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Abstract

This study proposes a multi-perspective fusion model for operating speed predic-
tion based on knowledge-enhanced graph neural networks, named RoadGNN-
S. By utilizing message passing and multi-head self-attention mechanisms,
RoadGNN-S can effectively capture the coupling impacts of multi-perspective
alignment elements (i.e., two-dimensional design, 2.5-dimensional driving, and
three-dimensional spatial perspectives). The results of driving simulation data
show that root mean squared error, mean absolute error, mean absolute per-
centage error, and R-squared values of RoadGNN-S are superior to those of
other classic deep learning algorithms. Then, prior knowledge (i.e., highway
geometry supply, driver expectations, and vehicle dynamics) is introduced into
RoadGNN-S, and the models’ prediction accuracy and transferability are verified
by field observation experiments. Compared to the above data-driven models,
knowledge-enhanced RoadGNN-S effectively avoids the fundamental errors,
improving the R-squared value in predicting passenger cars’ and trucks’ oper-
ating speed by 7.9% and 10.7%, respectively. The findings of this study facilitate
the intelligent highway geometric design with multi-perspective fusion and
knowledge enhancement techniques.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
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1 | INTRODUCTION

Operating speed is the most commonly used metric for
evaluating the consistency of highway geometric design,
closely tied to driving safety (Xuesong Wang et al., 2021).
It has been reported that the lack of geometric con-
sistency can lead to unexpected events and high-speed
variability, contributing to over 30% of road accidents
(Camacho-Torregrosa et al., 2013; Karim & Adeli, 2003a).
Operating speed is defined as the speed at which a
majority of the drivers are observed operating their vehi-
cles under free-flow conditions, reflecting their chosen
speed in response to multi-perspective highway alignment
(Al-Sahili & Dwaikat, 2019). The 85th percentile of the
observed speed distribution is commonly used as a stan-
dard measure to represent the operating speed at specific
locations or geometric features (AASHTO, 2018). How-
ever, highway alignment exhibits distinct geometric shapes
in two-dimensional (2D) design, 2.5-dimensional (2.5D)
driving, and three-dimensional (3D) spatial perspectives,
and only relying on a single perspective may not ade-
quately capture the variation characteristics of operating
speed (F. Wang et al., 2020). Therefore, the fusion of multi-
perspective highway alignment elements is of paramount
importance in accurately predicting operating speed.

The impact of highway alignment on operating speed
varies from different perspectives. The 2D design perspec-
tive reflects the most basic shape of highway alignment
on the horizontal and vertical projection plane during the
geometry design process (Casal et al., 2017). The impact
of 2D alignment elements (e.g., tangents, curves, vertical
slopes, etc.) on operating speed depends on the combi-
nation of horizontal and vertical alignment (Samant &
Adeli, 2001). According to Marr’s visual theory (Marr,
2010), the 2.5D driving perspective is an observational
viewpoint of highway alignment centered on drivers’ eyes,
depicting how drivers dynamically perceive distance, lane
width, and curvature. The 2.5D driving perspective lies
between the 2D and 3D perspectives, where the highway
alignment exhibits depth information as the road outline
gradually narrows from the near to the distant (He et al.,
2023). This visual discrepancy between actual and per-
ceived highway alignment prompts drivers to dynamically
adjust their speed to match their perceived alignment (B.
Yu et al.,, 2019). In addition, highway alignment is essen-
tially a 3D curve, where spatial curvature directly affects
vehicle control and driving comfort (Marinelli et al., 2017).
Nevertheless, existing studies mainly focus on a single per-
spective of highway alignment when predicting operating
speed, resulting in a large deviation between the pre-
dicted and actual operating speed. For instance, operating
speed prediction models based on 2D alignment elements
have been demonstrated to be less suitable for combined

59 WILEY -

and closely spaced horizontal and vertical curve segments
(Maji et al., 2020). The operating speed prediction mod-
els that are established separately based on 2.5D alignment
elements (i.e., the length and curvature of the visual
curve) and 3D spatial curvature make efforts to involve
the impacts of longitudinal slope and vehicle power perfor-
mance on operating speed (Adeli & Ghosh-Dastidar, 2004;
J. Wang et al., 2022). Therefore, the coupling impacts of
multi-perspective highway alignment on operating speed
should be further examined and included in the prediction
model of operating speed.

Different methods have been employed to predict oper-
ating speed, which can be classified into two types,
including model-driven and data-driven methods. Model-
driven methods, such as simple linear regression (Cardoso
et al., 1998), multiple linear regression (Eboli et al., 2017),
multiple nonlinear regression (Sil et al., 2020), general-
ized least squares (Martinelli et al., 2023), simultaneous
equations (Himes & Donnell, 2010), and three-stage least-
squares estimator (Gong & Stamatiadis, 2008), are used
to establish spot-based and continuous operating speed
prediction models of multi-lane highways. Among them,
the spot-based operating speed prediction models divide
the highway into different road segments and estimate the
operating speed at the start, middle, and end points of
each segment (AbuAddous, 2021). The continuous operat-
ing speed models can predict the operating speed at a series
of dense and equidistant spots along the highway, using
alignment elements obtained from neighboring preceding
and subsequent segments along with the driver’s current
position (Cafiso & Cerni, 2012). Due to inherent assump-
tions and boundary constraints, model-driven methods
perform well on road segments with well-separated hor-
izontal curves and longitudinal slopes, but they often
encounter challenges when dealing with complex and
diverse combinations of horizontal and vertical alignment.
In contrast, data-driven methods stand out in terms of
the ability to uncover complex and nonlinear relation-
ships between alignment elements and operating speed,
so they can adapt to various alignment combinations and
potentially improve accuracy through continuous learn-
ing (Jiang & Adeli, 2004; Semeida, 2014). Despite these
advantages of data-driven methods, to our best knowledge,
only artificial neural networks have been utilized to predict
operating speeds of horizontal curve segments on two-lane
rural highways (McFadden et al., 2001). Additionally, alter-
native modeling techniques, such as nonlinear methods,
three-stage least squares, and artificial neural networks,
do not significantly enhance prediction performance when
compared to traditional linear regression models (Medina
& Tarko, 2005). The strength of deep learning algorithms
lies in powerful feature learning and the modeling of com-
plex nonlinear relationships, thereby enhancing model
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adaptability and robustness (Song et al., 2023). There are
still some profound challenges in using deep learning
algorithms to predict operating speed, such as multi-
perspective highway alignment representation and model
interpretability, which hinder the practical applications of
current data-driven methods. Leveraging the advantages
of unstructured data modeling and interpretability, graph
neural networks (GNNs) may provide a potential solution
to these issues (Zhou et al., 2020).

Integrating prior knowledge into deep learning algo-
rithms has been employed to enhance the prediction accu-
racy and transferability of data-driven methods. Currently,
for neural networks, physical knowledge is integrated by
modifying input data (Fei et al., 2022; Karim & Adeli,
2003b), loss functions (Marino et al., 2021), and network
architectures (Li et al., 2024; Sheng et al., 2024) for knowl-
edge enhancement. Three physical principles of highway
geometry supply, driver expectation, and vehicle dynam-
ics should be adhered to accurately predict operating speed
based on prior knowledge. The prior knowledge involves
the whole process from drivers’ perception of highway
alignment to their decision-making of driving behavior.
Highway alignment supply, including the superelevation
and side friction provided by horizontal curves, ensures
vehicle stability within a certain safe margin beyond the
design speed (Donnell et al., 2016). Driver expectations
are formed through long-term driving experience and
memory, which can assist drivers in adjusting the vehi-
cles’ speed and acceleration in time (van der El et al.,
2019). Vehicle dynamics primarily affect operational speed
through centrifugal force and tractive force. The large cen-
trifugal force generated when vehicles rapidly enter curves
may lead to driver discomfort, which compels drivers
to take self-protective deceleration maneuvers (Dhahir &
Hassan, 2016). The traction force can overcome driving
resistances (i.e., air resistance, rolling resistance, skid-
ding resistance, and grade resistance) to propel the vehicle
forward (Z. Xu et al.,, 2018). For engineering applica-
tions with safety as the main goal, a highly accurate and
transferable operating speed prediction is necessary by
integrating the above prior knowledge into data-driven
methods.

Given the above, although previous studies have estab-
lished operating speed prediction models from a single
perspective of highway alignment, they undermine the
coupling impacts of multi-perspective alignment elements
on operating speed. In addition, existing data-driven oper-
ating speed prediction models still have limitations in
the fusion of multi-perspective highway alignment ele-
ments and the interpretability and transferability of mod-
els. To fill the above research gaps, this study aims to
propose a multi-perspective fusion model for predicting
operating speed based on knowledge-enhanced GNNs,

/@ GAO ET AL.

named RoadGNN-S. A multi-perspective alignment seg-
ment (MPAS) graph is constructed to fuse the 2D, 2.5D,
and 3D highway alignment elements. Then, using the driv-
ing simulation data, the operating speed prediction model
is built by GNNs. Prior knowledge of highway geome-
try supply, driver expectations, and vehicle dynamics is
further introduced into the operating speed prediction
model, and the enhanced accuracy and transferability of
the model are verified by field observation experiments.
The contributions of the study are threefold:

1. By the graph topology and connectivity, the proposed
MPAS graph achieves modular representation and the
multi-perspective fusion of highway alignment, facili-
tating a more comprehensive understanding of highway
alignment from multiple perspectives.

2. Based on GNNs, this study proposes an interpretable
operating speed prediction model, named RoadGNN-S.
This model can effectively capture the coupling impacts
of multi-perspective alignment elements on operating
speed and provide clear and interpretable results during
the prediction process.

3. The prior knowledge is considered in GNNs to
ensure the theoretical correctness of solutions. This
knowledge-enhanced modeling can further improve
the model’s predication accuracy and transferability,
compared with data-driven modeling.

2 | METHODOLOGY

2.1 | Problem definition

Operating speed prediction can be regarded as establishing
the dynamic balance relationship among highway geo-
metric supply, driver expectations, vehicle dynamics and
operating speed in the traffic system composed of roads,
drivers, vehicles, and environment. Therefore, operating
speed can be predicted using deep learning algorithms that
consider the interactions 7 = (I, 14, I,,) of highway geo-
metric supply, driver expectations, and vehicle dynamics
to establish a mapping between the input highway align-
ment element € = (vy, ..., U,) and output operating speed

— (0 Q
S=W, ...V

2.2 | Overall framework

As illustrated in Figure 1, the whole methodology frame-
work consists of three main parts, including the MPAS
graph construction, the GNNs-based operating speed pre-
diction model (RoadGNN-S), and knowledge-enhanced
modeling. The purpose of MPAS graph construction is to
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FIGURE 1

The methodology framework of this study. 2D, two-dimensional; 2.5D, 2.5-dimensional; 3D, three-dimensional; MLP,

multiple-layer perceptron; MPAS, multi-perspective alignment segment; RoadGNN-S, graph neural networks-based operating speed

prediction model.

represent highway alignment and fuse multi-perspective
alignment elements (i.e., 2D, 2.5D, and 3D perspectives).
Then, MPAS graphs are used to establish an operating
speed prediction model based on GNNs. This kind of inter-
pretable deep neural network could effectively capture the
coupling impacts of multi-perspective alignment elements
on operating speed. The prior knowledge is then inte-
grated into the proposed operating speed prediction model
to improve the model’s performance and transferability,
which considers the interactions of highway geometric
supply, driver expectations, and vehicle dynamics.

2.3 | The MPAS graph

2.3.1 | Highway alignment segment modeling
To enhance the applicability of deep learning algorithms
in operating speed prediction, this study modularizes the
highway alignment. As shown in Figure 2a,b, the high-
way alignment is divided into a series of adjacent segments
(called highway alignment segments), each of which con-
tains a complete horizontal alignment element (i.e., a
tangent or a combination of entry spiral, circular curve,
and exit spiral) and vertical alignment elements (i.e., a

combination of preceding vertical slope, vertical curve, and
succeeding vertical slope). This method not only exam-
ines the perfect overlap between horizontal curves and
vertical curves but also covers various combinations of
horizontal and vertical alignments. Regarding 2D design
perspective alignment as the basis and 2.5D and 3D per-
spective alignment as the supplements, the MPAS model
is then established, which can be described by the follow-
ing formulas. The 2D perspective alignment is fixed within
each segment, and the 2.5D and 3D perspective alignments
change continuously, providing a more realistic depiction
of the dynamic nature of highway alignment.

2D design perspective

Highway alignment design has always employed the tra-
ditional 2D design method that separates the horizontal
and vertical planes. As illustrated in Figure 2c, horizon-
tal alignment (including tangents, spirals, and circular
curves) presents the layout of highways on the horizontal
plane, while vertical alignment (including vertical slopes
and vertical curves) reflects the vertical undulations of
highways. To generically represent the arbitrary combi-
nation of horizontal and vertical alignment, this study
establishes a highway alignment differential equation pro-
vided in Equation (1) based on the formula derivation from
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previous research (Yan & Zhang, 2010).

S k.—k
- e %02
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. oL

-

N
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0 Ry

where s is the mileage of any point p along the MPAS; L
is the length of the horizontal curve; x, and y, are the ini-
tial coordinates; z; is the initial elevation; k, and k, are the
curvature at the starting and ending points of the horizon-
tal alignment, respectively; g(s) is the grade at the point p,
which can be calculated by vertical slope Gy, and the radius
of vertical curve Ry ; Dy, is the horizontal distance along the
vertical curve.

2.5D driving perspective

Compared to quadratic curves and other cubic curves, such
as cubic Bézier splines and cubic B-splines, the Catmull-
Rom spline provides higher accuracy in fitting the highway
alignment perceived by drivers’ vision (B. Yu et al., 2019).
As shown in Figure 2d, the visual lane shape is divided
into three distinct regions, including “near scene,” “middle
scene,” and “far scene,” based on the locations of four con-

trol points (P.y, Pcy, Pe3, Pes) of the Catmull-Rom spline.
The length and curvature of the visual curves within these
three distinct regions are used as shape parameters and
denoted as [vSj(41), UKj(;4+1)]. These parameters can be
calculated by Equations (2) and (3):

0 1 0 0 ||P,
05 0 05 0 [[P,

P.(t) = [1t 2 1] L 25 2 —os||pa )
) 5| P,
05 15 -15 05 ||P.
firi— fi
U Sii+1) = Siz1 — Si, U K1y = ;;(—H)l (3)
nr

where P.(t) denotes the position of a point on the
Catmull-Rom spline at the interpolation parameter ¢,
t €[0,1]; Pey,Pcy, Pe3, Py denote the control points of
a Catmull-Rom spline, with each point denoted as
(Si»xi,y) (i =1,2,3,4); vS;;41) and vKj;, 1y denote the
visual curve length and curvature between control points
P.; and P.1), respectively; S; and f; denote the accu-
mulated curve length and tangent direction angle at the
control point P, respectively; f; is calculated by tak-
ing the derivative of the Catmull-Rom spline equation
with respect to t and evaluating it at the control points;
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The derivation process of the standard Catmull-Rom basis
matrix is detailed in Y. Wang et al. (2000).

3D spatial perspective

The representation of spatial curves in classical geome-
try relies on differential equations. In the Frenet-Serret
theory (Kim et al., 2012), the curvature and torsion of 3D
spatial curves can be described by an orthonormal mov-
ing frame along the curve. As shown in Figure 2e, the
spatial curvature describes the degree of curvature of the
highway alignment, while the spatial torsion represents
its rotational properties. According to the derivations by
J. Wang et al. (2022), the calculated formulas of spatial cur-
vature and torsion of highway alignment are described in
Equation (4):

= M T(S) — (V(S) X V(S)) . r(s)

x(5)
LO I (s) X F(s)|*
x(s)
r(s) = | y(s) (4)
z(s)

where x(s) and 7(s) denote the spatial curvature and tor-
sion at length s of the 3D curve, respectively; s is the
mileage of any point p along the MPAS; r(s) denotes the
position vector of the mileage s on the road segment.

2.3.2 | Input features

To construct an MPAS graph that can describe the relation-
ship between multi-perspective alignment elements and
operating speed, this study utilizes the input features from
four sources, including 2D design perspective alignment
element features (e.g., circular/tangent, spiral, vertical
slope, vertical curve, etc.), 2.5D driving perspective align-
ment element features (e.g., visual curve length, visual
curve curvature, etc.), 3D spatial perspective alignment
element features (e.g., spatial curvature, spatial torsion,
etc.), and driving behavior features (i.e., operating speed).
These input features are described in detail in Table 1. Sim-
ilar to building blocks, a series of MPASs is able to splice
into a complete highway alignment and a continuous
operating speed curve.

2.3.3 | MPAS graph construction

Since the proposed MPAS contains different types of fea-
tures (i.e., different perspective alignment elements and
driver behavior), Euclidean distances cannot be used to
measure their similarity. Although the input data follow
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a fixed structure, the relationships among the multi-
perspective features in the MPAS are inherently non-
Euclidean and complex. Thus, it is difficult to establish
effective relationships between different features using
Euclidean data structures (e.g., vectors, sequences, grids,
etc.). To solve this issue, the MPAS graph is constructed
to organize the above features in the form of a graph
structure, which can effectively represent the complex
interdependencies and irregular topologies inherent in
these features as demonstrated in Figure 3. Graphs are a
kind of non-Euclidean data structure consisting of nodes
and edges that describe entities and their relationships in
geometric space (Bazrafshan et al., 2024). By leveraging the
scalability and topological structure of graphs, each MPAS
is explicitly represented as a graph, facilitating a modular
representation of highway alignment.

As shown in Figure 3, the MPAS graph comprises four
types of nodes, including 2D design perspective alignment
elements, 2.5D driving perspective alignment elements,
3D spatial perspective alignment elements, and operat-
ing speed. The relationships between these nodes are
established through edges, which represent three types of
relationships: (1) edges between alignment element nodes
represent geometric constraints among multi-perspective
features (e.g., perspective relations from 2D to 2.5D, com-
positions from 2D to 3D, and transitions from spirals to
circular curves, etc.); (2) edges between operating speed
nodes represent acceleration; and (3) edges between align-
ment element nodes and operating speed nodes represent
the influence of alignment elements on operating speed.
Additionally, the connectivity in the graph allows nodes
to propagate multi-hop information through edges. The
2D, 2.5D, and 3D perspectives of highway alignment act
directly on highway geometric design, driver visual percep-
tion, and vehicle movement, respectively. Therefore, the
MPAS graph could realize the fusion of multi-perspective
alignment elements, by establishing a closed-loop within
highway geometric supply, driver expectations, vehicle
dynamics, and operating speed.

Considering that the geometric constraints between
alignment elements and the transmission of operating
speed are directional, this study uses directed graphs to
represent the MPAS. The MPAS graph can be described as
G = (V,E),where V = {vy,...,0,,} is the node set and E =
{e1,...,e,} is the edge set. Node attributes are denoted as
XV € R™4 where m is the number of nodes, and d is the
dimension of node features. Similarly, edge attributes are
denoted as X°¢ € R"*, where n is the number of edges, and
c is the dimension of edge features. Table 1 lists the values
and dimensions of node and edge attributes. In an MPAS
graph, the topological relationship between entities (i.e.,
nodes) is presented as an adjacency matrix A = [q; j]mxm
that captures the connections between nodes, where if
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Description

Cy, Lgy, and e are the curvature, length, and
superelevation of the circular curve (or tangent),

TABLE 1 Summary description of the multi-perspective alignment segment (MPAS) features.
Categories Alignment element Code Attribute
Two-dimensional ~ Circular curve/tangent Ct Cys Ly e
design
perspective

Spiral Sp
Vertical slope Vs
Vertical curve Ve Ry, Ly
2.5-dimensional Visual curve Ve
driving
perspective
Three- Spatial curve Sc X, T
dimensional
spatial
perspective
Driver behavior Operating speed Vs Vs

node i is connected to node j, a; j is1, and if not, ; j is 0. To
balance the efficiency of edge lookups and memory usage,
this study employs a sparse adjacency matrix to handle
edge connections. While adjacency lists are more efficient
for neighbor node exploration, the sparse adjacency matrix
provides better performance for frequent edge connectivity
queries (M. Xu et al., 2023).

2.4 | RoadGNN-S model architecture

To better consider the coupling impacts of multi-
perspective alignment elements on operating speed,
this study employs GNNs to establish an operating speed
prediction model, named RoadGNN-S. GNNs are emerg-
ing deep learning techniques that are capable of processing
non-Euclidean data by extending convolution operations
(Zhang et al., 2024). The proposed RoadGNN-S utilizes
a “graph-in, graph-out” architecture. The independent
variables represent MPAS graphs with missing operational

LSl’LSZ’Al!AZ

GVP? GVS’ LVP’ LVS

[VSi(is1) VK1)

respectively

Cy = 0: tangent

Cy > 0: circular curve

L, and Lg, are the length of the entry and exit spirals,
respectively. A; and A, are the parameters of the entry
and exit spirals in horizontal alignment, respectively
Gyp and Lyp are the grade and length of the preceding
vertical slopes, respectively. G, ¢ and Ly ¢ are the grade
and length of the succeeding vertical slopes,
respectively

Gy > 0: upgrade

Gy < 0: downgrade

Ry and Ly, are the radius and length of vertical curves,
respectively, in accordance with Chinese design
specifications for highway alignment (MTPRC, 2017).
Ry > 0: sag vertical curve

Ry < 0: crest vertical curve

In the Green Book (AASHTO, 2018), Ry, represents the
rate of vertical curvature

US;(+1) and UK,y are the length and curvature of the
visual curve in the i-th to (i + 1)th region, i = 1,2,3

x and 7 are the spatial curvature and spatial torsion of
the 3D curve, respectively

The operating speed along the driving direction of

vehicles, km/h, Vg = [Vgs, s VSS]. Q represents the

number of spots where operating speed is calculated

speed node features, and the goal of the model is to learn
how to infer the missing features from this incomplete
information to generate a complete MPAS graph as the
dependent variable. The message-passing mechanism
allows nodes to exchange and propagate information from
their neighbors, effectively capturing dependencies across
multiple hops (Dong & Sun, 2024). Additionally, the multi-
head self-attention mechanism assigns varying weights to
each edge based on its importance, thereby improving the
model’s ability to learn from complex node relationships
(Aironi et al., 2024). By utilizing the message-passing and
multi-head self-attention mechanisms, this prediction
model might effectively leverage the information from
neighboring nodes to enhance model generalization and
performance.

As demonstrated in Figure 1b, RoadGNN-S consists
of four components, including a feature representation
layer, two graph isomorphism network (GIN, a variant
of GNNSs) layers, a graph attention network (GAT) layer,
and a fully connected network (FC) layer. The feature
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(o¢) Entity ~——> Relationship @ 2D @2.5D @ 3D @ V. © S/ET

(a) Schematic illustration of an MPAS

@
%

(b) Graph representation

FIGURE 3 Graph representation of an multi-perspective alignment segment (MPAS). Note: the numbers in the figure represent node

identity (i.e., node ID). ST and ET represent the start point and end point of the MPAS, and these two nodes are used to connect upstream and
downstream MPASs. ST and ET nodes contain detailed geometric design information, including coordinates, orientation angles, mileage, and
index of the MPAS. The descriptions of all the entity codes are demonstrated in Table 1. 2D, two-dimensional; 2.5D, 2.5-dimensional; 3D,

three-dimensional.

representation layer can extract and organize all highway
geometric design parameters (e.g., alignment elements,
design speed, lane width, etc.) as the input graph. The
GIN layer updates local node information by iteratively
aggregating neighboring nodes, thereby capturing the
individual impact of alignment elements on operating
speed from different perspectives. The GAT layer focuses
on the global graph structure and captures the intricate
relationships among alignment elements from different
perspectives, along with their coupling impacts on oper-
ational speed. The fully connected network layer maps
the learned node feature representations onto graph-level
representations that contain continuous operating speed
values. The detailed process is described as follows:

Step 1 (feature representation): The highway align-
ment is first divided into a series of MPASs.
Multi-perspective alignment elements are extracted
and calculated to construct MPAS graphs G =
(V,E). Additionally, design speed V4, lane width
W), restricted type R, (i.e., tunnel, interchange,
and speed zone), and initial operating speed Vgs
of the MPAS are incorporated as a global fea-
ture gy = [V4, W, R, V5] into the model. Each
MPAS’s initial speed Vgs is derived from the ter-
minal operating speed of the preceding segment,

thereby ensuring continuity in operating speed
transfer throughout the prediction process.

Step 2 (the GIN layer): To address the graph iso-

morphism problem among different nodes with
similar local structures in the MPAS, the GIN
model is employed to ensure node distinctiveness
and recursively update the feature embeddings of
each node to capture both local structural informa-
tion and contextual relationships within the global
graph (Bouritsas et al., 2022). In the GIN, a func-
tionG : X —> R¥ is utilized for encoding nodes in
the countable multi-set. The node representation
H(v,X) can be calculated by Equation (5):

H@©,X)=1+¢)-CO)+ ) ¢w)
uex

where V is a set of nodes of v, vEV; X is
bounded-size multi-set, X C X; ¢ is a learnable
parameter; the functions G(v) and G(u) map the
features of node v and neighboring node u, respec-
tively, through the encoding function G to a /-
dimensional vector.

GNN s involve three stages in their message-passing
process: message computation, aggregation, and
update. All nodes in the graph first carry a “mes-
sage” (i.e., original node features). Then, nodes
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aggregate messages from neighboring nodes and
use the aggregated information to update their
representations as described by Equations (6)-(9):

hf,o) =x,VVEV (6)

miy = Wihi .V (w,v) e E )

al(,l) = Z mgl)),VU ev €))
ueN()

B = o (Wal +b0),vwev ©)

where x, represents the features (i.e., attributes)
of node v; ml(}l)) denotes the message from node u
to node v in the Ith layer; al(,l) denotes the aggre-
gated representation of node v in the Ith layer; hl()l)
denotes the node representation at the Ith layer;
N(v) denotes the set of neighboring nodes of node
v; WE,? and Wl(ll) are learnable weight matrices; o(-)
is the rectified linear unit (ReLU) function; b® is a
bias term for the /th layer.

GIN, a variant of GNNs, employs multiple-layer
perceptron (MLP) as update functions, which per-
form nonlinear transformations on node features
and combine the weighted sums of neighboring
node features to better capture intricate graph
relationships. The MLP used in GIN typically con-
sists of two layers, with ReLU activation applied
after each layer. This process can be described by
Equation (10).

h" = MLP® <(1+s(l)) SR hff‘”)
ueN(v)

(10)
Step 3 (the graph attention networks layer): the graph
attention network layer employs the multi-head
self-attention mechanism to dynamically allocate
self-attention weights. For the k-th head, the hid-
den representation h;(l’k) of node v in layer [ is
updated by a weighted summary, incorporating
both its own and neighboring nodes’ information,

as specified by Equations (11) and (12):
ozg;) = softmax (a <W(k)hg_1), W(k)hg_l)» 11)
R ) T
ueN()

where W& is the linear transformations matrix
for the kth head; ocff;) is the self-attention weight
for the kth attention head between v node and u

@ GAO ET AL.

node;a(-, -) is the attention coefficient computed by
the kth head; o(-) is the ReLU function.

The final representation h;(l) of node v with multi-
head attention is obtained by concatenating the
outputs from all attention heads, which can be
calculated by Equation (13):

K

(1 "(Lk

D= nto (13)
k=1

where K is the total number of heads; || denotes
concatenation.

Step 4 (the fully connected network layer): Before
passing the output of the graph attention net-
work layer to the fully connected layer, the global
feature gy can be directly concatenated to the
node representations. Then, the concatenated node
representations are non-linearly transformed into
a graph-level representation containing operating
speed information Vgs = [V ,VSQS] as given by

g5 e
Equations (14) and (15).

171:)(1) = concat (h;(l), gf> ,YoeV (14)

7 1+1) = ]71;(1+1)Wf(l+1) +pD (15)

!
where hu(l) denotes the output node representa-

tions from the graph attention networks layer; Fz;(l)
denotes the concatenated node representations;
concat(-,-) denotes the concatenation operation;
R'(+1) denotes the output graph-level representa-
tion; Wf(l) and b® represent the weight matrix and
bias in the fully connected layer, respectively.

2.5 | Knowledge-enhanced modeling

To enhance deep learning models’ physical intuition to
guarantee the theoretical correctness of the prediction
results, this study introduces the prior knowledge involved
in the whole process from drivers’ perception of the
highway alignment to their decision-making of driving
behavior into RoadGNN-S. As shown in Figure 1c, the
interactions 7 = (I, I4,1,) of highway geometry supply,
driver expectations, and vehicle dynamics on operating
speed are inserted into the backpropagation process of
GNNs, that is, speed and acceleration penalty terms are
introduced in the loss function to expedite and optimize
the training process. The knowledge-enhanced model-
ing can better utilize the associated information between
nodes and edges in the graph data, enhancing predic-
tion accuracy and generalization performance, especially
in situations with scarce training data.
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The loss function of knowledge-enhanced neural
networks consists of two components: the data-driven
loss and the knowledge-enhanced loss. The knowledge-
enhanced loss represents the squared residuals between
the predicted operating speeds and the speeds that ensure
safety and comfort, as well as between the predicted
accelerations and the accelerations that satisfy driver
expectations and vehicle dynamics, thereby enforcing
physical constraints on the RoadGNN-S. Specifically, this
loss can be calculated by Equations (16)-(18):

LxenN = Ldata + Lxnwl (16)
Q d
Lbata = z MSE <.qure ,yff”e) a7)
=1

2
Q[ (v5*! = min(Vys, Vo) )

Lint =41 ), >

q=1 Iy

pred2 pred2
Yq _yq—l .
0 2As — min(age, @yq)

+A ) .

Oa

2

(18)

where Lygny iS the loss function of knowledge-enhanced
modeling; L£g,¢, is the loss function of data-driven mod-
eling; Ly, is the loss function of introducing prior
knowledge; 4, and 4, are the weights of knowledge loss
term, A,,4, € [0,1]; MSE(:) is the mean square error
loss function; Q is the number of operating speed nodes;
ygred and yff”e are the predicted value and true value of
the operating speed on node g, respectively; As is the
mileage from the calculated node q to g —1; ag. is the
acceleration produced by drivers’ expectations; a,, is the
acceleration produced by vehicle dynamics; V,, is the
maximum operating speed that ensures driving safety;
V4. is the maximum operating speed that ensures driving
comfort; o} and o7, denotes the variance of the predicted
speed term and the acceleration term, respectively.

2,51 | Highway geometric supply

In the 2D design perspective, traditional highway geomet-
ric design theory uses a point mass model to correlate
speed and curve radius. This method ensures that vehi-
cles do not experience side skidding and rollover within
a certain safety margin of the design speed as given by

59 WILEY-—2

Equation (19).

.

Ry
Vg < — skiddi
ds = \/127 F +0.01c,) (on — skidding)

< R (19)
Vs < ek (non — rollover)

127 <i + 0.01es>
2h

g

where V, is the maximum operating speed that ensures
driving safety; Ry is the radius of horizontal curves; f .«
is the maximum allowable side friction factor, f.x €
[0.15,0.4] (AASHTO, 2018); eg is the rate of superelevation,
percent; b is the length of a vehicle’s wheelbase; h, is the
height of a vehicle’s gravity center.

2.5.2 | Drivers’ expectations

In the 2.5D driving perspective, drivers undergo a con-
tinuous perception-decision-action cycle process (B. Yu
et al., 2019). Drivers’ expectations can be categorized into
two types: inertial expectations and ad hoc expectations
(Vos et al., 2023). Inertial expectations suggest that drivers’
speed choice is influenced not only by their cumulative
driving experience and memory but also by their abil-
ity to maintain a similar expected speed (i.e., the highest
safe speed they aim to achieve psychologically) to that
of the most recent segment they have driven on. Addi-
tionally, ad hoc expectations are formed in real-time as
drivers perceive the characteristics and conditions of the
road segment they have just navigated. When there is a
large discrepancy between the expected speed and the cur-
rent driving speed, drivers would dynamically change their
speed according to ad hoc expectations. Specifically, on
visually continuous segments (e.g., tangents, large radius
curves, etc.), drivers have higher expectations for operating
speed. On visually interrupted segments (e.g., small radius
curves and broken back curves, etc.), drivers tend to slow
down due to increased attention. Then, once visibility con-
ditions improve, drivers will accelerate to their expected
speed. Considering the drivers’ visual continuity and their
expectations, the above drivers’ speed adjustment actions
can be described by Equation (20):

( S(qg—1
Qg > oth <0.5,Vgs <V,
2 vS(q)
vS(g—-1
<ade=0ifO.SSM<2,V85=Ve (20)
2 vS(q)
S(qg—1
ade<0ifM22,V85>Ve
{ 2 vS(q)
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where a4, is the acceleration generated by ad hoc drivers’
expectations, afy" =+0.5 m/ s2, a;r:Ck = +0.25 m/s’
(Xuesong Wang, et al., 2019a); Y  vS(q) is the cumulative
length of drivers’ visual curve at the spot q; V, is the
expected speed generated by drivers’ inertial expectations,
with detailed values referenced in the specifications

(MTPRC, 2015).

2.5.3 | Vehicle dynamics

In the 3D spatial perspective, vehicles are affected by real
physical forces, mainly including normal centrifugal force
and tangential traction force along the forward direction.
Normal acceleration, determined by both speed and spa-
tial curvature, impacts the driving comfort experienced on
curved road segments. The tangential acceleration is pri-
marily determined by vehicles’ traction force and driving
resistances (i.e., air resistance, rolling resistance, skidding
resistance, and grade resistance), reflecting vehicles’ accel-
eration capability. The acceleration generated by vehicle
dynamics can be calculated by Equation (21):

Apg =/ al, + a2,
a
Qyn = Vdc2 %, Ve = =
L X
P pA,C V0.
Ui v-a” gs
Ayt = - + (Crr + :ucs)gr + ngV

- HVgs 2u2

e2y)
where a4 is the acceleration generated by vehicle dynam-
ics; a,, is the normal acceleration, and the maximum value
of a,, ensuring driving comfort is determined to be 1.0
m/s? (Jurecki & Stariczyk, 2021); a,; is the tangential accel-
eration generated by engine traction; V. is the maximum
operating speed that ensures driving comfort; « is the spa-
tial curvature; Vgs is the initial operating speed of the
MPAS; P, is the output power of the engine; # is the trans-
mission efficiency, 7 = 0.90; u is the mass of the vehicle; g,
is the gravitational constant (9.81 m/s?); p is the air density
(1.207 kg/m? at 20°C); A, is the cross-sectional area of the
vehicle, with AS" = 2.0 m? for cars and A = 3.2 m? for
trucks; C,, is the coefficient of air resistance; C,, is the coef-
ficient of rolling resistance; Cy is the coefficient of skidding
resistance; Gy is the vertical grade.

3 | EXPERIMENTS

3.1 | Experimental design and data
collection

To investigate various alignment combinations and obtain
reliable data, the experiments in this study are divided

/@ GAO ET AL.

TABLE 2 The parameters for vehicle modules.
Parameters Passenger
definition car Truck Unit
Total length 6 long 12 long m
Total width 1.8 2.5 m
Total height 2.0 3.95 m
Total mass 2000 31000 kg
Wheelbase 3800 6500 mm
Max power of engine 90 380 kW
Height of drivers’ eye 1.2 2.0 m

into driving simulation and field observation. The data
from driving simulation experiments are used to train the
proposed RoadGNN-S, while the data from field obser-
vations are used to validate the prediction accuracy and
transferability of the model.

3.11 | Driving simulation experiments

Figure 4a illustrates the Tongji University driving simula-
tor employed in this study. Previous studies have provided
detailed explanations of the reliability and effectiveness of
this simulator, with t-test results showing that the speeds
recorded from the simulator and the comparison roads
belong to the same population, with no significant dif-
ference between their mean speeds (Chen et al., 2019;
Xuesong Wang et al., 2019b). The simulator integrates a
fully equipped Renault Mégane III vehicle cab within a
dome structure, mounted on an eight-degree-of-freedom
motion system. A five-channel projector system offers an
immersive front view spanning 250° X 40°, at a refresh
rate of 60 Hz with a resolution of 1000 X 1050. SCANeR
studio software is used to control the force feedback sys-
tem and display the road environment, capable of real-time
recording of vehicle speed, position, and road mileage
(Chen et al., 2022). Considering the significant differences
in dynamic performance and driving behavior between
passenger cars and trucks, operating speed data for both
passenger cars and trucks need to be collected to establish
two independent prediction models (Qu & Wang, 2015).
As illustrated in Figure 4b,c, the passenger car and truck
modules used in the driving simulator experiments are
developed by Oktal Co. Ltd., and their parameters are mod-
ified according to the Chinese Specifications for Highway
Safety Audit (MTPRC, 2015). The parameters of the two
types of vehicle modules are listed in Table 2.

In the experiments, two sections of four-lane (two lanes
in each direction) highways are constructed with a design
speed of 100 km/h and each lane width of 3.75 m, accord-
ing to the real highway conditions. One is 31.193 km from
the DeShang Highway, and the other is 119.150 km from
the TianTian Highway. These two highways are closely
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FIGURE 4 Driving simulator and vehicle
modules.

(a) Tongji driving simulator

TABLE 3 Descriptive statistics of geometric parameters.
Description Mean SD Min Max
Curvature of circular 0.0012 0.0005 0.0003  0.0040
curve (m™1)

Length of circular 626.712 276147  216.446 1948.970
curve (m)

Length of tangent 792.884 1003.697 94.812 6010.057
(m)

Length of spiral (m) 136.819  31.760 70.000  185.000
Parameters of spiral ~ 305.455 109.908 167.332  832.050
(m)

Grade of vertical 0.320 2.842 —5.800 5.800
slope (%)

Length of vertical 455911  501.954  94.812 3190.835
slope (m)

Radius of vertical 23050.15 16851.13 6000.00 80000.00
curve (m)

Length of vertical 325.772  149.061 126.265 1040.000
curve (m)

Superelevation (%) 2.850 1.250 2.000 6.000

located in Anhui province, China, both traversing moun-
tainous terrains. Table 3 shows the descriptive statistics of
the geometric parameters for the sections of highways. The
surrounding terrain, horizontal and vertical alignment,
superelevation parameters, traffic signs and markings,
as well as safety barriers, are accurately replicated from
these highway’s design documentation, to ensure high
consistency with actual driving experience. An overhead
perspective of the highways and details of four typical road
segments are illustrated in Figure 5.

The basic requirements for operating speed observation
conditions include daytime, clear weather, dry road sur-
face, and free-flowing traffic. Considering the distribution
of driver gender, age, and vehicle type in China, we employ
a stratified sampling method to recruit 58 participants,
including 20 male and 18 female passenger car drivers and
20 male truck drivers. Their ages range from 20 to 60 years
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TABLE 4 Typical segment division criteria.
Vertical Horizontal Curved

Segments Tangent slope curve slope

Horizontal ~ Cp < 0.001 Cy < 0.001 Cy >0.001 Cj > 0.001
alignment

Vertical Gy<3% Gy>23% Gy <3% Gy > 3%
alignment

Note: Cy; is the curvature of horizontal curves, and Gy, is the grade of vertical
slopes.

old (mean = 32.35, SD = 8.76). Overall, participants drive
at least 50 km per month and have at least 1 year of driving
experience. Research on participant sample size reports
30 to be the minimum size that can accurately collect
continuous driving behavior data (F. Wang et al., 2019).

The experimental sessions consist of two stages, prepa-
ration and testing. In the preparation stage, participants
are informed about the basic operation and the importance
of the experiment, and they receive at least a 10-min prac-
tical driving session to ensure complete familiarity (Chen
et al., 2018). In the testing stage, participants drive through
the above two sections of four-lane highways. Due to the
potential discomfort caused by prolonged simulation, the
experiments are conducted in four separate sessions, with
each session not exceeding a half-hour duration. Upon
completion of the experiment, each participant is paid 150
RMB for their time. The speed and other motion char-
acteristics of each driver are sampled at a frequency of
20 Hz during the experiment. The 85th percentile speed
at each spot (i.e., selected locations in each road segment)
along the highway is calculated as the observed value of
operating speed.

To improve the applicability of the proposed MPAS,
this study divides the MPAS into four types based on the
Chinese Specifications for Highway Safety Audit (MTPRC,
2015), including tangent, vertical slope, horizontal curve,
and curved slope segments (see Table 4). Using this
divided criterion, a total of 532 road segment samples
(with 30,856 speed profiles of 58 participants) are finally
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FIGURE 5 Overhead perspectives of the simulated highways.
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FIGURE 6

obtained, consisting of 176 tangent segments, 116 vertical
slope segments, 128 horizontal curve segments, and 112
curved slope segments.

3.1.2 | Field observation experiments

In this study, the prediction accuracy and transferability of
RoadGNN-S are validated by using operating speed data
collected from the Lanzhou-Haikou highway K164-K178 in
Gansu, China, in 2023. The K164-K178 section is also a
four-lane, two-way mountainous highway with a design
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(¢) Road segments and UMRRSs layout

Schematic diagram of the experimental road segments and universal medium-range traffic radar (UMRR) layout.

speed of 100 km/h. As shown in Figure 6, based on the
original design documents of the highway, four typical
road segments are selected for continuous speed observa-
tions. The universal medium-range traffic radar (UMRR)
is applied to detect the speed and type of vehicles in this
study (J. Gao et al., 2024). Under line-of-sight conditions,
three UMRR units are grouped together in the same local
area network and placed on the hard shoulder. The UMRR
collects data at a frequency of 20 Hz. Data collection is con-
ducted during periods of daytime, clear weather, good road
surface conditions, and free-flow traffic. Free-flow condi-
tions are defined as a headway of not less than 10 s between
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leading and following vehicles in the same lane (Silvano
et al., 2020). Each selected road segment is continuously
observed for 1 h, and over 1200 effective single-vehicle
speeds are finally obtained on each segment, of which
trucks accounted for about 43.6%. To ensure the accu-
racy of the field speed observation data, the 3o principle
is applied to identify and eliminate abnormal speed values
caused by unusual driving events. Afterward, the 85th per-
centile speed at each spot is determined to be the actual
observed value of operating speed.

3.2 | Training configurations
The proposed RoadGNN-S can perform spot-based and
continuous speed prediction by modifying the number of
operating speed nodes in each MPAS graph. The more
operating speed nodes Q are included, the smoother the
operating speed curve becomes. The proposed RoadGNN-
S model can predict operating speeds at discrete Q nodes,
which correspond to locations where changes occur in the
geometric features of the road segment. Using the linear
interpolation method, the operating speed at any location
between two adjacent Q nodes can be calculated based
on the predicted operating speeds and mileages of those
nodes and then connected into an operating speed pro-
file (Xuesong Wang et al., 2021). The number of operating
speed nodes Q (i.e., spots) in this study is set to 5 (i.e., Vg5 =
[Vas: Vas: Vas: Vs, Vigs ) since it can fit various operating
speed profiles in all four typical road segments (Xuesong
Wang et al., 2020). As shown in Figure 6c, these five spots
represent distinct locations along road segments. Specifi-
cally, in horizontal curve and curved slope segments, Vs(s)s
and Vgs denote operating speeds at the start and end points
of the road segment, while V' 85, 85, and V3 denote oper-
ating speeds at the start, middle, and end points of the
circular curve, respectively In tangent and vertical slope
segments, V., V., Vi, Vi, and Vg, are operating speeds
at the four equally divided points along the road segment.
Based on driving simulation experiments, multi-
perspective alignment elements and operating speeds are
extracted to construct a dataset comprising 532 MPAS
graphs. Each MPAS graph consists of 23 nodes and 75
edges. The hyperparameter tuning is conducted using
a grid search method, primarily adjusting the learning
rate, batch size, hidden layer dimensions, and weights
of knowledge loss term. In this study, 4; and A, are set
to 0.6 and 0.4, respectively. The best hyperparameter
combinations are shown in Table 5. Additionally, the
proposed RoadGNN-S is implemented by using the
PyTorch deep learning framework. The adaptive moment
estimation algorithm is employed as the optimizer, with
parameters 8; = 0.9, 5, =0.999, and ¢ = 10°%, where
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TABLE 5 Best hyperparameter combination of graph neural

networks-based operating speed prediction model (RoadGNN-S).
Hyperparameter Value
Hidden dimensions of GIN 64
Number of attention heads in GAT 4
Hidden dimensions of GAT 128
Hidden dimensions of FC 512
Learning rate 0.001
Batch size 8
Number of epochs 200

Abbreviations: FC, fully connected network; GAT, graph attention network;
GIN, graph isomorphism network.

B1 and B, represent exponential decay rate for the first
and second moments of the gradients, and ¢ is a small
value added to the denominator for numerical stability
(Pan et al., 2022). It should be noted that RoadGNN-S
has low computational requirements and good scalability.
The graphics processing unit (GPU) memory used during
training is less than 2GB, allowing the model to operate
on any consumer-grade central processing unit (CPU).

3.3 | Model validation

Four commonly used metrics are used to estimate the accu-
racy of the operating speed prediction model, including
root mean squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and coef-
ficient of determination (R?). RMSE, MAE, and MAPE
are utilized to measure the deviation between the true
value and the predicted value. The lower the RMSE, MAE,
and MAPE values, the better the prediction model perfor-
mance. R? represents the ability of the model to explain
the data. The closer the R? value is to 1, the more accu-
rate the model is. Although R? is typically used for linear
models, RMSE, MAE, and MAPE are included alongside
R? to ensure a comprehensive and robust evaluation. These
metrics can be calculated using Equations (22)—(25):

2

A d
37 (34— yime)

RMSE = = (22)
1 7z
MAE = 3 [ypred — e (23)
z=1
VA pred true
1 yz yz
MAPE = Z‘{ e x 100% (24)
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52, (e -yt
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TABLE 6 Comparison between the evaluation indicators of prediction performance.
Passenger car Truck
Feedforward Convolutional
Road neural Recurrent neural neural networks Road
GNN-S networks (FFN) networks (RNN) (CNN) GNN-S FFN RNN CNN
Root mean squared 2.7 7.0 5.9 5.4 2.2 5.5 5.9 4.2
error (RMSE; km/h)
Mean absolute error 2.5 4.7 4.6 43 2.1 34 31 2.6
(MAE; km/h)
Mean absolute 2.3 4.2 3.7 3.7 3.4 5.0 4.4 3.8
percentage error
(MAPE; %)
Coefficient of 0.94 0.81 0.82 0.85 0.96 0.83 0.85 0.87
determination (R?)
where yEred is predicted operating speed; y™" is observed Likewise, in terms of trucks’ operating speed prediction,

operating speed; y, is the mean value of observed operating
speed; Z is the number of samples.

4 | RESULTS

4.1 | RoadGNN-S model performance
Using the GNNs architecture as the foundation frame-
work, RoadGNN-S is established to predict operating speed
for both passenger cars and trucks, which realizes the
fusion of multi-perspective alignment elements by the
MPAS graph. For comparison, this study also employs clas-
sical deep learning models, including feedforward neural
networks (FFN), recurrent neural networks (RNN), and
convolutional neural networks (CNN), to build operat-
ing speed prediction models. In this study, a total of 532
segment samples collected from the driving simulation
experiment are split into a training dataset (80%) and a test-
ing dataset (20%). A five-fold cross-validation is adopted
to fine-tune tune parameters of the models. Different from
RoadGNN-S that uses MPAS graphs as input, classical deep
learning models can only treat grids or vectors as input.
The operating speed prediction results in the testing
dataset are shown in Table 6. Compared with classical
deep learning models, RoadGNN-S performs much better
in predicting operating speed for both passenger cars and
trucks. Specifically, as for passenger cars’ operating speed
prediction, the R2 value of RoadGNN-S is 0.94, which is
much higher than that of FFN (0.81), RNN (0.82), and CNN
(0.85). RoadGNN-S has the lowest MAPE value (2.3%),
whereas the values of FFN, RNN, and CNN are 4.2%, 3.7%,
and 3.7%, respectively. The RMSE values of FFN, RNN,
and CNN all exceed 5.4 km/h, and their MAE values are
all greater than 4.3 km/h, while the RMSE and MAE of
RoadGNN-S only reach 2.7 and 2.5 km/h, respectively.

RoadGNN-S also have a better performance with R? reach-
ing as high as 0.96, while FFN (0.87), RNN (0.85), and
CNN (0.83) have relatively lower R? values. Meanwhile,
the RMSE, MAE, and MAPE values of RoadGNN-S are
far less than those values of FFN, RNN, and CNN. The
reason why RoadGNN-S is superior to classical deep learn-
ing models might be due to the unique message-passing
mechanism of GNNs. This kind of mechanism enables
efficient information to be exchanged among operating
speed nodes and their neighbor nodes (i.e., alignment
elements), thereby effectively capturing the impact of
multi-perspective alignment elements on operating speed.

Figure 7 demonstrates an example of the observed and
predicted operating speed profiles. No matter in what typ-
ical type of road segment (i.e., vertical slope, curved slope,
tangent, and horizontal curve segments), the operating
speed predicted by RoadGNN-S is more consistent with
the observed one, when compared with those predicted
by FFN, RNN, and CNN. The predicted operating speed
profile of RoadGNN-S can reflect the trend of observed
operating speed variations more accurately than other
classical deep learning models.

The operating speed prediction results for different
perspective alignments are illustrated in Table 7. These
results demonstrate the substantial advantages of multi-
perspective alignment fusion (2D+2.5D+3D) in improving
the accuracy of operating speed prediction when com-
pared with using single-perspective (2D) alignment data
and using two-perspective (2D+2.5D) alignment data. For
passenger cars’ operating speed prediction, the value of
R? rises from 0.76 with the single 2D perspective to 0.88
when the 2.5D perspective is included (2D+2.5D), and
finally reaches 0.94 with the addition of the 3D perspec-
tive (2D+2.5D+3D). Relative to inputting 2D data, using
multi-perspective data leads to remarkable reductions in
RMSE (from 9.1 to 2.7 km/h), MAE (from 7.9 to 2.5 km/h),
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RoadGNN-S, graph neural networks-based operating speed prediction model; RNN, recurrent neural network.

TABLE 7 Comparison of prediction performance between the multi-perspective alignments.
Passenger car Truck
2D 2.5D 2D+2.5D 2D+2.5D+3D 2D 2.5D 2D+2.5D 2D+2.5D+3D
RMSE (km/h) 9.1 4.6 34 2.7 51 6.0 4.2 2.2
MAE (km/h) 7.9 3.9 33 2.5 3.2 5.4 3.9 21
MAPE (%) 7.2 3.5 2.9 23 4.2 6.6 4.7 3.4
R? 0.76 0.84 0.88 0.94 0.82 0.73 0.85 0.96

and MAPE (from 7.2% to 2.3%). For trucks’ operating speed
prediction, the same trend has been observed. The R? value
similarly rises from 0.82 (2D) to 0.85 (2D+2.5D) and then
to 0.96 (2D+2.5D+3D). Utilizing multi-perspective data
also markedly decrease the values of RMSE (from 5.1 to
2.2 km/h), MAE (from 3.2 to 2.1 km/h), and MAPE (from
4.2% to 3.4%), when compared with the usage of single 2D
perspective data.

4.2 | Comparison of model-driven,
data-driven, and knowledge-enhanced
modeling performance

To examine the superiority of knowledge-enhanced mod-
eling in improving prediction accuracy and transferability,

this study utilizes all the samples obtained from the driv-
ing simulation experiment as the training dataset, and
the field observation samples are treated as the testing
dataset. Then, a knowledge-enhanced RoadGNN-S and a
data-driven RoadGNN-S are established. In each model,
the same dimensional graph representation and GNN
architecture are used. As for the knowledge-enhanced
modeling, this study integrates the prior knowledge that
generates the operating speed (i.e., the interaction effects
among highway geometry supply, driver expectations, and
vehicle dynamics on operating speed) into the backpropa-
gation process of RoadGNN-S. The remaining parameter
configurations for both models are consistent to ensure
comparability. Additionally, the linear regression model
recommended in the Specifications for Highway Safety
Audit (MTPRC, 2015) is selected as the model-driven
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TABLE 8 Comparison of prediction performance among different types of modeling methods.
Model-driven modeling Data-driven modeling Knowledge-enhanced modeling
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
Vehicle type (km/h) (km/h) (%) R?> (km/h) (km/h) (%) R> (km/h) (km/h) (%) R?
Passenger car Training 9.9 8.8 8.7 0.69 2.2 2.1 19 095 22 2.0 19 0.96
dataset
Testing 9.6 8.6 8.5 071 7.6 6.9 7.6 0.85 3.3 31 33 0.92
dataset
Truck Training 6.6 4.8 5.9 0.63 21 21 3.4 096 19 1.7 2.2 0.97
dataset
Testing 6.4 4.5 5.4 0.67 5.2 5.0 5.9 0.83 3.0 2.7 3.6 0.92
dataset

method for comparison with data-driven and knowledge-
enhanced models on the testing dataset, with the detailed
calculation formulas specified in the specifications.

The results are demonstrated in Table 8. On the train-
ing dataset (from simulation experiments), the R? values
of the data-driven model achieve 0.95 and 0.96 for pre-
dicting the operating speed of passenger cars and trucks,
respectively. However, on the testing dataset (from field
observations), the data-driven RoadGNN-S exhibits poor
generalization with R? values only reaching 0.85 and 0.83
passenger cars and trucks, respectively, which markedly
decreases, compared with those on the training dataset. In
contrast, the knowledge-enhanced RoadGNN-S still shows
high accuracies in the testing dataset, with R? values of
0.92 for both passenger cars and trucks in operating speed
prediction. Thus, the knowledge-enhanced model outper-
forms the data-driven model, with improving the R%values
of 7.9% for passenger cars and 10.7% for trucks after trans-
ferring to the new dataset. Additionally, in terms of those
of the data-driven model, the RMSE and MAE values of the
knowledge-enhanced model for predicting passenger cars’
operating speed decrease by 4.3 and 3.8 km/h, respectively,
while the RMSE and MAE values of the knowledge-
enhanced model for trucks’ operating speed reduce by 2.2
and 2.3 km/h, respectively. Furthermore, the linear regres-
sion model shows lower predictive accuracy on the testing
dataset. For passenger cars, the R?valueis 0.71, with RMSE
and MAE of 9.6 and 8.6 km/h, respectively. For trucks, the
RZ? value is 0.67, with RMSE and MAE of 6.4 and 4.5 km/h,
respectively. These findings suggest that the knowledge-
enhanced model achieves excellent performance on the
testing dataset (field observation data) in terms of effective-
ness and transferability, compared with the model-driven
and data-driven methods.

Figure 8 illustrates some cases of trucks’ operating speed
prediction on four typical road segments using different
types of modeling methods. Compared to the linear regres-
sion model, the data-driven and knowledge-enhanced
models proposed in this study demonstrate a greater accu-

racy in capturing actual speed variations. However, the
predicted results of the data-driven RoadGNN-S some-
times have a large deviation from the real values. To be
specific, as shown in Figure 8a, without considering driver
expectations, the predicted operating speed at the end-
point of a tangent segment is 6.2 km/h lower than the
observed value. Due to the neglect of vehicle dynamics,
the data-driven model predicts that trucks will acceler-
ate at the endpoint of a vertical steep slope, whereas the
observations show a deceleration trend, as illustrated in
Figure 8b. In the horizontal curve segment, owing to the
lack of consideration of highway geometric supply, the pre-
dicted operating speed at the midpoint of the curve is about
7.5 km/h higher than the observed value, which increases
the risk of truck rollovers (see Figure 8c). Figure 8d shows
that in the curved slope segment, the data-driven model
predicts that there is sudden deceleration before enter-
ing curves and rapid acceleration after exiting curves,
while the actual changes are much gentler. In contrast,
as demonstrated in Figure 8, the operating speed pre-
diction results of the knowledge-enhanced RoadGNN-S
have better accuracies on four typical highway segments,
relative to the model-driven and data-driven methods.
This might be because knowledge-enhanced modeling
aligns more closely with prior knowledge, which can
help effectively avoid the fundamental errors observed
in data-driven modeling. In general, the above analyses
indicate that knowledge-enhanced modeling outperforms
data-driven modeling by integrating prior knowledge to
enhance prediction accuracy and transferability.

4.3 | Influence of multi-dimensional
perspective alignment elements on
operating speed

To further analyze the coupling impacts of multi-
perspective alignment elements on operating speed, this
study visualizes the self-attention weights (i.e., ocg;)) of the
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GAT layer in the proposed RoadGNN-S. Based on different
types of connected nodes, the self-attention weights ocf,l;)
can be mainly categorized into self-attention weight «,,
and self-attention weight c«,,35. The self-attention weight
a,. between alignment element nodes represents the
intensity of the message passing between different align-
ment element nodes (including in the same perspective
and in different perspectives), while the self-attention
weight a,,g5 between alignment element nodes and oper-
ating speed nodes denotes the direct impact of alignment
elements on operating speed. The indirect impact of align-
ment elements on operating speed is transferred through
messages between alignment element nodes. In the GAT
layer self-attention mechanism, the aggregate weight
a, of the alignment elements of different perspectives
is obtained through the weighted sum of «,, and a,gs
to quantify the coupling impacts of multi-perspective
alignment elements on operating speed.

Figure 9 illustrates the self-attention weight distribution
of passenger cars’ operating speed prediction model. In
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Truck operating speed prediction profiles on the testing dataset (field observation data).

four typical road segments, the mean aggregation weights
a, of alignment element nodes across 2D, 2.5D, and 3D
perspectives are 0.24, 0.47, and 0.29, respectively, indicat-
ing a dominant role of the 2.5D driving perspective virtual
curve in predicting passenger cars’ operating speed. The
thicker the edge, the larger the self-attention weight a5
from alignment element nodes and operating speed nodes
at different spots along the road segment. Within the
same type of road segment, the edges connecting 2.5D
perspective virtual curve nodes with operating speed
nodes at different spots (i.e., Vi, Vi, Vas, Vas, and Vy.)
exhibit significant variations in thickness. In particular, in
the curved slope segments, the self-attention weights a,, g5
are 0.043, 0.016, 0.081, 0.012, and 0.028. The unbalanced
distribution of these self-attention weights «,,g5 indicates
that drivers can selectively adjust their current speed based
on specific visual cues at different spots along the highway
alignment. Additionally, the lighter the color, the larger
the self-attention weights «,, between alignment element
nodes. The mean self-attention weight «,, between 2D
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variable codes are demonstrated in Table 1. 2D, two-dimensional; 2.5D, 2.5-dimensional; 3D, three-dimensional.

perspective alignment element nodes (i.e., Ct, Sp, Vs, Ve)
and 2.5D perspective virtual curve nodes Vc is equal to
0.27, accounting for the largest proportion 61.4%. The fol-
lowing one is the mean self-attention weight between 2D
perspective alignment element nodes and 3D perspective
spatial curve nodes Sc, with the value 0.11. The lowest
mean self-attention weight (0.06) is the one between 2.5D
perspective virtual curve nodes and the 3D perspective
spatial curve nodes Sc. These results suggest that the
impact of the 2D perspective alignment elements on pas-
senger cars’ operating speed is mainly transferred through
the 2.5D perspective visual curve rather than direct effects.

Figure 10 demonstrates the self-attention weight distri-
bution of trucks’ operating speed prediction model. The
mean aggregation weights o, of alignment element nodes
across 2D, 2.5D, and 3D perspectives in four typical road
segments are 0.58, 0.16, and 0.26, respectively, suggesting

that the 2D perspective alignment elements play a leading
part in predicting trucks’ operating speed. Specifically,
within the 2D perspective, circular curve nodes Ct and
vertical slope nodes Vs exhibit the two highest self-
attention weights o,,35 toward operating speed nodes in
four typical road segments, with mean values of 0.082
and 0.065, respectively. This means that lateral stability
and slope resistance are the most critical factors affecting
trucks’ operating speed. In addition, the impact of the 3D
perspective spatial curve on the trucks’ operating speed
is mainly presented in curved slope segments, with an
aggregation weight «, of 0.36, whereas those weights in
other types of road segment types are all below 0.25. In
addition, the mean self-attention weight «,, of four typical
road segments reaches the largest value (0.18) when it is
between 2D perspective alignment element nodes (i.e.,
Ct, Sp, Vs, Ve) and 3D perspective spatial curve nodes Sc,
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Self-attention weight distribution of trucks’ operating speed prediction model. Note: the descriptions of all the variable

codes are demonstrated in Table 1. 2D, two-dimensional; 2.5D, 2.5-dimensional; 3D, three-dimensional.

representing up to 78.3% of the total weights. The mean
self-attention weight between 2D perspective alignment
element nodes and 2.5D perspective virtual curve nodes
Ve is only 0.03. Similarly, the mean self-attention weight
between 2.5D perspective virtual curve nodes and 3D
perspective spatial curve nodes Sc is as low as 0.02. These
results indicate that in the process of predicting trucks’
operating speed, 3D perspective spatial curves are closely
associated with complex combinations of horizontal
and vertical alignment, serving as a complement to 2D
perspective alignment elements.

5 | DISCUSSION

This study first uses graph structure to represent the road
alignment segments, and then GNNs are applied to predict
operating speed. The overall prediction performance of the

proposed RoadGNN-S is better than commonly used meth-
ods, with R? values of 0.94 and 0.96 for passenger cars’ and
trucks’ operating speeds, respectively. In comparison, most
operating speed prediction models for both passenger cars
and trucks, based on linear regression considering only
horizontal radius and vertical grade, have R? values below
0.85 (Martinelli et al., 2023; Sil et al., 2020). When account-
ing for spatial curvature and vertical grade, operating speed
prediction models for passenger cars and trucks using
multi-parameter nonlinear regression achieve R? values
of 0.76 and 0.74, respectively (Xiaofei Wang et al., 2019c¢).
Another model predicting passenger cars’ operating speed,
which incorporates visual curvature and depth through
generalized exponential regression, reaches an R? value of
0.66 (F. Wang et al., 2019). Additionally, RoadGNN-S out-
performs classical deep learning models (e.g., FFN, RNN,
and CNN) in operating speed prediction, with accuracies
increasing by over 10% for both passenger cars and trucks.
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This is probably because in GNNs, MPAS graphs can better
describe the alignment elements information of multiple
perspectives, and the message-passing and multi-head self-
attention mechanisms are applied to capture both local and
global dependencies between alignment element nodes
and operating speed nodes. In contrast, complex fully con-
nected structures in FFN can lead to a high divergence
value (F. Yu et al., 2021). RNN reliance on historical states
poses challenges in handling long-term dependencies and
vanishing gradient problems (Kashyap et al., 2022), while
CNN only focuses on local features due to kernel size
limitations (Ren et al., 2024).

The overall predictive accuracy and transferability of
the knowledge-enhanced modeling compare favorably to
data-driven modeling. The proposed knowledge-enhanced
RoadGNN-S achieves R? values of 0.92 for predicting the
passenger cars’ and trucks’ operating speed on real high-
ways, which are 7.9% and 10.7% higher than those of the
data-driven RoadGNN-S, respectively. The reason might
be that in the backpropagation algorithm of GNNs, speed
and acceleration penalty terms are considered a strong
regularization, which limits the model search space to
a large extent and effectively guarantees the theoretical
correctness of the solution (H. Gao et al., 2024). Previ-
ous studies have also shown the outstanding predictive
performance of knowledge-enhanced GNNs in different
fields. For instance, the physical equations of structural
mechanics are integrated into the elastic structural anal-
ysis model based on GNNs, which improves the prediction
accuracy of node forces and moments by 25.8% (Song et al.,
2023). Through the introduction of a knowledge inclusion
strategy into the loss function and the output layer of a
GNNs-based model for building material quantity predic-
tion, the prediction error is significantly reduced by 30.4%
(Fei et al., 2023).

Multi-perspective alignment fusion is a new addition,
compared with prior research on operating speed predic-
tion. The results of this study indicate that 2D perspective
and 2.5D perspective alignment elements are the most
important features for trucks’ and passenger cars’ oper-
ating speed prediction, respectively. It has been reported
that due to the superior handling and power of passenger
cars, the impact of circular curves and vertical slopes in
2D perspective on the speed and acceleration of passenger
cars is nearly 22% less than that of trucks (Liu et al., 2020).
The impact of 2.5D alignment elements on the passenger
cars’ operating speed is reflected in two aspects: visual per-
ception deviation and visual cues. Deviations that exist
between the actual and perceived curvature and length of
the 2.5D perspective visual curve can lead drivers to make
incorrect speed choices (Hassan & Sarhan, 2012). Drivers’
visual perception precedes the current road segment, so
drivers are able to determine their deceleration and accel-
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eration behavior in advance based on the visual cues ahead
(Vosetal.,2021). Due to the limitation of vehicle power and
braking performance, trucks tend to travel at a more uni-
form speed when approaching horizontal curves compared
to passenger cars (Morris & Donnell, 2014). This might
be a primary reason why the impact of 2.5D perspective
alignment elements on trucks’ operating speed is not obvi-
ous. Additionally, this study finds that the 3D perspective
alignment elements have an advantage in capturing the
impact of complex combinations of horizontal and verti-
cal alignment on trucks’ operating speed. Another study
also observes that trucks’ operating speed exponentially
declines with spatial curvature (Wang et al., 2019). There-
fore, the multi-perspective alignment fusion can better
consider the interrelationships among various alignment
combinations to ensure a comprehensive understanding
of speed dynamics. Overall, increasing evidence confirms
the significance of multi-perspective alignment fusion for
predicting operating speed.

6 | CONCLUSION

This study fills the research gap by proposing a multi-
perspective alignment element fusion model for predicting
operating speed from the following aspects. (1) A novel
highway alignment segment graph is constructed that
can realize modular representation and multi-perspective
fusion of highway alignment. (2) GNNs are applied to
establish the operating speed prediction model RoadGNN-
S, which can effectively capture the coupling impacts
of multi-perspective alignment elements on operating
speed based on the message passing and multi-head
self-attention mechanisms. (3) The prior knowledge of
highway geometry supply, driver expectations, and vehi-
cle dynamics are integrated into GNNSs to further enhance
the prediction accuracy and transferability of RoadGNN-S,
ensuring the theoretical correctness of solutions.

The findings of this study have several practical
implications. (1) The MPAS graph can effectively fuse
multi-perspective alignment elements, which provides a
novel and universal solution for comprehensive under-
standing and representation of highway alignment. This
method is helpful to establish a promising bidirectional
link between multi-perspective alignment elements and
operating speed. The proposed GNNs can achieve a
more accurate prediction of operating speed and offer
profound insights into quantifying the coupling impacts
of multi-perspective highway alignment elements on
operating speed. (2) After introducing prior knowledge
into the GNN, the theoretical correctness of the prediction
result can be guaranteed, which effectively enhances
the proposed RoadGNN-S’s predication accuracy and
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transferability. Accurately measuring the difference
between operating speed and design speed, evaluating
the variability of operating speeds between consecutive
highway segments, as well as comparing the required side
friction force and the actual side friction force, are essen-
tial for ensuring the consistency of highway geometric
design (Camacho-Torregrosa et al., 2013). In addition, this
method also has the potential to be applied in other high-
way design-related deep learning frameworks, paving the
way for future advancements toward more intelligent and
safer end-to-end highway geometric design. (3) The pro-
posed framework in this study, based on multi-perspective
fusion and GNNg, is highly flexible and can be extended
to capture the driving speed of different types of travelers,
including connected and autonomous vehicles (CAVs)
and individual human drivers. For CAVs, by considering
vehicle-to-vehicle and vehicle-to-infrastructure interac-
tions, the proposed RoadGNN-S can effectively integrate
the real-time multi-modal data (e.g., traffic conditions,
vehicle movements, surrounding environments, etc.) to
improve the accuracy of driving speed prediction. For
human drivers, the proposed RoadGNN-S can predict the
driving speed of various driver types by further incorpo-
rating behavioral features such as fatigue, age, and driving
style (Berghaus et al., 2024).

One of the limitations of this study is that the impact
of different geographical regions and highway config-
urations on operating speed has not been considered.
Highways in plains, mountainous areas, and high-altitude
areas have great differences in vehicle power performance
and driver physiological conditions. More operating speed
data and prior knowledge should be collected from dif-
ferent regions, varying design speeds, and different types
of roads (e.g., highways, rural roads, and logging roads)
to further enhance the broad applicability and accuracy
of RoadGNN-S. Additionally, although driving simula-
tion experiments have the advantage of acquiring large
amounts of samples and simulating diverse scenarios,
field observation experiments can provide irreplaceable
scenario details and complex vehicle interactions under
real-world conditions. This study has attempted to com-
bine driving simulation with field observation data for
analyses. In future work, more field observation data from
various types of highways and geographic regions will be
collected to further validate and enhance the robustness of
the proposed model, in order to better reflect drivers’ speed
choices under real-world conditions.
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