occupant feedback on various comfort aspects such as seating, noise, and vibration. 
Objective measurements typically involve quantifying physical parameters that influence comfort. 
For instance, whole-body vibrations can be measured on the seat and floor, capturing data on the 
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frequency and amplitude of vibrations (ISO 2631-1, 1997). Similarly, noise levels are commonly 
measured to quantify the acoustic environment inside the cabin (Sheng, 2012).  

Recent studies have concluded that shorter studies (around three minutes) can capture average 
postures and seatbelt fit, while longer studies are required to observe posture variations, 
particularly for individuals with unique body shapes. Discomfort in areas like the back and 
buttocks increased similarly in both scenarios after 15 minutes, with slumped postures contributing 
to back discomfort over time. The stationary scenario led to more awareness and boredom, while 
the driven scenario allowed for more natural movements (Makris, 2023).  

2.2 Human responses to vibrations  

Vibration is a critical factor affecting perceived ride comfort, as it can degrade overall comfort, 
induce motion sickness, impede activities during the ride, and, over the long term, lead to impaired 
health (Wang et al. 2020b). Passenger car occupants experience both whole-body vibrations (WBV) 
and local vibrations. WBV refers to vibrations transmitted to the body through a supporting surface, 
whereas local vibrations are transmitted to specific body parts through contact areas (Griffin and 
Erdreich, 1991). 

Von Gierke and RR (1961) discovered that seated humans are more sensitive to WBV than local 
vibrations below 20 Hz, noting that above 20 Hz, vibrations are attenuated by the body’s soft 
tissues. Griffin and Erdreich (1991) observed that above 20 Hz, vibration primarily affects areas 
in contact with the vibrating surface, attributing discomfort at higher frequencies to resonance and 
the biodynamic response of various body parts. Vibration in the 100–300 Hz range, particularly 
transmitted through the steering wheel, has been linked to hand discomfort (Giacomin and Woo, 
2005; Morioka and Griffin, 2009).  

Figure 2 provides a summary of human responses to vibration. As depicted, vibration 
characteristics include frequency, magnitude, direction, and duration, while individual 
characteristics encompass posture, orientation, age, gender, and anthropometry (Griffin and 
Erdreich, 1991).  

 

Figure 2. Factors that affect human perception of vibration. 
 

Human sensitivity to vibration discomfort varies with frequency, magnitude and direction as 
illustrated in Figure 3. Higher frequencies require greater vibration levels to produce the same 
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discomfort. The effects of frequency on perceived comfort are influenced by vibration magnitude 
and direction (Morioka and Griffin, 2006), body posture (Nawayseh and Griffin, 2012), orientation 
(Huang and Griffin, 2009), and individual demographics (Toward and Griffin, 2011). Vertical 
vibrations are perceived more acutely at low frequencies, with peak sensitivity around 5 Hz, 
attributed to the body's resonance behavior  (Zhou and Griffin, 2014). Low-frequency vertical 
vibrations (below 10 Hz) primarily affect the lower abdomen, lower thighs, and ischial tuberosities, 
whereas higher frequencies impact the spine, head, neck, shoulders, and chest (Arnold and Griffin, 
2018). Sensitivity to longitudinal and lateral vibrations is highest around 2–3 Hz and 1–2 Hz, 
respectively, decreasing with higher frequencies due to changes in the affected body parts 
(Morioka and Griffin, 2006). Discomfort from longitudinal vibrations diminishes with frequency, 
particularly in the upper torso, while lateral vibrations primarily affect the shoulders, chest, lower 
abdomen, ischial tuberosities, and lower thighs (Arnold and Griffin, 2018).  

 

Figure 3. Equivalent comfort contours for sensation magnitudes of 25 and 300. Figure adapted from (Morioka and Griffin, 2006). 
 

Vibration magnitude is another influencing parameter on perception sensitivity. Morioka and 
Griffin (2006) found that sensitivity to vertical vibrations between 10–20 Hz increases more slowly 
with higher vibration magnitudes, with the frequency of greatest sensitivity decreasing as vibration 
levels rise. Arnold and Griffin (2018) noted that higher vibration levels shift discomfort from the 
lower body to the shoulders and chest. Horizontal vibration sensitivity also depends on vibration 
magnitude, with higher frequencies resulting in less sensitivity (Morioka and Griffin, 2006). 
Primary contact areas are most affected by horizontal vibrations, leading to consistent discomfort 
locations as vibration magnitude increases (Arnold and Griffin, 2018). 

Posture and orientation significantly influence vibration discomfort perception. Different postures 
and orientations, such as sitting upright (Toward and Griffin, 2011) or lying down (Toward and 
Griffin, 2009),  result in varied biodynamic responses (Morioka and Griffin, 2006). With increased 
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back inclination, human sensitivity to vertical vibrations reduces, especially at resonance 
frequencies (Basri and Griffin, 2012). For recumbent subjects, back sensitivity is lower compared 
to other body parts (Huang and Griffin, 2009). Standing subjects exhibit similar vertical apparent 
mass resonance frequencies to seated subjects, indicating similar dynamic upper body mechanisms 
(Matsumoto and Griffin, 1998).  

Inter-subject variables like age, gender, and anthropometry significantly influence vibration 
discomfort perception, with effects varying by vibration magnitude (Toward and Griffin, 2011). 
Age correlates with increased resonance frequency and peak magnitude (Toward and Griffin, 
2011), with seniors more likely to lean forward in car seats (Osvalder et al., 2019). Gender 
differences in vibration response are also noted, with males showing higher normalized apparent 
mass at resonance frequencies because males had greater body weight supported by the reclined 
backrest (Toward and Griffin, 2011).   

2.3 Human responses to sounds 

Sound plays a crucial role in human comfort and well-being (Fastl and Zwicker, 2007). As modern 
passenger cars have become quieter, the focus on sound quality as a component of ride comfort 
has intensified (Sheng, 2012). Studies consistently show that equivalent A-weighted sound 
pressure levels correlate with sound annoyance, particularly when the sound initially begins (B. 
Berglund et al., 1990; U. Berglund et al., 1976; Beutel et al., 2016). However, A-weighting alone 
does not fully capture humans' complex responses to sounds (Fastl and Zwicker, 2007; Moore, 
2012). Human perception of sound is influenced by time variations in sound (Ishiyama and 
Hashimoto, 2000), the energy of low-frequency components (Nilsson, 2007) and sound 
characteristics (Fastl and Zwicker, 2007).  
 
Figure 4 summarizes how sound affects human auditory and cognitive systems (Fastl and Zwicker, 
2007; Moore, 2012). Although sound assessments typically rely on physical measurements like 
frequency and sound pressure level, the human auditory and cognitive systems filter the final 
evaluation. This necessitates mapping physical measurements to psychoacoustic metrics such as 
loudness and sharpness, which help relate sound properties to perceptions like annoyance and sleep 
disturbance (Fastl, 2006). Responses to sound vary with age, gender, and psychological factors, 
such as age, gender (Stelrnachowicz et al., 1989), expectations and experiences (Skagerstrand et 
al., 2017).  
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. 
Figure 4. The factors that affect human perception of degraded comfort due to sound. 

 
Sound annoyance has been related to disliking the source, distraction (Guski et al., 1999), 
unpleasantness, exhaustion (Öhrström et al., 2006), sleep disturbance and other stress-related 
symptoms (Bakker et al., 2012). Jeon et al. (2010) found that perceived sound discomfort is 
strongly related to annoyance, which depends on properties like sound level, frequency spectrum 
(Ouis, 2001), loudness, sharpness, fluctuation strength (Hall et al., 2013) and sound context 
(Genell et al., 2006), as well as the individual attitude toward the sound (Ouis, 2001).  
 
Sound annoyance increases with sound pressure level (Subedi et al., 2005).  Ishiyama and 
Hashimoto (2000) found that annoyance grew more quickly above 60 dB(A). Skagerstrand et al. 
(2017) suggested correlations between "comfortably loud/not annoying," "slightly annoying," and 
"very annoying" for sounds with SPLs between 48-55 dB, 56-65 dB, and above 79 dB, respectively.  
 
Annoyance from sound is amplified by low-frequency exposure because low-frequency sound 
caused additional vibrations in the body, such as the chest (Pelmear and Benton, 2003) and 
abdomen (Takahashi et al., 2002). Higher frequencies are less likely to cause distress. The 
relationship between annoyance and sound characteristics is nuanced, with tonal sounds generally 
perceived as more bothersome than untoned ones (Jeon et al., 2010). 
 
The balance between high and low-frequency sounds also affects annoyance perception. Genell et 
al., (2006) found that listeners were more annoyed by sounds lacking higher frequencies than by 
balanced frequency content, while Alayrac et al. (2011) indicated that pure tones were judged less 
annoying than broadband noise. Subedi et al. (2005) furthermore showed that annoyance from 
combined tone components depended on level differences and frequency separation within the 
tones. Low frequency dominated broadband noise was more annoying (Persson Waye and 
Rylander, 2001b), whereas pure tones were less annoying (Subedi et al., 2005). 
 
Sound annoyance tends to increase with loudness (Skagerstrand et al., 2017),  as indicated by both 
mean and maximum loudness levels with mean (Glasberg and Moore, 2002) and the maximum 
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loudness value (Zorilă et al., 2016) serving as indicators. Besides loudness, sharpness is crucial for 
sound annoyance (Fastl and Zwicker, 2007), particularly for sounds above 1000 Hz, where 
irritation grows with higher sound pressure levels (Ishiyama and Hashimoto, 2000).  
 
Research indicates that tonal sounds are perceived as more annoying than non-tonal ones (Jeon et 
al., 2011). The annoyance intensifies with the number of tonal components and decreases as these 
components are reduced (Landström et al., 1995). Dickson and Bolin (2014) found that reducing 
tonal components had a greater impact on reducing instantaneous annoyance than increasing them.  
 
Even when loudness remains constant, factors such as fluctuation strength and roughness can 
impact sound annoyance (Moorhouse et al., 2008). Di et al. (2011) found that frequency-modulated 
sound influenced annoyance perception, decreasing as modulation frequency increased, and 
increasing as modulation sound pressure level rose when it is above 30 dB.  

Human perception of sound involves sensory, cognitive, and emotional aspects (Zeitler et al., 
2004). Unidentifiable sounds are considered more annoying (Ellermeier et al., 2004), while sounds 
perceived as pleasant are rated less bothersome despite higher sound pressure levels (Yang and 
Kang, 2005). Sounds' meanings influence their evaluation. Nature sounds can reduce perceived 
annoyance and loudness (Bolin et al., 2010). 

Expectations about sound affect assessments of loudness and annoyance (Skagerstrand et al., 
2017). Individuals who depend on a sound are often less irritated by it (Miedema and Vos, 1999). 
For instance, vehicle noise is considered less annoying to occupants in vehicles than when heard 
in an apartment setting (Genell et al., 2006).  

Demographic factors, such as gender, show minimal influence on annoyance from steady sounds 
(Janssen et al., 2014), although age may affect responses, with teenagers exhibiting higher 
discomfort compared to seniors, who are less troubled by nature and human activity sounds 
(Moorhouse et al., 2008).  

2.4 Field studies of vibrations in vehicles 

Vibration levels in a vehicle's seat, floor, and steering wheel are impacted by factors such as road 
profile, driving speed, and vehicle type. Adam and Jalil (2017) found that floor vibrations were 
generally greater than those in the seat of the same car. At high speeds or on rough roads, vibrations 
transmitted to the seat, backrest, and steering wheel were greater in the vertical (Kaderli and 
Gomes, 2015) and lateral (Lin et al., 2006) directions than in the longitudinal direction.   

The most significant vibrations in the seat occur at contact points with the human body, such as 
beneath the knee (Mansfield, 2001), the back of the thighs, (Wu et al., 1999), and the buttocks 
(Kilincsoy et al., 2016). These vibrations are primarily concentrated below 20 Hz in the lateral and 
vertical directions (Griffin and Erdreich, 1991) and below 30 Hz in the longitudinal direction 
(Nawayseh, 2015). 

Rakheja et al. (2002) indicated that in passenger cars, backrest inclination and seat height can alter 
the angle between the upper and lower body and change the occupant’s knee height. They also 
found that the driver’s choice of steering-wheel grip posture led to other positional differences.  
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Research by van Veen et al. (2015) suggested that macro-movements, or frequent and distinct 
changes of posture, could enhance perceived comfort due to the pleasant stimulation of tactile 
sensation. Beach et al. (2005) observed that such movements help reduce discomfort, especially 
during prolonged sitting, and that posture changes were more common when the vehicle was 
stationary.  
 
Kyung and Nussbaum (2009) found that driving postures vary with age, gender, and 
anthropometry. Differences in elbows, hips (Kyung and Nussbaum, 2009), and spine angles 
(Bohman et al., 2019; Osvalder et al., 2019) are notable between younger and older occupants. 
Kyung and Nussbaum (2009) concluded that gender influences the angle of the left elbow during 
driving, while body height affects the angles of the left ankle, left hip, and neck.  
 
2.5 Field studies of sounds in vehicles 

Qatu (2012) categorized vehicle interior noise according to various root causes: 
powertrain/driveline noise, tire noise, wind noise, brake and chassis noise, squeak and rattle, and 
electromechanical sounds. Zeitler and Zeller (2006) concluded that experienced sound discomfort 
in a vehicle was dominated by sound at constant speed and wind noise. In addition, engine sound 
contributes significantly to perceived noise during acceleration and has been associated with the 
sportiness of the vehicle. Without the masking effect of the combustion engine, noises caused by 
components such as tires, the transmission and the HVAC system become more audible and may 
induce annoyance (Sarrazin et al., 2012). 
 
Tire noise 

Sandberg and Ejsmont (2002) found that at speeds between 30–100 km/h, tire noise dominated the 
interior sound in passenger cars, especially under cruising or partial throttle conditions. Sandberg 
(2001) indicated that tire noise increases with speed. In electric vehicles, reduced powertrain noise 
makes tire noise a more significant contributor to total noise, even at lower speeds.  
 
Hoffmann (2016) identified two main sources of tire noise: tire vibration and air pumping. Tire 
vibration is caused by variations in the contact area geometry between the tire and the road. Vieira 
(2020) showed that the noise caused by tire vibration covers a wide frequency range, 100–1200 
Hz. Low-order modes of tire noise, caused by time-varying contact shapes, dominate the radiated 
sound around 1000 Hz (Kropp et al., 2012). Air interference with the tire surface and tread 
produces noise ranging from 600 to 2500 Hz (Vieira, 2020). Feng et al. (2009) observed sharp 
peaks in the 190–250 Hz frequency range due to tire cavity resonance. The peak frequency of 
cavity noise depends on tire load and vehicle speed (Qatu et al., 2009), explained by the load 
breaking the tire's symmetry under rolling conditions (Feng et al., 2009).  
 
Wind noise 

Talay and Altinisik (2019) concluded that as driving speed increases, structure-borne noise 
becomes less significant compared to airborne wind noise generated by airflow around the vehicle. 
Qatu et al. (2009) found that wind noise usually dominated interior noise above 90 km/h. Talay 
and Altinisik (2019) indicated that the perceived wind noise sound pressure level at the driver’s 
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left ear increases with frequencies up to around 1000 Hz, then drops significantly. Yingjie et al. 
(2019) showed that wind noise from the front side window is greater than that from the rear side 
window at most frequencies, with peak noise levels occurring around 260 Hz and 200 Hz, 
respectively.  
 
Powertrain/driveline sound 

Qatu et al. (2009) indicated that powertrain noise is noticeable under all driving conditions in 
combustion-engine cars and can be more significant than tire noise at speeds below 40–50 km/h. 
Occupants expect to hear powertrain sounds during idling, cruising, and coasting, with most 
interior powertrain noise between 50–80 dB(A) for passenger cars and 50–85 dB(A) for midsize 
SUVs.  
 
Lennström and Nykänen (2015) concluded that driveline sound in electric cars differs significantly 
from that in combustion cars. Low-frequency firing orders, mechanical noise, and engine noise in 
combustion cars are replaced by high-frequency tones generated by electromagnetic forces and 
gear meshing. Driveline sound in electric cars is usually at a lower level but perceived as more 
annoying than the powertrain sound of combustion cars. 
 
Other sounds 

In passenger cars, occupants can perceive various sounds, such as HVAC noise, influencing ride 
comfort and perceived quality. The impact of HVAC noise is intertwined with changes in the 
vehicle’s interior thermal comfort due to the interaction between thermal and acoustic perceptions 
(Roussarie et al., 2005). Key psychoacoustic models used to characterize the perception and 
quality of HVAC noise include loudness, sharpness, prominence, spectral composition, and tone-
to-noise ratio (Leite et al., 2009).  

Qin et al. (2020) identified that structure-borne sound related to the combustion-engine firing cycle 
at 20–200 Hz is the dominant cause of sound annoyance during start/stop. In electric cars, start/stop 
sounds are often distinctly designed to provide notification information (Frank et al., 2014). 

In addition to these, information and warning sounds also play a crucial role in passenger cars. 
These sounds are designed to provide drivers with significant information regarding vehicle status 
or safety alerts. For instance, (Edworthy and Stanton, 1995) emphasize the importance of 
designing effective auditory displays for information and warning purposes in vehicles. Similarly, 
Edworthy and Hellier (2000) discuss how auditory warnings must be perceptible, interpretable, 
and timely to be effective, highlighting their critical role in enhancing vehicle safety and 
communication. 

2.6 Utilization of advanced technologies  

This session examines the role of advanced technologies, such as driving simulators and machine 
learning, in automotive research. These tools enhance the study of ride comfort by offering detailed 
insights into user performance and experience.  
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Driving simulators are instrumental in studies of occupant experience and ride comfort, 
particularly with automated cars (Gerber et al., 2019) or intelligent vehicles (Caird et al., 2008). 
Driving simulators offer several advantages. Firstly, simulators offer a controlled (Hartwich et al., 
2019) and safe (Manawadu et al., 2015; Schmidt et al., 2016) testing environment for assessing 
various aspects of vehicle technologies. Secondly, driving simulators enable the repetition of 
experiments under consistent conditions, ensuring reliable data collection and analysis. This 
repeatability is crucial for validating and fine-tuning vehicle control algorithms and functionalities 
(Hock et al., 2018; Yun et al., 2019). Various simulator configurations, such as shaker-based and 
hexapod-based driving simulators, have been employed to delve into the nuances of ride comfort. 
 
Shaker-based simulators generate specific vibrations for research, offering precise frequency 
control up to 200 Hz (Bellmann, 2002). Despite advancements, they are limited in motion 
capabilities, affecting their ability to simulate dynamic driving conditions and real-world road 
irregularities accurately (Xue et al., 2023). This limitation can reduce the immersive experience 
they provide and may affect the ecological validity of studies. Hexapod-based simulators offer a 
broader range of motion, facilitating a more detailed simulation of dynamic driving conditions and 
closely mirroring real-world scenarios (Bellem et al., 2018). These systems improve the realism 
of simulations by accurately replicating road irregularities, thereby enhancing the study of ride 
comfort. However, the extended range of motion can increase the risk of motion sickness in 
participants, potentially impacting the validity of study outcomes (Bellem et al., 2017).   
 
Integrating machine learning into ride comfort evaluations, particularly for vibration-related 
discomfort, has emerged as an effective approach to improve traditional methodologies 
(Fitzpatrick et al., 2016). Figures 5, 6 and 7 illustrate several frameworks used in previous studies 
using machine learning. One common framework (Gao et al., 2010; Singh et al., 2023; Taghavifar 
and Rakheja, 2018), as depicted in Figure 5, comprises data collection and modeling, 
encompassing feature engineering, selection of appropriate model architecture, training, testing, 
and evaluation of the model’s performance. Another widely utilized framework (Cieslak et al., 
2020; Kolich et al., 2004; Nguyen et al., 2021) is illustrated in Figure 6, encompassing data 
collection, modeling, and model interpretation. Additionally, some studies (Du et al., 2021; Yu et 
al., 2023) have incorporated a framework that includes data augmentation to address the limitations 
of dataset size as shown in Figure 7.  
 

 
Figure 5. The framework utilized in study (Gao et al., 2010; Singh et al., 2023; Taghavifar and Rakheja, 2018) 

 

 
Figure 6. The framework utilized in studies (Cieslak et al., 2020; Kolich et al., 2004; Nguyen et al., 2021) 

 

 
Figure 7. The framework utilized in studies (Du et al., 2021; Yu et al., 2023) 
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Data augmentation methods, such as those implemented by (Du et al., 2021; Yu et al., 2023), help 
enhance dataset size and variability. Techniques like down-sampling, channel replacement (Yu et 
al., 2023), data segmentation, and resampling (Du et al., 2021) are employed to increase data 
robustness. These methods expand the dataset effectively but require balancing data integrity with 
variability. 
 
Feature engineering transforms raw data into meaningful features, crucial for improving model 
performance in ride comfort studies, especially concerning vibration annoyance (Nguyen et al., 
2021). Key features extracted include weighted vibrations, root mean square (RMS) vibrations, 
and demographic data such as weight, gender, and posture (Taghavifar and Rakheja, 2018). 
 
Machine learning models, particularly Artificial Neural Networks (ANNs), are widely used for 
their ability to capture complex relationships within vibration data. ANNs are flexible and 
adaptable, handling high-dimensional inputs effectively (Nguyen et al., 2021). However, they 
require significant computational resources and careful hyperparameter tuning (Du et al., 2021). 
Besides ANNs, Gradient Boosting Machines (GBM) (Sarker, 2021) and Random Forest (RF) 
(Singh et al., 2016) are powerful techniques for analyzing sound and vibration data. GBMs, as 
ensemble learning methods, build sequences of weak learners like decision trees to enhance 
predictive accuracy by minimizing prior errors (Sarker, 2021). While effective with various data 
types, GBMs are computationally intensive, require significant training time, and are sensitive to 
hyperparameter tuning, posing challenges in interpretation (Yu et al., 2022). In contrast, RF builds 
multiple decision trees and merges their outputs to increase accuracy and stability (Singh et al., 
2016). RF's robustness against overfitting, ability to handle both categorical and numerical data, 
and feature selection capability make it suitable for complex vibration signal studies, such as fault 
diagnosis. Despite these strengths, RF models can be computationally expensive, may suffer from 
a bias-variance tradeoff, and can be less straightforward to interpret compared to simpler models 
(Li et al., 2016). 
 
Evaluating model performance and generalization is essential for assessing vibration annoyance. 
Various studies utilize metrics like mean squared error (MSE) (Singh et al., 2023; Taghavifar and 
Rakheja, 2018), mean absolute error (MAE) (Singh et al., 2023), and the coefficient of 
determination (R²) (Nguyen et al., 2021; Kolich et al., 2004) to measure model accuracy and 
reliability. Sensitivity analysis is employed to determine the impact of different variables on model 
outcomes, aiding in feature prioritization and model refinement (Cieslak et al., 2020). Though 
insightful, sensitivity analysis can be computationally demanding and may not always generalize 
across models or datasets (Kolich et al., 2004). 
 
While MSE, MAE, and R² are commonly used in regression tasks, different metrics, such as recall, 
precision and F1 score, are applied in classification tasks. In the context of classification tasks, 
fundamental concepts such as positive (P), negative (N), and true positive (TP) were pivotal in 
guiding this selection. Positive instances represent the presence of the condition or event of interest, 
while negative instances denote its absence. True positive, specifically, signifies instances where 
the model correctly identifies the presence of the condition, highlighting its capacity for accurate 
detection (Yacouby and Axman, 2020). The elucidation of positive (P), negative (N), and true 
positive (TP) is delineated in Figure 8. Recall, as depicted in Eq.4, quantifies the proportion of true 
positive instances correctly identified by the model out of all actual positive instances. Precision, 
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as shown in Eq.5, measures the proportion of true positive instances correctly identified by the 
model out of all instances predicted as positive (PP).  These metrics provide complementary 
insights into the model's ability to minimize missed detections (false negatives) and incorrect 
identifications (false positives) (Yacouby and Axman, 2020). 
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                                                   Eq.4 
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                                             Eq.5 
where TP represents true positive, PP represents predicted positive, and P represents positive. 
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Figure 8. The definitions of positive, negative, predicted positive and true positive 
 
In addition to recall and precision, the F1 score serves as a composite metric that balances both 
metrics, thereby offering an evaluation of model performance (Yacouby Reda and Axman Dustin, 
2020). As illustrated in Eq.6, the F1 score represents the harmonic mean of recall and precision, 
synthesizing their strengths into a single metric. By considering both recall and precision 
simultaneously, the F1 score provides a robust assessment of the model's ability to achieve a 
balance between identifying relevant instances and minimizing false alarms.  
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$
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                          Eq.6 

 
Feature importance analysis is another technique widely used in machine learning to identify 
which features are most influential in the decision-making process of the model, providing insights 
and interpretation of model behavior. Tree-based models like RF and GBM inherently provide 
feature importance scores based on how much they reduce impurity at each split (Bickel et al., 
2009). This intrinsic feature importance is direct and incurs no additional computational cost. Tree-
based methods effectively capture non-linear relationships and feature interactions. However, 
these models can be biased toward features with high cardinality, and the importance scores may 
vary across different runs due to the inherent randomness in ensemble methods (Bickel et al., 2009). 
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Chapter 3: Research Approach and Methodology 

This chapter introduces the overarching framework and methodologies employed in this thesis, 
aimed at assessing and improving ride comfort within the automotive industry. By integrating 
insights from existing literature, empirical data collected through structured field studies, and 
controlled laboratory experiments, the thesis seeks to establish rigorous methods for evaluating 
ride comfort.  
 
The research in this thesis is based on two philosophical perspectives: positivism and 
interpretivism. The positivist approach seeks to objectively measure human responses through 
controlled experiments, focusing on observable data such as sound and vibration (Wang et al. 
2020b). Conversely, interpretivism explores the psychological dimensions, gathering qualitative 
insights through interviews to understand how factors like age, gender, and past experiences 
influence individual reactions.  
 
Papers B and C of this thesis employ a combination of positivist and interpretivist methodologies 
to explore occupants' perceptions of ride comfort, considering the impact of both vibrations and 
sounds. The research methodology included a test ride that integrated both subjective and objective 
measurements, supplemented by semi-structured interviews. Objective data, encompassing 
vibrations and sounds, were collected alongside subjective data, which involved participants' 
ratings on the experienced vibrations and sounds, as well as qualitative insights from interviews 
reflecting their experiences and perspectives. This combined methodological approach facilitates 
the identification of generalizable patterns while providing deeper insights into the nature of ride 
comfort. While the study found some alignment between objective measurements and subjective 
perceptions of both vibrations and sounds, it also revealed phenomena that could not be fully 
explained through biodynamic responses alone. Researchers continue to investigate how to explain 
critical consequences on ride comfort using objective measurements, focusing particularly on 
vibrations.  
 
Recognizing the complexities of human perception, this thesis aligns with a constructivist and 
pragmatic worldview. It integrates subjective experiences with objective data, underscoring the 
importance of practical solutions within the automotive industry. The research begins with a 
literature review to establish a foundation, followed by field studies collecting real-world data on 
driving conditions and user experiences. The study further explores the role of advanced 
technologies, such as driving simulators and machine learning, in enhancing ride comfort 
evaluations. It discusses the benefits and limitations of using driving simulators and explores 
feasible study designs for integrating simulators into ride comfort studies. Moreover, the study 
proposes frameworks to address challenges like data limitations and model interpretation. 
Ultimately, by synthesizing insights from literature, empirical data, and laboratory experiments, 
this thesis offers methodologies for assessing and improving ride comfort, aiming to inform design 
practices in the automotive industry. 
 
3.1 Literature study 

The literature study is presented in paper A. To perform the literature study, a systematic approach 
was adopted to ensure a review of relevant research areas. Major academic databases such as IEEE 
Xplore, ScienceDirect, SpringerLink, PubMed, and Google Scholar were identified as primary 
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sources for relevant literature. By targeting a wide range of scientific journals and conference 
proceedings without limiting the search to specific ones, the study ensured that all pertinent 
publications in the fields of sound and vibration / vehicle NVH, ergonomics, and comfort were 
considered. 

A list of search terms and keywords related to ride comfort, vibration, sound, ergonomics, and 
vehicle NVH was developed. Keywords included "ride comfort", "whole-body vibration", "human 
responses to vibrations”, “sound perception", "human responses to sounds", "vehicle noise", 
"vehicle vibration", "ergonomics in vehicles", "seat comfort", and "comfort assessment". Filters 
were applied to limit search results to peer-reviewed articles, review papers, and conference 
proceedings published within the last 50 years with a focus of the last 20 years, ensuring the 
inclusion of up-to-date research. 

The selected literature was then organized into thematic categories based on the primary focus of 
the studies, such as "human response to vibrations in automotive vehicles", "evaluation of 
degraded comfort", "the frequency dependence of vibration discomfort", "the magnitude 
dependence of vibration discomfort", "the direction dependence of vibration discomfort", "the 
effect of intra-subject variables on vibration discomfort", "the effect of inter-subject variables on 
vibration discomfort", and "vibrations in real automotive vehicle".  

Each article was critically analyzed to identify key findings, methodologies, and gaps in the 
existing research. Insights from different studies were synthesized to form a coherent 
understanding of the current state of knowledge in the areas of sound and vibration, ergonomics, 
vehicle NVH, and comfort. This analysis helped identify the influencing variables on perceived 
ride comfort and the influence of vibrations and sounds experienced in real-world vehicles, 
forming the basis for specific research questions and hypotheses to guide the subsequent phases of 
the thesis.  

3.2 Field study 

The field study is presented in paper B and C. A field study was conducted to investigate the 
experiences of vehicle occupants, focusing on both subjective assessments and objective 
measurements, especially in terms of sound and vibration influences. 

The study involved ten participants who experienced eight typical driving scenarios in both a CV 
and an EV. After each scenario, subjective data were collected through questionnaires, followed 
by semi-structured interviews after completing all scenarios in each vehicle. Objective data related 
to sound and vibration were gathered using microphones and accelerometers, which were 
subsequently analyzed for each scenario. Detailed information on the test cars, tracks, scenarios, 
and participant demographics is available in Papers B and C. 

Subjective data collection 

The subjective data collection employed a five-point semantic scale, following the approach of 
(Carroll et al., 1959). Semantic scaling, widely used for rating stimuli based on perception during 
exposure, was applied using both unipolar scales (e.g., "not annoyed at all" to "extremely annoyed") 
and bipolar scales (e.g., "calm" or "alert"), depending on the variable of interest. Moreover, the 
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ranking order method was utilized due to its effectiveness in making relative comparisons of 
several stimuli concerning a specific parameter, such as annoyance or discomfort (Namba and 
Kuwano, 2008). Participants ranked factors based on their influence on perceived ride comfort 
through questionnaires administered after each driving scenario. These questionnaires aimed to 
capture immediate impressions, thus directly linking specific stimuli to perceived comfort or 
discomfort. Participants rated various aspects such as annoyance caused by sound and vibration, 
concordance between sound and vibration, and the movement of specific body parts related to 
vibrations. 
 
To gain deeper insights into user experiences, semi-structured interviews were conducted 
following the completion of all scenarios. These interviews included general questions about 
perceived comfort and discomfort, followed by specific queries for each scenario addressing 
participants' perceptions of sound, vibration, and induced body movements. Interviews covered 
topics such as general comfort and discomfort levels, specific annoyances related to sound and 
vibration, characteristics and concordance of sounds and vibrations, and body movements induced 
by specific driving conditions. 
Interviewers utilized probing questions to elicit detailed participant experiences and identify 
causes of perceived discomfort. Participants were encouraged to reference their questionnaire 
responses and highlight any additional issues that arose during the test rides. The interview 
questions can be found in Table 5 of Paper B.  
 
Subjective data analysis  

Participants’ ratings of annoyance due to sound and vibration were evaluated across various 
driving scenarios and vehicle types. The study compared characteristics of sound, using positive-
negative and alert-calm scales, as well as the relative movement of different body parts. 
Additionally, the degree of concordance between sound and vibration was assessed across different 
scenarios and vehicles. 
 
Discomfort causes identified during interviews were categorized based on factors such as sound 
characteristics, vibration characteristics, concordance or discordance between sound and vibration, 
and induced body movements. Categories were further detailed, and the number of participants 
commenting on each factor was summarized to provide a further understanding of common 
discomfort sources. 
 
Objective data collection 

Instantaneous sound and vibration data were collected using sensors placed inside the vehicle cabin. 
Sound levels were measured at the front occupant’s left ear, while accelerometers recorded seat 
rail and armrest vibrations. Detailed sensor specifications and placements are provided in Table 6 
of Paper B. Sound was sampled at 25,600 Hz and vibration at 1,024 Hz. Additionally, participants' 
body movements were recorded using two cameras: one mounted on the sun visor capturing lower 
body movements and another positioned at the front to capture upper body movements.  
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Objective data analysis 

Sound data analyses involved calculating the A-weighted sound pressure level for each test 
scenario, considering the critical frequency range of human hearing (20 to 10,000 Hz). Specific 
segments of scenarios, such as engine start/stop, constant speed scenarios, long bumps, cornering, 
rough roads, speed bumps, and bridge joints, were focused on to capture representative data points. 
 
Vibration data were analyzed using Fourier transform with a focus on the 0.5–50 Hz range, 
covering significant vibrations affecting the seat and armrest with high human sensitivity. Selected 
vibration signals were correlated with identified sound components to understand their impact on 
perceived comfort. 
 
Videos capturing participants' body movements were reviewed, and movements were classified as 
either active or induced. Active movements included conscious posture adjustments and 
unconscious reactions, while induced movements were caused by vibrations, categorized into 
lateral and longitudinal upper and lower body movements. 
 
3.3 Interview study regarding simulator utilization 

This semi-structured interview study engaged 14 participants: six technicians (Te1–Te6) 
specializing in driving simulators, and eight researchers (R1–R8) experienced in their use. The 
technicians primarily focused on managing software, with three (Te1, Te5, and Te6) also handling 
hardware tasks. Participants were selected based on their extensive experience with high-level 
driving simulators, using a "snowball" method where existing participants recommended others. 
 
The study aimed to understand the advantages and limitations of driving simulators compared to 
real vehicles, identify viable and non-viable research areas for simulators, and explore their 
application in ride comfort studies. Specific questions asked during the interviews are detailed in 
Table 1 of paper D. 
 
Interview responses were video recorded, transcribed verbatim, and analyzed using content, 
thematic, and comparative analysis methodologies. The initial content analysis systematically 
reviewed the data to identify prevalent themes, keywords, and conceptual elements (Mayring, 
2004). The subsequent thematic analysis involved coding the interview data based on identified 
themes, comparing simulator use to real cars, and exploring different study objectives (Mayring, 
2004). This analysis phase also allowed for the emergence of new themes beyond predefined 
categories. Finally, comparative analysis examined discrepancies and commonalities in responses, 
deepening the understanding of various perspectives. By integrating these analytical methods, the 
aim was to derive insights crucial to the study’s overarching conclusions. 
 
3.4 Development of framework for machine learning approach  

The development of the machine learning approach is divided into two primary phases: the first 
involves the formulation of a framework that aims to leverage machine learning techniques to 
evaluate occupant experienced ride comfort, while the second entails the implementation of a focus 
group session to evaluate and discuss the proposed framework's efficacy and applicability. 
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Framework 

The study is divided into two primary phases: the first involves the formulation of a framework 
that aims to leverage machine learning techniques to evaluate occupant experienced vibration 
annoyance, while the second entails the implementation of a focus group session to evaluate and 
discuss the proposed framework's efficacy and applicability. 
 
Part I: Framework 
 
• Framework developing 
 
Through a literature review of the existing frameworks on vibration annoyance and ride comfort 
evaluation, several critical gaps were identified as outlined in the introduction. These gaps are 
limited data availability, challenges in model interpretability, challenges in generalization, and 
difficulties in cross-study comparisons. To address the identified gaps, the proposed framework 
should incorporate several key functions beyond the essential tasks of data collection and modeling. 
These additional functions include data augmentation, model interpretation, cross validation for 
model generalization capability assessment and evaluation methods for the capacity of cross-study 
comparisons. The proposed functions, along with the methods to implement them, are outlined in 
Table 1, with detailed elaborations provided in the corresponding sections. 
 

Table 1. The proposed functions and methods for the identified gaps 
Gaps Functions Methods 
Limited Data Availability Data augmentation Adding noise 
Challenges in Model 
Interpretability 

Model interpretation Feature importance 

Difficulties in Cross-Study 
Comparisons 

Evaluation metrics F1 score 

Lack Assessment in Generalization 
Capability 

Cross Validation Leave-one-out cross validation 

 
• Data collection  
 
Data collection involved placing ten participants in the front occupant seat of two vehicles: a 
combustion vehicle (CV) and an electric vehicle (EV). Both objective measurements and 
subjective assessments were collected across eight scenarios, including accelerating from 
stationary to 50 km/h and from 50 km/h to 100 km/h, constant highway driving at 120 km/h and 
60 km/h, traversing speed bumps and bridge joints, driving on country roads, and navigating rough 
terrain. Detailed vehicle specifications, driving scenarios and participant demographics are listed 
in Tables 2 and 3 of a prior study  (Wang et al., 2023a). Participants' sensitivity to auditory stimuli 
was also assessed. Before testing, they completed questionnaires on their sensation sensitivity, 
with responses summarized in Table 2 in paper E. 
 
Vibrations were recorded from various points: the seat rail (aseat,x, aseat,y, aseat,z), armrest 
(aarm,y, aarm,z), and four top mounts (afront-left,z, afront-right,z, arear-left,z, arear-right,z), 
corresponding to longitudinal (x), lateral (y), and vertical (z) directions. The vehicle's pitch, roll, 
yaw, and velocities were measured at the center of gravity. Instantaneous sound was recorded at 
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ear level due to its known effect on vibration perception (Wang et al., 2020b). Sensor locations 
could be found in Figure 2 of a previous study (Wang et al., 2023a). 
 
Following each scenario, participants used questionnaires to provide subjective evaluations of 
vibration annoyance, as detailed in Table 3 in paper E. The evaluation results are found in Figure 
4 of a previous study (Wang et al., 2023a). 
 
• Data augmentation 
 
After data collection, a dataset comprising 160 data points was gathered, including two vehicles, 
ten participants, and eight driving scenarios. This dataset size is insufficient for robust machine 
learning tasks. To address this limitation, the framework employed noise injection for data 
augmentation (Maharana et al., 2022). By adding random or controlled noise, this technique 
simulates slight environmental variations or differing conditions. The assumption driving this 
approach is that, under consistent conditions (same road, driver, speed, and minimal external 
interference), vibrations and sounds exhibit minor variations. Thus, it was expected that 
participants would rate their experiences similarly, justifying this method's use for data 
augmentation.  
 
The recorded vibrations and sounds within the same vehicle and scenario showed consistent 
characteristics across participants, with slight variations reflecting inherent data variability (Wang 
et al., 2023a). These natural variations can be leveraged to generate new data points that maintain 
the core attributes of the vehicle's dynamics while introducing realistic diversity.  
 
Thus, the original dataset was augmented by combining participants' demographic data with 
objective measurements from others in the same scenarios and vehicles. As shown in Figure 4 of 
paper E, objective measurements include: driving velocity, sound pressure, seat rail vibrations, 
armrest vibrations, top mount vibrations, and ride motions. Demographic and sensation sensitivity 
data were considered as a separate data group. For each vehicle-scenario-participant pair, a 
participant's personal data was integrated with randomly selected objective measurements from 
others in the same vehicle scenario, creating a new data point representing the participant's 
subjective judgment in that scenario. Random shuffling was not applied within each group due to 
the coupling of measured vibrations in different directions.  
 
To confirm whether the original and augmented data came from the same distribution, a 
permutation test using high-dimensional Kolmogorov-Smirnov (KS) distance was performed. The 
null hypothesis stated that both datasets originated from the same distribution, while the alternative 
suggested they were from different distributions. 
 
• Feature Engineering 
 
Feature engineering in this study was informed by previous literatures. Table 2 presents the 
selected features, which include a combination of vehicle measurements, demographic data, and 
sensation sensitivity information. 
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The primary features extracted include raw accelerations, RMS accelerations, maximum transient 
vibration value (MTVV), vibration dose value (VDV), jerk, and statistics such as average, 
maximum, minimum, and standard deviation of speed, as highlighted by previous research. These 
acceleration metrics were analyzed within the 0–100 Hz range to capture significant vibrations 
affecting key areas like top mounts, seat rails, and armrests. Additionally, A-weighted sound 
pressure levels were considered in the 0–10 kHz range due to their impact on human vibration 
perception (Wang et al. 2020). 
 
Demographic data, including age, gender, height, weight, and body mass index (BMI), were also 
considered, consistent with previous studies. Participants' occupations (experts or ordinary users) 
were included due to their potential influence on perception (Wang et al., 2020b). Furthermore, 
data on sensation sensitivity, reflecting individuals' responses to various sensory stimuli, were 
integrated to provide a deeper understanding of physiological and perceptual responses to 
environmental factors such as vibrations and vehicle dynamics. 
 

Table 2. The extracted features 

 Features 
Objective measurements • Raw accelerations; 

• RMS accelerations;  
• Maximum transient vibration value (MTVV);  
• Vibration dose value (VDV);  
• Jerk inferred from raw acceleration (e.g., Cseat,x and Cpitch);  
• Average of driving speed;  
• Max and min value of driving speed; 
• Standard deviation of driving speed; 
• A-weighted sound pressures level; 

Personal data • Age;  
• Gender;  
• Height;  
• Weight; 
• BMI (Body Mass Index);  
• Sensation sensitivity; 
• Occupation (i.e., expert or general user) 

 
• Model Architecture 
 
In the proposed framework, vibration annoyance prediction was treated as a classification problem, 
as opposed to a regression problem, due to several advantages that enhance both the model's 
accuracy and its practical application. Firstly, classification enables the clear definition of vibration 
annoyance levels as discrete categories used in semantic scales or Likert scales. Such clarity is 
often lacking in regression models, which produce continuous values that require additional 
thresholding to become actionable. For instance, it will be tricky to decide that a prediction of 2.5 
should be rounded to 2 or 3. Additionally, classification models, unlike regression models, can 
prevent producing meaningless predictions far beyond the scales. Moreover, classification helps 
in effectively managing overfitting.  
 
Tree-based methods such as GBM and RF were employed in the proposed framework because 
they offer significant improvements in accuracy and robustness. ANN was also utilized in this 
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study to facilitate comparisons both within the study and across different studies of ride 
experiences caused by vibrations.  

• Testing and Evaluation 
1) Evaluation metrics 

The proposed framework recommends using the F1 score for its suitability in classification tasks 
that predict discrete categorical outcomes. It is especially beneficial for imbalanced datasets with 
uneven class distributions, offering a stable and reliable metric when others might be misleading 
(Yuxue et al., 2022). In this study, subjective comfort scores range from 1 to 5, making it a 
multiclass classification problem. To thoroughly assess model performance across all classes, we 
selected the macro F1 score. This metric calculates the F1 score for each class individually and 
averages them, ensuring equal weight for each class regardless of size. This approach prevents 
performance skewing by any particular class, making it ideal for multiclass tasks with imbalanced 
datasets. 

𝑀𝑎𝑐𝑟𝑜	𝐹! =	
!
"
∑ 𝐹!,$"
!                                              Eq.1, 

where n represents the index of the class; N denotes the total number of classes. 
 
2) Evaluation of model performance and generalization capability 
 
This study employed the leave-one-out cross-validation method to evaluate model generalization 
capability, as shown in Figure 9. Each participant's measurement data from a specific vehicle and 
scenario was individually selected as a testing data point, while the remaining data underwent data 
augmentation. Within the augmented dataset, 20% was used for validation to determine the end of 
training and prevent overfitting, while 80% was used for training. This 80/20 split is a common 
strategy to balance data for training and validation (Bishop and Nasser M. Nasrabadi, 2002). Using 
80% for training provides ample data to capture complex patterns, while 20% for validation 
reliably estimates model performance, aiding in hyperparameter tuning and detecting overfitting. 
 
After training in each iteration, the model was tested with the designated data point. Following all 
iterations, predictions were collected for all data points to calculate the final performance metric. 
This methodical approach provided an assessment of model generalization across various 
scenarios and participants, enhancing the study’s reliability. 
 

 
Figure 9. The process of leave-one-out cross-validation 
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• Model interpretation 
 
The framework incorporates tree-based models, such as GBM and RF, valued for their robustness, 
interpretability, and capacity to manage high-dimensional data. These models provide clear 
insights into feature importance, effectively addressing the "black box" issue often associated with 
neural networks. By integrating feature importance directly into the model-building process, the 
framework allows for straightforward interpretation of influential features. 
 
Additionally, the proposed framework standardizes methodologies for data augmentation, model 
evaluation, and model interpretation. This consistency ensures more reliable cross-study 
comparisons, enabling researchers to validate findings and apply them effectively across broader 
contexts.  
 
Part II: Focus group 
 
A focus group study was chosen for this research to leverage the strengths of both qualitative and 
interactive methods, enabling the collection of detailed feedback from a diverse group of 
participants (Billson, 1989). This approach fosters dynamic discussions where participants share 
experiences, insights, and debate the framework's strengths and weaknesses. Feedback was 
documented through video recordings and transcribed for content, thematic, and comparative 
analysis.   
 
The study aimed to evaluate the framework's efficacy and methodologies. Discussions focused on 
the augmentation method, model architecture, and evaluation techniques, highlighting their 
strengths and limitations. The focus group also explored challenges in applying machine learning 
to vibration annoyance studies and considered alternative approaches and advanced techniques. 
 
Two focus group discussions were conducted with six data science researchers—three from the 
automotive industry and three from other fields. Participants were introduced to the study's purpose 
and structure, covering the framework's components, including the augmentation method, model 
architecture, feature extraction, and evaluation, along with potential improvements. This 
introduction lasted about 30 minutes. 
 
Participants then engaged in an open discussion based on specific and wrap-up questions outlined 
in Table 5 of paper E. These questions were developed from literature reviews and expert 
consultations to ensure relevance and provoke insightful discussions. The discussion flowed 
logically from specific framework elements to broader perceptions, building a further 
understanding before reaching general conclusions. 
 
Participants shared opinions, experiences, and suggestions on the methodology's effectiveness, 
limitations, and potential improvements. During this phase, comparisons and common themes 
were identified across groups. The session concluded with a summary of key insights and 
recommendations, lasting about an hour. 
 
The feedback underwent content analysis to identify prominent themes and keywords. Thematic 
analysis followed, systematically coding data based on these themes, covering method strengths 
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and limitations and potential challenges in applying machine learning to vibration studies. 
Emerging themes were explored beyond predefined categories. Comparative analysis then 
examined response discrepancies and commonalities, enhancing understanding of varied 
viewpoints. 
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Chapter 4: Summary of Study Results  

This chapter synthesizes findings from field studies, interviews, and machine learning frameworks 
to enhance ride comfort analysis. Field studies stressed the influences of various factors that varied 
across driving scenarios, while interview study highlighted the benefits and limitations of driving 
simulators. The machine learning framework evaluation showcased the efficacy of data 
augmentation and preprocessing for improved prediction accuracy and comfort factor 
identification, with attention paid to model interpretability and data ethics.  
 
4.1 Field Study (Paper B and C) 

This study investigated the factors influencing static comfort and dynamic discomfort in a CV and 
an EV, with attention to the distinct experiences arising from both stationary and moving 
conditions. In static scenarios, adequate space was found to be a significant determinant of comfort 
for both vehicle types. Participants noted that in the CV, insufficient leg room and upper body 
space hindered relaxation. In the EV, factors such as ample room, easy seat adjustment, and good 
body support were crucial for static comfort, although issues were identified with the backrest due 
to a wide bolster at chest level. These findings emphasize the importance of ergonomic design in 
enhancing passenger comfort in stationary conditions. 
 
Dynamic discomfort presented different challenges in the two vehicle types. In the CV, discomfort 
was largely attributed to insufficient support, difficulty in maintaining a relaxed posture, and the 
impact of vibrations and noise during motion. Participants reported increased body movement and 
discomfort due to these dynamic elements. For the EV, sound annoyance was a predominant 
source of discomfort, exacerbated by a lack of body support that contributed to upper body 
movement. Participants experienced mismatches between sound and vibration, which were 
particularly disturbing. These results suggest that while the design of support structures is vital in 
both vehicle types, sound management is especially critical in EVs due to their distinct acoustic 
profiles. 
 
The perceived annoyance from sound varied significantly between the CV and EV. In the CV, tire 
and wind noise were primary discomfort sources, especially at varying speeds. Participants 
identified tire noise, with its loudness and low frequencies, and the sharpness and fluctuation 
strength of wind noise, as significant irritants. In contrast, in the EV the participants reported sound 
annoyance primarily due to high-frequency tonal sounds from electrical components. Notably, the 
sound perceptions also changed with speed variations; for instance, at lower speeds, sound pressure 
was more negatively perceived in the EV, whereas masking effects at higher speeds improved the 
given judgements. These findings highlight the importance of addressing speed-related acoustic 
changes in designing vehicle noise mitigation strategies. 
 
Vibration discomfort exhibited distinct patterns linked to vehicle type and motion scenarios. In the 
CV, low-frequency oscillations and inconsistencies between sound and vibration were key 
discomfort contributors, particularly during braking and over bridge joints. Few participants 
utilized armrests, but those who did experience discomfort from vibrations transmitted through 
these support points. Conversely, in the EV, discomfort was associated with movement-induced 
body motion. 
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Lastly, factors related to seat design significantly influenced comfort perceptions under both static 
and dynamic conditions. Seat dimensions, particularly length and contour, were frequently cited 
as inadequate, affecting overall ride comfort. In static conditions, participants linked comfort to 
seat stiffness and pressure distribution, while in motion, issues like lateral and lower body support 
became more prominent. Although factors such as seatbelts and temperature were evaluated, they 
did not emerge as primary discomfort elements in this study, potentially due to occupant familiarity 
and controlled testing conditions. Collectively, these insights underscore the multifaceted nature 
of ride comfort, necessitating a design approach that considers spatial, acoustic, dynamic, and 
ergonomic elements. 
 
4.2 Interview Study (Paper D) 

The adoption of driving simulators in research presents a range of advantages, particularly in the 
areas of safety and methodological consistency. As detailed in Paper D, simulators allow 
researchers to probe challenging and potentially hazardous driving scenarios in a secure 
environment, which would be impractical to test using real vehicles. This safety advantage is 
coupled with the high repeatability of experiments, enabling consistent conditions that facilitate 
comparative studies across diverse demographic groups and vehicle design parameters. 
Furthermore, the controllability granted by simulators permits the systematic creation of specific 
driving scenarios, allowing for precise testing and increased research efficiency by enabling rapid 
transitions between different road profiles and vehicle models. 
 
Despite these advantages, driving simulators also bear significant limitations that must be 
considered in their application to research. As highlighted in Paper D, technicians report that space 
constraints and reduced motion realism impede the ability of simulators to authentically replicate 
real-world driving experiences, such as acceleration, deceleration, and sharp turns. These 
constraints potentially diminish the immersive quality of simulations and thereby compromise 
their validity. Hardware limitations also restrict the variety of scenarios that can be effectively 
simulated, necessitating careful experiment design and robust communication between researchers 
and technicians. Although simulators might ultimately reduce the overall research time for 
complex studies, the initial preparation of new scenarios can be demanding and time intensive. 
 
The viability of using driving simulators is contingent upon the nature of the study design. 
Simulators are particularly effective for investigations focused on relative values, such as those 
exploring human-machine interactions, road safety, and driver behavior, in addition to component 
and design optimization. However, their application is less suitable for studies involving prolonged 
acceleration, extended lateral maneuvers, or scenarios requiring high ecological validity, such as 
dark driving conditions or snowy terrains. The potential lack of ecological validity may affect 
participant behavior and limit the generalizability of findings to real-world settings. 
 
In the specific context of ride comfort studies, there are additional considerations related to the use 
of simulators. The study elucidates the critical role of a simulator's ability to accurately reproduce 
vibrations, which is essential for evaluating human response and designing effective experiments. 
Motion realism is a significant concern, as simulators often necessitate motion scaling to match 
real vehicle dynamics. This scaling is subjectively assessed and can vary among technicians, 
affecting study reliability. Additionally, simulators may fail to fully engage all sensory aspects of 
real driving, raising challenges in translating findings to actual driving conditions. The risk of 
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simulator-induced motion sickness is another factor, with discrepancies in perception and motion 
potentially leading to adverse participant reactions. Some strategies include adjusting temperature 
and lighting conditions to reduce this risk, though their effectiveness can vary among individuals. 
 
4.3 Framework and Focus Group Study (Paper E) 

The study presents a machine learning framework designed to evaluate ride comfort, 
encompassing stages from data collection to model evaluation and feature importance analysis. 
The proposed framework integrates both subjective and objective data, offering an approach to 
understanding ride comfort. This methodology begins with extensive data collection, capturing 
subjective experiences via questionnaires and objective metrics through sensor data. Preprocessing 
ensures compatibility between these data types by encoding subjective judgments into numerical 
values and organizing data into training and testing sets. This structured approach facilitates the 
subsequent machine learning processes, enabling a rigorous analysis of ride comfort factors. 

Model selection within the framework considers the study's purpose, ensuring appropriate 
algorithm choices for effective analysis. Training and validating models through cross-validation 
techniques minimizes overfitting and enhances the ability to generalize to new data, ensuring 
robustness in predicting ride comfort. Model performance evaluation, primarily using F1 scores, 
verifies effectiveness, with an iterative review of results aiding in refining model accuracy. The 
framework also incorporates feature importance analysis, using models like Gradient Boosting 
Machine (GBM) and Random Forest (RF) to identify key contributors to vibration discomfort in 
driving scenarios, thus informing potential design improvements. 

The framework's application demonstrated significant enhancements in predictive capabilities 
when augmented data were used. These data, produced through thoughtful augmentation 
techniques, localized closely to original datasets, confirming their representativeness. Augmented 
data consistently outperformed original datasets in model evaluations, particularly with GBM and 
RF models, indicating stronger predictive power and better handling of diverse driving scenarios. 
While original datasets exhibited limited performance, especially for lower subjective ratings, 
augmented data extended model reliability across all categories, emphasizing the efficacy of the 
augmentation approach in strengthening dataset quality and model performance. 

Feedback on the machine learning models within this study highlights challenges associated with 
data quality and the balance between complexity and interpretability. Ensuring model 
interpretability is crucial, particularly in practical applications like ride comfort studies. Despite 
the power of complex models such as Artificial Neural Networks (ANN), more straightforward 
models like GBM proved more consistent and user-friendly, effectively managing large datasets 
and capturing influential ride comfort features. Proper feature engineering and maintaining data 
quality through rigorous preprocessing and normalization are essential components in ensuring 
reliable model performance and generalization to real-world conditions. 

The study also addresses ethical considerations and the importance of ensuring data 
representativeness and model fairness. Ethical concerns regarding data privacy and potential biases 
in machine learning models highlight the need for vigilance in handling sensitive occupant data 
and ensuring equitable model performance across diverse demographic groups. Regular audits and 
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fairness assessments are recommended to prevent unintended bias and ensure trust in machine 
learning applications. The effective incorporation of varied driving scenarios and rigorous 
validation techniques are emphasized as critical factors for the success and applicability of 
machine learning in ride comfort studies, ultimately contributing to improved vehicle designs and 
enhanced occupant experiences. 
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Chapter 5: Analysis  

This chapter provides an aggregated analysis of the findings from the studies to address the 
research questions.  
 
5.1 RQ1: What is the definition of ride comfort from occupants’ perspective? 

To address RQ1, a combination of literature review and field studies was utilized to pinpoint 
factors that influence ride comfort specifically from the occupants' perspective. 
 
Literature Study on Ride Comfort Factors 

The literature study explored a range of factors influencing occupants' perceptions of ride comfort. 
Key elements identified include vibration, ride motion, sound, seat and seatbelt systems. Each 
factor contributes uniquely to the overall comfort experience, interacting in complex ways with 
the vehicle and the environment. This multivariate nature of ride comfort underscores the need for 
a holistic understanding of how these elements collectively influence occupant perceptions. 
 
Further, the study revealed that occupants are exposed to multiple simultaneous inputs from the 
vehicle that vary depending on driving conditions. This variability highlights the dynamic context 
in which ride comfort is experienced, suggesting that ride comfort cannot be assessed solely based 
on isolated factors. Instead, understanding ride comfort requires considering how vibrations, noise 
levels, and movements interact under different conditions, such as varying speeds and road profiles. 
 
Another finding from the review is that many research studies focus on identifying aspects that 
cause "ride discomfort" even when the term "ride comfort" is used. This discrepancy suggests a 
gap in understanding and defining positive comfort experiences. Therefore, identifying specific 
factors that are associated with perceived ride comfort in stationary conditions is one important 
aspect for advancing research in this area. 
 
By synthesizing insights from existing literature, the study laid a foundation for understanding 
how occupants perceive ride comfort and discomfort, as well as provided a basis for the subsequent 
field study. This exploration of literature highlights the importance of dissecting ride comfort into 
its constituent elements to foster better design practices in the automotive industry. 
 
Field Study Insights on Ride Comfort 

The field study provided practical insights by obtaining direct feedback from occupants about their 
ride comfort experiences. This aspect of the research was crucial in offering a real-world 
perspective that complemented the theoretical framework established by the literature review. It 
became apparent from the gathered data that overall ride comfort encompasses primarily two 
components: initial comfort and dynamic comfort. 
 
Initial comfort was consistently found to be influenced by factors such as ingress, the amount of 
available body room, seat adjustability, and support. These elements collectively contribute to the 
immediate sense of ease that occupants experience upon entering and settling into the vehicle. 
Both vehicles studied, the CV and the EV, demonstrated a shared emphasis on these factors.  
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Dynamic comfort presented more variation between the two vehicles. For the CV, dynamic 
discomfort largely stemmed from induced body movements, noticeable local vibrations, and 
intrusive sounds. The interplay between these physical and auditory factors influences comfort 
levels during motion. Conversely, in the EV, the main source of dynamic discomfort was found to 
be annoying sounds. The absence of traditional engine noise in EVs means that other sounds 
become more perceptible, leading to increased occupant sensitivity to high-frequency noises.  
 
5.2 RQ 2: How is ride comfort influenced by sound and vibration? 

The field study underscores the significant impact of sound and vibration on ride comfort, 
particularly regarding dynamic discomfort, in both the CV and EV analyzed.  
 
In the CV, discomfort related to sound was primarily attributed to tire and wind noise. The loudness 
and low-frequency characteristics of tire noise, combined with the sharpness and fluctuation 
strength of wind noise, emerged as major causes from dynamic discomfort. These noises became 
more prominent as they contributed to an overall decrease in ride quality. Conversely, the acoustic 
challenges in the EV stemmed from high-frequency tonal sounds produced by electrical 
components. Participants reported these sounds as particularly annoying at lower speeds, where 
they were more negatively perceived. However, the study indicates that at higher speeds, masking 
effects may reduce the perceived discomfort. 
 
Vibration was identified as another crucial factor affecting dynamic discomfort, with distinct 
patterns observed in the CV and EV. In the CV, discomfort was linked to low-frequency 
oscillations and inconsistencies between sound and vibration, especially noticeable when 
traversing bridge joints. The lack of adequate body support further exacerbated these issues, 
challenging passengers to maintain a relaxed posture and resulting in increased body movement. 
Similarly, in the EV, discomfort due to vibration was closely associated with movement-induced 
body motion. The findings indicated that insufficient ergonomic support resulted in significant 
upper body movement, intensifying the discomfort experienced by passengers.  
 
The study particularly emphasizes the need to consider both immediate and long-term responses 
to sound and vibration in assessment methodologies. One of the findings is the differentiation 
between immediate reactions and overall perceptions of ride comfort. Participants noted that sound 
and vibration affected their ability to relax, even when these elements were not rated as 
immediately annoying. This indicates a complex relationship where immediate assessments do not 
fully capture the long-term impact on ride comfort. 
 
When it comes to the characterization of vibration discomfort, the study found participants 
struggled to articulate specific vibration characteristics directly. As a result, the researchers turned 
to observable indicators such as body movement and the relative motion between body parts to 
assess vibration discomfort. Low-frequency vibrations were identified as one important 
contributor to discomfort, often leading to noticeable body movements and subtle resonance 
effects. These indirect indicators provide an approach for understanding and mitigating vibration-
related discomfort. 
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5.3 RQ 3: How could advanced technology be utilized in ride comfort, specifically vibration 
discomfort prediction and assessment? 

To maximize the use of advanced technologies such as driving simulators and machine learning 
in ride comfort, specifically vibration discomfort assessment, it is essential to establish a 
framework that integrates each component effectively.  
 
Incorporating Advanced Technology: Initial Considerations 

Achieving enhanced ride comfort, particularly in relation to reducing vibration discomfort, calls 
for a strategic integration of advanced technologies such as driving simulators and machine 
learning. This integration is important for potentially transforming the framework of ride comfort 
evaluation and vehicle design. To effectively utilize these technologies, certain initial 
considerations should be addressed to ensure a cohesive and comprehensive approach. 
 
Driving simulators provide a safe and controlled testing environment with the unique advantage 
of rapidly switching between various vehicle designs and driving scenarios. This flexibility allows 
researchers to collect instantaneous responses to a number of conditions/designs and make 
comparison across them. Meanwhile, machine learning approaches offer the ability to identify 
patterns and predict outcomes related to vibration discomfort. These approaches could process 
complex datasets from both field and simulator studies, revealing insights that might not be 
immediately evident through traditional analysis.  
 
Utilizing Driving Simulators 

The use of driving simulators begins with defining clear study objectives and test scenarios. This 
helps direct methodological and technological choices, ultimately providing actionable insights. 
Simulators could be configured to enhance realism by employing motion-cueing systems and 
advanced algorithms that simulate realistic auditory and tactile response dynamics. In structured 
testing, test plans are developed to cover driving scenarios of interest. Sensors collect detailed data, 
such as sound, vibration, and ride motions, enabling analysis of the interplay between stimuli and 
their impact on the dynamic discomfort. The analysis phase evaluates collected data to discern 
patterns and correlations.  
 
Leveraging Machine Learning 

The initial phase of leveraging machine learning in dynamic discomfort assessment involves data 
collection and augmentation. This includes gathering datasets from both field and simulation 
studies focusing on vibrations and sounds. Augmentation techniques are employed to enhance 
dataset robustness, ensuring the development of accurate and generalizable machine learning 
models. The model development phase includes selecting and training predictive models to predict 
dynamic discomfort. Feature importance analysis could provide further insights regarding the 
contribution of various factor on experienced vibration discomfort.  
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Creation of a Feedback Loop for Continuous Improvement 

The establishment of a feedback loop is an essential strategic advantage in integrating advanced 
technologies. This feedback loop is characterized by an iterative cycle of data collection, prediction 
and validation that spans both simulated environments and real-world applications. By employing 
this continuous cycle, vehicle systems can be continuously refined, aligning more closely with 
both technological advancements and evolving consumer needs. 
 
Data collected from real-world driving conditions or during simulations is analyzed to identify 
vibration discomfort issues. Predictions on occupant experiences could be made based on the 
collected data. Validation involves comparing predictions with real-world data to verify the 
accuracy and reliability of the predictions, where insights gained from this comparison are fed 
back into the system, guiding further refinements and establishing a cycle of continuous 
improvement. 
 
This process transforms vibration discomfort assessment from a static goal into a fluid, adaptable 
quality. Instead of being viewed as a fixed element to be checked off a list, vibration discomfort 
becomes an ongoing pursuit, constantly adapting to new data, technological innovations, and user 
responses.  
 
5.4 Comparative Analysis 

Methodology and Setup 

Field studies involve collecting data directly from occupants as they experience actual driving 
conditions, providing genuine observations of experienced ride comfort and the effects of various 
factors such as sound and vibration. However, field studies have limitations such as limited control 
over external variables, time consumption, and extensive resource dependance. Researchers have 
difficulties ensuring the consistency and repeatability of the results, but despite these challenges, 
field studies remain valuable for understanding how occupants perceive the overall ride comfort 
as well as the sounds and vibrations, offering insights that are grounded in real-world experiences. 

Driving simulators offer a distinct advantage by providing a controlled and repeatable environment 
for testing ride comfort. Unlike field studies, simulators allow researchers to manipulate specific 
conditions regardless of physical restrictions in the real world, enabling precise adjustments to 
scenarios such as speed, road type, and environmental factors. Additionally, the capability of rapid 
switching across various vehicle designs afforded by driving simulators ensures that test subjects 
can evaluate their experiences by instantaneous perception, improving the accuracy and efficiency 
of comparison. However, simulators may lack the full ecological validity of real-world studies, as 
they might not mimic the complete range of sensory experiences encountered on the road. 

Machine learning methodologies leverage real-world datasets to identify patterns and predict 
outcomes related to ride comfort. These approaches involve training models to capture complex 
relationships between variables such as vibration, sound, and occupant experiences. The advantage 
of machine learning lies in its ability to provide insights that might not be immediately apparent 
through traditional analysis methods. However, the success of machine learning models depends 
heavily on the robustness of the data used for training. Ensuring data quality is crucial, as 
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inaccurate or biased datasets can lead to misleading predictions. When properly implemented, 
machine learning offers a powerful tool for advancing predictive capabilities and informing design 
improvements in the automotive industry. 

Data Collection and Analysis 

Field studies involve collecting direct, real-time data from the real world, allowing researchers to 
observe occupant experienced ride comfort under genuine driving conditions. This method 
captures the variability in ride comfort due to factors such as road conditions and vehicle types, 
offering insights into how variables including sound and vibration impact occupant experiences. 
The primary advantage of field studies is the real-world applicability, providing context-rich data 
that reflect actual conditions. However, the inherent variability can also pose challenges in drawing 
consistent conclusions across different studies, especially when the field studies are resource 
intensive and time consuming. 

In contrast, driving simulators gather controlled data on specific scenarios, allowing researchers 
to isolate and analyze the influence of particular variables on ride comfort. Utilization of driving 
simulators provides a possibility for detailed examination of how these variables interact under 
controlled conditions. This approach enables precise manipulation of variables, enhancing the 
reliability and consistency of the data collected. The ability to replicate scenarios with exact 
specifications ensures that researchers can conduct systematic analyses and identify causal 
relationships with greater certainty. 

Machine learning approaches augment the size of collected data to detect patterns and derive 
insights into occupant experienced ride comfort. By analyzing extensive datasets, machine 
learning models can uncover complex relationships that might not be evident through traditional 
analysis. A critical advantage of this approach is the capability of feature importance analysis, 
which assesses the significance of various factors in predicting ride comfort. This analysis offers 
deeper insights into which variables most influence passenger experiences, guiding targeted 
interventions to enhance comfort. Machine learning's analytical power enables the identification 
of trends and provides a robust framework for predictive modeling and optimization in vehicle 
design. 

Advantages and Limitations 

Field studies offer the distinct advantage of capturing realistic observations and behaviors by 
conducting research in natural settings or in designed settings to mimic the real world. Such 
authenticity provides valuable insights into how various factors impact ride comfort in everyday 
scenarios. However, the very nature of field studies introduces challenges related to limited 
repeatability and variable control. Factors such as road conditions can introduce significant 
variability, making it difficult to replicate findings consistently across different studies. This lack 
of control can complicate efforts to draw clear, generalizable conclusions. 

In contrast, driving simulators provide the benefit of safe and repeatable testing conditions. By 
offering a controlled environment, simulators allow researchers to precisely manipulate variables 
such as speed and road conditions to explore specific aspects of ride comfort. The ability to 
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systematically experiment and replicate scenarios enhances the reliability of the collected data. 
Moreover, driving simulators allow researchers to efficiently switch across different test scenarios 
or vehicle designs, providing possibilities for instantaneous comparisons in occupant experiences. 
Despite these strengths, simulators face limitations, including a potential lack of motion realism 
and ecological validity. Although they can mimic many aspects of driving, simulators may not 
fully capture the complex realities of real-world driving, which can affect the applicability of 
findings to actual driving experiences. 

Studies using machine learning methods cannot replace field studies or simulator studies; rather, 
it serves as a complementary tool that can effectively utilize the data derived from field studies 
and simulator studies. Machine learning approaches process extensive datasets to detect intricate 
patterns and predict ride comfort outcomes with high precision. Their ability to adapt and refine 
predictions over time, as new data becomes available, supports continuous improvement in model 
performance. However, machine learning approaches are heavily dependent on the quality of the 
training data. Poor-quality or biased datasets can lead to inaccurate or misleading predictions, 
underscoring the importance of ensuring robust, representative data. This dependency highlights a 
critical challenge that must be addressed to achieve reliable outcomes and maximize the potential 
of machine learning in enhancing ride comfort assessments. 

Application and Integration 

Field studies play a crucial role in informing real-world applications by providing immediate 
feedback based on authentic occupant experiences. The insights gained from such studies are 
directly applicable to real-world contexts, helping researchers understand how different factors 
affect ride comfort in actual driving conditions.  

Driving simulators, by contrast, support iterative testing and real-time scenario analysis. Their 
controlled environment allows for the systematic exploration of various driving conditions, 
enabling researchers to experiment with different variables and assess their impact on ride comfort.  

Machine learning further enhances this process by boosting predictive capabilities and enabling 
real-time adjustments within vehicle systems. By processing large datasets, machine learning 
models can predict discomfort and suggest adjustments dynamically, leading to more responsive 
and tailored vehicle designs.  

Field studies, driving simulators, and machine learning methodologies each offer unique 
contributions and encounter challenges in investigating ride comfort, yet they complement and 
support each other in meaningful ways. Field studies provide real-world insights, although they 
face challenges related to control and consistency. Driving simulators, on the other hand, offer 
controlled settings that mitigate these challenges. While simulators may lack complete ecological 
validity, they fill the gaps inherent in field studies by providing a repeatable platform for controlled 
experimentation. Machine learning further augments these methods by analyzing data from both 
field studies and simulators to uncover patterns and predict outcomes related to ride comfort. By 
leveraging robust datasets, machine learning models enhance understanding and prediction, 
offering insights not readily apparent through traditional analysis.  
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Chapter 6: Proposed guidelines 

6.1 Guidelines for field study on ride comfort 

The guidelines for conducting a field study on ride comfort in passenger cars were developed 
through a review and synthesis of existing literature and empirical insights gained from field 
studies. The process aimed to establish a structured and reproducible framework that allows 
researchers to effectively evaluate the experienced ride comfort and to investigate the impact of 
sound and vibration on ride comfort. 

Table 3 outlines the field study design for investigating ride comfort in passenger cars, focusing 
on the impact of sound and vibration. It addresses objectives, vehicle selection, participant 
recruitment, data collection, ethical considerations, study procedures, data analysis, and result 
evaluation. 

Table 3. Guidelines for field study on ride comfort. 

Study Design and 
Planning 

Define Objectives: 
• Clearly outline the objectives of the field study.  
• Identify specific research questions, such as understanding the impact 

of sound and vibration on occupant comfort or comparing the ride 
comfort of different vehicle types. 

Select Vehicle Types and Scenarios: 
• Choose the vehicle(s) to investigate the characteristics of interest. 
• Design representative driving scenarios that could capture the 

specific sounds and vibrations pertinent to the study's objectives 
Participant Selection and 
Preparation 

Recruit Representative Participants: 
• Ensure the selected group of participants can cover the demographics 

(age, gender, driving experience) of expected the customer group to 
capture the range of comfort perceptions. 

Participant Briefing: 
• Provide detailed instructions and brief participants on the study 

protocol. 
• Familiarize participants with any equipment they will use during the 

study, such as in-car sensors and questionnaires. 
Data Collection Subjective Measurements: 

• Use questionnaires to collect subjective data on occupants’ 
experiences. Include questions about perceived vibration and noise 
discomfort and overall ride comfort judgement. 

• Collect additional contextual information, such as participants' 
seating positions and postures during the ride. 

Objective Measurements: 
• Install sensors in the vehicle to capture objective data such as 

vibration (e.g., vibrations on seat rail and armrest), sound levels 
representative for the participants experience, and ride motion (e.g., 
pitch, roll, yaw). 

• Collect additional vehicle performance data, including speed, road 
conditions, and driving behavior. 

Ensuring Data Quality Pilot Testing: 
• Conduct pilot tests to validate data collection methodologies and 

refine study procedures. 
• Address any issues with data collection tools or protocols identified 

during pilot testing. 
Ethical Considerations Privacy and Confidentiality: 

• Ensure that all collected data are handled with strict confidentiality. 
• Use anonymization techniques to protect participant identities and 

comply with data protection regulations. 
Informed Consent: 
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• Clearly explain the purpose of the study, its procedures, and any 
potential risks to participants. 

• Obtain written informed consent from participants before involving 
them in the study. 

Conducting the Study Standardized Procedures: 
• Implement standardized driving routes and protocols for consistency 

across different vehicles and scenarios. 
• Ensure that driving conditions are as controlled as possible (e.g., 

weather, traffic) to avoid introducing variability that could affect the 
results. 

Data Logging and Monitoring: 
• Continually log and monitor incoming data during field studies. 

Address any equipment malfunctions or inconsistencies immediately. 
• Ensure that participants are comfortable and safe throughout the study 

and provide them with breaks as needed. 
Data Analysis Data Preprocessing: 

• Perform initial data checks to identify and correct any errors or 
inconsistencies in the data. 

• Convert subjective ratings to numerical values for compatibility with 
statistical and machine learning analyses. 

Combining Subjective and Objective Data: 
• Integrate subjective and objective data into a unified dataset for 

analysis. 
• Use statistical methods or machine learning models to identify 

patterns and correlations between different types of data. 
Evaluating Results Identify Key Factors: 

• Analyze data to identify the key factors affecting ride comfort, such 
as specific vibration frequencies, noise levels, or vehicle motions. 

• Interpret the significance of identified factors in relation to participant 
comments and feedback collected during the study. 

Model Validation: 
• Validate findings using cross-validation or similar techniques to 

ensure that identified patterns are robust and generalizable. 
• Report both statistically significant and practically relevant findings 

to provide a balanced view of ride comfort factors. 
 
6.2 Guidelines for using driving simulators in ride comfort studies 

The findings from literature and the interview study are merged into guidelines on how to conduct 
user studies, particularly focusing on user experience and ride comfort in high-level driving 
simulators (Table 4). These guidelines aim to help researchers use driving simulators in user 
studies, while they also address potential limitations and carefully design studies regarding validity. 
 

Table 4. Guidelines for using driving simulators in ride comfort studies 

General advantages of 
using simulators 

Encourage researchers to apply the advantages: 
• Safety 
• Repeatability 
• Reduced practical constraints 
• Controllability 
• Efficiency 

General limitations of 
using simulators 

Encourage researchers to weigh these factors: 
• Space limitations 
• Restricted motion realism 
• Hardware dependence 
• Communication difficulties between researchers and technicians 
• Time consuming for new scenario development 

Types of studies 
suggested in simulators 

Encourage the use of simulators for experiments requiring:  
• Reduced risk 
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• Controlled environments 
• Precise manipulation of variables 
• Rapid transitions between study objects 

Types of studies not 
suggested in simulators 

Caution against using simulators for studies involving: 
• Acceleration and deceleration 
• Extensive lateral maneuvers 
• Low-light conditions 
• Icy surfaces 
• Estimation of inter-vehicle distances 
Discourage the use of simulators for absolute value studies that directly 
compare with real-world measurements 

Design of simulator 
studies 

Ethical Considerations: 
• Ensure participant safety and well-being throughout the experimental 

procedures. 
Task Duration: 
• Consider the duration of simulation sessions and potential effects on 

participant experience and behavior. 
• Implement breaks or rest periods to mitigate the impact of prolonged 

simulation exposure. 
Data collection: 
• Consider the methods for collecting subjective judgements before, 

during and after the test scenarios (e.g., interviews, questionnaires, 
estimation scales and instant judgements). 

• Consider adding objective data collection during the simulation if 
useful for the study (e.g., vibrations, noise and ride motion of the 
vehicle). 

Setup of simulators Resource Allocation: 
• Allocate resources to support the design, implementation, and 

analysis of the simulation study. 
• Select appropriate driving scenarios tailored to the capabilities and 

limitations of the simulator. 
• Ensure that control conditions are designed and implemented to 

isolate specific variables of interest. 
Simulation Fidelity: 
• Assess the fidelity of the simulator in replicating real-world driving 

dynamics. 
• Minimize biases and ensure the fidelity of the simulation 

environment. 
• Consider the trade-offs between simulator realism and practical 

constraints. 
Environmental Factors: 
• Control environmental factors such as lighting and temperature 

within the simulation environment. 
• Consider how environmental factors may influence participant 

behavior and responses. 

Specific guidelines for 
user performance 

• Encourage the use of simulators for dynamic scenarios that require 
real-time decision-making by participants. 

• Caution against scenarios that may not accurately capture real-world 
driving experiences, such as low-light conditions. 

Specific guidelines for 
user experience 
 

• Prioritize the investigation of ergonomic factors, HMI systems, 
ambient conditions, and the perception variation under various 
conditions. 

• Acknowledge limitations in simulating real-world factors like ingress 
and legroom. 

Specific guidelines for 
user ride comfort 

Assess various driving scenarios: 
• Recommend assessing various driving scenarios (e.g., bumpy roads) 

to study ride comfort. 
• Acknowledge challenges in replicating real-world sensations like 

acceleration and deceleration in simulators. 
Prioritize relative value studies: 
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• Emphasize relative value studies over absolute value studies to 
account for differences in simulation conditions and scaled motions. 

• Encourage detailed analysis of changes or differences within the 
simulated environment. 

Minimize impact of virtual environment: 
• Mitigate biases caused by simulator fidelity, motion cues, and visual 

displays to ensure the validity and reliability of results. 
• Consider potential impacts on participant behavior and responses, 

such as reduced risk perception and simulator-induced discomfort. 
 
6.3 Guidelines for using machine learning in ride comfort studies 

Table 5 summarizes the framework design and planning for a ride comfort study focusing on machine 
learning applications. It includes defining objectives and appropriate metrics, data collection and 
preprocessing, model selection and training, performance evaluation and interpretation, implementation 
and validation, ethical considerations, maintaining model performance, and leveraging advanced 
techniques. Each section outlines essential steps and considerations to ensure robust, accurate, and ethical 
analysis aimed at predicting ride comfort. 

Table 5. Guidelines for using machine learning in ride comfort studies 

Framework Design and Planning Define Objectives 
• Clearly outline the objectives of the study.  
• Identify specific research questions and the intended objectives. 
Select Appropriate Metrics 
• Choose relevant performance metrics like F1 scores for classification 

tasks or MAE/RMSE for regression tasks. 
• Consider metrics that align with your research objectives and can 

effectively evaluate model performance. 
 

Data Collection and Preprocessing Data Collection 
• Gather a diverse dataset from participants that adequately represent the 

potential user population. 
• Collect both subjective measurements (e.g., user comfort ratings via 

questionnaires) and objective measurements (e.g., vibration, sound, 
and motion data from a field study or simulator study). 

Data Preprocessing 
• Convert subjective judgments and demographic data into numerical 

values to ensure compatibility with machine learning processes. 
• Divide the data into appropriate subsets, such as training and testing 

sets, ensuring that testing data remains unseen during training. 
Data Augmentation 
• Employ data augmentation techniques to enhance dataset size and 

diversity while preserving data integrity. 
• Validate augmented data to ensure it remains representative of actual 

ride comfort scenarios. 
Model Selection and Training Choose Suitable Models 

• Select machine learning models based on study objectives and dataset 
characteristics. Consider models like Gradient Boosting Machine 
(GBM), Random Forest (RF), and Artificial Neural Networks (ANN). 

• Evaluate the suitability of each model for your specific use case, 
considering factors like interpretability and computational complexity. 

Training and Validation 
• Train models using cross-validation techniques to prevent overfitting 

and ensure generalizability. 
• Split the dataset into training and testing subsets, keeping the testing 

set separate during training for unbiased evaluation. 
Model Evaluation and Interpretation Performance Evaluation 
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• Assess model performance using the selected metrics. For 
classification tasks, compute F1 scores and macro F1 scores to 
evaluate predictive efficacy across all categories. 

• For regression tasks, incorporate metrics like MAE, RMSE, and MSE 
to understand prediction errors. 

Feature Importance Analysis 
• Analyze feature importance to identify key factors influencing ride 

comfort. For GBM and RF models, calculate feature importance based 
on the reduction in the loss function during training. For ANN models, 
aggregate attention weights across decision steps and samples to derive 
global importance scores. 

• Use the insights from feature importance to inform design 
improvements and enhance occupant comfort. 

Implementing and Validating Models Robust Validation 
• Use robust validation techniques like leave-one-out cross-validation to 

assess model generalization capability. 
• Regularly update and revalidate models with new data to maintain 

accuracy and relevance. 
Real-Time Implementation 
• Integrate models into real-time systems for dynamic adjustments based 

on occupant feedback. 
• Ensure models are scalable and adaptable to new data patterns and 

deployment requirements. 
Ethical Considerations Privacy and Data Security 

• Implement robust data anonymization and security measures to protect 
personal data collected from participants. 

• Ensure compliance with data protection regulations and maintain user 
trust through transparent data handling practices. 

Bias and Fairness 
• Ensure data used for training are representative of diverse populations 

and driving scenarios to prevent discriminatory outcomes. 
• Conduct regular audits and fairness assessments to verify that models 

provide equitable predictions across different demographic groups. 
Maintaining Model Performance Continuous Updates 

• Regularly update and retrain models with new data to keep them 
current and accurate. 

• Monitor model performance over time and adjust as needed to address 
emerging trends and new use cases. 

Handling Data Dependencies 
• Address the dependency on high-quality data by ensuring 

comprehensive and diverse data collection processes. 
• Regularly reassess data quality and completeness and implement 

additional data augmentation techniques if necessary. 
 

Leveraging Advanced Techniques Exploring Alternative Augmentation Methods 
• Investigate techniques like the Synthetic Minority Over-sampling 

Technique (SMOTE), Generative Adversarial Networks (GANs), and 
simulation-based augmentation to improve dataset diversity and 
representativeness. 

• Evaluate the effectiveness of these methods in enhancing model 
performance and generalization capabilities. 

Employing Ensemble Methods 
• Use ensemble methods such as stacking or blending to combine the 

strengths of GBM, RF, and ANN models, thereby improving 
predictive capabilities and reducing biases. 

• Ensure that ensemble methods are implemented in a manner that 
maintains interpretability and transparency. 
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Chapter 7: Overall Discussion  

The primary purpose of this study is to enhance the understanding of ride comfort by leveraging field studies, 
driving simulators, and machine learning approaches. By systematically investigating the influence of 
sound and vibration on occupant comfort, this research aims to propose guidelines for utilizing these ride 
comfort study approaches. The study's insights contribute to developing effective methodologies for 
assessing and optimizing ride comfort across various conditions and vehicle types. 
 
7.1 Strengths and Weaknesses 

The strengths of this study are notably anchored in its multidisciplinary approach, which adeptly combines 
technical and human-centric methodologies. With the author's expertise in applied acoustics and human 
factors, the research effectively integrates subjective and objective data collection methods, establishing a 
robust framework for evaluating ride comfort. This mixed-method approach enriches the understanding of 
the complex interactions between sound, vibration, and human perception, providing a comprehensive 
perspective on these dynamics. 
 
Further enhancing the study is the utilization of advanced technologies, including driving simulators and 
machine learning methods, which facilitate rapid testing and detailed analysis across various driving 
scenarios. These tools significantly bolster the study's predictive capabilities and adaptability. The emphasis 
on feature importance within this technological framework lays a groundwork for future research and 
applications within the automotive industry, informing design innovations. 
 
Despite these strengths, several methodological weaknesses have surfaced that could affect the 
comprehensiveness and applicability of the findings. A primary limitation is the relatively small and 
demographically homogenous sample size used in the field study. This limitation potentially restricts the 
study's ability to comprehensively capture the diverse spectrum of occupant experiences and perceptions, 
thereby impacting the generalizability of the results. Expanding the sample to encompass a broader range 
of demographic groups would likely enhance the robustness of the study's insights. 
 
Additionally, the reliance on subjective data obtained through questionnaires and interviews poses 
challenges. Such data are inherently susceptible to biases and variability due to individual differences in 
perception, which might affect the objectivity and accuracy of the conclusions. Future studies may benefit 
from incorporating more objective assessments to complement subjective reporting, thereby achieving a 
more balanced analysis. 
 
The focus on short-term testing conditions presents another concern, as these conditions may not effectively 
capture the cumulative effects of sound and vibration over extended periods. A thorough understanding of 
these long-term impacts is essential for a comprehensive evaluation of ride comfort, which suggests a need 
for studies with more extended testing protocols. 
 
While driving simulators offer a controlled environment for testing, they present distinct challenges. These 
simulators often struggle to replicate the dynamic intricacies of real-world driving, potentially impacting 
the ecological validity of the findings. Maneuvers involving large lateral motions and acceleration are 
particularly difficult to accurately simulate, possibly leading to discrepancies when results are compared to 
real-world scenarios. This highlights the necessity for careful planning and execution in designing 
simulator-based studies. 
 
Machine learning techniques, though advantageous for enhancing dataset size, model interpretation, and 
cross-study comparison, introduce complexity. The process of data augmentation, while expanding the data 
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available for training, risks embedding artificial variance. This could skew model training and lead to 
overfitting or imprecise predictions when these models are applied to real-world conditions. Consequently, 
a cautious approach is required to ensure the integrity and validity of the model outcomes. Another 
limitation is the evaluation of the machine learning framework, which is based on limited data from a 
restricted field study consisting of only eight driving scenarios and ten participants. This limited dataset 
might not be sufficient to ensure reliable results that can be generalized to a broader population. Hence, 
increasing the number of participants and scenarios could strengthen the model's robustness and improve 
the reliability of the results.  
 
7.2 Generalization of Study Findings  

The methods and findings of the current study, encompassing field and simulator studies as well as machine 
learning approaches, provide a framework for advancing knowledge in the domain of ride comfort analysis. 
When compared with existing literature, these findings demonstrate both adherences to established 
knowledge and distinct advancements that contribute to the field's evolution. 
 
The current field study's methodology and findings align closely with foundational work (Griffin and 
Erdreich, 1991), which examined the complex interplay between human response and mechanical 
vibrations. Similarly, Paddan and Griffin’s (2002) evaluation of whole-body vibration in vehicles 
underscores the importance of real-world vibration in understanding ride comfort. These studies emphasize 
the importance of using empirical data, such as sound, vibration, and ride motions, to evaluate occupant 
experiences. The present study builds upon these foundations by expanding participant demographics and 
examining a range of driving scenarios, thereby offering further insights that could be generalized across 
various vehicular environments. 
 
Unlike previous studies that focused on the influence of sound or vibration under a single driving scenario 
(Hassan and McManus, 2002; Sezgin and Arslan, 2012; Wang et al., 2020a), this study took a comparative 
approach by utilizing two cars to represent different car types. This allowed for an exploration of occupants’ 
ride experiences across different conditions. While there are naturally differences between the cars used in 
this study and other models of CVs and EVs in terms of sound and vibration, the findings and methodology 
could support further research in other types of passenger cars. 
 
This study observed that low-frequency vibrations significantly influenced occupant comfort, echoing 
similar results from research (Beard and Griffin, 2013; Hassan and McManus, 2002), who noted the 
pervasive impact of low-frequency vibrations in automotive environments. Such vibrations typically arise 
from engine operations, road interactions, and suspension systems, as described by (Griffin and Erdreich, 
1991) in their comprehensive exploration of human responses to vehicle vibrations. Furthermore, Wang et 
al. (2020a) highlighted that modern vehicles equipped with automatic start/stop systems frequently expose 
passengers to low-frequency sound and vibration cycles, potentially affecting perceived comfort levels. 
These repetitive noise patterns and vibrations, common in various CV models, suggest that strategies for 
mitigating low-frequency disturbances, such as improved seat design and suspension tuning, could be 
universally beneficial. The alignment of this study’s findings with these established research works supports 
the argument that addressing low-frequency sound and vibration is crucial for enhancing occupant ride 
comfort across different CVs, thereby offering a pathway for generalizing ride comfort improvements 
industry-wide. 
 
The findings from the current field study can be generalized to a wider range of EVs by addressing the 
common challenges associated with high-frequency tonal sounds that occupants experience across different 
EV models. In this study, it was noted that the high-frequency sounds primarily emanating from the electric 
motor and were major contributors to experienced discomfort. This aligns with the work of (Govindswamy 
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and Eisele, 2011), who found that high-frequency tonal noise is a recurrent issue in various EVs, impacting 
the overall acoustic environment and passenger comfort. 
 
Aligned with the findings in (He et al., 2021), the annoying high frequency tonal sounds in EVs could be 
masked to improve the sound quality. The current study underscored how these high-frequency sounds 
could be masked by wind noise at higher speeds, reducing their perceptual impact. This suggests that 
leveraging aerodynamic noise could be a viable strategy in acoustic design to mitigate tonal disturbances.  
 
Some studies (Akai et al., 2020; Bhiwapurkar et al., 2011) have assessed instantaneous perception to sound 
or vibration subjectively. However, this study not only judged the perception of sound and vibration 
instantaneously but also explored their overall influence. The research revealed a discrepancy between 
participants’ immediate responses and their overall perception of sound in both vehicles. Difficulties in 
relaxing were attributed to the experienced sound, even if it was not initially rated as annoying, suggesting 
that short-duration tests may underestimate the true impact of sound.  
 
During the interviews, participants seldom made direct judgments about the characteristics of vibration. 
Instead, they related vibration discomfort to resonance within their own body and resultant body movement. 
These finding parallels difficulties observed in other studies (Paddan and Griffin, 2002) where describing 
vibration assessments is challenging. The findings from the follow-up interviews show that induced body 
movement be used as a more effective indicator of vibration discomfort, thereby enhancing the evaluation 
of ride comfort across different studies and vehicle types. 
 
In the realm of simulator studies, the current study affirms the enhanced safety, repeatability, and 
controllability provided by driving simulators (Bella, 2005). The controlled and repeatable setup ensures 
participant safety and enables precise manipulation of experimental variables, enhancing research reliability. 
The current study emphasized the benefit of isolating variables and conducting experiments with fewer 
practical constraints or even in optimal environments. Additionally, driving simulators could enhance 
efficiency by facilitating rapid transitions between various components, structures, and vehicle models. 
These capabilities are especially pertinent for exploring the complex interactions between human 
perception and vehicle mechanics, making simulators a useful tool for ride comfort research. 
 
As highlighted in Paper E, the proposed machine learning framework offers an approach to enhancing 
dataset size and variability while maintaining data integrity. Compared with traditional frameworks 
(Cieslak et al., 2020; Du et al., 2021), which often struggle with small datasets or less interpretation 
capability, this framework addresses these limitations effectively. The proposed framework is more suited 
for providing guidelines and making general predictions in the industry, rather than studying the influence 
of individual occupants. Its robustness and ability to handle large datasets make it promising for identifying 
broader trends and informing design and operational decisions in vehicle dynamics. However, for research 
and applications that require precise analysis of how individual demographics influence vibration 
annoyance, more targeted methods and rigorous validation would be needed to maintain the accuracy and 
relevance of personal demographic data. Based on the comparisons across different models, it is 
recommended to favor GBM and RF over ANNs in scenarios with limited data availability. However, under 
circumstances where extensive data and computational resources are available, and where capturing 
complex feature interrelations is critical, ANNs, including models like TabNet, might be more appropriate. 
Providing explicit implementation details and the duration of training for each model could further elucidate 
these comparative performance outcomes. 
 
In summary, the mixed-methods approach utilized in the current study developed an approach to evaluate 
and predict the experienced sound and vibration. Previous research (Griffin and Erdreich, 1991) 
underscores the value of an interdisciplinary approach, combining quantitative and qualitative data, which 
the current study has similarly adopted. Furthermore, the findings from (Griffin and Erdreich, 1991) 
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regarding the variability of human responses to vibrations supports the importance of including 
demographic factors in the analysis. The current study builds on this approach by incorporating 
demographic data into the machine learning feature extraction process.  
 
By synthesizing real-world insights from field studies, controlled experiments in simulators, and advanced 
predictive modeling, the current work not only corroborates established findings in the existing literature 
but also offers contributions through its methodological advancements. These efforts enhance the ability to 
generalize findings across varied contexts, laying a foundation for future research and practical applications 
in automotive and transport industries. 
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Chapter 8: Conclusions  

The overall conclusion is that ride comfort, from the occupants' perspective, encompasses two primary 
components: initial comfort and dynamic discomfort. Initial comfort is influenced by factors such as ingress, 
available body space, seat adjustability, and support, providing an immediate sense of ease upon vehicle 
entry. This is consistently crucial across both the CV and the EV. Dynamic comfort, however, varies 
between vehicle types, with the CV primarily affected by body movement and intrusive sounds, while the 
EV are influenced mainly by high-frequency noises from electrical components. This dual-component 
framework underscores the complex interplay of multiple variables that affect passenger comfort. 
 
Both sound and vibration are pivotal in shaping ride comfort. In the CV, tire and wind noise notably affect 
dynamic discomfort, with low-frequency vibrations contributing to discomfort, primarily during engine 
start/stop phases. The EV experience differs, with high-frequency tonal noise being the predominant source 
of discomfort, particularly at lower speeds due to lesser masking by wind noise. The study emphasizes 
evaluating both immediate and sustained reactions to sound and vibration, noting the necessity of 
considering both instantaneous and cumulative impacts on passenger comfort.  
 
The integration of driving simulators and machine learning provides innovative pathways for assessing and 
predicting ride comfort. Driving simulators offer controlled environments to isolate variables and facilitate 
rapid scenario testing, despite limitations in representing large-scale motions. The proposed guidelines also 
emphasized the importance of environmental factors, simulation fidelity, and ethical considerations in study 
design. The machine learning framework addresses challenges in ride comfort assessments, specifically 
targeting data limitations, model interpretation, and cross-study comparisons. By combining occupant 
demographics and objective measurement data, leveraging data augmentation, and employing cross-
validation techniques, the framework enhances prediction accuracy and insights into ride comfort factors. 
However, it requires careful management of training data quality and expertise to ensure models are 
generalizable across diverse datasets and real-world conditions.  
 
Overall, this integrated approach reveals that multiple factors influence ride comfort, varying across vehicle 
types and scenarios. A single test scenario is insufficient for comprehensive assessment, prompting future 
research to focus on diverse factors tailored to both CV and EV. The proposed guidelines offer insights for 
the industry, guiding field studies, driving simulator use, and machine learning applications to enhance ride 
comfort assessments in automotive design. 
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