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Abstract
This thesis studies Point Process Learning (PPL), which is a novel statistical learn-
ing framework that uses point process cross-validation and point process prediction
errors, and includes different hyperparameters. Specifically, statistical properties
of PPL are explored, in the context of Gibbs point processes. Paper 1 demon-
strates PPL’s advantages over pseudolikelihood, which is a state-of-the-art param-
eter estimation method and a special case of Takacs-Fiksel estimation (TF), with
particular focus on Gibbs hard-core processes. Paper 2 compares PPL to TF, and
shows that TF is a special case of PPL, when the cross-validation scheme tends to
leave-one-out cross-validation. In addition, Paper 2 shows that for four common
Gibbs models, namely Poisson, hard-core, Strauss and Geyer saturation processes,
one can choose hyperparameters so that PPL outperforms TF in terms of mean
square error.

In Paper 1 and 2, parameter estimation with PPL is done by minimizing loss func-
tions, while Paper 3 explores an alternative approach to PPL, namely estimating
equations. Further, statistical properties of the parameter estimator are derived
in Paper 3, such as consistency and asymptotic normality for large samples, as
well as bias and variance for small samples. It is concluded that the estimating
equation approach is not feasible for PPL, whereby the original loss function-based
approach is preferred. Moving on, Paper 3 then provides a theoretical foundation
for the loss functions through an empirical risk formulation.

To conclude, PPL is shown to be a flexible and robust competitor to state-of-the-
art methods for parameter estimation.

Keywords: cross-validation, estimating equation, Gibbs processes, loss function,
Papangelou conditional intensity, point processes, prediction error, pseudolikeli-
hood, Takacs-Fiksel, thinning
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Chapter 1

Introduction

In classical statistical inference and statistical learning, there is an underlying as-
sumption that the data come from independent and identically distributed (i.i.d.)
random variables. In the field of point pattern analysis, this assumption is often vi-
olated, making it difficult to apply classical statistical inference/learning methods
directly. Examples of spatio-temporal data where the i.i.d. assumption is violated
include ambulance calls [Bayisa et al., 2023], nerve fibers [Konstantinou et al.,
2023] and seismic waveforms for earthquakes [D’Angelo et al., 2023]. Here, it is
more suitable to consider a generalised random sample, which allows dependency
among the variables and the sample size to be random. Such a generalised ran-
dom sample is precisely what constitutes a point process. See Figure 1.1 for two
examples of point patterns which can be modelled with point processes. The aim
of this licentiate thesis is to explore a recent approach to statistical learning in the
context of point processes, based on work by Cronie et al. [2024b].

Gibbs point processes are flexible and natural for modelling point patterns with
dependence between the points. Such processes are defined either by a density
with respect to a Poisson point process or by the so-called Papangelou conditional
intensity.

While maximum likelihood estimation is an established method for parameter
estimation, it requires computationally intensive estimation of an unknown nor-
malising constant, the so-called partition function which appears in the density
functions of Gibbs point processes [Møller and Waagepetersen, 2004, Section 8.4].
Therefore, alternative estimation methods based on the Papangelou conditional
intensity are more suitable. The state-of-the art is Takacs-Fiksel estimation (TF)
[Takacs and Fiksel, 1986], which has pseudolikelihood estimation (PL) as a special
case [Coupier, 2019]. For practical applications of Gibbs point processes, PL, or its
approximation logistic regression likelihood estimation [Baddeley et al., 2014], is

1



2 Chapter 1. Introduction

Figure 1.1: Examples of point patterns. Left: Locations of the centres of 42 biolog-
ical cells observed under optical microscopy [Ripley, 1977]. Right: Locations of 62
seedlings and saplings of California Giant Redwood (Sequoiadendron giganteum)
[Ripley, 1977]

the most commonly used method, partly because it is the default in the R package
spatstat [Baddeley et al., 2015]. Even though PL has been widely used, it has
its disadvantages. First of all, it is not necessarily the optimal special case of TF
[Coeurjolly et al., 2016]. Moreover, it has poor performance when there are strong
interactions present [Baddeley et al., 2015]. In addition, as shown in Paper 1, it
suffers from identifiability issues, even in the context of rather basic models.

In this licentiate thesis, we study a new method for parameter estimation for
Gibbs processes called Point Process Learning (PPL), which was recently intro-
duced by Cronie et al. [2024b]. Specifically, PPL is a prediction-based statistical
theory for point processes which utilises a parametrised Papangelou conditional
intensity. Inspired by statistical learning, PPL is based on the combination of two
novel concepts for point processes: cross-validation and prediction errors. The
cross-validation approach uses thinning to split a point process/pattern into pairs
of training and validation sets, while the prediction errors measure discrepancy
between two point processes.

According to Cronie et al. [2024b], PPL outperforms the state-of-the-art in kernel
intensity estimation, i.e. the Cronie and van Lieshout [2018] approach. Further,
Paper 1 shows that PPL outperforms PL for the Gibbs hard-core process, and
Paper 2 shows that it is possible to choose hyperparameters so that PPL outper-
forms TF for four common Gibbs models: Poisson, hard-core, Strauss and Geyer
saturation processes. Notably, TF is shown to be a special case of PPL in Paper
2.

Cronie et al. [2024b] show that the expectation of the prediction errors is zero if and
only if the so-called PPL-weight is of a certain form. In Paper 2, we provide general
expressions for the PPL-weight for Gibbs models. Specifically, we investigate the
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weight expressions for Poisson, hard-core, Strauss and Geyer saturation processes.
For the Poisson process, the weight takes a simple form but for the other models,
the weight is intractable. Therefore we discuss different practical choices for the
weight.

In Cronie et al. [2024b] and Paper 1 and 2, parameter estimation with PPL includes
minimising loss functions. This is done since the loss functions approximate the
expectation of a prediction error, which we know is zero in the true parameter.
Hence, by minimising the loss functions, we aim to get a good parameter estimate.
Solving estimating equations is another type of parameter estimation which is well-
established for other parameter estimation methods, such as TF [Coeurjolly et al.,
2016]. Following the lines of Guan et al. [2015] and Coeurjolly et al. [2016], Paper 3
explores the estimating equation approach for PPL. Furthermore, Paper 3 presents
an empirical risk formulation of PPL, and some additional statistical properties of
PPL are derived.

The thesis is structured as follows. In Chapter 2, we recall necessary background
about point processes. In Chapter 3, we focus on Gibbs point processes, introduc-
ing the models mentioned earlier, and recalling methods used for simulation and
inference for Gibbs models. Chapter 4 describes the new statistical methodology,
PPL. Lastly, in Chapter 5, a summary of the papers included in this licentiate
thesis is given, and in Chapter 6, conclusions and future work are discussed.

1.1 Aims

The overarching aim of this thesis is to study PPL, by exploring properties of
the method and comparing it to other state-of-the-art methods in the field. More
specifically, the aims of Papers 1-3 are presented in the following list:

1. Compare PPL to PL for the Gibbs hard-core process.

2. Study the relationship between PPL and TF, by exploring asymptotic prop-
erties of PPL and comparing PPL to TF for some Gibbs models.

3. Explore two different perspectives on PPL, by attempting to set up PPL
within an estimating equation approach and providing an empirical risk min-
imisation formulation of PPL.
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Chapter 2

Point Processes

This chapter provides an introduction to theoretical concepts for point processes
used throughout the thesis.

2.1 Definition of a Point Process

A point process generates point patterns according to some distribution. Recall
Figure 1.1 where we have seen two examples of point patterns. Note that a point
pattern can be spatial (e.g. points in 2D), temporal (points at different times), or
spatio-temporal (e.g. ambulance calls recorded with both location and time, see
Moradi [2018]). To be able to define what a point process is, we therefore start
with the underlying space S where the points are located.

Let S be a general space, like a compact subset of Rd, a sphere or a linear network
(see Figure 2.1). In applications, it is common to consider a bounded subset W

of S, called the observation window; see Figure 1.1 for two examples of point
patterns observed in a square window. In the simulation studies of Paper 1 and
Paper 2, S is given by a bounded subset of R2. Formally, we require S to be a
complete separable metric space with a distance metric d(·, ·), which is equipped
with a suitable reference measure

A 7→ |A| =
∫
A

dx, A ⊆ S.

Here, we require our reference measure | · | to be σ-finite and locally finite. Further,
all sets considered are Borel sets. Throughout the thesis, a closed ball with radius
r around u ∈ S will be denoted by b(u, r) = {v ∈ S : d(u, v) ≤ r}.

When rolling a die, a random variable can describe the possible outcomes, such as
rolling a six. If the possible outcomes of a random variable live on a more general

5
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trespass

theft

robbery

damage

cartheft

burglary

assault

Figure 2.1: An example of a marked point pattern observed on a linear network.
Spatial locations of crimes reported in the period April 25 to May 8 2002, in an
area of Chicago (Illinois, USA) close to the University of Chicago [Ang et al.,
2012].

space than the natural numbers, such as for example S, we call the random variable
a random element. A point process X = {xi}Ni=1 in S is a random element whose
outcomes are collections of points, so-called point patterns. Recall that a random
sample is a sequence of independent and identically distributed (i.i.d.) random
variables x1, . . . , xn, where the sample size n is fixed. Hence, we may view a point
process X as a generalisation of a classical random sample, where we allow the
sample size N to be random and the sample points xi to be dependent random
variables.

Formally, X = {xi}Ni=1, 0 ≤ N ≤ ∞, is defined as a measurable mapping from
a probability space (Ω,F ,P) to the measurable space (N,N ) [Chiu et al., 2013,
Section 4.1.1]. Here, N is the collection of point patterns/configurations x =

{x}ni=1 ⊆ S, 0 ≤ n ≤ ∞. We assume that they are locally finite, i.e. satisfying
that the cardinality #(x∩A) is almost surely (a.s.) finite for any bounded A ⊆ S.
Here N is the smallest σ-algebra such that for all bounded Borel sets A ⊆ S the
mapping x → #(x∩A) is measurable [van Lieshout, 2000]. Throughout, it is also
assumed that the point process X is simple which means that a.s. no two points
of X have the same location. Moreover, we refer to X as a finite point process if
#(X ∩ S) < ∞ a.s.. Hence, if S is a bounded set then X is automatically a finite
point process, due to the local finiteness.
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u
du

Figure 2.2: A point pattern x with black points, and a red point called u. Here du

is an infinitesimal region around the point u, shaded in red. This image illustrates
how the conditional intensity λX(u|x) is defined. Here λX(u|x)du is interpreted
as the probability of finding a point in an infinitesimal region du around u ∈ S,
given that the point process agrees with the configuration x outside du.

2.2 Distributional Properties

Now we introduce the distribution of a point process, first in terms of the con-
ditional intensity, then we define Janossy densities, as well as the intensity and
classical density function. The point process X induces a distribution PX on
(N,N ), which is governed by its finite dimensional distributions, and the dis-
tribution of a point process X is completely characterised by its (Papangelou)
conditional intensity λX . It can be interpreted as follows: λX(u|x)du is the prob-
ability of finding a point in an infinitesimal region du around u ∈ S, given that
the point process agrees with the configuration x outside du [van Lieshout, 2000];
see Figure 2.2 for an illustration. Conditional intensities have a central role in the
study of point processes, and they are very useful for describing local interactions
in point processes, most notably Gibbs point processes; see Chapter 3.

One way to define the conditional intensity λ : S × N → [0,∞) is through the
Georgii-Nguyen-Zessin (GNZ) [Georgii, 1976, Nguyen and Zessin, 1979] formula,
which states that

E

[∑
x∈X

h(x,X \ {x})

]
=

∫
S
E[h(u,X)λX(u|X)]du (2.1)

for any non-negative (potentially infinite) measurable function h on S ×N. Note
that this means that (2.1) also holds for any integrable function h. Here, it should
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be emphasised that the expectation is defined as

E[g(X)] =

∫
N

g(x)PX(dx)

for g : N → R. Note that if we replace h(x,X \ {x}) by h(x,X) on the left-hand
side of (2.1), we have to replace h(u,X) by h(u,X ∪ {u}) on its right-hand side
[Betsch, 2023].

A model, or the point process X it generates, is called attractive if λX(u|x) ≤
λX(u|y) and repulsive if λX(u|x) ≥ λX(u|y), whenever x ⊆ y [Møller and Waagepetersen,
2004, Section 6.1.1].

It is also possible to define higher-order conditional intensities. For any n ≥ 1 and
u1 . . . , un ∈ S, we consider

λ
(n)
X (u1, . . . , un|x) =λX(u1|x)λX(u2|x ∪ {u1}) · · ·λX(un|x ∪ {u1, . . . , un−1}),

which is the nth order conditional intensity function of X. Let Xn
̸= = {(x1, . . . , xn) :

x1, . . . , xn ∈ X,xi ̸= xj if i ̸= j} be the point process on Sn consisting of all dis-
tinct n-tuples of elements of X. Then, the nth order conditional intensity function
also satisfies the GNZ formula

E

 ∑
(x1,...,xn)∈Xn

̸=

h(x1, . . . , xn, X \ {x1, . . . , xn})


=

∫
S
· · ·
∫
S
E[h(u1 . . . , un, X)λ

(n)
X (u1 . . . , un|X)]du1 . . . dun,

where h : Sn ×N → R [Coeurjolly et al., 2017]. Note that λ
(1)
X (u|x) = λX(u|x).

2.2.1 Janossy Densities

Next, we introduce the so-called local Janossy densities j(n)X (·|A) of X, n ≥ 0, with
respect to a bounded A ⊆ S [Daley and Vere-Jones, 2008]. The first-order local
Janossy density j

(1)
X ({u}|A)du gives the probability that X ∩ A has exactly one

point located in the infinitesimal region du of u ∈ S. The Janossy densities satisfy
[Betsch, 2023, Lemma 3.1]

j
(n)
X (x|A) = j

(n)
X ({x1, . . . , xn}|A) =

1

n!
1{x1, . . . , xn ∈ A}E[1{#(X ∩A) = 0}λ(n)

X (x1, . . . , xn|X)] (2.2)

for x ∈ N. Note that j
(0)
X represents the probability that X = ∅ and that

j
(n)
X ({u1, . . . , un}|A)du1 · · · dun gives the probability that X ∩ A has exactly n

points which are located in the infinitesimal neighbourhoods du1, . . . , dun of u1, . . . , un ∈
S.
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We remark that obtaining Janossy densities from conditional intensities, as we
do here, is the reverse of the classical setup [Daley and Vere-Jones, 2008], where
one starts with the Janossy densities and shows that they yield the conditional
intensity as a ratio. More specifically, for finite point processes it holds that [van
Lieshout, 2000, Møller and Waagepetersen, 2004, Daley and Vere-Jones, 2008]

λX(u|x) = jX((x \ {u}) ∪ {u})
jX(x \ {u})

, u ∈ S. (2.3)

Note here the shortened notation

jX(y) = jX(y|S) =
∞∑

n=0

1{#(y ∩ S) = n}j(n)X (y), y ∈ N. (2.4)

2.2.2 Intensity and Density Function

We now introduce the intensity function ρX(u) of X, which reflects the infinites-
imal probability of finding a point of X in the distinct location u ∈ S. For two-
dimensional point patterns, the intensity can be visualised as a colormap which
shows how likely it is to find a point in different parts of the window, see Figure
2.3. The nth order intensity function of X, which is the intensity function of Xn

̸=,
is given by

ρ
(n)
X (u1, . . . , un) = E[λ(n)

X (u1, . . . , un|X)],

where ρ
(1)
X (u) = ρX(u).

20
40

60
80

Figure 2.3: A realisation of an inhomogeneous Poisson process with intensity
ρ(u) = 100 exp(−3ux) where u = (ux, uy) ∈ R2. The intensity is shown in the
background with a colour gradient.
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Lastly, we introduce the classical density fX . Let us consider a finite point process
X on a bounded domain S, with Janossy densities j(n)X (·) = j

(n)
X (·|S), n ≥ 0. Then

the density function fX is defined as [Daley and Vere-Jones, 2008, Exercise 10.4.1]

fX(x) =
e
∫
A

ρ0(u)du∏
x∈x ρ0(x)

jX(x), x ∈ N, (2.5)

where jX(x) is as in (2.4). This is the density of PX with respect to the distribution
of a finite Poisson process with intensity function ρ0 on A; see Section 2.3 for a
definition of the Poisson process. As can be seen in (2.5), fX is simply a scaling
of jX . Similarly to (2.3) it holds that

λX(u|x) = fX((x \ {u}) ∪ {u})
fX(x \ {u})

, u ∈ S. (2.6)

2.3 Poisson Processes

Now we can give a first example of a point process; the Poisson process.

Definition 2.3.1 (Poisson distribution). A discrete random variable Y is said to
have a Poisson distribution, with parameter λ > 0 if its probability mass function
is given by

P (Y = k) =
λke−λ

k!
, k = 0, 1, . . . .

Then we write Y ∼ Poi(λ).

Definition 2.3.2 (Poisson process). Let µ(A) =
∫
A
ρ(u)du, A ⊆ S. A Poisson

process X on S with intensity function ρ is a point process satisfying [Møller and
Waagepetersen, 2004, van Lieshout, 2000]:

1. #(X ∩A) ∼ Poi(µ(A)) for every bounded set A ⊂ S,

2. for any k disjoint bounded sets A1, . . . , Ak ⊂ S, the random variables
#(X ∩A1), . . . ,#(X ∩Ak) are independent.

If the intensity function ρ is constant, the process is called a homogeneous Pois-
son process with rate or intensity ρ, otherwise it is said to be an inhomogeneous
Poisson process [Møller and Waagepetersen, 2004]. In Figure 2.3 a realisation of
an inhomogeneous Poisson process with intensity ρ(u) = 100 exp(−3ux) where
u = (ux, uy) ∈ R2, is illustrated. See Figure 2.4 for a realisation of a homogeneous
Poisson process with intensity 100. The homogeneous Poisson process describes
the property of Complete Spatial Randomness (CSR) which means that the points
in a point pattern are uniformly and independently distributed in space. Note that
when we consider a Poisson process with unit rate, that is a homogeneous point
process with ρ = 1, (2.5) turns into fX(x) = e|A| jX(x).
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Figure 2.4: A realisation of a homogeneous Poisson process with intensity 100.

For a Poisson process it holds that [Mecke, 1967]

E

[∑
u∈X

h(u,X \ {u})

]
=

∫
S
E[h(u,X)ρ(u)]du, (2.7)

where h : S ×N → [0,∞). Note the similarity to the GNZ formula (2.1), where
we have the conditional intensity instead of the intensity. We observe that for the
Poisson process, the conditional intensity is the same as the intensity. We see this
by using (2.1) in the first equality and (2.7) in the second equality:∫

S
E[h(u,X)λ(u|X)]du = E

[∑
u∈X

h(u,X \ {u})

]
=

∫
S
E[h(u,X)ρ(u)]du.

Setting h(u, ·) = 1{u ∈ A} for any bounded A ⊆ S, we now get
∫
A
E[λ(u|X)]du =∫

A
E[ρ(u)]du which means that ρX(u) = λX(u|X) a.s. for almost every u.

2.4 Operations on Point Processes

In this section we will introduce operations on point processes, like marking, thin-
ning and cross-validation. Marking means that we start with a point process and
attach additional components, called marks, to all points. Two examples of marked
point patterns can be seen in Figure 2.1 and 2.5.

Formally, a marked point process is a point process X̆ = {(xi,mi)}Ni=1 on S ×M,
i.e. a random element in the space of point patterns in S ×M, with the additional
property that its projection onto S, its so-called ground process X = {xi}Ni=1,
is a well-defined point process in S [van Lieshout, 2000]. Here, M is called the
mark space, and is required to be a complete separable metric space, like S. One
example is a binary mark space as in Figure 2.5 where the cells have an “on”
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on

off

Figure 2.5: Displaced amacrine cells in the retina of a rabbit, with 152 “on” cells
and 142 “off” cells in a rectangular sampling frame [Diggle, 1986].

and “off” property. In Figure 2.1, a discrete mark space can be seen, with seven
types of crimes. Other examples include continuous marks, function-valued marks,
graph-valued marks and random sets [Cronie et al., 2024a, Eckardt et al., 2024,
Eckardt and Moradi, 2024]. See van Lieshout [2000], Daley and Vere-Jones [2008]
for theory for general mark spaces.

A realisation of a marked point process is called a marked point pattern, given
by an unordered set x̆ = {(xi,mi)}ni=1, where x = {x}ni=1 is a point pattern on
S and mi, i = 1, . . . , n, the corresponding marks. The marked process X̆ has the
conditional intensity λ̆ : (S ×M)× N̆ → [0,∞), where N̆ denotes the collection of
marked point patterns x̆. Note that λ̆ satisfies the GNZ formula, which is defined
as in the unmarked case, since X̆ is also a point process.

2.4.1 Thinning

Thinning is achieved by applying some mechanism to a point process/pattern so
that each point is retained or deleted with a certain probability. Thinning can
also be seen as binary marking where 0 corresponds to deleting the point and 1
corresponds to keeping the point [Cronie et al., 2024b]. Formally, we set the mark
space to M = {0, 1}, let the reference measure on M be the counting measure
and let X̆ be a binary marking of X. Then the thinning of X is defined as the
point process XV = {x : (x,m) ∈ X̆,m = 1} ⊆ X. We let the point process with
deleted points be denoted by XT = X \ XV . The dual operation of thinning is
superpositioning; from XV and XT we can construct the superposition X.

In independent thinning each point x ∈ x is deleted (attached mark 0) with prob-
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ability 1 − p(x), independently of all other deletions. Here p(·) is the associated
retention probability function defined as p(u) = P(m = 1), (u,m) ∈ S × M. In
particular, in p-thinning, we have constant p(u) = p ∈ (0, 1), u ∈ S. This cor-
responds to an independent binary marking according to a Bernoulli distribution
with parameter p. A p-thinning of a point pattern is illustrated in Figure 2.6.

  Thinning with p = 0.20

Deleted

Kept

Figure 2.6: The point pattern in Figure 2.4 thinned with p-thinning using p = 0.2.

When XV is an independent thinning of a Poisson process X, XV is also a Poisson
process, but with intensity ρXV (·) = p(·)ρX(·) [Chiu et al., 2013, p. 161]. Return-
ing to Figure 2.6 we see that the thinned process is also a Poisson process, but
with intensity 0.2 · 100 = 20.

2.4.2 Cross-validation

Cross-validation (CV) generally involves partitioning a dataset into a training set
and a validation set [Arlot and Celisse, 2010]. Cronie et al. [2024b] define CV for
point processes as follows.

Definition 2.4.1 (Point process cross-validation). Given a point process X ⊆
S and k ≥ 1 thinnings XV

1 , . . . , XV
k of X, we refer to the collection of pairs

(XT
i , X

V
i ) = (Yi, Zi), XT

i = X \ XV
i , i = 1, . . . , k, as a cross-validation split-

ting/partitioning. Analogously, for a point pattern x, we may generate thinnings
(xT

i ,x
V
i ), i = 1, . . . , k.

A common CV method in classical statistics is k-fold CV, of which leave-one-out
CV, where k is given by the sample size n, is a special case [Arlot and Celisse,
2010]. For point processes, k-fold CV is mathematically intractable since it is a
dependent thinning-generated splitting scheme [Cronie et al., 2024b]. An example



14 Chapter 2. Point Processes

of an independent thinning-based CV method is Monte-Carlo CV, where all points
x ∈ x are assigned to xV

i with a fixed common probability p ∈ (0, 1), independently
of the other assignments, and the remaining points are assigned to xT

i . Note
that each split (xT

i ,x
V
i ) is generated from the point pattern x according to this

procedure, which means that the splits need not be disjoint, i.e. we may have
that xV

i ∩ xV
j ̸= ∅ if i ̸= j. An example of independent thinning-based CV with

disjoint splits is block CV, where we partition the space S into disjoint regions
Si. We independently attach marks m to all x ∈ x, where the mark distribution
is given by a multinomial distribution with p(x) = P (m = i) = 1{x ∈ Si} for
(x,m) ∈ S ×M, i ∈ M and M = {1, . . . , k}. This means that each point in Si

gets the mark i. We then let xV
i = {x ∈ x : m = i} for (x,m) ∈ S × M and

xT
i = x \ xV

i , i = 1, . . . , k. For further point process CV methods, see [Cronie
et al., 2024b] and Paper 2.



Chapter 3

Gibbs Processes

The theory of Gibbs measures originates from statistical physics, where one aims
to describe the probability of the different states in an interacting particle system,
for example the Ising model which is visualised in Figure 3.1. Heuristically, the
probability of being in state x for an interacting particle system is described as

P (X = x) =
1

Z
e−βH(x), (3.1)

where H(x) denotes the so-called energy function of the system, Z is a normalising
constant, and β is a parameter describing the “temperature” of the system.

Carrying this concept over to point processes we consider the points to interact
with each other, similarly to the particles in statistical physics. However, instead
of being on a discrete space like a lattice, as seen in Figure 3.1, the points are
now in continuous space. Gibbs point processes constitute a large class of point
processes, and can be applied in forestry [Ripley, 1977, Särkkä, 1995, Eckel et al.,
2009], medicine [Ripley, 1977, Iftimi et al., 2018], and materials science [Häbel
et al., 2019], just to name a few examples.

The first part of this chapter defines a Gibbs process and gives some examples
of Gibbs processes: the hard-core process, the Strauss process and the Geyer
saturation process. These three processes will be used later in the simulation
study in Paper 1 and 2. Next, simulation and inference for Gibbs processes is
described.

3.1 Gibbs Point Process Models

We can define the density of a Gibbs process similarly as in (3.1), but the Janossy
density has an intractable normalising constant, whereby exact likelihood inference

15
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Figure 3.1: The Ising model on a 50× 50 square lattice, where up and down spins
are visualised with white and black squares, respectively. Left: An initial config-
uration, where the up and down spins are assigned at random and independent
of each other. Right: The model after 100 steps of the Metropolis-Hastings al-
gorithm, simulating the Ising model dynamics with β = 0.67. As we can see the
system moves towards an equilibrium.

is typically not feasible, which makes it more practical to consider Gibbs processes
in terms of their conditional intensity. We thus follow Betsch [2023] and define
a Gibbs process as any point process with existing conditional intensity. Nguyen
and Zessin [1979] showed that a Gibbs process may be characterised in this way,
by the GNZ formula. Often it is convenient to express the conditional intensity of
a Gibbs process in exponential form

λX(u;x) = eΦ1(u)+Φ2(u,x) = ρ̃(u) eΦ2(u,x), (3.2)

for functions Φ1 and Φ2. Note that this is possible since the conditional intensity
λ takes non-negative values. Therefore, it is common to refer to a Gibbs process
as a point process with conditional intensity in exponential form, see e.g. Dereudre
[2019, Theorem 2]. In (3.2), the term ρ̃(u) = eΦ1(u) only depends on the spatial
location, u ∈ S, but not on the other points in the point pattern x. The Pois-
son process is an example of a Gibbs process with no inter-point interaction, i.e.
Φ2(·) ≡ 0 so then ρX(u) = λX(u|x) = ρ̃(u).

3.1.1 Hard-core Models

The first example of a Gibbs process is the hard-core process, where each point
is surrounded by a circular area called the “hard core”, where no other points are
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  Hard−core conditional intensity

0
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  Strauss conditional intensity
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Figure 3.2: Examples how the conditional intensity can look for a point pattern
for the hard-core (R = 0.05, β = 100), Strauss (R = 0.05, β = 100, γ = 0.5) and
Geyer saturation processes (R = 0.05, β = 60, γ =

√
1.5, s = 2) using the same

parameters as in the simulation study of Paper 2.

allowed to enter. The conditional intensity is given by

λ(u|x) = β1

{
u /∈

⋃
x∈x

b(x,R)

}
=

{
β if u /∈

⋃
x∈x b(x,R),

0 otherwise,

where β > 0 and R > 0 is referred to as the hard-core distance. Hard-core models
are repulsive, which is shown for completeness in Lemma 1 of Paper 2. The result is
intuitive, since each point “pushes away” points that are “too close”. Note however,
that points which are further away from each other do not interact. It is possible
to simulate realisations of the hard-core process by simulating realisations of the
Poisson process, and removing those instances where the hard-core constraint is
violated, i.e. when some points are too close to each other, but this approach is
slow.

See the first plot in Figure 3.2 for a realisation of a hard-core process with param-
eters R = 0.05 and β = 100. We also see the conditional intensity illustrated with
colours in the plot, and in this case it is either 100 or 0 depending on the distance
to the points.

3.1.2 Strauss Models

The next example was introduced by Strauss [1975] as “a model for clustering”
but it is in fact not, which was pointed out by Kelly and Ripley [1976]. For
completeness, it is shown that the Strauss process is repulsive in Lemma 2 in Paper
2. The Strauss process is similar to the hard-core process, but with an additional
parameter γ, determining how much the points interact with each other. A point
u interacts with a point x if u is closer than R to x, where R > 0 is called the
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interaction radius. Its conditional intensity is given by

λ(u|x) = βγDR(u,x),

DR(u;x) =
∑

x∈x\{u}

1{d(u, x) ≤ R} =
∑

x∈x\{u}

1{u ∈ b(x,R)}, (3.3)

where γ ∈ [0, 1] is called the interaction parameter. Here γ = 1 corresponds to
the Poisson process with intensity β > 0 and γ = 0 gives us the hard-core process,
with the convention that 00 = 1.

The second plot in Figure 3.2 illustrates a realisation of a Strauss process with
parameters R = 0.05, β = 100 and γ = 0.5. We also see the conditional intensity
illustrated with colours in the plot.

3.1.3 Geyer-saturation Models

Geyer [1999] suggested an extension of the Strauss process, called the Geyer satu-
ration process. In the Strauss process, if γ > 1, this can lead to infinite values of
the conditional intensity, but in the Geyer saturation process, this is resolved with
the help of a threshold parameter s. Here, the overall contribution from each point
is trimmed to never exceed the maximum value of the threshold. The density for
the Geyer saturation process is

f(x) =
1

Z
βn
∏
y∈x

γmin(s,DR(y,x)),

where Z is a normalising constant, β, γ, R, s are parameters, and n = #(x ∩ S).
The parameter s ≥ 0 is called the saturation threshold, and puts an upper limit
on how much any single point contributes to the density. For s = 0 the process
reduces to a Poisson process and for s = ∞ the process is a Strauss process with
interaction parameter γ2.

According to Baddeley et al. [2015]:

The task of calculating the conditional intensity of the saturation pro-
cess seems to be extremely prone to human error.

Indeed, the expression in Baddeley et al. [2015, Equation (13.36)] is not correct,
which is pointed out in their errata. Using the density and (2.6), we obtain the
correct conditional intensity expression

λ(u|x) = βγmin(s,DR(u,x))+
∑

y∈x(min(s,DR(y,x∪{u}))−min(s,DR(y,x))).

See the third plot in Figure 3.2 for a realisation of a Geyer saturation processes with
parameters R = 0.05, β = 60, γ =

√
1.5 and s = 2. It seems like, intuitively, when

γ > 1, a Geyer model is attractive, and when γ < 1, it is repulsive. However, this
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is in fact not true, and a counterexample provided by Marie-Colette van Lieshout
is given in Lemma 3 in Paper 2.

3.1.4 Markov Property

A Markov chain is a stochastic process in time defined by the Markov property
which states that future observations depend only on the current state and not on
the whole past history of the process.

Definition 3.1.1 (Markov chain). Let Y0, Y1, . . . be a sequence of random variables
taking values in some countable set S. Then Y = (Y0, Y1, . . .) is a Markov chain
if it satisfies the Markov property

P (Yn = yn|Y0 = y0, . . . , Yn−1 = yn−1) = P (Yn = yn|Yn−1 = yn−1), (3.4)

for all n ≥ 1, and all y0, y1, . . . , yn ∈ S.

Spatial point processes may also exhibit the Markov property, but here we consider
neighbours of points in the space S, instead of the previous time slot. Consider a
symmetric and reflexive relation ∼ on S. The points u, v ∈ S are defined as neigh-
bours if u ∼ v, and the neighbourhood of a point u ∈ S is δx(u) = {x ∈ x : u ∼ x}.
A Gibbs process is a Markov point process if the conditional intensity only depends
on the neighbourhood, i.e. λ(u|x) = λ(u|δx(u)). These types of processes exhibit
local interactions, and in fact, all examples given, the Poisson, hard-core, Strauss
and Geyer saturation processes, are also Markov processes [van Lieshout, 2000].
In spatial statistics, the terms Gibbs and Markov processes are often used inter-
changeably, however this might cause some confusion. According to our definition
of a Gibbs process, Markov processes are a sub-class of Gibbs processes, but in
Illian et al. [2008] Gibbs process are defined as only having interactions between
pairs of points, and in that case Gibbs processes are a sub-class of Markov pro-
cesses. In this thesis we choose to stick to Gibbs processes, noting however that the
difference between Gibbs and Markov processes is small when it comes to practical
applications and simulations. See Ripley and Kelly [1977], van Lieshout [2000],
Møller and Waagepetersen [2004] for more about Markov processes.

3.2 Simulation

Except for the special case of the Poisson process, it is not possible to get the
density of a Gibbs process in closed form due to intractable normalising constants,
which makes simulation and inference for Gibbs processes challenging. There
are ways to work around this, like using Monte Carlo methods, which use ran-
dom samples for computation to approximate the normalising constant [Møller
and Waagepetersen, 2004]. Another way is to use Markov Chain Monte Carlo
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(MCMC) methods for simulating from a point process, for which the target den-
sity π(x) only has to be known up to a constant. MCMC methods work by
constructing a Markov chain Y0, Y1, . . . which has the target distribution as its
limiting distribution, which is possible if certain conditions are satisfied. Origi-
nally introduced by Metropolis et al. [1953], MCMC methods were introduced to
the statistics literature by Hastings [1970], see also van Lieshout [2000], Møller
and Waagepetersen [2004] for more about MCMC methods for simulation of point
processes.

For simulating point processes, the MCMC method called Metropolis-Hastings is
most commonly used, and we hereby explain the birth-death Metropolis-Hastings
algorithm by Geyer and Møller [1994]. We start with some initial configuration x0.
Considering a Markov chain whose states are point patterns x in an observation
window W , a proposal is made in each time step to change the current state x

to a new state y. With a certain probability, namely the acceptance probabil-
ity A(x,y), the proposal is accepted, so that the state is changed from x to y.
Otherwise the proposal is rejected and the state remains as x.

The proposals, in turn, are of two different types, either a birth or a death, where
adding a point u to the point pattern x corresponds to a birth, while deleting a
point xi from the point pattern x corresponds to a death. Here, the probability
of death is q, and the point to be deleted from the pattern is chosen with equal
probability 1/n where n = #(x∩W ). For the birth, the probability of it occuring
is 1− q, and the point u is chosen at random in the window W from the proposal
density b(u|x).

We can calculate the acceptance probabilities A(x,y) = min(1, R(x,y)) from the
so-called Hastings ratio R(x,y),

R(x,x ∪ {u}) = λ(u|x)
b(u|x)

q

(1− q)(n+ 1)
,

R(x,x \ {xi}) =
b(xi|x \ {xi})

λ(xi|x)
n(1− q)

q
.

Note here that we avoid issues with the normalising constant for Gibbs processes
since we only have the conditional intensity λ in the expression. Further, we
have to know the expression of the birth proposal density b. In the spatstat
implementation, shift proposals are also included, which means to select one of
the points xi ∈ x at random and move it to another location u, which is chosen
uniformly at random in the window. The Hastings ratio for this proposal is

R(x,x ∪ {u} \ {xi}) =
λ(u|x \ {xi})

λ(xi|x)
.

One drawback of the Metropolis-Hastings algorithm, is that it is not guaranteed to
have converged after a finite number of time steps, and the results are approximate.
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For some Gibbs processes, like the hard-core and Strauss processes, exact simula-
tion can be used instead, see e.g. van Lieshout [2000], Møller and Waagepetersen
[2004]. However, Metropolis-Hastings works well in most cases and is applicable
to a wide range of models.

In the simulation study of Paper 1 and 2 we used exact simulation for the hard-
core process, and exact simulation for the Strauss process in Paper 2. When
simulating from the Geyer saturation process in Paper 2, default parameters were
used, namely q = 0.9 and b(u|x) = β where β is the intensity parameter of the
Geyer saturation process.

3.3 Inference

This section contains a short review of parameter estimation methods for Gibbs
processes, for more information see [Dereudre, 2019, Baddeley et al., 2015, Møller
and Waagepetersen, 2004]. There are some Bayesian methods, see e.g. [Møller
et al., 2006, Rajala, 2014, Shirota and Gelfand, 2017, Stoica et al., 2017], but in
this thesis we focus on non-Bayesian inference. In this case, there are two main
methods for parameter estimation of Gibbs processes: maximum likelihood esti-
mation (MLE) and conditional intensity-based estimation using the GNZ formula
(2.1).

3.3.1 Parameter Estimation for Point Processes

Recall that, given a data-generating model λθ0 , parameter estimation means to find
an estimate θ̂ that is as close as possible to the true parameter θ0. To compare
different estimators, we usually study the bias, variance and mean square error
(MSE), defined as

Bias(θ̂) = E[θ̂]− θ0,

V ar(θ̂) = E[(θ̂ − E[θ̂])2],

MSE(θ̂) = E[(θ̂ − θ0)
2] = V ar(θ̂) +Bias(θ̂)2.

A desirable property of estimators is unbiasedness, which is defined as having
zero bias, or equivalently that E[θ̂] = θ0. However, an unbiased estimator with
high variance is not desirable, so therefore it is useful to consider the MSE, which
takes both the bias and variance into account. Another desirable property for
estimators is consistency, defined as limn→∞ P(|θ̂n − θ0| > ε) = 0. For point
process asymptotics, n is not necessarily the amount of points in the pattern, but
instead, what is usually considered is increasing domain asymptotics, meaning that
we consider an increasing sequence of bounded subsets An ⊂ S tending to S as
n → ∞. Lastly, it can be useful to show asymptotic normality of an estimator, as
this can be used e.g. to construct approximate confidence regions.
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3.3.2 Maximum Likelihood Estimation

In classical statistics MLE is widely used, and it is used to find the most likely pa-
rameter value, by maximising the likelihood function. For point processes, the
likelihood function that is maximised is the density function f(x). However,
for Gibbs processes, we again encounter the issue of an intractable normalising
constant. Therefore, approximate maximum likelihood is used, for example nu-
merical approximation of the normalising constant [Ogata and Tanemura, 1981,
1984, 1985, 1989, Ogata, 1986, Ogata and Katsura, 1988, Ogata et al., 2003].
Other approximate MLE methods are Monte Carlo MLE [Penttinen, 1984, Geyer
and Møller, 1994, Geyer, 1999], stochastic approximation [Moyeed and Baddeley,
1991] and one-step Monte Carlo MLE [Huang and Ogata, 1999]. Of these meth-
ods, one-step Monte Carlo MLE, also called Huang-Ogata approximate maximum
likelihood, is implemented in spatstat in the ppm function. The Huang-Ogata
method uses pseudolikelihood (see Section 3.3.4) as initialisation in the first step.

3.3.3 Takacs-Fiksel Estimation

The GNZ formula seen in (2.1), is a very useful identity, defining the conditional
intensity. The h-innovations introduced by Baddeley et al. [2005], which are in-
spired by the GNZ formula, are defined as

eh(θ) =
∑
x∈X

h(x,X \ {x})−
∫
A

h(u,X)λθ(u|X)du, (3.5)

for any A ⊆ S. Considering a sequence of test functions hi, i = 1, . . . , q, where
q ≥ p and p is the dimension of the parameter θ, we let eh(θ) = (eh1(θ), . . . , ehq (θ))

be a q-dimensional vector. The original formulation of Takacs-Fiksel estimation
(TF) [Takacs, 1986, Fiksel, 1988] is to find an estimator θ̂ of θ0 by minimising the
sum of squares

∑q
i=1 ehi(θ)2.

Note that for the h-innovations defined in (3.5), it holds that E[eh(θ0)] = 0, and
we call eh(θ) an unbiased estimating function. Considering a sequence of test
functions hi, i = 1, . . . , q as before, and letting q = p, we obtain a system of
estimating equations ehi

(θ) = 0. This is the estimating equation formulation of
TF [Coeurjolly et al., 2016].
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3.3.4 Pseudolikelihood

A special case of TF is pseudolikelihood estimation (PL). Here we set the test
function to h(x, ·) = ∂

∂θ log λθ(x|·) and get∑
x∈X

∂

∂θ
log λθ(x|X \ {x})−

∫
A

∂

∂θ
log λθ(u|X)λθ(u|X)du

=
∑
x∈X

∂

∂θ
log λθ(x|X \ {x})−

∫
A

∂

∂θ
λθ(u|X)du,

for A ⊆ S. This is the score function (derivative with respect to θ) of the log-
pseudolikelihood function, which is defined as

logPL(θ) =
∑
x∈X

log λθ(x|X)−
∫
A

λθ(u|X)du, A ⊆ S.

Here we want to estimate the value of the parameter θ0 by maximising the log-
pseudolikelihood function. Note that maximising the log-pseudolikelihood function
is equivalent to setting the score function to zero, which is the way of solving the
system of estimating equations for TF, with test function h(x, ·) = ∂

∂θ log λθ(x|·).

PL was first introduced by Besag [1974] for lattice systems, and was extended to
point processes by Ripley [1988]. The pseudolikelihood function has similar prop-
erties as the likelihood function and is asymptotically unbiased, consistent and
asymptotically normal under appropriate conditions [Jensen and Møller, 1991,
Jensen and Künsch, 1994, Mase, 1995, 2000, Billiot et al., 2008]. In practice,
both pseudolikelihood estimators and approximate maximum likelihood estima-
tors exhibit bias, which might be due to software implementation [Baddeley and
Turner, 2014]. Additionally, PL might perform poorly when the interaction is
strong [Geyer and Thompson, 1992, Diggle et al., 1994].

PL is implemented as the default option in the ppm function in spatstat. Bad-
deley et al. [2014] introduced another method which exploits logistic regression,
also implemented in the ppm function, which can be seen as a numerically sta-
ble approximation of PL. There is also a recently developed parameter estimation
method in the context of intensity estimation, which uses cross-validation similarly
defined as in Definition 2.4.1, together with PL, see Lin and Kang [2024].

3.3.5 Optimal Test Functions for Parameter Estimation

It is important to note that for the parameter estimation methods, we deal with
hyperparameters, like the test function h. For TF, one common choice is the test
function which gives us PL, as described above. Another option is h(·) = 1/λ(·),
which is the Stoyan-Grabarnik test function [Stoyan and Grabarnik, 1991], also
called the inverse test function [Baddeley et al., 2005].
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An estimating equation is optimal in the sense of Godambe optimality when the
test function chosen maximises the Godambe information Gh = Sh(θ)Σh(θ)

−1Sh(θ),
which consists of the sensitivity matrix Sh(θ) = −E[∂eh(θ)

∂θT ] and the covariance ma-
trix Σh(θ) = V ar(eh(θ)) for the estimating function eh(θ). The argument behind
Godambe optimality is based on an asymptotic approximation, in terms of increas-
ing domain asymptotics. It can be shown (see Guan et al. [2015]) that a sufficient
condition for the test function g to be Godambe optimal is that

Σhg(θ0) = Sg(θ0), (3.6)

for all test functions h, where Σhg(θ0) = Cov(eh(θ0), eg(θ0)).

In the context of intensity-based estimation, Guan et al. [2015] found an optimal es-
timating equation, called quasi-likelihood, where the test function used was found
by solving (3.6). Coeurjolly et al. [2016] followed the lines of Guan et al. [2015] and
attempted to find an optimal estimating equation for TF, which might outperform
PL. However, as conditonal-intensity based estimation is far more mathematically
challenging than intensity-based estimation, due to interactions between points,
the test function that Coeurjolly et al. [2016] introduced was a semi-optimal test
function.



Chapter 4

Point Process Learning

This thesis studies Point Process Learning (PPL) which is a new statistical method-
ology introduced by Cronie et al. [2024b]. This chapter briefly recalls the main
concepts, but we refer to Cronie et al. [2024b] and Paper 1, 2 and 3 for more
information.

4.1 Prediction Errors

Given a point process X with conditional intensity λθ0(u|X), u ∈ S, consider a
training-validation pair (XT , XV ), as defined in Definition 2.4.1. Then, the point
process prediction errors are defined as (see [Cronie et al., 2024b] and Paper 2)

Ih
θ (A;XT , XV ) =

∑
x∈XV ∩A

h(x;XT \ {x})−
∫
A

h(u;XT )Vθ(u)λθ(u|XT )du, (4.1)

where A ⊆ S. Note the similarity to the h-innovations in (3.5). There are two
main differences, the type of prediction and the weight function Vθ(u), see Section
4.2. If we use the pair (X,X) in (4.1), instead of the pair (XT , XV ), we get
so-called auto-prediction (see [Cronie et al., 2024b] and Paper 2)

Ih
θ (A;X,X) =

∑
x∈X∩A

h(x;X \ {x})−
∫
A

h(u;X)Vθ(u)λθ(u|X)du.

In terms of cross-validation (CV), this approach reflects leave-one-out CV. Here
we see that setting Vθ(u) = 1 gives us (3.5), which means that the point process
prediction errors in (4.1) are a generalization of the h-innovations in (3.5).

Similarly to the h-innovations, the prediction errors are unbiased, in the sense that

E[Ih
θ (A;XT , XV )] = 0, (4.2)

25
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under certain conditions, see Cronie et al. [2024b, Theorem 2]. More precisely, let
λ̆θ0{(u,m)|X̆}, (u,m) ∈ S ×M be the conditional intensity of the marked point
process X̆ = {(x, 0) : x ∈ XT } ∪ {(x, 1) : x ∈ XV } with mark space M = {0, 1}.
The prediction error Ih

θ (A;XT , XV ), for any A ⊆ S, has expectation 0 if and
only if the parameter θ is the true parameter θ0. This holds under boundedness
assumptions on λθ0 , λ̆θ0 and h, namely that for | · |-almost every u ∈ S it holds
that E[λθ0(u|X)2] < ∞, E[λ̆θ0((u, 1)|X̆)2] < ∞ and E[h(u,XT )2] < ∞ for θ0 ∈ Θ.

4.2 PPL-weight

The weight function Vθ(u) is called the PPL-weight and is defined as

Vθ(u) =Vθ(u,X
T , XV ) = E

[
λ̆θ{(u, 1)|X̆}
λθ(u|XT )

∣∣∣∣∣XT

]
, u ∈ S, (4.3)

assuming that E[λθ(u|X)2] < ∞ for almost all u ∈ S and all θ ∈ Θ with the
convention that 0/0 = 0. It can be difficult to find the form of the PPL-weight in
general, but (4.3) reduces to

Vθ(u) = Vθ(u,X
T , XV ) = p(u) E

[
λθ(u|X)

λθ(u|XT )

∣∣∣∣XT

]
, (4.4)

when XV is an independent thinning of X, based on the retention probability
function p(u) ∈ (0, 1), u ∈ S. This is an argument for considering independent
thinning-based point process CV, such as Monte-Carlo CV or block CV.

Expressions for the PPL-weight are shown in Paper 2 for general Gibbs processes,
as well as for Poisson, hard-core, Strauss and Geyer saturation processes. Since
the form of the weight is often mathematically intractable, approximations and
estimations of the weight is further discussed in Paper 2. Common choices are
Vθ(u) ≈ p(u), used in Paper 1, and Vθ(u) ≈ p(u)/(1 − p(u)), used in Cronie
et al. [2024b]. Paper 2 proposes another approach, namely estimating the weight
from the point pattern at hand. In Paper 2, these three choices of weights are
compared in a simulation study, where p(u)/(1−p(u)) did not work well for any of
the models. The choice between the fixed weight p(u), and estimating the weight,
is not as clear, and depends on the model. Usually, weight estimation yields more
stable results, but it is also more computationally expensive and time consuming.

4.3 Loss Functions

Since the prediction error is zero in expectation for the true parameter, the idea
of PPL is to find a good parameter estimate by minimising the expectation of
the prediction error. In practice, the expectation of the prediction error has to
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be approximated, as it is difficult to evaluate. To this end, Cronie et al. [2024b]
introduced loss functions as follows. Given a cross-validation round {(xT

i ,x
V
i )}ki=1

of x, let X = {(xT
i ,x

V
i )}ki=1 and

Tk = T (X) = {i ∈ {1, . . . , k} : xT
i ̸= ∅,xV

i ̸= ∅}.

This construction ensures that we exclude splits where either xT or xV is empty.
Then the loss functions are

Lj(θ) =
1

#Tk

∑
i∈Tk

∣∣Ih
θ (A;xT

i ,x
V
i )
∣∣j , j = 1, 2,

L3(θ) =

(
1

#Tk

∑
i∈Tk

Ih
θ (A;xT

i ,x
V
i )

)2

.

In Paper 3, these loss functions are further motivated, by an empirical risk formu-
lation of PPL.

In the simulation study of Paper 1, which concerned the hard-core process, the loss
functions L1 and L2 yielded much better results than the L3 loss function. In the
simulation study of Paper 2, it is seen again that the choice of loss function affects
the results. For the Geyer saturation process, the L3 loss functions obtained the
best results, while for the Poisson, hard-core and Strauss processes, the L1 and L2

loss functions performed best.

4.4 Relation to Takacs-Fiksel Estimation

Recall that h-innovations are a special case of point process prediction errors.
Motivated by this fact, Paper 2 shows that Takacs-Fiksel estimation (TF) is a
special case of PPL. We here present, in Theorem 1, a reformulated version of
Theorem 2 and Theorem 3 in Paper 2. Theorem 1 shows that TF is a limiting
case of a weighted average of prediction errors, for both Monte-Carlo CV and block
CV, when the cross-validation scheme tends to leave-one-out CV.

Theorem 1 (Paper 2). Assume that λθ(u|x) and h(u;x) are bounded for any
θ ∈ Θ, u ∈ S and x ∈ N. Further, let A ⊆ S be bounded and k ≥ 2.

1. Let {(XT
i (pk), X

V
i (pk))}ki=1 be a Monte-Carlo cross-validation of X, based

on a retention probability pk ∈ (0, 1). If pk = 1/
√
k, then

pk

k∑
i=1

Ih
θ (A;XV

i (pk), X
T
i (pk))− eh(θ)

p−→ 0

as k → ∞.
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2. Let {(XT
ik, X

V
ik)}ki=1, be block cross-validations of X ∩A, based on partitions

{Aik}ki=1 of A, with associated retention probabilities pik(u) = 1{u ∈ Aik},
i = 1, . . . , k. Assume further that the partition sizes satisfy maxi=1,...,k |Aik| →
0 as k → ∞ and that for any i = 1, . . . , k there exists only one j = 1, . . . , k+1

such that Aik ⊆ Aj(k+1), i.e. we have a refinement. Then

k∑
i=1

Ih
θ (A;XV

ik, X
T
ik)− eh(θ)

p−→ 0

as k → ∞.

4.5 Estimating Equation Approach

We can also formulate PPL with estimating equations, similarly to how it was
done with TF in Section 3.3.3. Let hθ = (h1

θ, . . . , h
d
θ)

T be a d-dimensional test
function and θ = (θ1, . . . , θd)

T ∈ Θ ⊆ Rd be a d-dimensional parameter for a given
model. Further, let {(xT

i ,x
V
i )}ki=1, k ≥ 1, be a cross-validation round for a given

point pattern x, with the associated prediction error vectors Ihθ (A;xT
i ,x

V
i ) =

(Ih1
θ (A;xT

i ,x
V
i ), . . . , Ihd

θ (A;xT
i ,x

V
i ))

T ∈ Rd, i = 1, . . . , k. For ease of notation we
denote the mean of the prediction errors as Ijh,k(θ;x) =

1
#Tk

∑k
i=1 Ihj

θ (A;xT
i ,x

V
i )

for j = 1, . . . , d, and the vector of all the means as Ih,k(θ;x) = (I1h,k(θ;x), . . . , I
d
h,k(θ;x))

T .
Here, we want to solve the system of equations

Ih,k(θ;x) = (0, . . . , 0)T , (4.5)

in order to find an estimate θ̂h,k(x) ∈ Θ. By (4.2), we know that E[Ih,k(θ;X)] =

E[Ihθ (A;XT , XV )] = (0, . . . , 0)T when θ = θ0, which means that (4.5) is an
unbiased estimating equation.

4.5.1 Large Sample Properties

In Theorem 3 of Paper 3, we provide large sample properties (consistency and
asymptotic normality) of the estimator θ̂(X,An), which hold when the observation
window An increases. We present the results in Theorem 2 below, and refer to
Paper 3 for details about the conditions and assumptions.

Theorem 2 (Paper 3). Under some regularity conditions, it holds that

θ̂(X,An) → θ0

in probability, as n → ∞. Under additional assumptions, it holds that

|An|1/2(θ̂(X,An)− θ0)

tends weakly to a Gaussian vector with mean 0 and covariance matrix V −1JV −1,
as n → ∞.
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4.5.2 Small Sample Properties

Moving on to small sample properties we are interested in the bias and variance
of the estimator θ̂, which we obtain expressions for using a Taylor expansion of
Ih,k(θ) around θ̂. More specifically,

Ih,k(θ;x) = Ih,k(θ̂h,k(x);x)−DIh,k(θ;x)
(
θ̂h,k(x)− θ

)
−Rh,k(θ, θ̂h,k(x)) (4.6)

= −DIh,k(θ;x)
(
θ̂h,k(x)− θ

)
−Rh,k(θ, θ̂h,k(x)).

where DIh,k(θ;x) is the Jacobian matrix in terms of θ, and Rh,k(θ, θ̂h,k(x)) is the
remainder term. In the second equality of (4.6), Ih,k(θ̂h,k(x);x) disappears since
θ̂h,k(x) is the estimate solving the estimating equation (4.5), i.e. it is assumed that
Ih,k(θ̂h,k(x);x) = (0, . . . , 0)T . By reordering terms we now obtain the bias of the
estimator as

Bias(θ̂h,k) = −B1
h,k −B2

h,k,

B1
h,k = E[DIh,k(θ0)

−1Ih,k(θ0)],

B2
h,k = E[DIh,k(θ0)

−1Rh,k(θ0, θ̂h,k)],

and the variance as

Var(θ̂h,k) = C1
h,k + C2

h,k + 2C3
h,k,

C1
h,k = Var(DIh,k(θ0)

−1Ih,k(θ0)),

C2
h,k = Var(DIh,k(θ0)

−1Rh,k(θ0, θ̂h,k)),

C3
h,k = Cov(DIh,k(θ0)

−1Ih,k(θ0),DIh,k(θ0)
−1Rh,k(θ0, θ̂h,k)).

To provide explicit expressions for the bias and variance of the estimator, we need
expressions for B1

h,k, B
2
h,k, C

1
h,k, C

2
h,k and C3

h,k, so to this end, some properties of
the estimating function Ih,k(θ) are derived. For example, to obtain an expression
for DIh,k(θ0)

−1 we start with partial derivatives of prediction errors. Further, a
new variance expression for prediction errors is provided, since the one provided in
Cronie et al. [2024b] and Paper 2 had a small calculation error. After meticulous
calculations, we can conclude that the expressions for the bias and variance of the
estimator are intractable.

4.5.3 Approximation with Sensitivity Matrices

For simpler computations, we follow the approach of Guan et al. [2015], Coeurjolly
et al. [2016] and approximate the stochastic Jacobian matrix DIh,k(θ,X) with its
expectation, the sensitivity matrix Sh,k(θ) defined as

Sh,k(θ) = E[−DIh,k(θ,X)]. (4.7)
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The approximation is based on asymptotic arguments, where also the remainder
term Rh,k(θ, θ̂h,k(x)) tends to 0 in probability, due to Theorem 2. This gives us
an (approximately) asymptotically unbiased estimator θ̂h,k(X), since

Bias(θ̂h,k(X)) ≈ S−1
h,k(θ0)E[Ih,k(θ0, X)] = (0, . . . , 0)T .

Further, the covariance matrix of the estimator is also simplified, and is given by

Var(θ̂h,k) ≈ Var(S−1
h,kIh,k(θ0)) = S−1

h,k(θ0)Σh,k(θ0)S
−1
h,k(θ0),

where Σh,k(θ0) = Var(Ih,k(θ0)). Lastly, the Godambe information Gh,k is defined
as the inverse of the covariance matrix of the estimator, namely

Gh,k = Var(θ̂h,k)
−1 = Sh,k(θ0)Σ

−1
h,k(θ0)Sh,k(θ0).

In the context of Godambe optimality, we want to maximise the Godambe in-
formation, or equivalently, “minimise” the covariance matrix of the estimator, see
Section 3.3.5.

4.5.4 Optimal Test Functions for PPL

When attempting to solve an estimating equation like (4.5), the choice of the
test function h is not straightforward. In previous work for PPL ([Cronie et al.,
2024b], Paper 1 and Paper 2) the Stoyan-Grabarnik test function has been used.
For PPL, the (approximately) optimal test function g may be found, where the
sufficient condition (3.6) becomes

Σ(h,k),(g,k)(θ0) = Sg,k(θ0), (4.8)

for all test functions h, where Σ(h,k),(g,k)(θ0) = Cov(Ih,k(θ0), Ig,k(θ0)). See Paper
3 for a proof that it is a sufficient condition. Paper 3 seeks to solve (4.8), similarly
to Guan et al. [2015] and Coeurjolly et al. [2016], but this time, in the context
of PPL. It is enough to consider the difference Φhg = Σ(h,k),(g,k)(θ0) − Sh,k(θ0),
and to verify condition (4.8) we aim to solve for the (approximately) optimal test
function g in Φhg = 0.

To this end, Paper 3 presents expressions for Σ(h,k),(g,k)(θ0) and Sh,k(θ0), and
due to the nature of these expressions, the conclusion is that solving Φhg = 0

is intractable in the general case. To reduce the complexity involved in solving
the equation, we assume that some parts of Φhg are negligible, along the lines of
Coeurjolly et al. [2016]. Moreover, we consider the case of independent thinning-
based CV, and explore the case where k → ∞ in the cross-validation scheme. This
leads to an equation that, for certain point processes like for example Strauss pro-
cesses, could potentially be solved numerically by using the solution of a Fredholm
integral, similar to the approach of Coeurjolly et al. [2016]. However, this task
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is challenging, and even if successful, the resulting test function is only (approxi-
mately) semi-optimal. As an alternative, we consider the special case of a Poisson
process under similar assumptions as in the general case. In this case, we derive an
analytical solution of the equation and identify an (approximately) semi-optimal
test function.
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Chapter 5

Summary of Papers

5.1 Paper 1

Previously, Cronie et al. [2024b] showed that Point Process Learning (PPL) out-
performs the state-of-the-art in kernel intensity estimation, i.e. the Cronie and
van Lieshout [2018] approach. In this paper, we consider PPL in the context of
parameter estimation for Gibbs processes, and apply it to the hard-core process.
When using pseudolikelihood estimation (PL) for parameter estimation for the
hard-core process, identifiability issues are encountered, since the test function is
not differentiable with respect to the interaction distance R. In practice, estima-
tion is done by the function ppm in the R package spatstat [Baddeley et al., 2015],
which uses PL for the β parameter and a plug-in approach for the R parameter. In
this context, PPL is more flexible, as we may let both R and β be free parameters
to be estimated. The simulations in Paper 1 show that there are hyperparame-
ter choices so that PPL outperforms PL for the hard-core process. Specifically,
the choices are Monte-Carlo cross-validation (CV), loss functions L1 and L2, and
p < 0.3. In the case of β, the performance for the pseudolikelihood estimator is
MSE(β̂) = 315. For PPL, the best performance is when p = 0.1, as the value of
MSE(β̂) for L1 is given by 199 and for L2 it is given by 194, which are significantly
lower than what PL gives rise to. For the R parameter, the ppm function (plug-in
approach) gives the same result as PPL.

33
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5.2 Paper 2

The main focus of this paper, is to relate PPL to Takacs-Fiksel estimation (TF).
We show that TF is a special case of PPL for Monte-Carlo CV and block CV, re-
spectively. The results hold under boundedness assumptions, and asymptotically,
when the cross-validation scheme tends to leave-one-out CV. Notably, this shows
the generality and flexibility of PPL.

Cronie et al. [2024b] show that the expectation of the prediction errors is zero if
and only if the so-called PPL-weight is of a certain form. Here, we provide general
expressions for the PPL-weight for Gibbs models. Specifically, we investigate the
weight expressions for Poisson, hard-core, Strauss and Geyer saturation processes.
For the Poisson process, the weight takes a simple form but for the other models,
the weight is intractable. Therefore we discuss different practical choices for the
weight.

We further compare PPL to TF through a simulation study for four common Gibbs
models, namely Poisson, hard-core, Strauss and Geyer saturation processes. There
are many different hyperparameters, for example the CV parameters, the PPL-
weight and the test function. In our simulations, the test function is fixed to be
the Stoyan-Grabarnik test function [Stoyan and Grabarnik, 1991], which is used
previously in different contexts [Baddeley et al., 2005, Cronie and van Lieshout,
2018, Kresin and Schoenberg, 2023]. In Paper 1, PPL with the Stoyan-Grabarnik
test function was compared to PL, which is a special case of TF but with another
test function. The comparison here is more fair, since we compare PPL with
TF, using the Stoyan-Grabarnik test function in both cases. The results of the
simulations show that, for all four Gibbs models, one can choose hyperparameters
so that PPL outperforms TF in terms of mean square error.
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5.3 Paper 3

In this paper, we investigated whether PPL can be sensibly formulated as an
estimating equation approach. The motivation comes from an earlier work by
Coeurjolly et al. [2016], which introduced an estimating equation approach for
TF, and from Paper 2, which highlighted connections between PPL and TF. While
PPL originally relied on minimising one of the L1, L2 and L3 loss functions, we
explored the potential of using estimating equations by defining an estimating
function based on the mean prediction errors across cross-validation splits.

We first derived expressions for the bias and variance of the parameter estimator,
which turned out to be intractable. To combat this, we approximated the Jaco-
bian matrix with the sensitivity matrix which yielded an approximately unbiased
estimator, but still with a complicated variance expression. Efforts to determine
an optimal test function g under Godambe optimality yielded only semi-optimal
solutions, limited to the special case of a Poisson process and relying on numerous
simplifying assumptions. Thus, we conclude that the estimating equation approach
is unsuitable for PPL.

The preferred methodology for PPL remains norm minimisation with the L1, L2

and L3 loss functions, as previously heuristically motivated in Cronie et al. [2024b].
By framing this approach within an empirical risk minimisation context [Vapnik,
1999], we provide a theoretical foundation for these loss functions.
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Chapter 6

Conclusions and Future Work

In this thesis, the Point Process Learning (PPL) approach introduced in Cronie
et al. [2024b] has been explored in the context of Gibbs point processes. Consid-
ering other methods for fitting parameters of Gibbs processes, like Takacs-Fiksel
estimation (TF) and pseudolikelihood estimation (PL), PPL has a clear role as
a competing state-of-the-art method. Further, PPL has interesting theoretical
properties, as seen in Paper 3, and is a generalization of TF, as seen in Paper 2.

This thesis, together with other related work [Rost, 2024, Östling, 2024], marks
the start of further development of PPL. There are several potential future paths,
where the most important one is to investigate the choice of hyperparameters for
PPL, e.g. the thinning probability p, the PPL-weight and the test function. There
are also different types of cross-validation to consider, even though Monte-Carlo
cross-validation was used in the simulation studies of both Paper 1 and 2. Weight
choice is discussed in Paper 2, but remains to be investigated more.

Another choice when using PPL in practice is the type of loss function used for
parameter estimation, and in Paper 1 and 2, results were presented for all three loss
functions: L1, L2, and L3. This choice is not necessary in the estimating equation
approach of PPL formulated in Paper 3, since here PPL is carried out by solving
an equation system, instead of minimising loss functions. Since the estimating
equation approach of PPL was not successful for practical use, we provide in
Paper 3 an empirical risk formulation of PPL, where the loss functions are further
motivated. So for the current state of PPL, all three loss functions are possible
choices, but it might be an option to stick to one of the loss functions, e.g. the
L2 loss function, in future studies, to narrow down the scope. One argument for
choosing the L2 loss function, is that it generally performed best in the simulation
studies of Paper 1 and 2, with exception for the Geyer saturation process. The
results for the L1 loss function were almost the same as for the L2 loss function,
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so it is enough to consider L2. Further, L2 was used in the original formulation of
TF, and it is one of the most commonly used loss functions in machine learning.

So far, in the simulation studies in Paper 1 and 2, we have run the simulations
over a range of p values and for all three loss functions, but the test function was
kept fixed as the Stoyan-Grabarnik test function. In Paper 3, the choice of test
function was explored in terms of attempting to find an optimal one, in the sense
of Godambe optimality, with an estimating equation approach. However, due to
mathematical intractability, this proved to be a difficult task, and a clear next step
would be to explore different test functions in a simulation study. Here, it might
be suitable to fix values of the other hyperparameters, for feasibility.

Another aspect to consider is that the simulation studies of Paper 1 and 2 have
limitations. We have covered a variety of cases: an inhomogeneous Poisson process,
the repulsive hard-core and Strauss processes, and the Geyer saturation process
with γ > 1. However, the value of the parameter γ used for the Strauss and
Geyer saturation processes, was quite close to one, which means that the processes
behave similarly to a homogeneous Poisson process. This means that varying the
γ parameter, and the saturation threshold s for the Geyer saturation process,
would be relevant, in order to consider a wider range of point patterns for future
simulation studies.

Currently, grid search is used as optimisation method for PPL, which makes the
choice of grid another aspect to consider, especially when comparing results to
PL which does not use grid search. Moreover, the average number of points in
the simulation studies in Paper 1 and 2 were between 60 and 100 points. Testing
PPL on a point pattern with a larger amount of points would be relevant, but
at the moment infeasible since PPL is more computationally extensive than TF
and PL. However, if the choice of hyperparameters can be simplified, much of the
computational time would be reduced.

Further, it would be interesting to consider other Gibbs processes, like hybrids of
Gibbs models [Baddeley et al., 2013]. Also, it would be illustrative to test PPL on
a real data-set, and on point patterns on other spaces than a square 2D window.
An ambition for the future is to reduce the computational time for running PPL,
and to provide a package for PPL as a part of spatstat.

Paper 2 and 3 extend the theory around PPL; Paper 2 delves into properties of
the PPL-weights and shows the relation to TF, and Paper 3 provides an empirical
risk formulation of PPL, as well as an estimating equation approach. Further,
Paper 3 provides large and small sample properties of the parameter estimator, and
presents distributional properties of the prediction errors, like covariance matrices.
Building on these results, it would be relevant to continue exploring properties of
PPL, for example how the choice of the hyperparameters affects the parameter
estimator.
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Another possibility, would be to explore PPL in terms of moment-based models,
like Cox processes [Cox, 1955], instead of conditional intensity-based models, which
Gibbs processes are. It would also be interesting to look more into spatio-temporal
models like the Hawkes process [Hawkes, 1971].

To summarise, two future research aims (which are also closely intertwined) are
stated below:

• Investigate the choice of the hyperparameters for PPL, such as the type of
cross-validation, the associated parameters p and k, the PPL-weight and the
test function. Even though the PPL-weight was investigated in Paper 2, and
the choice of test functions and loss functions were investigated in Paper 3,
they should be explored further.

• Explore PPL more in different contexts, for example extending the simulation
studies, investigate theoretical properties of PPL and applying PPL to other
types of point processes beyond Gibbs processes. Aspects to consider in
future simulations studies include varying the grid, the number of points,
and the type of point patterns. Further, exploring PPL for other types of
Gibbs processes such as hybrids of Gibbs models, as well as other types
of point processes, e.g. Cox and Hawkes processes, is an important future
direction including both theoretical work, as well as practical aspects.
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