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ABSTRACT

We study the properties of double white dwarf (DWD) mergers by performing hydrodynamic simulations using the new and
improved adaptive mesh refinement code OCTO-TIGER. We follow the orbital evolution of DWD systems of mass ratio g = 0.7
for tens of orbits until and after the merger to investigate them as a possible origin for R Coronae Borealis (RCB) type stars.
We reproduce previous results, finding that during the merger, the helium WD donor star is tidally disrupted within 20-80
min since the beginning of the simulation onto the accretor carbon—oxygen WD, creating a high temperature shell around the
accretor. We investigate the possible helium burning in this shell and the merged object’s general structure. Specifically, we are
interested in the amount of oxygen-16 dredged-up from the accretor to the hot shell and the amount of oxygen-18 produced.
This is critical as the discovery of very low oxygen-16 to oxygen-18 ratios in RCB stars pointed out the merger scenario as a
favourable explanation for their origin. A small amount of hydrogen in the donor may help keep the oxygen-16 to oxygen-18
ratios within observational bounds, even if moderate dredge-up from the accretor occurs. In addition, we perform a resolution
study to reconcile the difference found in the amount of oxygen-16 dredge-up between smoothed-particle hydrodynamics and
grid-based simulations.

Key words: hydrodynamics —methods: numerical — stars: evolution — binaries: close — white dwarfs —stars: carbon.

1 INTRODUCTION

R Coronae Borealis (RCB) stars are low-mass, hydrogen-deficient,
carbon-rich giants, primarily made of helium (Clayton 2012). They
are almost indistinguishable from a second class of stars, known as
the hydrogen deficient, carbon (HdC) stars, with the exception that
RCB stars are known to exhibit irregular and dramatic light variability
in the form of deep declines that can leave the star at minimum for
years before recovery is observed (Tisserand et al. 2022; Crawford
et al. 2023).

* E-mail: sshiber]l @lsu.edu
1 We are saddened to report the passing of our esteemed colleague and friend,
Jan Staft.

For along time, two scenarios were considered for their formation,
a final helium shell flash in a single post-AGB star, or a merger of
two WDs (e.g. Iben & Tutukov 1984; Clayton 2012). The discovery
of very low '°0/80 ratios (Clayton et al. 2007; Karambelkar et al.
2022), much less than the solar value ~ 500, along with the likely
average mass of ~ 0.9 Mg for these stars (Han 1998; Karakas,
Ruiter & Hampel 2015) effectively eliminated the final flash scenario
in favour of the merger one. Merging WDs are known to create 20,
which, under certain circumstances, can be brought to the surface,
making the '°0/'80 ratio as low as unity (e.g. Crawford et al. 2020;
Munson et al. 2021).

To determine whether these observations could be understood in
the context of a WD merger, Staff et al. (2012) simulated WD-WD
mergers of different mass ratios, ¢ = M,/M; = 0.5 — 1.0 with the
hydrodynamic code FLOW-ER (D’Souza et al. 2006; Motl et al. 2007).
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In that paper, it was found that the correct oxygen ratio could only
be achieved under specific conditions, and that mergers with mass
ratio, ¢ = 0.7, are the most likely to produce this ratio. A similar
enrichment of '®0 has been found by Longland et al. (2011), when
they analysed a merger of a 0.8 My CO WD and a 0.4 My He
WD (g = 0.5) that had been simulated using a smoothed-particle
hydrodynamics (SPH) code. Later on, Staff et al. (2018) carried
out several additional simulations, using, in addition to the unigrid
technique used by Staff et al. (2012), also an early version of the
AMR technique code OCTO-TIGER (Marcello et al. 2021b), and the
SPH code (SNSPH; Fryer, Rockefeller & Warren 2006). In that paper,
they addressed the question of how much 60 is dredged up from
the accretor, CO WD, out to the surface of the merged star. The
problem with too much dredge-up is that no matter how much 80
is fused during the merger, its abundance will be greatly diluted by
the dredged-up material. To reduce the dredge-up, Staff et al. (2018)
also considered accretors that are hybrid WDs, having a thick shell
of > 0.1 Mg of helium on top of the CO core. They concluded that
while FLOW-ER and OCTO-TIGER agreed, SNSPH produced a smaller
amount of dredge up. Whether the accretor was a hybrid WD or not,
had little effect on the results. The conclusion was that if OCTO-TIGER
results were to be believed, we might be unable to reproduce the low
160/180 isotopic ratio observed.

Following the work by Staff et al. (2012), Menon et al. (2013,
2019) carried out a study using a 1D implicit code to evolve
a post-merger star and determine the abundance patterns. They
used information from the hydrodynamics simulation in the form
of conditions such as temperature in four radial zones. By ap-
plying a very specific mixing prescription, they could repro-
duce several observed characteristics of RCB star, including the
160/180 ratio.

Later, Crawford et al. (2020) and Munson et al. (2021) carried
out very similar studies. The latter study was based on a later 3D
OCTO-TIGER WD merger simulation with a mass ratio ¢ = 0.6, which
they carried out specifically for their research. Instead of using a 4-
zone system, as done by Menon et al. (2013), they mapped the
3D simulation into the 1D implicit code, subject to a stabilization
phase to bring the object into equilibrium. They observed that it
is much harder to obtain the correct observed abundance values in
this way.

In this paper, we will use our new and improved OCTO-TIGER
(Marcello et al. 2021b) to calculate several simulations of the g = 0.7
WD merger, similarly to what was done by Staff et al. (2018). This
mass ratio is not only appropriate for an RCB star, but by using
the same mass ratio as done previously it allows a greater ability
to compare simulations. We carry out seven simulations, five OCTO-
TIGER simulations, and two additional FLOW-ER simulations for code
comparison. These simulations bracket in resolution the simulation
of Staff et al. (2018) and allow us to study the convergence properties
of the simulations and the amount of '°0 that is dredged up from the
accretor. A second aim of this paper is to determine the temperature in
the ‘Shell of Fire’ (SoF; Staff et al. 2012), the region in which partial
helium burning can take place. This directly informs the amount of
180 that is generated in the merger.

Finally, it is worth emphasizing that the existence of short-
period double WD is beyond doubt and confirmed by numerous
observations. Two commonly accepted evolutionary scenarios for
the origin of these systems have been extensively explored in
the literature (Iben & Tutukov 1986; Lipunov & Postnov 1988;
Tutukov & Yungelson 1994; Li et al. 2019). For additional ref-
erences to both observations and theory see Chen et al. (2022).
The most likely origin for the systems we consider in this pa-
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per is through mass transfer from a red giant onto a CO WD
(Liet al. 2019).

In Section 2 we discuss details of the simulations that have been
carried out in the past with ¢ ~ 0.7. In Section 3 we describe our
simulations’ setup. Section 4 shows in detail the time evolution of
our reference simulation and discusses the numerical properties of
all of our simulations. We investigate in Section 5 the properties of
the merged object such as its spin, the nuclear reactions, and the '°0
dredge-up, and finally, in Section 6, we conclude.

2 PREVIOUS RELATED SIMULATIONS

In this section, we discuss previous WD—WD merger simulations of
mass ratio ¢ = 0.7, intending to integrate their results with ours. All
previous comparable efforts have been summarized in the first part
of Table 1.

The simulations that appear in Staff et al. (2012, 2018), Motl et al.
(2017), and Diehl et al. (2021b), are listed in the first part of the table.
The OCTO-TIGER simulation from Staff et al. (2018) also appear in
Montiel et al. (2015). Three of the simulations were carried out with
the SPH code SNSPH; the rest were carried out using the finite-
volume codes, FLOW-ER (four simulations) and a previous version of
OCTO-TIGER (five simulations, listed as ‘Octo’ in the second column).
The system’s initial properties, initial total mass (Mr), initial orbital
separation (ap), and initial orbital period (Pp) are also listed. The
equation of state (EoS) used in each simulation is shown in column 4,
where ‘ZTWD’, ‘poly’, and ‘ideal’ stands for zero-temperature white
dwarf, polytropic, and ideal gas equation of state, respectively. When
using a polytropic EoS or an ideal gas EoS, there is one degree of
freedom in converting the simulation units (from code units) to c.g.s.
Therefore, the simulation units (and as such the system properties)
can be scaled in those simulations, e.g. the simulations of Motl
et al. (2017) and Diehl et al. (2021b). Using a ZTWD EoS, on the
other hand, introduces two additional physical constants and thus the
code units in these simulations cannot be scaled arbitrarily, and their
conversion to c.g.s units is fixed. In Table 1, we scaled the initial
orbital separation (column 9) and initial orbital period (column 10)
of Motl et al. (2017) and Diehl et al. (2021b) to match the initial
system properties of the ZTWD simulations closely.

In all previous ¢ = 0.7 simulations the donor star was initially
forced into contact with its Roche lobe by a ‘driving” mechanism,
specifically, by an artificial removal of angular momentum from the
system at a rate of 1 per cent per orbit. This initiates a mass transfer
that can be well resolved by the code early in the simulation time.
Usually, driving was applied for several initial orbits. We list the
exact driving duration for each simulation in column 7y, in Table 1.
A longer driving time causes the system to achieve a deeper contact,
which can alter the remaining evolution of the simulation.

The resolution of past simulations spans a relatively wide range.
Comparing resolution across different techniques is not straightfor-
ward. For FLOW-ER, a uniform (non-AMR) cylindrical grid, we list
the number of cells across each dimension, Ng x N, x Ny, and the
total number of cells, where R, z, and 6, denote the cylindrical radial,
vertical, and azimuthal axes, respectively. For OCTO-TIGER, an AMR
grid, we can list only the initial number of cells. This is a minimum
value, as the number of cells increases as the simulation evolves in
time. We also list in parentheses the smallest cell size in solar radii
for OCTO-TIGER.

The AMR grid extends several times beyond the dimensions of
the non-AMR grid and not all regions are equally resolved. A better
comparison between the non-AMR and AMR codes is the number of
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Table 1. Overview of all considered Q0.7 simulations. L.12 is the simulation with 12 levels of refinement; the suffix ND means non-driven, and the suffix I
means that the simulation was conducted in the inertial instead of the rotating frame; Simulations prefixed with FL are carried out with FLOW-ER.

Source Code Mot EoS Tarv Thnerge Resolution; Axpin (Ro) donor res ag Py Hybrid
Mp) (Py) (Py) (cells/particles)b (radial cells)  (10° cm) (sec)
Staff 2012 Flow-er 0.9 ZTWD 2.0 10.2 226x146x256 = 8.4M 150 ? ? No
Staff 2018¢ Octo 0.89 ZTWD 4 ~ 22 2,6.5 x 1074 ? 3.48 ? No
Staff 2018 SNSPH 0.9 ZTWD 6? ? 20M particles 8.2M ? ? No
Motl et al. 2017 Flow-er 0.9 poly 2.3 9.7 162x98x256 = 4M 70 3.414 114.0 No
Motl et al. 2017 Flow-er 0.9 poly 1.7 21.0 162x98x256 = 4M 58 3.414 114.0 No
Motl et al. 2017 SNSPH 0.9 poly 1.0 11.5 100k 85k 3.410 116.0 No
Motl et al. 2017 Flow-er 0.9 ideal 2.3 12.4 162x98x256 = 4M 70 3414 114.0 No
Motl et al. 2017 SNSPH 0.9 ideal 1.0 10.0 100k 85k 3.410 116.0 No
Diehl et al. 2021b  Octo 0.85  ideal 2 6.7 0.5M; 1.5 x 1073 27 3.27 111.0 Yes
Diehl et al. 2021b  Octo 0.85  ideal 2 13.4 2.2M; 7.4 x 1073 54 3.27 111.0 Yes
Diehl et al. 2021b  Octo 0.85  ideal 2 15.5 3.1M;3.7 x 1074 108 3.27 111.0 Yes
Diehl et al. 2021b  Octo 0.85  ideal 2 16.8 11.4M; 1.85 x 1074 215 3.27 111.0 Yes
This work
LI1OND Octo (Bd) 0.9 ZTWD 0 36.8 1.7M; 1.2 x 1073 36 3.453 116.0 Yes
L11 Octo (Bd) 0.9 ZTWD 1.3 25.0 2.5M;5.73 x 1074 73 3413 114.0 Yes
L12 Octo (Bd) 0.9 ZTWD 1.3 38.7 5.3M;2.86 x 1074 145 3.403 113.6 Yes
L121I Octo (Bd) 0.9 ZTWD 0 11.9 5.3M;2.86 x 104 145 3.403 113.6 Yes
L13 Octo (Bd) 0.9 ZTWD 2.3 9.9 20.1M; 1.43 x 10~4 290 3.401 1134 Yes
FL-1 Flow-er 0.9 ZTWD 1 37 322x258x256 = 21.3M 130 3413 114.0 No
FL-2 Flow-er 0.9 ZTWD 2 16.9 322x258x256 = 21.3M 130 3.413 114.0 No

4@ See also Montiel 2015. ¥ For the simulations done with OCTO-TIGER, in the Resolution column, we list the initial number of cells in the adaptive-mesh grid as
well as the minimal cell width (in solar radii). © We have run, additionally, two non-driven simulations, L1IND and L12ND, not listed here, as they resulted
in the accretor’s expansion due to numerical instabilities (see Appendix D for more details). A question mark represents data that cannot be retrieved from

available information.

cells across the donor’s diameter, which we specify in the ‘donor res’
column of Table 1. For SNSPH, a SPH code, we list the total number
of particles in the simulation (in the Resolution column), and the
number of particles consisting of the donor only (in the ‘donor res’
column). The high number of particles in the donor relative to the
total number of particles is meant to better resolve the mass transfer
in those simulations.

In column 11 we specify whether the accretor is a hybrid CO-He
WD rather than a CO-only WD. As mentioned, this can affect the
amount of '°0 in the burning regions and consequently the ratio
of '°0 to 80 produced by the burning. We note that in Diehl
et al. (2021b) the mass of the helium shell was ~ 0.045 M, while
in the OCTO-TIGER simulations that we present in this paper (see
Section 3.1) the helium shell is 0.13 M. Lastly, we list the merger
time, Tinerge, Which is the time from the beginning of the simulation
until a merger occurred in the units of initial orbital periods.

From this table, it is notable that both the amount of driving and
the simulation resolution affect the merging time. Specifically, the
4M-cell FLOW-ER run with polytropic EoS that has been driven for
2.3 orbits merged much faster compared to the other FLOW-ER run
with the same EoS and the same resolution that has been driven
only for 1.3 orbits. Alternatively, the simulations of Diehl et al.
(2021b) were driven by the same amount. However, the merging
time increases with finer resolution. This can be explained by the
fact that longer driving pushes the system into deeper contact and
higher initial mass transfer. As a result, the system evolves faster
and eventually merges earlier. This is also true for higher resolution
runs. The finer resolution promotes a lower mass transfer rate, and
the evolution is slower. It is possible that at some fine resolution,
the mass transfer rate could not be decreased below a certain value,
which would represent the actual physical mass transfer rate, and the
merging time will converge concerning resolution.

MNRAS 535, 1914-1943 (2024)

Besides affecting the merging time, resolution can have an effect
on the temperature and on the different compositions of different
atmospheric layers of the merger, in particular when considering a
hybrid WD accretor. The temperature is critical for helium burning
and the production of oxygen-18, while the composition is important
for the mixing of oxygen-16 with oxygen-18. Examining the effects
of resolution, together with extending to higher resolution, are some
of the main goals of this paper.

3 SIMULATION SETUPS

In this section, we give details of the setups for all our new
simulations, starting with those carried out with OCTO-TIGER and
finishing with those carried out with FLOW-ER.

3.1 The OCTO-TIGER simulation setups

We carried out five simulations using the benchmarked version of
OCTO-TIGER (Marcello et al. 2021b, labelled ‘Bd’ in Table 1) with
four different resolutions corresponding to 10, 11, 12, and, 13 levels
of refinement (L10 to L13 in Table 1). Simulation .13 has the highest
resolution used for an OCTO-TIGER simulation, with almost twice the
number of cells across the donor star than in the simulation by Staff
et al. (2012). This simulation also has almost twice the initial number
of cells than in the high resolution simulation of Diehl et al. (2021b).
The initial number of cells and the smallest cell size in each run
are listed in Table 1 (seventh column), as well as the number of
cells across the donor WD (eighth column). The simulation domain
extends up to ~ 200 times the initial separation, which allows us to
follow the outflowing gas from the system up to a significant distance
and for a longer time.
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Figure 1. Initial density and mass profiles of the binary in simulation L12. Left: the hybrid accretor star, which is composed of a 0.4 M, inner carbon—oxygen
(CO) core and a 0.13 Mg outer helium (He) shell. Right: the donor star structure, where Xpinary is the axis connecting the stars’ centres of mass.

Each simulation starts off with a WD-WD binary with a total mass
of My = 0.9 Mg. The primary (accretor star) and secondary (donor
star) initial masses are 0.53 M, and 0.37 M, respectively. We choose
this value for the total mass because of observational indications (e.g.
Karakas et al. 2015), and a mass ratio of ¢ = Mgonor/ Maccretor = 0.7
is chosen because in previous simulations this ratio yielded the most
suitable SoF temperature for incomplete helium burning (see Staff
et al. 2012). The binary’s initial conditions are calculated using
a self-consistent field (SCF) technique as described in Marcello
et al. 2021b), except that a different equation of state, the zero-
temperature white dwarf equation of state, is being used (see more
details in Section 3.1.1). The donor star initially fills its Roche lobe
and both stellar spins are synchronized to the orbital frequency.
This results in an initial orbital separation of 0.05 Ry and in an
orbital period of ~ 2 min. In all of the simulations except L12I,
the grid is set to constantly rotate at the same frequency as the
initial binary frequency. We carry out simulation L12I in an inertial
frame of reference to study the impact of the chosen frame of
reference on the system’s evolution and on the post-merger object’s
properties.

The accretor is a hybrid He/CO WD, consisting of a 0.4 Mg, CO
core and an outer layer of 0.13 My of helium, while the donor is
a helium WD. The CO WD core and its He envelope are evolved
as two distinct fluids (or species) by OCTO-TIGER and the donor star
is evolved as a third specified, distinct fluid. Each species has a
mean molecular weight. The accretor CO core fluid is initialized
with a mean molecular weight corresponding to an equal mixture of
ionized carbon and oxygen. The mean molecular weights of the CO
WD atmosphere and of the helium WD are u = 4/3, corresponding
to ionized helium. The average mean molecular weight in a cell is
used then to calculate the temperature.

In Fig. 1 we plot the resultant density and mass profiles of the
accretor (left panel) and donor (right panel) stars, after the SCF
initialization and for simulation L12. The inner 0.4 My of the
accretor star (3/4 of the accretor’s mass) is the accretor CO core
and it is surrounded by a He shell. The thickness of the accretor’s
helium shell depends on resolution and is 5, 10, 18, and 36 cells,
for the simulations with 10, 11, 12, and 13 levels of refinement,
respectively. This shell serves as a buffer region between the CO
core and the SoF, and therefore can potentially abate the dredge-up
of 10 from the core. Such buffer regions have been considered in

several previous numerical studies (e.g. Staff et al. 2018), and we
choose a relatively massive shell to maximize its effect. However, in
running our simulations we observe that this helium shell is almost
entirely mixed in with the CO core well before the binary merges and
therefore has only a minor effect on the resulting dredge-up of '°O.
This is mainly due to a numerical limitation of our code that cannot
maintain a steep abundance gradient over an extended amount
of time.

Lastly, to initiate a higher mass transfer rate which ultimately
results in a faster merger, we extract angular momentum from the
system’s orbit in simulations L11, L12, and L13 during the first 1.3,
1.3, and 2.3 orbits, respectively (fifth column of Table 1). This is
done to save computer time. We drove L13 longer because in this
highest resolution simulation, the initial mass transfer would be the
lowest without enough driving and the computed time-step is also
very small. The extraction of angular momentum is done by adding
adequate source terms in the momentum equations as explained by
Marcello et al. (2021b, their equation 44) and at a rate of 1 per cent
of the orbital angular momentum per (initial) orbital period.

3.1.1 The equation of state

The construction of the stars by the SCF method uses a zero
temperature white dwarf equation of state (ZTWD EoS), rather than
a polytropic equation of state with an index n = 3/2. The ZTWD
pressure is obtained by:

Pzrwp i= A |x (2x* = 3) (x> + 1)% + 3sinh~'x |, (1

where x := (p/B)%, A and B are constants, and p is mass density.
Note that like the polytropic equation of state, equation (1) is also
barotropic, allowing it to be incorporated into an SCF solver in a
manner similar to what was done by Even & Tohline (2009).

After initialization, we evolve the simulations with a combined
EoS of both ZTWD EoS and ideal gas (Staff et al. 2018):

P:Pdeg+(y_1)Elhs (2)

where Ey, is the thermal energy density, and y = 5/3 is the adiabatic
index. The only difference with the method of Staff et al. (2018) is
that we compute the local molecular weight for each cell rather than
assuming it to be 2 for the temperature calculation, which results in
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Figure 2. Conservation of mass, energy, and angular momentum in our simulations for ¢+ > Tg.,. Vertical dashed lines denote the merger time. Note that in
the angular momentum plot, we do not take into account angular momentum losses due to gas that flows out of the grid. Py is the initial orbital period of the
simulation (between 113 — 116 s, depending on the specific simulation) as listed in Table 1.

lower temperatures compared to Staff et al. (2018). A more detailed
description of this EoS and the exact calculation of temperature
appears in Appendix A.

3.2 The FLOW-ER simulation setups

In order to compare the simulations’ outcome with a different
code, we use the Eulerian uniform and cylindrical grid code FLOW-
ER (D’Souza et al. 2006; Motl et al. 2007). We have carried out
two additional simulations FL-1 and FL-2 with FLOW-ER. Both
are evolved in the rotating frame and have identical resolutions.
Simulations FL-1 and FL-2 are driven, by the removal of angular
momentum uniformly at a rate of 1 percent, for 1 and 2 (initial)
orbital periods, respectively (Table 1).

The density from the OCTO-TIGER SCF model is interpolated onto
a uniform cylindrical mesh using cubic interpolation. Parameters
from the OCTO-TIGER SCF model such as the angular frequency of
the initial data are used with the same value as in OCTO-TIGER. The
interpolation causes some initial oscillation in the density not present
in the OCTO-TIGER runs but those perturbations decay well before the
merger.

The spatial resolution has 322 radial zones, 258 vertical zones,
and 256 azimuthal zones. The total number of cells is ~20 M, larger
than the 4 M cells resolution of the FLOW-ER simulations of Motl
et al. (2017). The grid extends in radius to 6.4 x 10° cm and the
spacing length in the radial direction equals to the spacing length in
the vertical direction.

4 ORBITAL EVOLUTION AND MERGER

In this section, we start by describing the behaviour of the OCTO-
TIGER simulation carried out with 12 levels of refinement in the
rotating frame (L12 in Table 1). We later compare it to the other
simulations.

4.1 Binary evolution leading up to merger

As mentioned before, in order to save computational time, the initial
phases of simulation L12 were driven by continuously extracting
angular momentum for the first 1.3 orbits at a rate of one per cent
per orbit. Still, the binary took 38.7 initial orbital periods, Py, until it
merged. We simulated an additional five P, past-merger to allow the
merger enough time to relax and to become more axially symmetric.

In Fig. 2 we present, three quantities that should be conserved,
considering conservation properties only after the driving phase.
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The quantities AM, AE, and AJ, are computed as in Marcello
et al. (2021b), and they include mass and energy that flows out of
the grid, but not angular momentum outflows. For (L12), mass and
energy were conserved to better than one part in 107! and 10719,
respectively. Any inaccuracies stem solely from using a ‘density
floor’, which prevents vacuum conditions in the low-density regions
outside the star. We show in these plots the conservation values
of simulations of different resolutions for comparison. We will
discuss numerical effects like resolution in Section 4.2. The angular
momentum is conserved at the 0.5 per cent level for L12, where most
of the non-conservation stems from numerical viscous torques during
and after the merger (as described in Marcello et al. 2021b).

In Figs 3 and 4 we show density and temperature maps, respec-
tively, of the equatorial (top row) and meridional (bottom row) planes
at three times, representing the beginning of the evolution (left panel),
the time just before the merger (central panel), and the time of
the merger (right panel). We also overlay velocity vectors (in the
rotating frame) for gas with densities greater than 1 g cm~ and equi-
potential contours. On the equatorial temperature slices, we overlay
instead the grid structure (each square represents a subgrid of 8 by
8 by 8 cells) while on the meridional slices, we overlay density
contours.!

Shortly after the simulation begins, a stream of gas from the
donor (less massive, larger star) flows through the L1 Lagrange
point and flows around the accretor mainly along the equator. As
the simulation progresses, mass starts flowing through the two outer
Lagrange points as well and eventually, the donor is tidally stretched
and wrapped onto the accretor. The cold donor material is heated by
shocks when it impacts the accretor’s surface, and the temperature
reaches helium-burning levels in a shell around the accretor. This SoF
and its properties together with the potential nuclear fusion within it
will be discussed in Section 5.2. In Fig. 5 we plot the overall orbital
evolution on the orbital plane. The centre of mass position of each
star is plotted, the accretor’s as a thick solid line and the donor’s as a
thin dotted line. Colours represent time in units of the initial orbital
period, Py (blue is the earliest, and dark red is the latest). To identify
the cells of each star, we use the technique described in Marcello
et al. (2021b). We plot the evolution until just before the merger,
when this technique no longer works because the two individual
stars are no longer well-defined. We typically find that the stars
become indistinguishable by this technique when the binary orbital
frequency, Qb = Jj-.om/a>, lags behind the Keplerian frequency,

Quep = VG(M + M,)/a3, and we set the time of the merger, Tinerges

'Movies of the simulations can be obtained via this link.
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Figure 3. Simulation L12. Density slices at the equatorial plane (top row) and at the meridional plane (bottom row) with contours of ®cf. Arrows show
magnitude and direction of velocities with respect to the instantaneous rotating frame, for gas with density greater than 1 g cm™3. The time (in initial orbital

periods, Py = 113.6 s) is shown on the lower left corner of each panel.

according to the earliest time this occurs. For simulation L12 we
obtain Tierge = 38.7 Py = 73 min.

Additionally, we plot in Fig. 5 the centre of mass of the entire grid
in orange, and the combined centre of mass of the two stars in blue.
The grid centre of mass remains in place, which indicates again a
good degree of linear momentum conservation. The combined centre
of mass of the two stars slightly shifts left during the merger, implying
slightly asymmetrical outflows through the outer Lagrange points.

In Fig. 6 we show the orbital separation, the orbital angular
momentum, the angular momentum of the primary (star 1), and
the secondary (star 2), the mass of each star, and the mass transfer
rate (in units of the total mass per initial orbital period), all as a
function of time. During the first 1.3 orbits both the separation and the
orbital angular momentum decrease, as expected due to the driving,
while the orbital frequency increases and the binary axis rotates
counterclockwise in the rotating frame.

After this initial driving phase, mass transfer onto the more
massive, accretor star, acts to increase the separation. At this point,
the mass transfer rate is 10™* Mp/Py ~ 3 x 1073 Mgh~! (lower
right panel). However, the accretor also drains angular momentum
from the orbit, at a rate of 1073 Jyy, 0/ Py (upper-right panel), which
counteracts the effect of mass transfer and tends to shrink the orbit.
Overall the orbital separation remains fairly constant (upper-left
panel). The mass transfer rate continues to increase, while the orbital
angular momentum becomes angular momentum of the accretor star,
and eventually, the donor star is tidally disrupted onto the accretor.
This picture of unstable mass transfer that increases with time while

the orbital angular momentum decreases and that leads to the tidal
disruption of the donor star is consistent with what is described in
Motl et al. (2017) and is termed there a generic ‘case A’ evolution
for WD-WD binaries. This is to be distinguished from a ‘case B’
evolution where the mass transfer stabilizes or decays with time,
which leads to a dynamically stable binary configuration. We further
discuss quantitatively the mass transfer and verify it against an
analytic expression in Section 4.2.1 and in Appendix B.

Just prior, but mostly during the merger, mass is flowing through
the outer Lagrange points, L2 and L3 at an increasing rate. Because
our diagnostics method accounts gas as belonging to a star only
if it is inside the star’s Roche lobe, we can quantify the amount
of mass and energy lost from L2 and L3, AM and AE, as
AM = (M + M3)|i=0 — (M) + M3)|;, and AE = (E| + E3)|i=0 —
(Ey + E»)|,, respectively. In Fig. 7, we plot these quantities as a
function of time. We find that a few percent of the total mass is
flowing out of L2 and L3, and that the system’s total energy becomes
afew per cent more negative close to the merger. Therefore the energy
outflow through L2 and L3 is positive. Most of the outflowing mass
remains bound and ends up being accreted by the merged object at late
times. For simulation L12 we find ~ 1 x 10~3 Mg, of unbound mass,
although we stopped the simulation before the amount of unbound
mass reached a steady value. The amount of unbound mass decreases
with resolution, and therefore the maximal value of unbound mass
we find is in our lowest resolution run. We conclude that only a small
fraction of the total mass becomes unbound as a result of the merger
(L5 x 1073 Mg).
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Figure 5. The orbital evolution of the system in simulations L12, showing
the centres of mass of the individual stars until shortly before the merger, as
well as the centres of mass of the system and of the grid — expected to be
stationary. The stars merge at t = Tierge = 38.7Po == 4400 s =~ 73 min.

To understand better the energy distribution prior to and during
the merger, we plot in Fig. 8 the four energy components for each
star and the system: kinetic (Ej, orange), gravitational (E,, green),
degenerate internal (Eq,, magenta), and thermal internal (Ey, red).
The total for each of these four energy components for the system
is shown as solid lines of the colour assigned above. The quantities
due to the accretor (denoted by 1) are shown as dashed lines, while
the corresponding contributions by the donor (denoted by 2) are
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shown as dash-dotted lines. The total energy contributions for each
component and the system are shown as thick blue lines. Note
that the degenerate internal energy is calculated directly from the
density using the corresponding expression for the ZTWD, while
the thermal internal energy is calculated by a procedure described in
detail in Appendix A. All of these energy quantities are measured
in the inertial frame. The material flowing out of the donor is
heated when it impacts the accretor at a high speed. This translates
to a decline in the donor’s degenerate energy and an increase
in the accretor’s thermal and kinetic energies. Eventually, all the
energy contributions of the donor vanish at the merger. Interestingly,
the donor material accreted onto the accretor still possesses some
degenerate energy, and the total degenerate energy of the system after
the merger is slightly greater than the initial accretor’s degenerate
energy.

Fig. 9 shows the ‘virial error’, defined as VE =
2E; + Eg + 31|/ |E,|, where E;, and E,, are the kinetic
and gravitational energy, respectively, while 1 = [ PdV is the
total pressure integrated over volume. The closer this quantity
is to zero, the more accurate the numerical representation of the
system. We plot the virial error as a function of time for simulation
L12, although all other runs show the same trend as well. Initially,
both stars individually obey the virial relation only approximately,
because they are not isolated systems. The error is greatest for the
donor (dashed-dotted line) since we are ignoring the more massive
companion. As the donor approaches disruption, the relative virial
error increases. In contrast, the virial error for the system is ~ 1073
throughout the evolution, and even after the merger (solid line),
suggesting that our numerical representation of the system is very
precise.
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4.2 Numerical, physical, and conservation properties of the
simulations

In this section, we discuss the results in light of the numerical
properties of the simulations. As a first step, we have analysed
our results during the early mass transfer to conclude the nature
of the mass transfer (Section 4.2.1). Consecutively, we have tested
several numerical properties of our simulations such as the effects
of resolution (Section 4.2.2), of carrying out the simulation in the
rotating and inertial frames (Section 4.2.3), and ultimately the amount
of driving during the early part of the interaction (Section 4.2.4).
For another numerical test, where we have found remarkably similar
results across the different codes, OCTO-TIGER and FLOW-ER, we refer
the reader to Appendix C.

4.2.1 Instability of mass transfer

The total angular momentum of a simple binary model, in which
the component stars have constant masses and moments of inertia,
and are tidally locked to the orbit, assumed circular, is the sum of
orbital and spin terms at the same angular velocity. If the orbital-spin
frequency is given by the usual point-mass Keplerian approximation,
then the total angular momentum depends only on the binary
separation a, and has aminimum at a separation a2, = 3(1; + L)/ u,
where u = MM, /(M + M,) is the two-body reduced mass (Rasio
1995). With the initial moments of inertia of the equilibrium model
binary, we find @y, >~ 0.48ay.

If angular momentum losses drive such a binary to the above
minimum, no further reduction of total angular momentum and
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separation is possible unless synchronism is broken, and one or both
components spin slower than the orbital frequency. But then tides
will attempt to synchronize the lagging spins, reducing further the
orbital angular momentum, and we have a run-away process, known
as the Darwin instability (Darwin 1879). Therefore we expect that
in a system driven by the Darwin instability, both orbital and spin
frequencies increase with time, while the spin frequencies remain
lower than the orbital. In all of our simulations the unstable behaviour
begins well before ay,, is reached (see below).

The simple arguments given above require revision if mass transfer
begins at a separation exceeding dpy, if the mass is lost from the
system, or if the tidal distortions of the stars are significant (Lai,
Rasio & Shapiro 1994). All of these effects come into play in our sim-
ulations. For example, mass-loss through the outer Lagrange points,
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donor (£22) in the level 12 simulation (L12 in Table 1) divided by the system’s
initial angular velocity €0 = 27/ Py = 3.32 rad min~! as a function of time.
The system was driven for 1.3 orbits at a rate of one percent of its orbital
angular momentum per initial orbit.

and direct impact accretion by the CO WD, are consequential angular
momentum losses (hereafter CAML) (Webbink 1984; King & Kolb
1995; Schreiber, Zorotovic & Wijnen 2016), meaning orbital angular
momentum losses that are consequences of mass transfer. CAML and
the expansion of the degenerate donor due to mass-loss, drive the
mass transfer instability and ultimately cause the tidal disruption and
the merger of the system. Because the accretor is spun up by mass
transfer, its spin frequency increases faster than the orbital frequency.

In Fig. 10 we display the angular velocities for the orbit and the
spins of the binary components. We see in this figure that the orbital
angular frequency does not change much while the donor angular
frequency decreases somewhat and the accretor spin frequency
increases rapidly. This behaviour is a characteristic of mass transfer
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Figure 11. Comparison between different resolutions. Shown are the orbital separation, orbital angular momentum, mass ratio, mass transfer rate, accretor, and

donor central densities, all as a function of time.

instability and implies that the Darwin instabilities does not play
any role in the merging process. We further analyse the binary
evolution of our highest resolution L13 run, showing the excellent
agreement between our simulations and the analytical expression in
Appendix B.

4.2.2 The effect of spatial resolution

As can be seen in Fig. 2, OCTO-TIGER conserves mass and energy
very accurately to the level of machine precision, regardless of the
resolution being used. The source of non-conservation stems from the
low values (floor values) of density and energy artificially introduced
in a few cells to prevent the occurrence of vacuum conditions.
In contrast, a finer grid does improve the conservation of angular
momentum. For L1IOND and L11 the angular momentum deviates
by less than 4 percent by the time of the merger; however, the
strong shearing during the violent disruption tends to contribute
to conservation errors. Simulations L12 and L13 display a better

conservation of angular momentum at the level of less than a per cent
even five orbits after the merger.

In Fig. 11 we present a set of diagnostic quantities plotted as a
function of time for LIOND, L11, L12 (our reference simulation),
L12I (same as L.12, but performed in the inertial frame, see a detailed
comparison in Section 4.2.3), and L13. Times have been shifted by
Trnerge s that the diagnostic quantities are shown lined up at the same
time before the merger.

The smallest cell size in simulation LIOND is 1.2 x 1073 R,
which lets us resolve the donor diameter into 36 cells. Each additional
level of refinement roughly halves the smallest cell size, and doubles
the number of cells across the donor, so in L13 the donor diameter is
resolved into 290 radial cells. Simulations L10ND and L12I were not
driven, while the other three were driven, L11 and L12 for 1.3 orbits
and L13 for 2.3 orbits, as described in Section 3. L12 was driven
similarly to L11 and clearly merges later, as expected of a higher
resolution simulation. So as to reduce the computational times, we
have driven L13 by 2.3 orbits, which resulted in a faster merger.
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The evolution of the orbital angular momentum is qualitatively
the same in all our simulations, slowly declining at a rate of
107* — 1073 Jow.o/ Py through most of the evolution (from the
moment the driving has stopped until & 5 orbits before the merging
time), and then rapidly dropping at rate of > 1072 J9, /P, just
before the merger as the donor is tidally disrupted. During the tidal
disruption, the orbital angular momentum is transferred to the spin
of the accretor as discussed in Section 4.1.

The mass ratio, initially 0.7 for all simulations, decreases drasti-
cally close to the merger. In fact, the accretor in all of our simulations
gains mass throughout the evolution, decreasing the mass ratio
monotonically. L11 (dashed-dotted orange line) and L12 (solid green
line) that were driven at the same rate and the same duration are the
most similar, especially as illustrated by the evolution of the mass
ratio ¢ and the mass transfer rate M;. While we expect a similar
contact depth in both runs, L.11 overestimates the initial mass transfer
rate because of the larger cell sizes. Simulation L12 starts at a lower
rate and takes around 20 orbital periods to ‘catch up’ with L11, but
the rates agree very closely after that. Because the mass transfer
rate is a very noisy quantity we smooth it using a Savitzky-Golay
filter (Savitzky & Golay 1964) with a temporal window size equal to
half of an orbit. As expected, the initial mass transfer is primarily a
function of resolution, and higher resolution simulations yield lower
initial mass transfer rates. None the less, the mass transfer rate during
the final several orbits before the merger is very similar across all
simulations.

As mass transfer proceeds, the expectation is that the central
density of the accretor should increase, while that of the donor
should decrease. The behaviour of the primary central density shows
some variation initially but conforms to expectations as the mass
transfer increases. The secondary’s central density behaves in a more
homogeneous way: we observe in all simulations a decline just before
the merger.

Our conclusions from the resolution study are as follows. First, res-
olution is important for an accurate angular momentum conservation.
In addition, although the merging time itself depends on the initial
depth of contact, which is a function of both resolution and amount of
driving, the general behaviour before the merger is similar regardless
of resolution. The WD-WD system merged in all of the simulations,
regardless of resolution, supporting that WD—WD systems with mass
ratio of 0.7 are unstable once mass transfer begins. This agrees well
with previous simulations and analytical expectations (e.g. Motl et al.
2017). Lastly, in the following section we will show that resolution
plays a critical role in determining the properties of the shell of fire
(Section 5.2) and the amount of O'° that is being dredged-up during
the merger (Section 5.3).

4.2.3 Inertial versus rotating frame simulations

To illustrate the advantages of conducting simulations in the co-
rotating frame, we ran two simulations at the same resolution:
L12 on the rotating frame, driven for 1.3 orbits, and L12I on the
inertial frame, undriven. Simulation L12I involves advection of large
flows across cells just to represent the orbital motion of the binary
components, while mass transfer and internal motions in the binary
components would be given by relatively small additional fluxes.
Therefore we expect L12I to be prone to cumulative errors and larger
diffusion.

Referring to Fig. 11 and focusing on the differences between the
thick green curves (L12) and the thin magenta curves (L12I), we
note that L12] ran to merger much faster than L12, even without
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driving. The orbital angular momentum decreased from the start,
and mass transfer was initially larger and increased rapidly. The
central density of the accretor decreased rapidly for a couple of
orbits from the beginning due to stronger numerical diffusion,
and only began increasing once the mass transfer reached levels
comparable to those present in L12, at ~ 8Py before the merger.
Qualitatively the behaviour over the last 4-5 orbits prior to merger
was similar for both L12 and L12I as the system rapidly evolved to
merger. The main differences can be seen in the binary separation,
orbital angular momentum, and binary mass ratio. All of these
early differences can be attributed to the accumulation of numerical
errors and diffusion. Later in the evolution, when the unstable
mass transfer is large and growing exponentially during the few
orbits before the merger, the differences between L12 and L12I
become less significant since advection dominates in both frames.
The main problem with evolutions computed on the inertial frame is
that numerical viscosity artificially speeds up the merger. If one is
interested in marginally stable/unstable cases, the evolution should
be computed in the rotating (comoving) frame.

4.2.4 Non-driven simulations

Most previous merger simulations of WD-WD systems have used
some kind of driving mechanism to expedite the merger. Moreover,
studies like Motl et al. (2017) and Diehl et al. (2021a) have shown
that a shorter driving phase results in a longer evolution to a
merger. For practical reasons, the numerical driving rates used in
these simulations exceed realistic angular momentum loss rates by
factors ~ 10° or more (from mechanisms like magnetic braking or
gravitational waves emission). In this paper, we wanted to investigate
the feasibility of simulations closer to realistic driving rates by simply
simulating a non-driven system at different resolutions. We know
that the lowest mass transfer rate resolvable by a simulation depends
on the level of refinement or spatial resolution. By simulating the
evolution of the same binary at increasing resolution we may be able
to see convergence to a more realistic evolution. Unfortunately, as
discussed below, it turned out that the cumulative effect of numerical
errors made these simulation results unreliable.

We begin by discussing the low-resolution non-driven run,
L10ND. This simulation merged in 37 orbits, even later than L11,
which was driven for 1.3 orbits, merging in 25 orbits, and later than
L13, which was driven for 2.3 orbits, merging in 10 orbits. However,
L10ND merged before .12, which was driven for 1.3 orbits, merging
in 39 orbits; see Table 1. This is because, with the limited resolution
of L10ND, the initial mass transfer, even without driving, quickly
settles on values of the order of x 1073 (M /P), higher by a
factor of ~ 2 — 5 than the mass transfer rate at the start of simulation
L12 (middle left panel of Fig. 11). Thus, as we anticipated, the
resolution plays a critical role in the early evolution of the mass
transfer, and L10ND is probably a poor approximation to a realistic
evolution.

We have therefore tried to run non-driven simulations of higher
resolution, with 11 and 12 levels of refinement. However, these
simulations, which start with lower mass transfer rates than their
equivalent driven simulations and thus evolve slower, suffer from
some numerical issues, happening after the merging time of their
equivalent driven simulations. Specifically, we have found out that in
these simulations the merger occurs only because the accretor starts
expanding for reasons other than the mass transfer. This expansion
of the accretor stems from internal, convection-like, instabilities that
form inside the accretor and which were not observed for any of
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Figure 12. Mass distribution of the merged object five initial orbits past merger. Top row: a density slice along the equatorial plane (left panel), and a
mass-averaged over the azimuthal angle density profile (right panel) for simulation L12. Velocity arrows are overlaid with their colour indicating the magnitude
of the projected velocities in the rotating frame (see the text and colourbar values as in Fig. 3). Bottom row: the azimuthally averaged density profile (left panel,
thick lines), the density profile along the z-axis (left panel, thin lines), and the cumulative mass M;,(r) profile of the merged object for all simulations (right

panel). Colours identify the different resolutions according to the legend.

the other simulations (listed in Table 1). We could even reproduce
those instabilities in single-star simulations and have linked them to
the implemented ZTWD EoS (see Appendix D for more details).
In contrast, the simulations of a polytropic binary WD with the
same mass ratio of 0.7, evolved with an ideal gas EoS (Diehl et al.
2021b; see Table 1) at four resolutions, all driven with Ty, = 2.0,
clearly show convergence with respect to merging time. This further
supports that the anomalous behaviour observed in some of our non-
driven simulations is linked to the EoS. A further investigation of this
phenomenon, including the testing of the Helmholtz EoS (Timmes &
Swesty 2000) instead of the ZTWD should be considered in order
to resolve this issue. We conclude that at this point, with the current
implementation of the EoS in OCTO-TIGER, a convergence study of
the evolution of a non-driven system is not feasible.

5 THE MERGED OBJECT

We base this discussion on our reference simulation L12, which is
performed in the rotating frame, and has 12 levels of refinement.
When necessary, we compare with the results of other simulations.

In Section 5.1 we discuss the structure of the merged object, splitting
it for convenience into several substructures with characteristic
densities and rotational properties, and consider their origins. In Sec-
tion 5.2 we consider nuclear burning and the potential impact of the
corresponding energy deposition. Finally, in Section 5.3 we estimate
the dredge-up of core material by extrapolation of results at different
resolutions, and discuss the consequences of a small amount of
hydrogen in the donor, and its impact on the observed '°0/'30 ratio.

5.1 Structural and rotational properties

In Fig. 12 we focus on the mass distribution of the merged object, five
orbits after the merger. In the top row, we show a density slice at the
orbital, xy, plane (left), and a density profile mass-averaged over the
azimuthal angle (right), both for simulation L12. Cylindrical radius
and cylindrical z are measured from the centre of the merged object,
i.e. the point of maximum density. Although difficult to see in the
top left panel because of the velocity arrows, there is a higher density
‘blob’ at the noon position at radii ~ 1.2 x 10° cm, coincident with
the cooler blob, clearly visible in Fig. 13, which will be discussed
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Figure 13. The SoF five initial orbits past merger. Equatorial temperature slice (left) and a mass-averaged over the azimuthal angle temperature profile (right)

for simulation L12.

in the next section. This is a remnant of the core of the donor,
which cannot be tidally disrupted by the accretor before it becomes
supported by pressure and rotation, but is expected eventually to be
sheared by differential rotation. The effect of this blob is also visible
in the top right panel, despite the azimuthal averaging. In the bottom
left frame, we show the azimuthally mass-averaged density profiles
at z = 0 (thick lines), and the vertical density profile along the z-
axis (thin lines) for all of our OCTO-TIGER simulations. In the bottom
right frame, we present the cumulative mass profiles inside a sphere
of radius r for all of our OCTO-TIGER simulations. In addition, we plot
the radial density structures on the equatorial plane of the FLOW-ER
simulations (bottom left; thick lines).

First, we see a remarkably similar structure across all of our
simulations, and the following description is valid for each of them.
The merged object’s radius, defined as the cylindrical radius where
the cumulative mass plateaus (bottom right frame), is approximately
Rou ~ 3 x 10'9 cm. There is some low-density material beyond this
radius gradually transitioning to the floor density. A side view (top
right frame) and the profiles along the cylindrical radius and cylindri-
cal z-coordinate (bottom-left frame) show that the densest structures
consist of a compact oblate spheroid, with an approximate cylindrical
radius of Ryp = 10° cm, and a flattened disc with an approximate
outer radius of Ry = 3 x 10° cm around it. We additionally observe
that the density contours flare slightly at densities below 10° gcm™3.
Gas velocities in the perpendicular plane are typically smaller than
400 km s~! while the azimuthal velocities on the orbital plane are
much larger and as we show later are nearly Keplerian.

Additional description of the mass distribution in the inner regions,
valid for all the simulations as well, can be gleaned from the bottom
left frame of Fig. 12. The nearly constant density p ~ 10® gcm™>
spherical region r < r; =5 x 108 cm corresponds roughly to the
core of the CO WD. There is a gradual transition between this core
and Rgyp. For R, < R < Ry cm, the equatorial density in the disc-
like or extremely oblate extension beyond the spheroid, falls off as
o o R73 and beyond R, it cuts off precipitously as p oc R~%. This s
consistent with the M (r) behaviour shown on the bottom right panel.

Furthermore, we can learn the merged object rotation profile (on
the equatorial plane) from the velocity arrows in the top left frame.
The plotted velocities are in the frame rotating with the grid at a
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constant angular frequency of ¢y = 27/ P,. Therefore, a velocity v’
in the rotating frame transforms to an inertial frame velocity of vi, =
Qor +v' = 550kms™! - rg 4+ v’, where ry is the cylindrical radius in
units of 10° cm. Consequently, the velocity at the transition from the
spheroid to the disc just outside Rgph, on the order of 1000 km s~!
in a counterclockwise direction in the rotating frame (seen as red
arrows), is ~ 1500km s~ in the inertial frame, comparable to the
sound speed at the SoF. Beyond Ry, v’ decreases to near zero at
co-rotation (seen as a white ring) located approximately at Ry,
and the direction of rotation in the rotating frame inverts beyond
corotation, such that farther out, at a radial distance of 4x10° cm
the rotation is of the order of v’ &~ —1000kms~! in the clockwise
direction, still turning counterclockwise at ~ 1000 kms~!' in the
inertial frame.

InFig. 14 we show the azimuthally mass-averaged angular velocity
profile of the merged object at z = 0 for simulation L12, as a function
of cylindrical radius five orbits past merger. The angular velocity here
isQ = (xv, — yvx)/Rz, where x, y, R, v,, and v, are measured with
respect to the position and velocity of the merged’ object centre.

The angular velocity increases with decreasing radius until just
inside Ry, where it starts to decrease again and smoothly matches
the solid body rotation of the CO WD near r;. The accretor core
was initially synchronized to the initial binary frequency, and is still
rotating as a solid body at a slightly higher frequency corresponding
to the orbital frequency after driving (see Fig. 10). Material inside
this radius must be pressure supported since it is well below the
local Keplerian velocity, defined as the angular velocity required for
pure rotational support, Qi (r) = /(1/R)d®,/dR, where ®, is the
gravitational potential. On large distances the inner mass becomes
nearly a constant and Qg (r) = v/GM/R3. On the same figure we
plot R~3/? relation normalized to the total mass of Mt = 0.9 M.

The left panel of Fig. 14 additionally shows that the strongest shear
occurs between r; and Ry The angular velocity rises rapidly to a
maximum value just inside Ry, to a sub-Keplerian value consistent
with the vertical extent of the spheroid. Beyond the maximum,
Q decreases, but gradually the relative contribution of pressure to
supporting the structure declines. The right panel shows the ratio
between the local 2 and the local Keplerian value. In all runs, the
discis about 0.8 of the Keplerian value between r ~ 2Ry, = 2 X 10°
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positive z-axis for simulation L12, five initial orbits past merger.

cm and R ~ 10'° cm. Beyond this radius the disc is probably not
in equilibrium yet. The material that is still falling back after tidal
disruption is unlikely to be supported by pressure, and therefore must
have sub-Keplerian azimuthal velocities.

Fig. 15 depicts the distribution of specific inertial-frame mechan-
ical energy as a function of the specific z angular momentum with
respect to the centre of mass of the system in the L12 simulation at
four selected times. We divide the specific energy and the specific
angular momentum in the range shown in the figure to 128x128
equally spaced bins. The colour indicates the mass in each bin. This
provides a picture of the dominant mass structures at different stages
of evolution. A similar technique was used by Hayashi et al. (2021)
to describe the tidal disruption of a neutron star by a black hole.

At t =0, all the mass is in the binary components, with the
minima corresponding to the central densest and most bound element
in each component. The specific angular momenta of the centres
of the components are in the ratio g2, with the donor having
the largest central I, = (M, /Mr)*a3$% = 2.2 x 10'7 cm? s™!. The
kinetic energy is due just to the synchronous rotation of the system at
the initial orbital frequency €2y. With R the cylindrical radial distance
of any element from the binary axis, we have

1
E= E(QOR)z + @, = Qol; + Dot

where @ = &, — %(QOR)2 is the effective potential. The surfaces
of both accretor and donor are ®.;; = Const surfaces, so E is linear
on/, with slope €2. Two lines with that slope are shown for reference.

At t = Tierge — 5Po, both components are easily distinguishable,
but both centres have moved to lower /, and more negative (bound)
values of E. The stream material fills the region at low /, between
the two components. The gas leaking out of L, appears marginally
bound/unbound at large I.. At ¢ = Tierge, the centre of the accretor
material has moved very close to the centre of mass of the system
at [, = 0, and the donor is being disrupted, so its binding energy is
significantly lowered.

Finally, at t = Tiperge + 5Py, the accretor and the centre of mass
have nearly converged to /, = 0, and the binding energy is even
greater. The material at [, < 0.5 x 10'® ¢cm?s~! shown in yellow
tones is the most tightly bound accretor matter, rotating nearly as
a solid body I, = QR?, where Q is slightly faster than the initial
value (see left panel of Fig. 14). For reference, we have drawn lines
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following |E| o l;z corresponding to Keplerian orbits around point
masses 0.5,0.6.0.7, 0.8, and, 0.9M. For I, > 0.4 x 10'® cm?s~!
the highest density structure is consistent with Keplerian or sub-
Keplerian orbits around a mass 0.9M,. At intermediate values of /.,
we find structures, seen in green and yellow tones, corresponding
to a boundary layer and a vestige of the donor core (the blob) still
visible at E = —0.75 x 10" ergg™!, I, = 0.2 x 10" cm®s~". See
again Fig. 14 for comparison. Note also the green-yellow feature at
approximately 0.9 x 10'% cm?s™! <, < 1.1 x 10'® cm?s~!, cor-
responding to material leaked out of L,, whose highest /, portion
is slightly unbound. All of the above results are consistent with the
donor WD being partially disrupted by tides, leaving the core of the
donor still surviving, and the envelope being stripped and sheared,
with a small amount being leaked out of L2.

5.2 Nuclear fusion in the merged object

During a merger of two WDs, temperatures and densities are such
that nuclear fusion of helium into carbon and oxygen is taking place
at a shell of accreted donor material around the accretor, termed
the shell of fire (SoF). In Fig. 13 we show a temperature slice at the
orbital, xy, plane (left), and a temperature profile mass-averaged over
the azimuthal angle (right), both for simulation L12. As in Fig. 12,
cylindrical radius and cylindrical z are measured from the centre of
the merged object, the point of maximum density. The SoF is evident
as the hot blue ring around a central yellow circle. In Fig. 16 we
present an azimuthally mass-averaged temperature profile at z = 0
(thick line), and a temperature profile along the positive z-axis (thin
line) for simulation L12. All of our OCTO-TIGER simulations show
a similar temperature profile with a peak temperature between 1 —
2 x 10® and slightly hotter temperatures at the poles. Additionally,
due to their lower resolution, in simulations L1I0ND and L11, the
spherical central core possesses higher temperatures of 2 x 107 K
and 4 x 10° K, respectively.

The presence of a cooler remnant of the donor’s core, which has
not had time to shear and to mix with the surrounding gas, lowers the
azimuthal average temperature on the orbital plane (Fig. 16, thick
line). As a result, the highest temperatures of the SoF occur at higher
latitudes. This cooler remnant can be seen clearly in the equatorial
slice of Fig. 13 as a red ‘blob’ adjacent to the SoF at positive y
direction, and in the averaged profile (right panel of Fig. 13) as
a yellow feature at Ry < R < Rgg, which extends symmetrically
from z = —0.4 x 10° cm to z = 0.4 x 10° cm along the vertical
axis. The presence of this cooler blob had already been noticed in
previous simulations (Staff et al. 2012, 2018).

A more useful display of the He-burning zones is gleaned from
Fig. 17, where we show the time evolution of the mass distribution in
density and temperature around the time of the merger. To construct
this mapping we divide the domains of density and temperature
into evenly spaced 128 x 128 logarithmic bins, and we depict using
a colour bar how much mass is in each bin. Consequently this
display reveals also the main structures of the flow at the three
selected times. The structures that extend above the black line meet
the conditions for triple alpha burning. Focusing on the bins with
most mass, at ¢t = 33.72 P, near the bottom right corner of the left
panel, we can see two structures superimposed and roughly shaped
as paint-brushed European-style ‘1’s, the accretor core as a nearly
vertical blue band extending to p ~ 10° gcc™!, with the accretor
envelope represented by the serif extending down and to the left.
Similarly, the donor core appears as a vertical band at p ~ 2 x 10°
g cc!, with its envelope as the corresponding serif. The ‘knee’-
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like feature above the 3« boundary and its downward extension
joining the accretor is the accretion belt with the SoF. Atz = 38.72 P,
the knee has moved to higher temperatures and densities, and the
total mass above the 3« boundary has increased. The donor is still
discernible. Finally, five orbits after the merger, the donor is gone, the
hot accretion belt and disc are visible as a broad fanning feature with
an approximate slope of 2/3, which culminates on a slightly cooler
knee (than at time r = 38.72Py) above the 3« boundary at even
higher densities and extends downward to meet the accretor core.
There is now more mass above the 3o boundary consistent with
Fig. 18 (see below).

In Fig. 18 we show, on the top row, the distribution of He-
burning power on the equatorial xy plane (left) and on the vertical
xz plane (right). Overplotted are four contours of densities (ordered
spatially from the exterior to the interior of the merged object) of
103, 10%, 10°, 10° g cm~3, in yellow, and two contours of tempera-
tures, one of 5 x 107 K in red, and a second of 10® K in purple. On
the bottom left frame, we display the mass of the SoF as a function of
time, where the mass of the SoF is determined by summing the mass
in the bins above the 3¢ threshold in Fig. 17. This is an improved
method to measure the SoF mass as compared to what was done
in earlier simulations (Staff et al. 2012, 2018) since we find that
some helium burning can still take place at densities of ~ 10* g
cm™ (mainly near the poles) or alternatively at temperatures less
than 10 K (e.g. at the equator). In the bottom right panel of the
same figure we plot the total luminosity generated by the triple alpha
burning as a function of time in our OCTO-TIGER simulations.

Comparing the results for different resolutions, it is clear that a
higher resolution is needed to get an accurate estimate of the mass
of the burning shells and the energy released. In the lower resolution
runs, in which the accretor is resolved across fewer cells, the shells
interior to the inner boundary of the SoF become hotter with time,
so the SoF effectively expands inwards to higher densities and the
amount of mass in the SoF quickly grows and therefore is probably

being overestimated. For higher resolutions the maximal density that
burns increases more slowly with time and the SoF mass is smaller
as a result.

We list in Table 2 representative values of the SoF for simulations
L10ND, L11, and L12 with the purpose of examining the conver-
gence of these properties with respect to resolution. We do not include
in this analysis simulation L12I because unlike the rest of the other
simulations it had been performed in the inertial frame of reference
and not in the rotating frame. We also do not include simulation L13
because it shows slight peculiar features in its internal structure like
a small decrease in the accretor’s central density (bottom left panel
of Fig. 11), and a high central rotation (right panel of Fig. 14). In
the second column of Table 2, we list a representative value for the
temperature in the SoF, Tsor, that we define as the temperature in
which the nuclear power in each simulation is the strongest. This
temperature does not vary much with resolution. It oscillates shortly
after the merger between 1.3 — 2.3 x 10% K, but then settles down.
Averaging over a time period that starts at one initial orbital period
after the merger we obtain Tsor = 1.6 x 10% K.

The SoF density, psor (third column) is calculated as the maximal
density in the SoF averaged over the same time period, which
decreases for higher resolution. We then perform a Richardson
extrapolation (Richardson & Gaunt 1927), by taking results for three
increasing resolutions, and extrapolate to the continuum limit to
obtain an estimate for the case for cell size going to zero. This yields
a density value of 2.9 x 10° g cm™3.

To check convergence for the mass of the burning shells, we
average the values of Mgsor (as shown in the bottom left panel of
Fig. 18) at two time points: # = Tierge + Po, and the latest simulated
time. The obtained values are plotted as three horizontal lines (dashed
blue, dashed-dotted orange, and thick solid green, for simulations
L10OND, L11, and L12, respectively) in the same figure and are
also listed in the fourth column of Table 2. The SoF mass shows a
second-order convergence to a value of Mgor =~ 0.08 with respect to
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dashed-dotted orange, and thick solid green, on the bottom left panel, denote a burning mass averaged between one orbital period after the merger and the latest
simulated time, for simulations LIOND, L11, and L12, respectively. These averages are used to derive the continuum limit of our resolution study (plotted as

the lowest horizontal dashed black line; see Table 2 as well).

Table 2. Convergence with increasing resolution of SoF properties.

Simulation TsoF OSOF Msor M ;?)?: Seore
MK) (gem™)  (Mp)  (Mg)

L10ND 160 7.0 x 105 0.244 0.062 0.51

L11 160 3.3 x10° 0.128 0.032 0.50

L12 160 3.0 x 10°  0.094 0.019 0.40

Continuum limit 160 2.9 x10° 0.081 0.01 0.25

Convergence order - 34 1.8 1.2 -

Note. We perform a Richardson extrapolation (Richardson & Gaunt 1927) to
obtain the continuum limit for psor, Msor, and M;((‘)?:. Jfeore = ZM;)‘]): /MsoF.

resolution (see the lowest horizontal dashed black line in the same
figure and also Table 2).

The amount of mass in the SoF and its composition (as we will
discuss in the next section) greatly affect the final byproducts of the
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partial helium burning. These burning products, later on, as the post-
merger object expands, cools, and evolves to become a carbon star,
will get mix with the envelope due to convection. Therefore, they will
also determine the surface abundance at the RCB phase. Our aim is to
infer from the simulations the estimated conditions expected due to a
dynamical merger of ag = 0.7 system, from which we can ultimately
estimate the surface values as the burning products mixed with the
envelope.

Ideally one would like to include the energy deposition by
nuclear reactions as the 3D simulation proceeds and to calculate the
dynamical reaction to the deposition of this extra energy. However,
OCTO-TIGER does not yet include a nuclear reaction network and
therefore we do not include in the simulation the effects of nuclear
energy generation. These reactions probably play a role in reshaping
the merged object on a dynamical time-scale, and in changing the
abundances on a nuclear time-scale. What we can say is that the
total energy generated during the simulation can be estimated as the
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peak luminosity times ~ 10P,, yielding E3, ~ 4 x 10* erg, which
is negligible compared to the various energy components of the
system (see Fig. 8).

Moreover, we find that the highest power density of the nuclear
energy is generated at gas with temperatures T = 1.4 — 2.0 x 108K,
and densities p =1 —2.5 x 10° gcm™3, and equals roughly to
ém = 5 % 10" ergcm™3 s7!. At this range of temperatures and
densities, the minimal thermal energy density, assuming a composi-
tion of ionized carbon—oxygen, equals Ey, min & 8 x 10%. Therefore
~ 107 s are required (roughly 103 orbits) for the nuclear reaction to
become important at these regions, which is beyond the scope of the
hydrodynamic simulation, and thus can be neglected.

The merged object at the end of our simulations, 5 or even 10
initial orbits after the merger, is not yet spherically (or even fully
axially) symmetric. However, following the long-term evolution of
the post-merger object by means of 3D hydrodynamic simulations
is not feasible as the time-step is ultimately limited by the Courant
condition. Mapping the 3D object into a 1D implicit code such as
MESA (Paxton et al. 2011, 2013, 2015, 2018, 2019) is a possible
way of tackling the long-term evolution provided that we can find
an adequate method of averaging the 3D structure of the merged
object, which preserves the object’s mass and its angular momentum
distribution.

In this paper, we average the merged object along different angles
based on a similar procedure to that described in section 3.1 of
Munson et al. (2021). Cells between a polar angle 8 + d6 and 6 — d6
are averaged around the azimuthal angle to obtain the quantity at a
given stellar radius and the averaging is done for conical shells along
both the positive and negative z-axis. The results are consistent with
the temperature distribution shown in Fig. 16 and the burning power
distribution shown in Fig. 18. By comparing these results to the
models of Munson et al. (2021), we can evaluate what can occur after
the merger event. Since the models reach He-burning temperatures
during the merger, assuming they will follow an RCB-like evolution
is reasonable. The input luminosity from the steady He-burning shell
should expand the envelope and bring the surface luminosity from
4000 to 10000 Ly (Menon et al. 2013, 2019; Lauer et al. 2019;
Crawford et al. 2020).

5.3 The dredge-up of '°O and the inferred °0/30

The dredge-up of '°0, its impact on the surface ratio of '°0/'30 (the
oxygen ratio), and the discrepancies between the estimated dredge-
up by SPH and grid codes were already discussed in Staff et al.
(2018). Here, we re-examine the amount of dredged-up core material
using a similar approach as in Staff et al. (2018), at several levels of
resolution, using an updated OCTO-TIGER, and an improved definition
of the SoF. Using the results obtained at three different and increasing
resolutions, we estimate the continuum limit dredge-up amount using
the Richardson extrapolation.

We are not aiming here to obtain an accurate estimate of the oxygen
ratio since that would require following a nuclear reaction network
simultaneously with the hydrodynamics of the merger and the precise
timing of when the outer convective zone connects with the burning
products of the SoF (Menon et al. 2013; Crawford et al. 2020;
Munson et al. 2021). Instead, we assume constant conditions, that is
constant temperature and density, in the regions of helium burning,
and inspect only the most relevant reactions to the production of
190 and "0 to infer a minimal possible value of '°0/'80 in these
regions. We also assume that the reactions proceed to completion
which should occur at a time-scale dictated by the reaction with the
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slowest rate. The temperature, density, and initial composition of this
analysis are derived from our hydrodynamic simulations. A similar
single-zone nucleosynthesis approach have been performed in Staff
et al. (2012), where in that paper the analysis has been carried-out
with a nuclear reaction code. We build on their results in diagnosing
the most relevant processes to yield a simple analytic estimate
without running a nuclear reaction code. Our main conclusion is
that the dredge-up of 'O is accompanied by '2C, which can help
the production of '30, if enough hydrogen is present in the donor
envelope.

As we showed in Section 5.2, an accurate estimate of the fotal
mass of the SoF, and regardless of composition, at any time for a
given resolution, is obtained by adding the mass above the threshold
for triple alpha burning in the T — p distribution (e.g. the black line
in Fig. 17 for selected times during the L12 run). The results of these
estimates for all runs as a function of time are shown in the bottom
left panel of Fig. 18.

In Fig. 19 we show the mass of dredged up '°O (and also 'C,
assuming equal masses in the dredged-up accretor material) as a
function of time for all of our simulations. Since we evolved three
distinct fluids in our simulations: one for the accretor’s core (CO), a
second for the accretor’s envelope (He), and a third for donor material
(also He), we could calculate how much mass of the accretor’s core
material, i.e. the gas that was originally located at the accretor’s core,
has densities smaller than 10° g cm™ and take half for the amount
of 1°0 (Fig. 19 left panel). This is to be compared with fig. 4 from
Staff et al. (2018).

We also calculated a more precise measurement of how much
mass of the accretor’s core fluid resides in regions where conditions
for helium burning (by the triple alpha reaction) exist for several
resolutions, and derive the amount of 'O (and '0), again by
taking half. We plot this quantity in the right panel of Fig. 19.
The main difference between these quantities is that on the left
panel, mass that resides outside the SoF and at lower densities,
is still counted, while the right panel informs us the composition
in the regions where triple-alpha burning happens. Similar to the
bottom left panel of Fig. 18, we additionally plot on the right
panel an average Mslf)% between two time points, ¢ = Tieree + Po,
and the latest simulated time, for simulations LIOND, L11, and
L12 as horizontal lines (in dashed blue, dashed-dotted orange,
and thick solid green, respectively). These averages are used to
derive the continuum limit dredge-up value of our resolution study
(plotted as the lowest horizontal dashed black line; see Table 2
as well).

The general behaviour of the dredge-up curves on the left panel
of Fig. 19 consists of three phases: an initial fast rise, perhaps
dominated by numerical diffusion, a monotonic slow increase until
the merger, and a steep increase during the merger, most likely a
combination of real dredge-up and numerical diffusion. It makes
sense therefore to take values of the dredge-up at the same time
after the merger at different resolutions and to apply the Richardson
extrapolation to estimate the corresponding value in the continuum
limit. The curve thus obtained is shown as a black dashed line in the
left panel of Fig. 19 and is composed of ~100 data points with an
average convergence order of ~1 (and a standard deviation of ~ 0.2).
Based on this analysis we conclude that the final mass of dredged-up
160, after subtracting the fast rise ‘shelf’ value shown as horizontal
black line at pre-merger times, is ~ 0.02M. However, not all of the
dredged-up '°O ends up in the SoF, see the discussion below. The
reason that analogous SPH simulations essentially found no dredge-
up may be attributed to the known inability of standard implementa-
tions of SPH to correctly resolve mixing at fluid boundaries unless
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Figure 19. Left: Dredge-up of oxygen-16, defined as mass of oxygen-16 residing at densities lower than 10° g cm™>. The dashed black curve labelled
‘continuum limit’ is the Richardson extrapolation for cell size going to zero, derived from simulations L11, L12, and L13. It is composed of ‘plateau or shelf*
value before the merger, and actual values 1-5 orbits after the merger. The ‘shelf* value is calculated at time fspeif = —0.5(Timerge — 4Po). Right: mass of
oxygen-16 in the SoF, where the conditions for helium burning exist. The three horizontal lines, dashed blue, dashed-dotted orange, and thick solid green, denote
a value averaged between one orbital period after the merger and the latest simulated time, for simulations LIOND, L11, and L12, respectively. These averages
are used to derive the continuum limit value of our resolution study (plotted as the lowest dashed black line; see Table 2 as well). The upper axis in both panels
shows time in minutes, where the conversion is based on the initial orbital period of simulation L12, Py = 113.6 s.

certain modifications are adopted (Read, Hayfield & Agertz 2010;
Ruiz-Bonilla et al. 2022).

The observations suggest that in most RCB stars the ratio
160/180 < 10. Some RCB stars have higher values for this ratio
but still much less than the solar value ~ 500. Most of the 80
comes from the reaction *N(a, y)'*F(87)'30. Thus the amount of
14N present in the SoF limits the amount of 0 produced, since
some 0 may burn to ’Ne. The amount of '*N in the SoF comes
from two possible sources: what was originally present in the He
WD, plus what is synthesized in the SoF during burning through
proton captures 2C(p, y)*N(8+)*C(p, ¥)"N, which requires the
presence of sufficient H (see below).

Considering first the simpler case in which no H is available in
the SoF, the mass of '#0 would be limited by the small amount of
14N originally present in the donor. The amount of '°0 would mainly
depend on the dredge-up from the accretor’s core. Assuming an initial
N mass fraction of X?4N in the SoF, and 0.5 f,o. mass fractions of
12C and '°0O while the rest is helium, the minimal mass-fractions
ratio of '0/'80 in the SoF would be

("°0/"™0) 4o = (7/18) feore/ X0y with no hydrogen. 3)

Here, feore = ZMQE)%/ Msor is the mass fraction of the accretor’s
core fluid in the SoF, which can be inferred from our simula-
tions. In our low resolution simulations, LIOND and L11, we
obtain feore >~ 0.5, while simulation L12 yields foore >~ 0.4, and
the extrapolation to infinite resolution yields a lower fraction of
feore = 0.25 (a first-order convergence; see horizontal lines in
the right panel of Fig. 19 and Table 2). With no hydrogen and
this amount of dredge-up, values of '°0/'80 less than 10 are
impossible unless X?4N > 4 per cent f.or.. However, the amount of
4N is diluted by the accretor material that has been dredged-up
to the SoF, so the mass fraction of N in the He WD donor
star, Xii "7, should be X5, ™P > 4 per cent (feore /(1 — fiore)) for
160/130 < 10. This imposes a substantial restriction, specifically
because observations of most RCB stars show mostly subsolar
metallicities (e.g. Asplund et al. 2000). Obtaining a ratio of the
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order of unity without the presence of hydrogen in these cases is
unlikely.

With H in the SoF, on the other hand, we can create more YN
by two proton captures for every '2C, as seen in the reaction chain
2C(p, y)BN(BHBC(p, y)'*N. Because the half-life of >N is 9.9
min and the proton capture rate of '2C(p, y) in the SoF is 0.6 s, it
is fair to assume that the available 'C will capture protons before
BC(p, y)'N takes place. Furthermore, because the average temper-
ature in the SoF is only 150MK, there will be a negligible amount of
additional '>C generated via triple-alpha processes. Therefore, only
the protons remaining after '?C is depleted in the SoF are available
for *C(p, y)'N, and only they will contribute to the formation of
additional 80, which will reduce the '*0/'80 ratio. When there are
enough protons to convert all the '2C to N, any additional protons
do not contribute to the production of additional '*0 and will not
change this ratio. The '°0/'®0 in the SoF can therefore be written
as:

(1°0/"80) o = (7/18) frore /X0y X
1 X = foore/24,

(1 + fl - f2)71 fcore/24 = X = fcore/127

(1 + f2)71 fcore/l2 <X,

where f| = 14X/X?4N, fo=17fcore/ (IZX?AN), and X is the hydro-
gen mass fraction in the SoF.

We plot this function in Fig. 20 for two representative values of
X?4N of 5 x 1073 (left panel) and 5 x 10~* (right panel; correspond-
ing to subsolar metallicities) in solid lines and for four values of
Jeore: 0.01 (blue), 0.25 (orange), 0.4 (green), and 0.5 (red). Later on,
as the burning proceeds, some '°O can be created by the remaining
13C via ¥C(a, n)'°0, which would be contributing to increasing the
ratio. The ratio including this reaction is plotted in the same figure as
dashed lines.

As can be seen, there are two regimes with a sharp transition
between them. For low X values, the ratio is mostly dependent
of the initial nitrogen abundance (comparing the left and right

panels with X?4N of 0.5 percent, and 0.05 per cent, respectively).
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Figure 20. The '0/'80 ratio in the SoF as a function of H mass fraction, X, assuming constant density and temperature, for two representative initial

abundances of '“N. Left: X?

14y = 0.5 per cent. Right: X9

14N

= 0.05 per cent. Solid lines are according to equation (4). Dashed lines also include alpha captures

on 13C, which creates more 100 and therefore increase the ratio. We additionally assume that all the involved reaction chains 2C(p, y)BNBHBC(p, y)*N,
UN(a, ¥)'8F(B1)!8 proceed to completion, and that >C captures all the protons before >C(p, ¥)!*N takes place.

For higher X the ratio decreases to a value < 1. The location of
the transition is a function of the accretor mass fraction in the SoF,
feore- It can be generally written as X > fiore/24, Where at twice
this mass fraction at X > fio/12, the ratio falls down to < 1.
For our infinite resolution extrapolation, feoe = 0.25, a minimal
amount of X > 1 per cent is required to obtain the observed values
in RCBs.

To estimate the H mass fraction in the SoF we assume that
any amount of hydrogen resident in the He WD envelope (out-
side the hydrogen free core) gets mixed completely into the SoF,
ie. X =M} .. /Msor, where MfL. . is the hydrogen mass in
the envelope of the He WD. Under this assumption an amount
of ML . = (feore/24) Msor ~ 1073 M, is required. For the case
considered here, where the He WD is the result of a previous
complex binary interaction, which may include several episodes of
mass transfer and one or two full common envelope interactions,
the amount of hydrogen in the He WD envelope can only be
poorly constrained. Alternatively, if a merger takes place in an
environment that is richer in H, like a merger inside a common
envelope or a merger with a sub-giant star as proposed by Shen,
Blouin & Breivik (2023), they could also produce the right ratios.
In the latter cases the rest of the hydrogen envelope must become
unbound in the process, so by the time the post-merger object evolves
to its RCB phase (on the order of ~ 10?> — 10* yr), no hydrogen
is seen.

Finally, two other factors can increase the '°0/!30 ratio, although
we claim here that they play only minor roles. One is the amount
of 190 that is dredged-up from the accretor outside the SoF. If we
assume a total mixing of the mass in the SoF to the surface, the
surface ratio will be
(1°0/10) = (M3 + My ) /M

surf out

_ (160/180)SOF (1 + M;E?/M;g?:) , 5)

where M., is the 'O mass outside the SoF as a result of the
dredge-up from the accretor. We find in our infinite resolution

extrapolation 0.02 Mg, of '®0 at low densities (Fig. 19 left panel)

and that 0.01 M, of it resides in the SoF (Fig. 19 right panel), while
the remaining 0.01 Mg must reside outside the SoF. Consequently
M;Z‘O >~ MS"Z)%, and this dredge-up to outer layers only doubles the
ratio. Additionally, the '80 will eventually burn to ?*Ne through
the reaction '*O(«, y)?>Ne. However, Staff et al. (2012) found that
the relatively low temperature in the SoF will delay this reaction to
10'2 5 ~ 30, 000 yr (see the green line in their fig. 16, for example).
At this point, the convection deep into the SoF has already stopped
(see e.g. Menon et al. 2013; Crawford et al. 2020; Munson et al.
2021), and therefore the '°0/'®0 ratio in the SoF will no longer
affects the surface ratio. In Munson et al. (2021) the convection to
the SoF persists up until 100 yr and then stops. This gives a window
of time for the production of 80 without being processed further to
22Ne.

6 SUMMARY AND CONCLUSIONS

In this paper, we have carried out a set of simulations of WD mergers
to further our understanding of the origin and phenomenology of
RCB stars. All our simulations have total masses in the narrow range
0.85 — 0.9M, because of observational constraints, and a mass ratio
q = My/ My = Mgonor/ Macereror = 0.7 because previous simulations
have indicated that this ratio yields the optimal conditions for
incomplete helium burning. Our simulations extend previous studies
by using a new and improved code OCTO-TIGER and comparing the
outcomes for a range of resolutions, at 10, 11, 12, and 13 levels
of refinement. The finest grid cell for LIOND was 1.2 x 1073 R,
while the finest cell for L13 was 1.43 x 107*Ry (Table 1). The
outcomes of our resolution study show that a finer grid results in better
angular momentum conservation (Fig. 2) and allows us to follow the
evolution with lower mass transfer rates (Fig. 11). However, this
also translates to a longer and costlier evolution to merger. We find
excellent agreement between our L13 evolution and the analytic
predictions right up to the tidal disruption and merger, where the
analytic treatment fails (Appendix B). This comparison serves both
to verify our method and illustrates the limitations of the simple
analytic approach.
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Another comparison was with respect to the choice of frame
(Section 4.2.3). Inertial frame simulations suffer from numerical
diffusion due to the advection of the binary stars across the grid
cells, which results in higher initial mass transfer rates and a rapid
evolution through a merger (Fig. 11). Rotating frame simulations
avoid these problems and thus they are much more suitable for the
simulation of marginally stable or unstable binaries.

The comparison of our simulations with equivalent ones car-
ried out with a different grid code, FLOW-ER, have yielded re-
markably similar results (Appendix C). However, OCTO-TIGER has
the advantage of using adaptive mesh techniques, allowing us to
simulate a larger domain than in FLOW-ER. In OCTO-TIGER simu-
lations we therefore could follow the merged object up to large
distances and catch that the density profile outside the disc falls like
o o R~3 (Fig. 12).

We then analysed the merged object in Section 5. Its structure is an
inner pressure-supported, sphere, slightly oblate, rotating as a solid
body, with approximate radius Rg, = 1 x 10° cm surrounded by a
disc (Fig. 12). The inner part of the disc is in Keplerian rotation,
while the outer parts rotate slower than the Keplerian speed. This
could be due to partial pressure support or that these outer regions
would eventually fall back (Fig. 14).

We have analysed the temperature and density conditions of the
gas after the merger to determine how much of the gas is likely
to undergo nuclear fusion (Section 5.2). As in previous studies,
we have found a region of hot temperatures around the accretor
with the right conditions for helium burning. However, due to the
presence of a cold blob of gas, a remnant of the disrupted donor,
regions of higher latitudes are hotter than the equatorial, and the
SoF does not consist of complete shell, but has some hole(s) in
it (Figs 13, 16, and 18). The amount of fusing gas is a function
of resolution, but it converges to ~ 0.08 Mg (see Fig. 18 and
Table 2). The energy generated by the nuclear reactions over the
time span of ~ 20 min is ~ 10* erg still negligible compared to
any other energy component in the simulation, thus justifying the
fact that we do not include nuclear effects on the evolution of the
simulation.

The most important goal of our research was to re-examine the
dredge-up of material from the accretor at several resolutions and to
obtain an improved estimate of the dredged-up mass by extrapolating
to an ‘infinite’ resolution (Fig. 19). Our extrapolated value of
M'"° =0.02 My, at lower densities than 10° g cm™3 (Fig. 19 left
panel) bridges the gap in the amount of dredged-up 'O mass found
in previous ¢ = 0.7 simulations between SPH versus finite-volume
codes (see table 1 of Staff et al. 2018), and our result sits right at the
middle. In addition, the extrapolated amount of 0.02 M, of accretor
mass in the SoF (Fig. 19 right panel and Table 2), and outside the SoF,
is lower than previously found (see Staff et al. 2012 table 3), which
consequently results in two times smaller accretor mass fraction in
the SOF of fiore = 0.25 (see Table 2 versus Staff et al. 2012 table 2).
However, our analysis based on the most relevant nuclear reactions
(Fig. 20) indicates that even with this relatively mild dredge-up of
160 from the accretor, creating '#0 only from the available '*N in
the SoF might not be enough. In order to obtain the observed ratio of
160/180 < 10, H burning on the 2C that accompanied the dredge-up
of '°0 should take place, forming additional N that will be further
processed to 130.

Our attempts to simulate evolution with no driving yielded prob-
lematic results (see Section 4.2.4), which were examined in some
detail using both OCTO-TIGER and FLOW-ER (see Appendix D). We
conclude that with the current implementation of the ZTWD EoS,
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non-driven simulations from which we can infer further physical
insights are impossible. The driven simulations, on the other hand,
merged before any instability started to grow, and we are confident
that the merger occurred because of the unstable mass transfer
(see Section 4.2.1 as well as Appendix B). We do note that the
implication of the adapted EoS on the nuclear reactions and the
dredge-up is unclear and should be investigated in detail in the
future. We tested how a slight change in the derivation of the
thermal energy (with or without the dual-energy formalism) could
affect the simulation results and found only a very minor difference
(Appendix E).

Finally, to accelerate OCTO-TIGER simulations we have developed
a GPU-accelerated version over the last few years. We outlined
our progress in Appendix F, where we showed runtimes on the
GPU partition of Perlmutter using our CUDA kernels, and a
noticeable GPU speedup over the CPU runs. Our aim is to ex-
pand on our results shown in this work by adding more GPU
optimizations, as well as a Kokkos version, allowing us to signif-
icantly speedup future simulations and to target a wider range of
supercomputers.
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DATA AVAILABILITY

OCTO-TIGER is available on GitHub?> and was built using the
following build chain.> On Queen-Bee and BigRed OCTO-TIGER

Zhttps://github.com/STEIIAR-GROUP/octotiger
3https://github.com/STEIIAR-GROUP/OctoTigerBuildChain
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version Marcello et al. (2021a) was used and on NERSC’s Perl-
mutter the pre-release state of v0.9.0 was used. We had to use
different versions due to some fixes for the A100 GPUs Perlmutter
(see Appendix F).
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APPENDIX A: ZERO-TEMPERATURE WHITE
DWARF EQUATION OF STATE

When using the zero-temperature white dwarf (ZTWD) equa-
tion of state (EoS) in OCTO-TIGER, the fluid is modelled using a
combination of a zero-temperature Fermi fluid and an ideal gas.
The total pressure, P, is the sum of pressure from the zero-
temperature fluid, Py, and the ideal gas internal (thermal) pres-
sure, Py. The gas energy, the quantity OCTO-TIGER evolves, is
the sum of internal (thermal), degenerate, and bulk kinetic energy
densities.

E = Ey + Egeg + Exin- (A1)

The energy density of the degenerate electron gas, Eqc,, is given
by the relation,

Edcg = Hdcgp - Pdcgv (A2)
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where

Haey = BA/B) [ (* +1)"* ~ 1] (A3)
is the specific enthalpy of the degenerate electron gas,

Pag = A [x (227 =3) (x* = 1) = 35imb ™" ] (A4)
and

x=(p/B)'"*. (A5)

The constants A and B are

A = wmlc®/(3h?) = 6.00228 x 10? dynes cm ™2,
B = p, x 8wm,mic*/(3h%) = p, x 9.81011 x 10° gem ™,
(A6)

where 1, is the average ratio of nucleons to electrons. We assume
that throughout each white dwarf (and basically throughout the whole
domain) 11, = 2, hence, B = 1.96202 x 10° g cm~3.

For numerical reasons, at low density regions (x < 0.001), we
approximate Eq., by a Taylor expansion

Eqeg (x < 0.001) = 2.4 x Ax’. (A7)

As described in Marcello et al. (2021b), OCTO-TIGER evolves
a second variable for the energy, the ‘entropy tracer’, r (Motl,
Tohline & Frank 2002). The inclusion of this additional vari-
able allows for the proper evolution of shocks while still re-
taining a precise calculation of the thermal energy in regions
where the kinetic energy dominates over the non-degenerate energy
components. The thermal energy density therefore is computed
according to

, (A8)

E. — E— Ekin - Edeg1 if E — Ekin - Edeg = GIE
th 77, otherwise

where y = % is the ratio of specific heats. In addition, the entropy

i . .
tracer is reset using v = (Ey)7, in computational cells which
satisfy

E — Ekin — Edeg > 62E (A9)

for at least one of the adjacent cells or the cell itself. Otherwise it is
left alone. Note the additional degenerate energy terms in A8 and A9
compared to what is described in Marcello et al. (2021b). Throughout
this paper, we use the default values €; = 0.001 and ¢; = 0.1 as was
chosen by Bryan et al. (1995).

The combination of using both a ZTWD EoS and a dual energy
formalism implies that in the WD interiors, where the degener-
ate energy dominates, the entropy tracer is not directly updated
from the gas energy and is only affected by diffusion. Initially,
the entropy tracer is set to a very low value inside the stars,
which corresponds to a very low, practically zero, temperature.
However, as the simulation evolves in time the entropy tracer
begins to increase inside the stars, which effectively slightly heats
the stars. To test whether this heating is significant, we have
run a simulation where we disable the dual energy formalism
and found that this has only a very little effect on the results
(see Appendix E).

Finally, the temperature is calculated as

_y—DEqn
- I’ZKB ’

T (A10)
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n=> 2 (A11)

;
T Himy

i is the molecular weight of the ith specie, my is the mass
of an hydrogen atom, and Ky is the Boltzmann constant. The
total pressure is the sum of the degenerate and thermal pressure
components

P = Py + (v — 1) Eq, (A12)

APPENDIX B: VERIFICATION OF THE EARLY
MASS TRANSFER WITH ANALYTICAL
CONSIDERATIONS

In what follows we analyse the results of our numerical simulations
focusing on the results of the highest resolution L13 run, with
two goals in mind: a check of the accuracy of the simulations,
and a better understanding of the evolution of the binary system.
We start from an approximate analytical expression for the total
angular momentum of the binary as the sum of the two-body
orbital angular momentum for point-mass components plus the
contribution from the spins, where I, and I, are the moments of
inertia of the components with respect to their respective centers
of mass:

Ga ol
J=MM, ﬁ(l —e)? + 112 + L. (BD)

This expression is approximate in that we are using the simple
Keplerian two-body orbital frequency for point masses, valid if both
components remain spherically symmetrical. This approximation
gets gradually worse as the binary separation is reduced and tidal
distortions increase. We construct from the above the following
logarithmic derivatives:

j _ M] M2 + la 1 M eé
Joo My My 2a
L2+ 12+ L)+ 28
+ )
Jorb
where the part of the right-hand-side that is on the first line

is the jorb/Jorb, while the term that is on the second line is
J, spin/ J, orb-

(B2)

Jopi (L« L (L

L (—1 + —') + 2 (—2 + —2> : (B3)
Jorb Jorb 11 Q1 Jorb 12 QZ
Finally, we set an explicit expression for the left-hand-side of
equation (B2):

J = Jys+ Mjis, (B4)

where jsys represents systemic angular momentum losses, either
numerical (see below) or real, such as gravitational radiation
and magnetic braking, and ji, is the effective specific angular
momentum of gas at L2. In our simulations the initial driv-
ing is set t0 Jys = —Jow x 0.01/Py for a time 0 <t < Ty,
and zero for t > Tg,. Mass-loss from the binary occurs mostly
through L2, but also through L3, and gravitational coupling
between the binary and the mass outflow will affect the
average specific angular momentum of the outflow. Thus ji, should
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Figure B1. The graph shows the instantaneous differences between logarithmic derivatives on the left- and right-hand sides of the equation (B2), which should
be zero at all times. Rolling averages of this value are also plotted. The red vertical lines are each placed one orbital period apart, and the blue vertical line (at

t ~ 260 seconds) indicates the time at which driving ceased.

be regarded as an effective specific angular momentum of the
outflow.

While the above equations are in principle valid for the instan-
taneous values of the masses and orbital parameters, in practice
the determination of these quantities and their derivatives from the
numerical simulation, requires averaging over data points covering
a time ~ Py, where P, is the initial orbital period. Thus these
equations should be considered effectively orbit-averaged equations.
To construct the various terms in equation (B2), we obtain at every
instant ¢ the best-fitting elliptical orbit, based on the data points for
the interval (r — Py, t). This fit yields the orbit-averaged values for
the separation a, the eccentricity e, and their derivatives, and OCTO-
TIGER provides the rest of the quantities.

Fig. B1 shows the instantaneous (blue) difference between the log-
arithmic derivatives on the left- and right-hand sides of equation (B2)
based on the results of simulation L13. The orange and green curves
represent the above differences averaged over 20 and 2000 diagnostic
samples, where a sample is approximately five time-steps. Perhaps
the most remarkable message conveyed by this figure is how well
the orbit-averaged equations describe the numerical evolution of
the binary which is free of the simplifying assumptions of the
analytic model. Significant deviations from the simple model only
occur during the initial driving and the final dynamical merger.
Tidal distortions of both components, mass-loss through the outer
Lagrange points, and ultimately the inability to define unequivocally
what constitutes the donor during its disruption, ultimately make the
simple model inapplicable. The fact that the numerical simulation
matches the expectations from the simple model precisely when the
eccentricity is small (e & 0.01, see top left panel in Fig. 6) and the
components are nearly spherical strengthens our confidence in the
validity of our results.

APPENDIX C: BINARY EVOLUTION
COMPARISON BETWEEN FLOW-ER AND
OCTO-TIGER

We find that the FLOW-ER simulations are very comparable to the
high resolution OCTO-TIGER simulations with respect to resolution
and to the amount of driving. The L12 simulation has a similar
number of cells across the donor to simulations FL-1 and FL-2,
while the L13 simulation has a similar total number of cells in the
domain, but higher spatial resolution of the donor (Table 1). The only
difference between FL-1 and FL-2 is that the former is driven for
one orbit, while the latter is driven for two, which is comparable to
L12, which is driven for 1.3 orbits, and to L13 which is driven for
2.3 orbits.

In Fig. C1 we show a set of diagnostic quantities as a func-
tion of time for the four simulations, similar to what we show
in Fig. 11. The merging times compare as one would expect:
the simulations driven for ~2 orbit merge at 10 and 17 or-
bits, for the L13 and FL-1, respectively, while those driven for
~1 orbits merge at 37 and 39 orbits, for the L12 and FL-2,
respectively.

The only anomaly in behaviour is for L13, which exhibits a
decrease in the central density of the accretor before the merger, not
exhibited by any other simulation in this comparison. Most noticeable
is the extremely consistent mass transfer rate onto the accretor for
all four simulations.

Below are some links to the movies showing density slices of the
FLOW-ER simulations:

Equatorial Slice of Q0.7 driven for 1 orbit

Meridional Slice of Q0.7 driven for 1 orbit

Equatorial Slice of Q0.7 driven for 2 orbits

Meridional Slice of Q0.7 driven for 2 orbits
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Figure C1. Comparison between L12 and L13 and the two FLOW-ER simulations. Orbital separation and orbital angular momentum (first row), mass ratio, and
mass transfer rate (second row), maximum accretor density and donor angular momenta (third row).

APPENDIX D: NON-DRIVEN SIMULATIONS -
HITTING THE NUMERICAL BARRIER

When trying to simulate a non-driven ‘more realistic‘ evolution one
should expect a long (in wall-clock time) and expensive (in computer
resources) simulation. Moreover, on hundreds (or thousands) of
orbits numerical errors that accumulate can come into effect. For
example, instead of the actual mass transfer (which can be very
slow), deviations from angular momentum conservation can start
dictating the evolution. We wanted to take advantage of the excellent
angular momentum conservation in OCTO-TIGER (see Fig. 2, for
example), and the fact that OCTO-TIGER can scale very well to a
high number of cores to try and run non-driven simulations in a
reasonable wall clock time. Unfortunately, as we will describe below,
we have hit another numerical barrier, which has never been reached
before. This time, the issues stem from the specific usage of the
ZTWD EoS.

MNRAS 535, 1914-1943 (2024)

In Table D1 we present the non-driven simulations L11ND,
L12ND that are otherwise identical to the previously discussed L11,
L12. Diagnostic plots for these four simulations are shown in Fig. D1.

At first glance, the evolution of the orbital angular momentum
agrees very well and again shows remarkable resemblance, slowly
declining through most of the evolution but then rapidly dropping
just before the merger for simulations L11, L11ND, and L12 (we
stopped L12ND before it merged). Also, with no surprise, the non-
driven L11ND merged much later than the driven L11.

However, in simulation L11ND, the primary (the more massive
star that should be the accretor) is donating mass to the secondary
(less massive star) and the mass ratio grows above (.7 before rapidly
decreasing right before the merger. Likewise, the mass transfer
rate between donor and accretor is positive for driven simula-
tions with the mass accretion rate in L11ND, L12ND becoming
negative.
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Table D1. Our non-driven simulations.
Resolution; Axpin
Source Code Mot EoS Tary Tnerge (Rp) Donor res ap Py Hybrid
Mp) (Py) (Py) (cells/particles) (radial cells) (10° cm) (s)
L1IND Octo (Bd) 0.9 ZTWD 0 514 2.5M;5.73 x 1074 73 3.413 114.0 Yes
L12ND Octo (Bd) 0.9 ZTWD 0 - 5.3 M;2.86 x 1074 145 3.403 113.6 Yes
Note. Notations are as in Table 1.
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Figure D1. Comparison between the non-driven simulations L11ND, and L12ND and the driven simulations L11, and L12.

Furthermore, L1IND and L12ND are clearly anomalous with
the central density of the primary declining (and the potential
energy increasing) throughout the simulation. The accretor ex-
pands in these non-driven simulations, overflows its Roche lobe,
and transfers mass to the secondary star, which ultimately trig-
gers the merger. The expansion itself is caused by an insta-
bility, convection-like, that is forming inside the accretor. We
stopped L12ND the moment we witnessed the expansion to save
computer time.

To isolate this problem, we have tested whether we can reproduce
this expansion in a single star simulation. In this test, we created
a hydrostatic model of a white dwarf using the ZTWD EoS. We
have run two resolutions, which correspond to the resolutions of the
L10OND and L11 binary simulations, with respect to the number of
cells across the star’s diameter. We fixed the star mass to the mass
of the accretor and thus the star structure closely follows the initial
accretor structure in our binary simulations. Like the stationary star
test in Marcello et al. (2021b), the grid size was twice the size of the
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Figure D3. Stability tests of a single star with a ZTWD EoS. From left to right: The central density, the maximal radius of a density contour equal to 10? gcm™3,
and the relative energy error (see the text) as a function of time. On the higher resolution, using the dual-energy formalism (DEF), the star starts to expand due
to internal, convection-like instabilities, at about 40 initial periods Py of the ¢ = 0.7 binary (solid thick line). Disabling the DEF prolongs the stability of the
star and postpones the sudden decrease in the central density to nearly 80 Py (or ~2600 dynamical times of the single star; dashed thick line).

star. On low resolution, the star remains stationary on thousands of
dynamical times (the initial orbital period, Py, shown in the plots is
114 sec and is equal to 33 dynamical times). This gives us further
confidence in our LIOND simulation, where such an expansion was
not observed. However, on the L11 equivalent resolution (64 cells
across), the same instabilities that developed in the binary simulations
L1IND, and L12ND are observed.

We illustrate these internal convection-like instabilities in Fig. D2.
We plot density (left), thermal pressure divided by total pressure
(center), and temperature (right) at the time they begin to form, at
approximately 32 Py. Each panel shows a slice through the equatorial
plane from the single star simulation where we resolve 64 cells
across the star’s diameter and where the thermal energy is computed
according to the dual-energy formalism (DEF; equation A8). On the
most left and central panels, we also plot equi-potential contours and
velocity arrows, while on the right panel, we plot density contours.
Bubbles of hotter temperature than their surroundings are clearly
seen in the interiors of the star at radii of ~ 0.2 — 0.5 x 10° cm. In
these bubbles, the thermal pressure is also higher compared to the
thermal pressure of their surroundings (the total pressure is not that
different though). Those bubbles tend to rise outward in a convection
like motion, disrupting the structure of the star. As a consequence,
instabilities are formed along the star surface, which results in a
complex flow. We found out that this behaviour precedes the sudden
rapid expansion of the star.
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In Fig. D3 we plot the central density (left), the maximal
radial distance to the isopycnic surface p = 10> gem™ (middle),
and the deviation from conservation of energy (right): AE =
(E(t) — E(0)) /E(O) as a function of time, for several runs us-
ing two spatial resolutions with and without DEF. Here E(7) =
f (Edeg + Eq + Exin + <I>) dV over the entire grid. In contrast with
Fig. 2, here we do not include outflows of energy in the calculation.
Along with the effects of resolution and the usage of the DEF,
we ran a case where only degenerate pressure is included (the
thermal pressure is zero and the total pressure equal to the degenerate
pressure).

The FLOW-ER method, (without the DEF; i.e. equation El),
maintains the star structure for longer, postponing the instabilities
to a much later phase in the evolution. However, eventually, the star
expands and the total energy deviation grows to 30 percent. The
instabilities are completely avoided in the simulation that includes
degenerate pressure only and the star remains intact throughout
the evolution. This further confirms the role of the convection-like
instabilities in the expansion and the decrease in the central density.
It also pinpoints the problem of the way we add the contribution of
the thermal pressure to the degenerate pressure. A similar stationary
test with an ideal gas pressure only does not show the same instability
(see the stationary star test in Marcello et al. 2021b). Moreover, an
equivalent run performed with FLOW-ER including both degenerate
and thermal pressure contributions, experiences the same convection-
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Figure E1. Comparing two driven simulations with the same resolution but with different treatments for the derivation of the internal (thermal) energy. L11 is
the simulation shown throughout the paper in which the thermal energy is calculated according to equation (A8). We use this treatment in all the simulations
shown in this paper. In the other simulation, we used instead equation (E1), similar to what is being performed in FLOW-ER. Only very minor differences exist
which indicate that the specific temperature prescription does not affect much the simulations.

like instability, although much later, and results in the expansion
of the star and the decrease of the central density. It is possible
that using a Helmholtz EoS, which takes into account the varying
degeneracy level of the electrons, rather than the ZTWD which
only assumes a full degenerate electron pressure with thermal ions
could resolve this problem. However, that is outside the scope of
this paper. In addition, it is important to note that previous grid-
based simulations using the ZTWD (like in Staff et al. 2012 or
Staff et al. 2018), have never been run long enough to reveal this
phenomenon.

APPENDIX E: THE EFFECT OF DISABLING
THE DUAL ENERGY FORMALISM

To check the effect of using the dual-energy formalism (DEF) on
the short-driven simulations we performed a simulation where the
DEF is disabled. The thermal energy in a cell is calculated then by

subtracting the kinetic plus degenerate energies from the gas energy
while forcing it to be non-negative,

En = max (E — Egeg — Exin, 0) . (El)

In this simpler treatment, the entropy tracer is disregarded and
never used to calculate the thermal energy. This approach is used
in all the FLOW-ER simulations shown in this paper. We have run
an equivalent of the L11 driven simulation just with the FLOW-ER
approach (equation E1) and we demonstrate in Fig. E1 that these
simulations appear to be very similar.

First, we note that the orbital properties of the system evolve
with time almost identically in both of the simulations. The orbital
separation (a), angular momentum (b), and the mass ratio (hence
the mass transfer rate) (c) evolve as described in 4.1 and behave as
expected, with their respective curves falling on top of each other
most of the time. The donor central density (e) also behaves similarly,
indicating that the donor star structure is not affected by the DEF
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Figure F1. Scaling on NERSC’s Perlmutter for simulations for runs using
CPU only and using CPU and GPU. All runs started on a single node, and
we increased the number of nodes until we did not do sufficient work and
the scaling flattened out. However, level 12 only fitted on eight nodes. The
configuration on Perlmutter was as follows: We used four localities with 16
cores per locality for the CPU-only run. One NVIDIA® A100 was added to
each locality for the combined CPU and GPU runs.

treatment being used. The most notable difference is in the accretor’s
central density (d), which decreases more in the simulation where
the DEF is used. This results in a slightly less dense core at the time
of the merger. However, the averaged density structure of the merger
five orbits after the merger (f), almost converges, with a small bump
at ~ 10° cm as the only difference. The temperature and rotation
profiles, (g) and (h), are also very close besides small variations.
Finally, the accretor expands slightly further prior to the merger in
the simulation with the DEF. Although this results in a little more
diffusion of oxygen-16 out (i) and displaces the first peak in angular
velocity slightly outward (h), overall, the effect is marginal.

APPENDIX F: SCALING AND CODE
PERFORMANCE USING NVIDIA GPUS

OCTO-TIGER’s support for GPU acceleration within the C++ stan-
dard library for parallelism and concurrency (HPX) (Kaiser et al.
2020) was recently extended. Initially, GPU support was added
(via CUDA) when OCTO-TIGER’s gravity module was ported to
the GPU and tested on CSCS’s Piz Daint (Daif} et al. 2019).
Recently, OCTO-TIGER’s new hydro module using a higher order
reconstruction was similarly ported and tested on ORNL’s Summit
in Diehl et al. (2021a). For these simulations, we used HPX’s native
CUDA implementation.

Now, to investigate the speed-up brought by the NVIDIA A100
GPUs on NERSC’s Perlmutter, we executed our simulations shortly
before the merger. Thus, we have to have a very refined irregular
grid. Each time, the code was run for 25 time-steps for level 10 and
level 11. For level 12, the runs on a single node without GPUs got
very time-consuming, and we reduced the time steps from 25 to five
time-steps. Table F1 shows the number of cells and memory usage of
each of the simulations. Fig. F1 shows the scaling from close to the
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Figure F2. Speedup for the runs from close to the merger on NERSC’s
Perlmutter from one to 128 nodes. In (a) only the CPUs were used, and in
(b) the NVIDIA® A100 GPUs were added. Note that in the Phase 1, the
maximal number of nodes was restricted to 128.

Table F1. Number of cells and memory usage for simulations L10ND,
L1IND, and L12 at the starting point of our scaling runs. We use a time
earlier to the merger, when massive regridding takes place, as our starting
point.

Level Number of cells Memory
L10OND 3.8M 11 GB

L1IND 40.2M 113 GB
L12 257.3M 724 GB
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Table F2. Toolchain and OCTO-TIGERS dependencies on Perlmutter.

gce 9.3.0 hwloc 1.11.12
cray-mpich 8.1.11 boost 1.77.0
cubpA™ 11.4.0 jemalloc 5.1.0
hpx 1.7.1 silo 4.10.2
hdf5 1.8.12 cppuddle d32e50b
Table F3. NERSC’s Perlmutter configuration.

CPU AMD® EPYC 7713 64-Core Processor
GPU 4 x NVIDIA® A100-PCIE-40GB

GPU driver 450.162

Linux kernel 5.3.18

merger for 25 time-steps. Fig. F2 shows the corresponding speedup.
We used four A100 GPUs per node and for each GPU, we used one
MPI rank with 16 cores assigned. So in total, we used all 64 cores per
node. Tables F2 and F3 show the software version and Perlmutter’s
hardware, respectively. The dependency cppuddle* is available on
GitHub.

With the ongoing heterogeneity of acceleration cards in the latest
supercomputers, e.g2. AMD GPUs in ORNL’s Frontier, NVIDIA
GPUs in NERSC’s Perlmutter, and hopefully soon Intel GPUs in
Aurora, we prepared OCTO-TIGER to support Kokkos (Edwards,
Trott & Sunderland 2014) to target various GPU vendors. The Kokkos
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integration (Daif} et al. 2021) was tested on Riken’s Supercomputer
Fugaku (Diehl et al. 2023) and Stony Brook’s Ookami using Arm
A64FX CPUS with SVE vectorization (Daif} et al. 2022a). Recently,
SYCL support was added to Octo-Tiger to target Intel GPUs (Daif3
et al. 2023). Additionally, support for dynamic GPU work ag-
gregation was added in Daif} et al. (2022b) to improve the GPU
performance further. These improvements and additions prepare
OCTO-TIGER for a diverse set of acceleration cards. Significantly,
the improved speedup using GPUs is promising since we have
shown in this paper that extensive simulations are needed for future
research.

Disclaimer

The results on NERSC’s Perlmutter were conducted in phase 1, and
as such these results should not reflect or imply that they are the
final results of the system. Numerous upgrades will be taking place
for Phase 2 that will substantially change the final size and network
capabilities of Perlmutter.

This paper has been typeset from a TEX/I&TEX file prepared by the author.

“https://github.com/SC-SGS/CPPuddle
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